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Abstract

The “black-box service model” enables ML service providers to serve clients while
keeping their intellectual property and client data confidential. Confidentiality is
critical for delivering ML services legally and responsibly, but makes it difficult for
outside parties to verify important model properties such as fairness. Existing meth-
ods that assess model fairness confidentially lack either (i) reliability because they
certify fairness with respect to a static set of data, and therefore fail to guarantee
fairness in the presence of distribution shift or service provider malfeasance; and/or
(ii) scalability due to the computational overhead of confidentiality-preserving cryp-
tographic primitives. We address these problems by introducing online fairness
certificates, which verify that a model is fair with respect to data received by the
service provider online during deployment. We then present OATH, a deployably
efficient and scalable zero-knowledge proof protocol for confidential online group
fairness certification. OATH exploits statistical properties of group fairness via a
“cut-and-choose” style protocol, enabling scalability improvements over baselines.

1 Introduction

Service providers commonly adopt a “black-box service model” to provide ML-driven services to
clients in sensitive domains like finance and healthcare. The confidentiality offered by the black box
is critical for protecting data privacy and Intellectual Property (IP), but hinders the ability of outside
parties to verify properties of the model such as fairness [16, 24]. Since ML models are susceptible
to bias based on race, sex, color, disability, or location [43, 25, 45, 41, 29, 21, 6, 20, 2], verification
of fairness is also critical in sensitive applications. In this work we reconcile these two important
objectives–fairness and confidentiality–by asking:

How can we ensure that deployed models are fair while preserving confidentiality?

Existing solutions (detailed in Appendix A) for confidential fairness assessment include black-box
auditing [35, 34, 37] and cryptographic verification [40, 49, 28, 38, 44], but nearly all certify fairness
only with respect to offline data such as a static training or audit dataset. Such offline fairness
certificates suffer from unintentional or intentional fairness assessments failures when the model
is deployed (Figure 1, first row).

Unintentional issues of offline fairness certificates. In practice, offline fairness certificates fail to
generalize to unseen data encountered during deployment (e.g., online client data) as distribution
shift is common in real-world applications [13, 4] and challenging to account for during training [11].
Distributional shifts can actively reinforce biases [9]. As a result, fairness guarantees established
offline may not hold once the model is deployed. For example, a previous study of real-world
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Figure 1: Limitations of Offline Fairness Certificates (left) and Overview of OATH (right). Offline
fairness certificates based on offline audit data fail when facing real-world distribution shifts or
audit gaming, leading to significant fairness deviation–Demographic Parity (DP) fairness violation
increases from 0 to 1. OATH issues an online fairness certificate of the black-box service provided to
clients reliably, efficiently, and securely. During the service phase, OATH authenticates client queries
and service provider responses to enable accountability without having to perform client-facing ZKPs.
In the audit phase, the service provider and an auditor verify only an asymptotically constant number
of client queries while providing provable guarantees on overall group fairness violation.

distribution shift on US census data showed that fairness certified under distributions from 2014
failed to provide fairness for data gathered in 2018 [11].

Intentional abuse of offline fairness certificates. Many approaches for offline fairness certifica-
tion [35, 34, 37, 9] can be circumvented entirely via a “model switching attack” wherein the service
provider uses a fair model during the audit, and a different model during deployment. This attack
allows arbitrary alterations to fairness on online client data, and can be concealed very effectively via
post-hoc “fairwashing” methods [39, 1]. Service providers can bypass other audit methods [40] via a
“data forging attack”, wherein the malicious institution constructs an “easy” offline dataset on which
the model satisfies fairness constraints, despite failing to meet those constraints for online data.

We formulate the concept of online fairness certificates, which remediate these issues by measuring
fairness directly from the client data received online during deployment. To preserve confidentiality,
we issue online fairness certificates using zero-knowledge proofs (ZKPs), a cryptographic method
that enables verification of information about hidden data [18, 19].

Zero-knowledge proofs of fairness [40, 49] are an emerging line of work that address weaknesses of
both black-box and white-box fairness audits using cryptographic tools. Black-box fairness auditing
considers an auditor who has only query access to a model, and so measures fairness based on
submitted queries and observed decisions of the service provider. By contrast, white-box fairness
auditing approaches release client data and the service provider’s model to the auditor, who can then
verify fairness. Both approaches have drawbacks: the white-box setting is seldom used in practice
due to issues with confidentiality, while the black-box setting does not provide the auditor enough
information for a rigorous audit [9] (for example, nothing prevents a service provider from using one
model during the audit, and a completely different one to answer client queries). Zero-knowledge
proofs essentially provide secure “white-box” access to the auditor for a set of pre-specified operations,
while retaining (and in fact improving upon) the confidentiality of the black-box setting.

We place two recent works in ZKP auditing into the newly defined category of online fairness
certificates: [49] proves online certification of individual fairness, and [31] certifies general audit
metrics. While these works are important, their deployment is substantially limited by a lack of
scalability – ZKPs for validating ML services are computationally expensive, often requiring minutes
of runtime to answer each client query [48, 49, 42]. Here we complement these works with a new
method for online certification of group fairness [16, 22] with excellent scalability. Group fairness
assesses statistical parity between demographic groups for outcome attribution and error rates. OATH
achieves its scalability by exploiting a synergy between cryptographic “cut-and-choose”-style [53]
verification and statistical properties of group fairness.

Overview of OATH. Our method consists of two phases (Figure 1, second row):
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• Service Phase. Clients query the service provider’s model, and send the auditor cryptographic
commitments to their results. They perform no expensive ZKP operations, offloading them to the
service provider and auditor in the next phase.

• Audit Phase. The service provider commits to a measurement of the fairness metric across all
queries in the evaluation set. Then, they verify validity on a randomly sampled subset of the queries.
This “cut-and-choose”-style [53] verification provides a statistical bound on the group fairness that
is robust to arbitrary malicious behavior from the service provider, while maintaining excellent
scaling for large numbers of client queries.

Contributions. We summarize our contributions as follows.

• Online Group Fairness Certificate. OATH audits group fairness over large sets of data received
from clients online, rather than assuming fairness will generalize from a static set of offline data.

• Scalability. We exploit statistical properties of group fairness to audit an arbitrarily large set of
queries to large neural networks using a constant-sized probabilistic sample (Theorem 4.1). On
neural networks with 42.5 million parameters, OATH achieves 4.4 seconds of amortized runtime
per query, of which only 0.23 seconds require the client to be online.

• Confidentiality & Reliability. Our cryptographic protocols guarantee that i) the auditor learns no
information about the evaluation data or model parameters; and ii) the service provider cannot
tamper with the audit’s measurement of fairness, except within a very small probability and effect
size that do not impact practical use.

Our code is publicly available at https://github.com/cleverhans-lab/
oath-zk-online-fairness.git.

2 Background, Preliminaries & Related Work

ML Preliminaries. In this work we focus on probabilistic binary classifiers. That is, we consider
models that can be represented as mappings M : X × {0, 1}k 7→ {0, 1}, where X is a feature space,
and {0, 1}k for some k ∈ N is the space of random seeds. We assume that one feature of each query
point q ∈ X corresponds to a binary demographic attribute {0, 1} ∈ S such as sex, race, or disability.

Fairness. The ML community has proposed various fairness definitions tailored to different philo-
sophical assumptions and contexts. We focus on group fairness [22, 12, 22] which ensures statistical
parity across different subgroups. For simplicity, we demonstrate verification of demographic par-
ity [7] in the main text, and generalize to other metrics in Appendix B. In this work we are interested
in verifying whether demographic parity is satisfied within a public threshold, as formalized below.

Definition 2.1. [Thresholded demographic parity] A predictor Ŷ satisfies demographic parity with
respect to sensitive attribute S within a public threshold θ if:∣∣∣Pr[Ŷ = 1|S = 0]− Pr[Ŷ = 1|S = 1]

∣∣∣ ≤ θ

Demographic parity equalizes the probability of providing a positive outcome, Ŷ = 1 across each
subgroups with different demographic variables 0 and 1. Therefore, receiving positive outcomes is
independent of inclusion in a particular subgroup. This fairness definition is necessary for several life-
changing tasks such as loan approval and recruitment so that applicants from different demographic
groups have equal access to financial services and have equal chances of being hired [30].

Zero-Knowledge Proofs (ZKPs). A ZKP [18, 19] is a cryptographic protocol conducted between a
prover P and a verifier V , who both have access to a public circuit P . A ZKP allows P to convince
V that they know some witness w such that P (w) = 1. See Appendix C for formal properties of
ZKPs. We use two ZKP protocols from prior work as building blocks for general zero-knowledge
boolean circuit evaluation [47], and verified array random-access [17] respectively. The security of
our methods follow directly from the security of these underlying building blocks, which are proven
secure under the Universal Composability [8] framework.
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We use the notation JxK to indicate that P and V hold an IT-MAC-based authentication of x. More
precisely, it means that V holds a global key ∆ and a message key Kx, while P holds a message tag
Mx and the value x. These components hold the algebraic relationship

Mx = Kx + x ·∆
as an invariant.

In this work, whenever an operation on authenticated values is written (e.g. JzK ← JxK + JyK), it
means that P and V are working together to perform special secure operations on their respective
pieces of the authenticated values (detailed in [47, 17, 46]), such that the algebraic relationship is
maintained. The relationship is used at the end of the ZKP protocol to check whether P performed
computation accurately, without the V learning any information about the underlying values. See
Appendix C for additional details.

Commitments. We employ a standard hash-based commitment scheme [27], which enables a party
with an input value x to produce a commitment string Cx that can later be opened to verify the
committed value. This prevents P from modifying client queries between the Service and Audit
phases of our protocol. See Appendix C for details.

ZKPs of Correct Inference. A subset of ZKP methods are devoted to efficiently proving that
inference was computed correctly given an ML model [48, 10]. We note that while their efficiency is
improving substantially, they are still not fit for client-facing usage in many applications, requiring
over ten minutes per verified inference for larger models. We use ZKPs of inference generically as a
subroutine in our work as a component of proving fairness, conducted while the client is offline.

Cryptographic Protocols and Fairness. A few previous works leveraged ZKPs and secure multiparty
computation (MPC) to enforce model fairness. Confidential-PROFITT [40] provides an efficient
ZKP protocol for proving that a decision tree adheres to group fairness constraints at training time.
However, Confidential-PROFITT suffers from issues of offline fairness certificates. FairProof [49], the
work most closely related and complementary to ours, introduces online individual fairness [16, 26]
certificates. However, FairProof requires several minutes of runtime per client query even for very
small models. [28] extended MPC protocols proposed by [32] to enable a service provider to
train a fair logistic regression model on clients’ data while keeping their demographic attributes
confidential. [38] uses MPC to verify fairness of inference. These MPC-based approaches require
secure computation between the service provider and every client, which limits scalability. Our work
achieves greatly improved efficiency by having the service provider commit to queries, and prove
their validity probabilistically when the clients are offline.

In concurrent work, [52] proposed a new zkSNARK-based proof of fairness. While their approach is
highly efficient, it relies on proving bespoke bounds for each new model type. In contrast, our work
can “plug and play” to automatically prove fairness for any model with a zero-knowledge proof of
inference. Thus while their results on logistic regression and multi-layered perceptrons are laudable,
our work differs in its ability to support proofs of fairness for more complex architectures such as
convolutional neural networks as we show in the results section.

See Appendix D for a recap of notation used in the paper.

3 Problem Formulation

Parties and Inputs. We consider three classes of parties: a service provider or prover P , and a
third-party auditor or verifier V , and a set of clients {Ci}ni=1 who possess the online data. Specifically,
each client has a query point qi ∈ X , which they send to P in order to receive a binary decision
oi ∈ {0, 1} from model M .

Goal. The auditor V aims to assess whether P’s model is fair. Formally, the auditor wants to check
whether M satisfies Definition 2.1, given some public threshold θ on the fairness gap (set e.g. by
regulations as an acceptable fairness gap in practice), measured via empirical probabilities over the
online data and model decisions.

Security Model. Our protocols are secure against a malicious adversary corrupting P or V . The
adversary may perform arbitrary behavior during protocol execution to disrupt it. Nevertheless it
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is guaranteed that (i) P cannot falsely convince V that the model is fair, except with negligible
probability and effect size (characterized in Theorem 4.1), and (ii) V learns no information about any
data or model parameters other than whether the fairness condition holds.

We assume that each client submits query points that are representative of real features and de-
mographic attributes. Authentication of this information is typically placed outside of scope for
algorithmic techniques. Instead it is delegated to outside mechanisms (e.g. the financial system
authenticates inputs to loan recommendation models via legal liability for perjury). For clarity of
notation in this work, we assume that each Ci submits a single query point qi ∈ X , though in practice
clients could submit multiple queries.

We assume that none of P , V , or {Ci}ni=1 collude with each other. Severe legal penalties prevent
collusion between regulatory bodies and companies, making this reasonable in practice. We assume
that all parties have access to secure point-to-point communication channels, and that all Ci’s have
been authenticated before protocol initiation – i.e. neither P nor V can launch “Sybil” attacks wherein
they generate fake clients. We operate under the random oracle model for cryptographic hashing.

Blame Attribution and Denial of Service. A malicious P or C may tamper with the message sent to
V during the Service Phase, which could be used to launch a denial of service attack. To deter this,
we guarantee that if the Audit Phase aborts, either P or C can reveal information which correctly
identifies the party responsible for the failure, preventing repeated denial of service.

4 OATH

The goal of our method is to enable a third-party auditor V to measure the fairness of the service
provider P’s ML model from online data provided by the clients {Ci}ni=1. We use ZKPs to guarantee
correct measurement of group fairness, while ensuring that V learns no information about the data or
model parameters. OATH is made computationally efficient by its “cut-and-choose”-style [53] design:
during the Service Phase, clients send the auditor binding and hiding cryptographic commitments
to the online data and output they received from the service provider. Then in the Audit Phase, the
auditor and service provider perform a ZKP to (i) measure group fairness from all online data, and
then (ii) check a group-balanced random sample of the online data for tampering.

Example Application. Consider the case of algorithms deployed in criminal justice. Suppose P is
the service provider of a proprietary ML model used in courtrooms to assign risk scores to defendants.
A set of N court offices utilizing the model are the clients {Ci}Ni=1, and an independent review body
seeking to measure fairness of the algorithm is the auditor V .

To utilize OATH, in the Service Phase each court office collects dossiers from the defendants. The
offices submit the dossiers as queries to P , and send a cryptographic ‘receipt’ of each query to V
via Algorithm 1. Then in the Audit Phase, P and V use Algorithm 2 to prove group fairness across
all received queries. Using OATH in this application accomplishes three main goals: (i) the fairness
of P’s model is measured correctly – P cannot alter their outputs to make the model appear more
fair, (ii) intellectual property is protected since neither the court offices nor V learn anything about
the model, and (iii) data privacy is protected since the review body obtains no information about the
defendants, which is important in many real-world settings where legislation may prevent the sharing
of data across jurisdictions.

4.1 Service Phase

The first part of OATH is the Service Phase, wherein each Ci queries P’s model, and V receives a
cryptographic commitment to each answer. These commitments leak no information to V . They will
later be used in the Audit Phase to verify the correctness of the fairness audit via a ZKP.

Algorithm 1 performs committed query answering. First, C and P generate fair random coins
(obtained using e.g. [5]) to prevent manipulation of the randomness used for the model decision. C
samples two random strings α0, α1 to encode their sensitive attribute s. They send both α0, α1 to V ,
and only αs to P . We note that the purpose of αs is not to hide s from P – s is a component of q
which P gets to see in plain text. Rather, these values prevent P from being able to change s before
the audit without getting caught.
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Algorithm 1: OATH Committed Query Answering.
Input: Public: security parameter λ; C: query point q; P: model M ; V: no inputs.
Output: C: model decision o, randomness r; P: query point q, randomness r; V: commitment string

C = H(q||o||r).
1 C and P generate fair coins r;
2 s← q.sensitive_attribute ∈ {0, 1} ;

3 C samples α0, α1
$← {0, 1}λ;

4 C sends q||αs to P;
5 C computes sigP ← Sign(q||αs||r) and sends sigP to P;
6 P computes Vrfy(q||αs||r, sigP ). Abort if it fails;
7 P computes o←M(q, r) and sigC ← Sign(q||αs||o||r);
8 P sends o, sigC to C;
9 C computes Vrfy(q||αs||o||r, sigC). Abort if it fails;

10 C computes C ← H(q||αs||o||r), and sends C and α0, α1 to V .

In the Audit Phase, P will prove in zero-knowledge that the string αs matches the sensitive attribute
they received from C. P can only guess α¬s with negligible probability, so this prevents them from
flipping the client’s sensitive attribute bit before the Audit Phase. This enables an efficient sensitive
attribute check in Algorithm 2.

C then sends a signed query to P , and P responds with a model output only if they successfully
verify the signature. Likewise, P sends to C a signed query answer, which the client verifies before
accepting the output. If both steps succeed, C sends a commitment to the query and result to V . C
also sends α0, α1, the random strings encoding

Blame Attribution. If verification fails in the Audit Phase, the signature on each party’s inputs
provides a publicly verifiable record of the query which can be revealed to V to identify which party
was the source of the dishonest behavior. See Appendix E for technical details.

Online Efficiency. Cryptographic commitments are much less computationally intensive than ZKPs.
By supplying V with commitments that can be verified via ZKP without any client input, we obtain
client-facing efficiency comparable to ML as a service query answering without cryptographic
verification. By contrast, performing a ZKP of fair inference online with each client requires runtimes
on the order of minutes per client with state of the art methods, even on tiny neural networks [49].
Our commit online, prove offline design dramatically improves usability and scalability.

At the end of the Service Phase, V will have obtained a commitment Ci and sensitive attribute check
strings αi

0, α
i
1 corresponding to the query and answer of each {Ci}ni=1. In the Audit Phase, these

committed queries are assessed for fairness.

4.2 Audit Phase

The second phase of OATH measures group fairness from committed online data via a suite of
ZKP operations conducted solely between P and V while C stays offline. Our protocols guarantee
correctness of the fairness measurement, and prevent V from learning any additional information
about the data or model parameters.

Algorithm 2 begins with P making IT-MAC-based authentications of all query-answer tuples
(qi, ri, oi) ∈ Q. This enables assessment of fairness in lines 6-11, via verified estimation of
Pr[oi = 1|si = 0] and Pr[oi = 1|si = 1] (line 11) on all queries in Q. Line 12 samples ν queries
uniformly from each group (i.e. ν with si = 0 and ν with si = 1). Algorithm 6 details a ZKP
subroutine for group-balanced sampling, placed in Appendix F for brevity.

Validity Checks. We implement three validity checks to deter P from modifying Q:

• Sensitive Attribute Check – P fails if they try to modify the sensitive attribute of any client.

• Commitment Consistency Check – P fails if they modified any part of the query sent by Ci during
the Service Phase, for all Ci selected by the group-balanced uniform sample.
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Algorithm 2: OATH Zero-Knowledge Fairness Audit.
Input: public: the number of client queries n, fairness gap threshold θ, soundness parameter ν; P: model

M , online data Q = {(qi, αi
s, oi, ri)}ni=1; V: commitments {Ci}ni=1, sensitive attribute check

strings {(αi
0, α

i
1)}ni=1

Output: V obtains bpass ∈ {0, 1} indicating whether M satisfies demographic parity with respect to Q.
// Step 1: Initialization

1 for i ∈ [1, n] do
2 P authenticates (JqiK, Jαi

sK, JriK, JoiK);
3 P authenticates JMK;
4 P authenticates Jc0K and Jc1K initialized to zero; ▷ Count positive outcomes in each demographic group
5 P authenticates Jn0K and Jn1K initialized to zero; ▷ Count individuals in each demographic group
// Step 2: Measuring Group Fairness

6 for i ∈ [1, n] do
7 JsiK← Jqi.demographic_attributeK;
8 Jb0K← (JsiK == 0), Jb1K← (JsiK == 1); ▷ Indicator bit for demographic attribute
9 Jn0K← Jn0K + Jb0K, Jn1K← Jn1K + Jb1K ; ▷ Update group counts

10 Jc0K← Jc0K + (Jb0K · JoiK), Jc1K← Jc1K + (Jb1K · JoiK); ▷ Update positive outcome counts

11 Fairness gap computation and comparison to the threshold JbpassK←
(
θ ≥

∣∣∣ Jc0K
Jn0K −

Jc1K
Jn1K

∣∣∣);

// Step 3: Validity Checks
12 S ← Group-Balanced Uniform Sampling(Q, ν); ▷ An array indicating selected samples (Algorithm 6)
13 for i ∈ [1, n] do

// Sensitive Attribute Check
14 V sends αi

0, α
i
1 to P ;

15 P proves
(
(Jαi

sK == αi
0)⊕ (Jαi

sK == αi
1)
)
== 1 ;

16 Js′iK← (Jαi
sK == αi

1) ;
17 P proves JsiK == Js′iK ;
18 if Reveal(JS[i]K) == 1 then

// Commitment Consistency Check
19 P proves H(qi||αi

s||ri||oi) == Ci;
// Inference Correctness Check

20 P proves JoiK == JMK(JqiK, JriK) using Finf;

21 If any of the proofs fail, abort. Otherwise, Reveal(JbpassK)

• Inference Correctness Check – P fails if they gave Ci any output oi ̸= M(qi, ri) during the Service
Phase, for all Ci selected by the group-balanced uniform sample.

In line 15 P verifies that the Jαi
sK authenticated in Step 1 is equal to at least one of the sensitive

attributes committed to the client, without revealing which one. Since Ci only sends αi
s to P in the

Service Phase and V waits until after Jαi
sK is authenticated to send αi

0, α
i
1, a malicious P can only

falsify this check if they guess αi
¬s. This occurs only with negligible probability. This approach to

verification is similar to the generation of random labels for wire values in garbled circuits, a classical
cryptographic technique [50]. Lines 16 and 17 verify that the sensitive attribute encoded by Jαi

sK is
consistent with the sensitive attribute used in the rest of the protocol.

Line 19 verifies commitment consistency by proving that the values P used in the Audit Phase are
consistent with the values that Ci committed to in the Service Phase. Line 20 verifies that oi was the
proper result of inference with the authenticated model M(qi, ri) by using a ZKP of correct inference
Finf as a subroutine. In line 21, the indicator bit bpass is revealed as long as the ZKP protocol was
carried out correctly and all of the checks in lines 13-20 pass. This signals to V whether the fairness
condition (Definition 2.1) holds, within a probabilistic bound characterized in the next section.

4.3 Analysis of Probabilistic Audit

To achieve highly efficient amortized runtime and communication, the zero-knowledge audit in
Algorithm 2 performs a probabilistic check on audit integrity by verifying a random subset of queries
sampled from Q. Our analysis shows that the probability with which a malicious P can wrongly
demonstrate that their model is fair decreases exponentially as a function of sample size.
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We proceed by defining an ideal measure of fairness – the group fairness gap that would be computed
if P was fully honest – and comparing it to the group fairness gap computed when a malicious P
submits a modified collection of queries as input to Algorithm 2. We then analyze the probability that
P is able to execute Algorithm 2 without detection when these quantities differ by some ϵ > 0.
Definition 4.1. Honest & Measured Fairness Gaps. Let (qi, ri, oi) ∈ Qh be the collection of
query-answer tuples input to Algorithm 2 assuming a perfectly honest P , which notably implies:
i) queries are always answered using correct computations of inference M ; and ii) no modifications
have been made to the queries recorded in the Service Phase.

We will refer to Xh, demographic parity gap computed on Qh, as the honest fairness gap. We have

Xh =

∣∣∣∣∣
∑

(qi,ri,oi)∈Qh
oi · Ia(si)∑

(qi,ri,oi)∈Qh
Ia(si)

−
∑

(qi,ri,oi)∈Qh
oi · Ib(si)∑

(qi,ri,oi)∈Qh
Ib(si)

∣∣∣∣∣ .
Where the indicator Ia is 1 if si == a and 0 otherwise.

Let Xm, the measured fairness gap, refer to the same quantity but computed on an arbitrary
collection of query-answer tuples of a malicious P’s choosing Qm.

Xm =

∣∣∣∣∣
∑

(qi,ri,oi)∈Qm
oi · Ia(si)∑

(qi,ri,oi)∈Qm
Ia(si)

−
∑

(qi,ri,oi)∈Qm
oi · Ib(si)∑

(qi,ri,oi)∈Qm
Ib(si)

∣∣∣∣∣ .
Theorem 4.1. Let Xh be the honest group fairness gap and Xm the measured group fairness gap
computed during Algorithm 2. Consider ϵ > 0, the deviation between these quantities caused by a
malicious P cheating, defined: ϵ = |Xh −Xm| . Then P is caught with probability

pcatch ≥ 1−
(
1− ϵ

2

)ν

,

where ν is the number of queries uniformly sampled within each group via Algorithm 6 (a total of 2ν).

The proof is in Appendix G. The intuition is that the larger Q is, the more queries P must maliciously
modify to alter the group fairness gap (Definition 4.1). This in turn increases the probability that a
modified query shows up in the verified random sample, resulting in P getting caught.

Theorem 4.1 shows that the probability that P can escape detection for altering V’s measurement of
the group fairness gap declines exponentially as a function of the number of sampled queries 2ν. The
base of the exponent increases with the magnitude of the alteration ϵ. This bounds the probability that
P escapes detection at any given ν. Thus, we can parameterize the audit to make it highly improbable
that P could impact the measured fairness by amounts that matter in practice. We conduct empirical
analysis of parameter settings in Section 5.

5 Empirical Evaluation

Objectives. We empirically evaluate the efficiency, scalability, and correctness of OATH for providing
a repeatable fairness audit of ML-based services while protecting the confidentiality of evaluation
data and model parameters.

Datasets. We consider five common datasets for fairness benchmarking (described in Appendix H):
COMPAS [2], Crime [36], Default Credit [51], Adult [3] and German Credit [15].

Implementation. We implement OATH in C++ using EMP-toolkit [46] (under an MIT License). All
experiments were conducted by locally simulating the parties on a MacBook Pro laptop CPU.

Models. OATH uses a zero-knowledge proof of correct inference Finf as a subroutine in order to
accommodate arbitrary binary classifiers. We evaluate OATH using three different settings for Finf:
(i) logistic regression (LR) implemented in EMP-toolkit, (ii) a small feed-forward neural network
(FFNN) with ReLU activations suitable for tabular data implemented in EMP-toolkit, (iii) larger
neural networks suitable for image data using Mystique [48] with three different networks LeNet-5
(62K parameters), ResNet-50 (23.5 mil parameters), and ResNet-101 (42.5 mil parameters).

Baselines. We compare the efficiency of OATH against a baseline method for confidential online
fairness certificates of group fairness. The runtime for this baseline is estimated by (i) computing
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Table 1: Mean & SD runtimes across 3 trials of the Service and Audit Phases of OATH when applied
to a Logistic Regression (LR) or Feed-Forward Neural Network (FFNN). For the Service Phase, we
report the runtime (s) per query for each client Ci. For the Audit Phase, which occurs between the
service provider (P) and the auditor (V), we report the total runtime (min) across 106 client queries.

Dataset Service (s/query) Audit (min)
LR FFNN

COMPAS 0.25 ± 0.04 82.8 ± 0.01 93.1 ± 0.29
Crime 0.23 ± 0.02 83.3 ± 0.02 101.8 ± 0.6
Credit 0.23 ± 0.03 83.3 ± 0.03 103.2 ± 1.0
Adult 0.22 ± 0.02 83.1 ± 0.02 97.9 ± 0.8
German 0.23 ± 0.03 84.7 ± 0.06 123.3 ± 1.4

a ZKP of correct inference using Finf for each query, and (ii) proving that the fairness metric is
satisfied over all queries. We compute this baseline for LR, FFNN, and larger neural networks using
Mystique [48]. We also compare to FairProof [49], a ZKP method for online certificates of individual
fairness. We emphasize that individual fairness and group fairness are distinct metrics, and as such
OATH and FairProof are performing distinct, complementary tasks. We compare against FairProof to
give context for the computational overhead of online fairness certification.

5.1 Efficiency of Certifying Standard Fairness Benchmarks

OATH consists of a client-facing Service Phase, and an Audit Phase conducted solely between the
service provider and auditor after many client queries have been aggregated. Table 1 shows the
runtime of each phase for all five datasets across multiple runs. Overall, the run times are practically
efficient even for very large numbers of queries.

Service Phase Runtime. The first column of Table 1 reports Service Phase runtime, the time
required to provide a committed response to one client query using P’s model. The Service Phase
has a negligible and consistent runtime across all datasets ranging from 0.22 to 0.25 seconds. This
consistent efficiency is due to the small amounts of communication involved in the Service Phase,
making the bottleneck the round time rather than the amount of communication. This makes the
runtime appear independent of the number of attributes and the type of model used by the prover
across all the datasets in these experiments. The excellent efficiency of the Service Phase means that
OATH can be integrated into deployed ML pipelines without disrupting service.

Audit Phase Runtime. The second and third columns of Table 1 report Audit Phase runtime when
OATH is verifying either a LR or FFNN model respectively. This is the time required to audit the
fairness of authenticated client query answers with our ZKP protocols. We assume 106 total client
queries, 7600 of which are randomly selected for consistency and correctness checks. This size of
the random sample was identified empirically as a good tradeoff between efficient runtime and strong
tamper protection (see Section 5.2 for details). Figure 2 presents an ablation study of runtimes for the
different components of the Audit Phase for logistic regression. The Correctness Check (Algorithm 2
line 20) dominates the runtime. See Appendix I.1 for a detailed breakdown of Audit Phase runtime.
Though the Audit Phase is more computationally intensive, it is highly practical for periodic auditing.

5.2 Parametrization of Probabilistic Audit

Section 4.3 proves an efficiency / reliability trade-off: the more verified queries 2ν, the smaller the
probability that P can alter the audit’s fairness measurement by ϵ without being caught. As shown
in the previous section, the runtime bottleneck of OATH scales with the number of verified queries.
Therefore, it is important to identify parameters that limit the required runtime for the consistency
check while ensuring a reliable measurement of fairness.

For example, setting ν = 1000 means that any ϵ ≥ 0.01 evades detection with probability at most
6.65× 10−3. For ν = 3800, the same ϵ evades with probability at most 5.34× 10−9. We select this
value as a good tradeoff between efficiency and reliability. See Figure 3 for possible ϵ deviations
from an example group fairness threshold θ at varying numbers of verified queries. Figure 5 in
Appendix I.2 gives additional details. These results show that OATH is robust: a service provider
that cheats with a larger than negligible ϵ will be caught by the auditor with high probability.
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#Param Time (s/query)
Online Total

FairProof 130 236.4 316.8
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OATHLN-5 62K 0.23 0.28
Baseline 23.5M 333 333
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Figure 4: Scalability of OATH compared to baseline with varying neural network sizes. Runtimes are
estimated using ZKP inference times from [48]. The baseline approach uses ZKP verified inference
with each client (as in [49, 31]) followed by verified group fairness computation over all queries.

5.3 Scalability for Neural Networks

Figure 4 shows experiments and estimated runtimes of OATH compared to neural network baselines.
OATH is more efficient than the baselines by orders of magnitude. Especially important is the
client-facing runtime, since this is arguably the most relevant factor for enabling the integration of
ZKP auditing into ML pipelines. In this category, OATH gives at least a thousand-fold runtime
improvement over the alternatives in three out of four categories, primarily due to the fact that it
requires no client-facing ZKP. Even in terms of total amortized runtime, OATH provides a substantial
increase in efficiency in all categories due to our probabilistic auditing method.

6 Conclusion

In this study we present OATH, the first method for privacy-preserving certificates of online group
fairness. In particular, we use zero-knowledge proofs which make it possible to measure fairness
directly from evaluation data, thus removing onerous resource requirements for third-party auditors
and the generalization error incurred by using validation sets. Further, our method makes dramatic
improvements to scalability in comparison to baselines. See Appendix J for limitations. In future
work, it may be interesting to extend cut-and-choose style ZKPs to obtain efficient proofs of other
online properties, such as security, robustness, and/or calibration.
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Table 2: Comparison of fairness auditing approaches in terms of fairness definition (individual; group;
various), fairness certificate (online; offline), reliability and efficiency.

Approach Fairness Certificate Reliable Efficient
Black-Box [34, 35, 37] Various Online -
Confidential-PROFIT [40] Group Offline - -
FairProof [49] Individual Online -
Fairness Baseline w/ Mystique [48] Various Online -
OATH Group Online

A Comparison of fairness auditing approaches

We compared against existing fairness auditing approaches (summarised in Table 2), namely Black-
Box audits [34, 35, 37] as well as both previous works that leveraged ZKPs to enforce model fairness
(FairProof [49] and Confidential-PROFIT [40]). We also created a baseline based on ZKP of correct
inference, Mystique [48].

Black-box fairness auditing considers an auditor who has only query access to a model, and so
measures fairness based on submitted queries and observed decisions of the service provider. By
contrast, white-box fairness auditing approaches release client data and the service provider’s model
to the auditor, who can then verify fairness. Both approaches have drawbacks: the white-box setting
is seldom used in practice due to issues with confidentiality, while the black-box setting does not
provide the auditor enough information for a rigorous audit [9] (for example, nothing prevents a
service provider from using one model during the audit, and a completely different one to answer
client queries). Zero-knowledge proofs of fairness [40, 49] are an emerging line of work that address
both of these weaknesses using cryptographic tools. Zero-knowledge proofs essentially provide
secure “white-box” access to the auditor for a set of pre-specified operations, while retaining (and in
fact improving upon) the confidentiality of the black-box setting.

B Certifying Other Group Fairness Metrics

Here we present a modified version of the Audit Phase which measures equalized odds [22], another
group fairness metric. Rather than measure the difference in positive outcomes between demographic
groups as in demographic parity, equalized odds measures the difference in false positive and false
negative rate between demographic groups.

Definition B.1. [Thresholded equalized odds] A predictor Ŷ satisfies equalized odds with respect to
sensitive attribute S within a public threshold θ if both of the following hold:

|Pr[Ŷ = 1 | y = 0 ∩ s = a]− Pr[Ŷ = 1 | y = 0 ∩ s = b]| ≤ θ ∀a, b ∈ S

|Pr[Ŷ = 1 | y = 1 ∩ s = a]− Pr[Ŷ = 1 | y = 1 ∩ s = b]| ≤ θ ∀a, b ∈ S.

Computing equalized odds requires knowledge of the ground-truth labels for the data used. In certain
applications such as finance, hiring, and medicine, ground truth labels may be readily available at
audit time. For example, it is easy to determine whether a loan was repaid, whether an employee was
promoted, or whether a patient’s health metrics improved, at a later time point after the model makes
a prediction. We abstract these sources of information via an oracle that gives access to ground truth
labels, and present a version of OATH modified for equalized odds auditing in Algorithm 3. Other
than the addition of the oracle in lines 4-5, it is highly similar to Algorithm 2, except that it computes
empirical false positive and false negative rates for each group, which we abstract as a subroutine
(Algorithm 4).

C Details of Cryptographic Preliminaries

C.1 Properties of Zero-Knowledge Proofs

A zero-knowledge proof (ZKP) [18, 19] is a cryptographic protocol conducted between a prover P
and a verifier V , who both have access to a public circuit P . A ZKP allows P to convince V that they
know some witness w such that P (w) = 1. ZKPs have the following properties:
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Algorithm 3: OATH Zero-Knowledge Equalized Odds Audit.
Input: public: the number of client queries n, fairness gap threshold θ, soundness parameter ν,

ground truth oracle O; P: model M , evaluation data Q = {(qi, αi
s, oi, ri)}ni=1; V:

commitments {Ci}ni=1, sensitive attribute check strings {(αi
0, α

i
1)}ni=1

Output: V obtains bpass ∈ {0, 1} indicating whether M satisfies demographic parity with respect
to Q.

// Step 1: Initialization
1 for i ∈ [1, n] do
2 P authenticates (JqiK, Jαi

sK, JriK, JoiK);
3 P authenticates JMK;
4 for i ∈ [1, n] do
5 JgiK← O(JqiK)
// Step 2: Fairness Verification

6 JbpassK← Equalized-Odds(n, θ, JQK, {JgiK}ni=1) ;
// Step 3: Validity Checks

7 S ← Group-Balanced Uniform Sampling(Q, ν); ▷ An array indicating selected samples

(Algorithm 6)

8 for i ∈ [1, n] do
// Sensitive Attribute Check

9 V sends αi
0, α

i
1 to P ;

10 P proves
(
(Jαi

sK == αi
0)⊕ (Jαi

sK == αi
1)
)
== 1 ;

11 Js′iK← (Jαi
sK == αi

1) ;
12 P proves JsiK == Js′iK ;
13 if Reveal(JS[i]K) == 1 then

// Commitment Consistency Check
14 P proves H(qi||αi

s||ri||oi) == Ci;
// Inference Correctness Check

15 P proves JoiK == JMK(JqiK, JriK) using Finf;

16 If any of the proofs fail, abort. Otherwise, Reveal(JbpassK)

• Completeness: For any w such that P (w) = 1, P can use the ZKP protocol to convince an honest
V that P (w) = 1;

• Soundness: Given w such that P (w) ̸= 1, a malicious P cannot use the ZKP protocol to falsely
convince V that P (w) = 1;

• Zero Knowledge: The protocol reveals no information to even a malicious V about w (other than
what can be inferred from knowing that P (w) = 1).

C.2 IT-MAC Authentication

We follow the methods for IT-MAC-based authentication in [47, 33, 14]. In more detail, we fix a
field Fp for some prime p ∈ N, and an extension field Fpr ⊇ Fp. The notation JxK means that V
holds a uniform global key ∆ ∈ Fpr and for each authenticated value a uniform local key Kx ∈ Fpr ,
while P holds the value x ∈ Fp and a uniform tag Mx ∈ Fpr , over which the following algebraic
relationship holds:

Mx = Kx +∆ · x ∈ Fpr

when for the purposes of the equality, x is represented in the natural way as an element of Fpr . P
can “open” an IT-MAC authenticated value by sending x and Mx to V , who can then verify that
the relationship holds. If P has modified x after authentication, it will only pass verification with
negligible probability. The generic ZKP protocol in [47] works by authenticating the input values to
a circuit, and then updating them in ways that preserve the algebraic relationship, which can only
succeed if both P and V agree to perform the update (again, except with negligible probability).
IT-MACs are homomorphic for addition and scalar multiplication, which means that if P and V agree,
they can update authenticated values with these operations locally without any communication. This
makes these operations very efficient in IT-MAC-based ZKPs.
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Algorithm 4: OATH Equalized Odds Calculation.
Input: public: the number of client queries n, fairness gap threshold θ; P: authenticated

evaluation data JQK = {(JqiK, Jαi
sK, JoiK, JriK)}ni=1, authenticated ground truth labels

G = {JgiK}ni=1
Output: authenticated JbpassK ∈ {0, 1} indicating whether the decisions in Q satisfy

demographic parity.
1 P authenticates JP0K, JP1K, JN0K and JN1K initialized to zero; ▷ Count positive and negative

outcomes in each demographic group

2 P authenticates JTP0K, JFP0K, JTP1K and JFP1K initialized to zero; ▷ Count true and false

positives in each demographic group

3 for i ∈ [1, n] do
4 JsiK← Jqi.demographic_attributeK;
5 Jb0K← 1− si, Jb1K← si; ▷ Indicator bit for demographic attribute

6 JP0K← JP0K + (Jb0K · JgiK), JP1K← JP1K + (Jb1K · JgiK) ; ▷ Update positive counts

7 JN0K← JN0K+ (Jb0K · (1− JgiK)), JN1K← JN1K+ (Jb1K · (1− JgiK)) ; ▷ Update negative

counts

8 JTP0K← JTP0K + (Jb0K · JoiK · JgiK), JTP1K← JTP1K + (Jb1K · JoiK · JgiK); ▷ Update

true positive counts

9 JFP0K← JFP0K+ (Jb0K · JoiK · (1− JgiK)), JFP1K← JFP1K+ (Jb1K · JoiK · (1− JgiK));
▷ Update false positive counts

10 Fairness gap computation and comparison to the threshold

JbpassK←
(
θ ≥

∣∣∣ JTPaK
JPaK −

JTPbK
JPbK

∣∣∣) · (θ ≥ ∣∣∣ JFPaK
JNaK −

JFPbK
JNbK

∣∣∣);

11 Return JbpassK

To provide a concrete example, we will briefly demonstrate how a secure addition is computed.
Suppose P and V have authenticated values JxK and JyK. This means that P holds x, y and message
tags Mx and My, while V holds a global key ∆ and message keys Kx and Ky, with the algebraic
relationships Mx = Kx + ∆ · x and My = Ky + ∆ · y. To compute a secure addition, P and V
must obtain JzK with the underlying value z = x+ y and a message key and message tag such that
Mz = Kz +∆ · z.

Observe that by adding the respective components of JxK and JyK we can see that the following two
equalities are equivalent

Mx +My = Kx +∆ · x+Ky +∆ · y
(Mx +My) = (Kx +Ky) + ∆ · (x+ y).

Thus P and V can achieve the goal of obtaining JzK as follows: P computes z ← x + y, and
Mz ←Mx +My , while V computes Kz ← Kx +Ky .

We will also overload the double bracket notation to include collections of values: if v is a vector and
A a matrix, JvK and JAK mean that each value in v and A is individually authenticated.

In summary, IT-MAC-based authentication provides a way to prevent P from modifying values
except in ways that are approved by V , even while keeping those values hidden. They also enable
efficient computation with our ZKP building blocks [47, 17], however they require a global key ∆ to
be shared among all authenticated values for efficiency. This makes them cumbersome in applications
with many parties. Accordingly, to prevent P from modifying the queries obtained by the many client
parties, we use cryptographic commitments rather than IT-MAC authentication.

C.3 Hash-Based Commitments

A commitment scheme enables a party with an input value x to produce a commitment string Cx

which can later be opened to verify that x has not changed. They possess the following properties:

• Binding. If P commits to x and then modifies x in any way without V’s knowledge, verification of
the commitment string will fail.

• Hiding. The commitment string reveals no information about x to V .

17



A standard approach [27] for instantiating a commitment scheme is to use a random oracle hash H ,
with

Cx := H(x||r)

giving the commitment string for any x ∈ {0, 1}∗, where r ∈ {0, 1}k is a randomly chosen bit string
for some k ∈ N. Verification is conducted by computing the hash again given x and r, and confirming
that it is equal to Cx produced by the party giving the commitment. In this work, we use a ZKP
protocol to confirm that Cx = H(x||r) without having to send x to V . Thus we are able to verify that
client queries have not been altered without revealing the queries to V . We use a scheme from [48] to
enable conversion of hash-based commitments to IT-MAC authentications within a ZKP protocol to
enable this.

C.4 Digital Signatures

A digital signature scheme guarantees that a signed message was sent by a sender with a known
public key. Formally, a digital signature scheme consists of two algorithms:

• A key generation algorithm Gen(1λ)→ (sk, pk) which, given a security parameter generates
a secret key and public key pair

• A signing algorithm Signsk(m)→ sig which takes a secret key and message, and generates
a signature

• A verification algorithm Vrfypk(m, sig)→ {0, 1} which takes a public key, a signature, and
a message, and outputs a boolean value indicating whether the signature is valid (1 for valid,
0 for invalid).

A signature is valid if the pair (sk, pk) was obtained from Gen, and sig was obtained from Signsk(m).
Informally, a secure signature scheme ensures that for any m, no adversary can forge sig’ such that
Vrfypk(m, sig’) outputs 1 unless they have access to the sk corresponding to pk. See [27] for formal
details.

D Notation

Table 3 shows the notation used throughout this paper.

Table 3: Notation table.

Meaning Meaning
P Prover V Auditor
C Client M Model
D Training Dataset Q Evaluation dataset
θ Group fairness gap threshold JxK Authentication of value x
S Binary demographic attribute n The number of client queries
X Feature space Ŷ Predictor
q Client’s query P Public circuit
w Witness o Model binary decision
ν Number of sampled queries from each demographic group || concatenation operator
⊕ XOR operator

E Details of Blame Attribution

If any of the proofs in Algorithm 2 fail, then the protocol aborts (line 21). To prevent denial of service
attacks in real world applications, it is necessary to find out which party caused the failure. Notably,
both the service provider P and the client C have incentives to deny service: a malicious P may seek
to obscure the fact that they have a noncompliant model, and a malicious C may seek retribution for
an undesirable model prediction. Here we formalize a method for correctly identifying which party is
to blame if Algorithm 2 ends in an abort.
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Algorithm 5: Blame Attribution
Input: Public: list of indices I for all clients which failed validity checks in Algorithm 2, P’s public key

pk, list of sensitive attribute labels L = {(αi
0, α

i
1)}i∈|Q|, list of commitments C = {Ci}i∈|Q|; Ci:

query (qi, α
i
s, oi, ri) and P signature sigi

C ; V no inputs.
Output: a bit bi for each i ∈ I , 0 indicates Ci malfeasance, 1 indicates P malfeasance.

1 for i ∈ I do
2 Ci reveals (qi, αi

s, oi, ri) and P signature sigi
C ;

3 V checks Vrfy(qi||αi
s||oi||ri, sigi

C) using P’s public key pk ;
4 V checks Open(qi||αi

s||oi||ri, Ci). ;
5 V checks that αi

s = αi
1 or αi

s = αi
0 and that s is equal to the sensitive attribute reported in qi ;

6 If any of the checks fail, V sets bi ← 0, otherwise bi ← 1

Since clients do not participate in the Audit Phase, they cannot interfere with any of the proofs before
the validity checks (lines 13-20). Thus if protocol failure happens here, P is to blame. The interesting
cases occur during the validity checks, where for some client Ci, P is verifying the sensitive attribute
label αi

s, consistency of the commitment Ci, and correctness of the inference oi = M(qi, ri). If these
proofs fail, then there are two possibilities: (i) P modified the ith entry of Q between the Service
Phase and the Audit Phase, or (ii) Ci submitted an invalid αi

0, α
i
1 or Ci to V during the Service Phase

to intentionally disrupt the Audit Phase.

Algorithm 5 gives a protocol for post-hoc blame attribution. It relies on the security of the digital
signature scheme used during the Service Phase (Algorithm 1): no malicious C can forge a signature
sigiC such that Vrfy(qi||αi

s||oi||ri, sigiC) will verify under P’s public key (Appendix C.4). Thus, if
line 3 succeeds it must indicate that (qi, αi

s, oi, ri) was exactly the query-response tuple given to Ci
in line 8 of Algorithm 1. Thus if it matches up with the commitment Ci given to V in line 10 of
Algorithm 1, and αs indexes the proper sensitive attribute, then Ci must have carried out Algorithm 1
honestly. This means that protocol failure in Algorithm 2 must have been caused by a malicious P .

We note that Algorithm 5 requires Ci to reveal their data to V . This can be remediated by instead
using a zero-knowledge proof of digital signature verification, which has been explored in previous
work. We reserve this possibility for future work.

F ZKP Verification of Group-Balanced Uniform Sample

Algorithm 6 gives an interactive ZKP protocol for verifying that a sample contains ν uniform samples
of points from each demographic group. Theorem G.2 characterizes its security guarantees.

G Proof of Soundness

Theorem G.1. Let Xh be the honest group fairness gap and Xm the measured group fairness gap
computed during Algorithm 2. Consider ϵ > 0, the deviation between these quantities caused by a
malicious P cheating, defined:

ϵ = |Xh −Xm| .

Then P is caught with probability

pcatch ≥ 1−
(
1− ϵ

2

)ν

,

where ν is the number of queries uniformly sampled within each group via Algorithm 6 (a total of 2ν).

Proof. We begin by considering available options for P to dishonestly influence Xm (i.e. the quantity
compared to θ in line 11 of Algorithm 2). Since any deviations influencing the computation of
c0, c1, n0, n1, S in lines 6-11 will be caught by the underlying ZKP protocols [47, 17], P can only
cause a deviation in Xm by behaving dishonestly to alter the query-answer tuples (qi, ri, oi) before
they are committed during line 2.
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This can happen in two ways: (i) by breaching correctness of the outcome given to Ci during
Algorithm 1 (i.e. oi ̸= Mτ (qi, ri)), or (ii) by breaching consistency (i.e. (qi, ri, oi) provided as
input during Algorithm 2 line 2 ̸= (q, r, o) returned to Ci during Algorithm 1. A query-answer tuple
breaching either condition will be caught by lines 18-20 of Algorithm 2 if it is sampled in S during
line 12.

Thus, in order to assess P’s likelihood of being caught we must understand the number of modified
queries required to produce a deviation between Xh and Xm of size ϵ. Since the Sensitive Attribute
Check (lines 14-17) causes the audit to fail if P modifies the sensitive attribute, we can proceed by
just considering the case where P only modifies oi from (qi, ri, oi) ∈ Qm. Let n0 be the number of
query points in Qh such that si == 0, and let n1 be defined similarly. Note that in the case where P
only modifies oi, these quantities are exactly the same when defined over Qm.

Flipping any oi from Qh can produce at most 1
n0

alteration of Xm if si = 0, or 1
n1

alteration if si = 1.
This is because the numerator term changes by at most 1 per query. This means that in order to create
a deviation of size ϵ, P must modify at least p0 · n0 + p1 · n1 queries for some p0, p1 ∈ [0, 1], where

ϵ ≤ p0 + p1.

This necessarily implies that either p0 ≥ ϵ
2 or p1 ≥ ϵ

2 . Without loss of generality, assume the former.

Then if we uniformly sample ν queries with si = 0, the probability that none of them violate
correctness or consistency (and P evades being caught) is given by

Pr[no modified queries in sample] = (1− p0)
ν

≤ (1− ϵ

2
)ν .

Since a symmetrical analysis holds for p1, taking a ν-sized uniform sample of queries from both
groups (for a total of 2ν verified queries) gives us the bound stated in the theorem.

Cases where P instead modifies qi or ri reduce to the case of modifying oi. So this completes the
proof.

Theorem G.2. The sample array S output by Algorithm 6 has the following guarantees:

1. Queries are selected uniformly within each group. Formally, consider i ∈ I0, the subset of all
indices such that the query-answer tuple (qi, ri, oi) ∈ Q has sensitive attribute si = 0. Then

Pr[S[i] = 1] = Pr[S[j] = 1] ∀i, j ∈ I0.

And similarly for queries with sensitive attribute 1.

2. Exactly ν queries in group a and ν queries in group 1 are included in the sample, for a total of 2ν
selected queries. Formally, entries in S are binary-valued, with

∑
i∈I0

S[i] = ν. And similarly
for queries with sensitive attribute 1.

3. (Informal) Algorithm 6 reveals no information to V other than n0 and n1, the number of queries
made by members of each group.

Proof Sketch. In detail, Algorithm 6 randomly permutes all members of group 0 and places the first
ν of them in the sample, and also randomly permutes the all members of group 1 and places the
first ν of them in the sample. To accomplish this operation in zero-knowledge on a committed array
of queries, V constructs two random permutations π0, π1 of the appropriate sizes and sends them
to P . Each permutation is then loaded into a read-only ZKRAM (see [17] for details), which will
allow P to read permuted elements from π0 in the case that they have sensitive attribute s = 0 and ⊥
otherwise (and similarly for group 1), without revealing to V which case is occurring. We use ⊥ as a
symbol to represent the fact that a query is outside of the group relevant to a permutation.

In lines 4-7, the parties perform a linear traversal of all queries in Q, updating a committed counter
Jc0K whenever a query from group 0 is encountered, and either placing π0(c0) in an array A0 or ⊥
depending on group membership via a read to the ZKRAM. At the end of step 10, every query in
Q has a corresponding entry in A0 which is Jπ0(j)K if qi ∈ group 0, (where qi is the jth query that
belongs to group 0), and J⊥K otherwise. We also construct A1 symmetrically for group 1. Thus, each
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Algorithm 6: Group-Balanced Uniform Sample
Input:

• The number of queries answered in the Service Phase, n, the soundness parameter, ν, which
controls how many queries should be sampled per group;

• P holds an n-sized array of committed client queries JQK, where n0 entries are from clients
in Group 0, and n1 are from clients in Group 0, with n0 + n1 = n; and

• V holds commitments to the queries JQK.
Output: V and P respectively receive commitments and committed values for an array of

indicator bits JSK that encode which values of Q are selected in the sample.

1 P sends n0, n1 to V;
2 V sends P πa, a random permutation of the integers in [1, n0], and πb a random permutation of

[1, n1];
3 P loads πa into a read-only ZKRAM Ra such that Ra[i] = Jπa(i)K ∀i ∈ [1, n0]. Set

Ra[0] = J⊥K. P loads πb into Rb similarly, and sets Ra[0] = J⊥K.;
4 P commits to a group counter Jc0K and initializes it to 1. P initializes a group-specific

permutation array Aa with n entries. for i ∈ [1, n] do
5 JbaK← indicator bit for Jqi.demographic_attributeK == a;
6 Ji′K← JbaK · Jc0K ; ▷ c0 if qi is in group a, 0 otherwise.

7 Aa[i]← Ra[Ji′K]; ▷ Jπa(c0)K if qi is in group a, J⊥K otherwise.

8 Jc0K← Jc0K + JbaK
9 Obtain a group-specific permutation array Ab by repeating lines 4-7 but replacing Group a with

Group b.;
10 Initialize an array S of size n containing bits indicating whether query qi is in the sample.;
11 for i ∈ [0, n) do
12 S[i]← JAa[i] < νK | JAb[i] < νK ; ▷ qi is in sample if it’s a member of Group a and πa(i) < ν,

or it’s a member of Group b and πb(i) < ν.

13 return S.

member of group 0 is labeled with an output from the random permutation π0, and each member of
group 1 is labeled with an output from π1. Then to determine whether a query qi is included in the
uniform sample, lines 10-11 perform one more linear pass over Q wherein a committed sample bit is
set to 1 if it’s a member of group 0 and π0(i) < ν, or if it’s a member of group 1 and π1(i) < ν (we
define (⊥ < k) = 0 for any k).

The construction thus guarantees claims (1) and (2) since group 0 queries with S[i] = 1 are exactly
those which are mapped to [0, ν) by the random permutation π0, and group 1 queries with S[i] = 1
are exactly those which are mapped to [0, ν) by π1, which is equivalent to taking a ν-sized uniform
sample from each group. Claim (3) is guaranteed by the underlying ZKP protocols used to perform
the authenticated operations and ZKRAM access [47, 17].

Corollary G.1. (Informal) Algorithm 2 reveals no information to V about the client data and model
parameters other than what can be inferred from n0 and n1, and the sample array S.

Proof Sketch. By Theorem G.2, taking the group-balanced sample with Algorithm 6 reveals n0, n1

to V , but no other information. By the security of the underlying ZKP protocol [47] and hash-based
commitment scheme [48], all lines besides line 14 leak no additional information to V .

In line 14, after obtaining the sample array S, P opens each of the 2ν bits of S such that JS[i]K == 1
which effectively reveals S since all other entries are guaranteed to be 0.

Revealing S to V gives some knowledge of which of their commitments correspond to clients included
in the sample. By itself, this is an innocuous piece of information – it simply gives V knowledge that
a small subset of query commitments correspond to users with 1

2 probability of being from group
0 or group 1, rather than n0

n and n1

n as is implied by knowledge of n0, n1, and n. If we consider
stronger adversarial capacities of V , e.g. that they somehow have outside knowledge about 2ν − 1 of
the queries in the sample, more precise information can be inferred. In this example, V can infer the
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Algorithm 7: Fairness Audit w/o S Reveal.
Input:

• Public values: n is the number of client queries, θ thresholds the acceptable level of group
fairness gap, and ν is a soundness parameter.

• P holds a committed model M , and a set of queries authenticating values (qi, ri, oi) ∈ Q
with i ∈ [1, n].

• V holds hash-based commitments Ci = H(qi||ri||oi) with i ∈ [1, n].
// Step 1: Initialization

1 for i ∈ [1, n] do
2 P authenticates (JqiK, JriK, JoiK);
3 P authenticates JMK;
4 P authenticates JcaK and JcbK initialized to zero; ▷ Count positive outcomes in each demographic

group

5 P authenticates JnaK and JnbK initialized to zero; ▷ Count individuals in each demographic group

// Step 2: Measuring Group Fairness
6 for i ∈ [1, n] do
7 JsiK← Jqi.demographic_attributeK;
8 JbaK← (JsiK == a), JbbK← (JsiK == b); ▷ Indicator bit for demographic attribute

9 Jn0K← Jn0K + JbaK, Jn1K← Jn1K + JbbK ; ▷ Update group counts

10 Jc0K← Jc0K + (JbaK · JoiK), Jc1K← Jc1K + (JbbK · JoiK); ▷ Update positive outcome counts

11 P shows that demographic parity gap is underneath threshold θ by proving

JbpassK←
(
θ ≥

∣∣∣∣ Jc0KJn0K
− Jc1K

Jn1K

∣∣∣∣)
// Step 3: Validity Checks

12 S ← Group-Balanced Uniform Sampling(Q, ν); ▷ An array indicating selected samples

(Algorithm 6)

13 Initialize committed counter JxK to 1;
14 V publishes all Ci, P loads them into a read-only ZKRAM [17] Z;
15 Initialize a read/write ZKRAM [17] R with (2ν + 1) · sz entries, where sz is the number of

values required to store a query-answer tuple (q, r, o) plus its index i ∈ [1, n]. Initialize the
tuple-sized block starting at R[0] with ⊥;

16 for i ∈ [1, n] do
17 JbK← S[i];
18 R[JxK · JbK]← first value in (qi||ri||oi)||i, R[JxK · JbK + 1]← second value in (qi||ri||oi)||i,

..., R[JxK · JbK + sz]← szth value in (qi||ri||oi)||i;
19 JxK← JxK + JbK.
20 for i ∈ [1, 2ν] do
21 (JqK, JrK, JoK, JindK)← load from R[i];
22 P proves JoK == M(JqK, JrK) using Finf;
23 P proves that H(JqK||JrK||JoK) == Z(JindK).
24 If any of the proofs fail, abort. Otherwise, Reveal(JbpassK)

demographic attribute of the single unknown query since they know which group has ν − 1 sampled
queries and which group has ν.

While it is important to be mindful of this possible inference, in the proposed setting of a regulatory
body auditing the fairness of a machine learning model we anticipate a threat model much closer to
the former case than the latter. Further, by integrating a read/write ZKRAM [17] we can remove this
leakage in exchange for a minor to moderate additional computational cost (depending on the size of
the query input). This is demonstrated in Algorithm 7.
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H Datasets

Table 4 describes five standard fairness benchmarking datasets used in this paper: COMPAS [2],
Communities and Crime [36], Default Credit [51], Adult Income [3], and German Credit [23].

Table 4: Summary of datasets.
Dataset License #Samples #Attr. Demographic Var. Task
COMPAS DbCL 1.0 6,151 8 Race Recidivism
Crime CC BY 4.0 1,993 22 Race Crime rate
Credit CC BY 4.0 30,000 23 Age Card Payment
Adult CC BY 4.0 45,222 14 Gender Income
German CC BY 4.0 800 61 Foreign Worker Loan

I Supplementary Results

I.1 Details of Audit Phase Ablation Study

Runtime Profiling for Total Query Volume. OATH computes fairness on all user queries, and
uniformly samples ν queries from each subpopulation for correctness and consistency checks. Both
sampling runtime (Algorithm 6) and fairness computation runtime (Algorithm 2 lines 6-11) are
independent of the number of sampled queries and the model type – they depend only on the
number of user queries |Q| = n. Therefore, we show their relationship to the number of queries
in Figure 2 (left column). In general, the runtime of both Group-Balanced Uniform Sampling and
Fairness Computation increases linearly with the number of user queries. However, the slope of the
increase varies across different parts. Given a specific number of user queries, the runtime of fairness
computation is significantly lower than the runtime of group-balanced uniform sampling. This is
because Algorithm 6 utilizes a ZKRAM primitive [17] in order to realize the group-balanced uniform
sample securely, while the fairness computation in Algorithm 2 uses lighter-weight ZK arithmetic
operations [47].

Runtime Profiling for Verified Queries. OATH verifies user queries through correctness (line 20
in Algorithm 2) and consistency (line 19 in Algorithm 2) checks. Figure 2 (right column) shows
the runtime of these operations. Both correctness and consistency checks have time complexity
linear in the number of verified client queries. The runtime of the consistency check dominates the
overall runtime because it relies on a scheme for converting hash-based commitments to IT-MAC-
based [33, 14] authenticated values, which is a relatively expensive operation [48].

I.2 Additional Details for Parameterizing the Number of Verified Queries

Figure 5 (left column) shows the probability of catching cheating with respect to the number of verified
user queries ranging from 1,000 to 10,000. The more queries are verified, the higher chance that cheat-
ing is caught. We consider various values for ϵ – this is the change that P seeks to induce between the
fairness gap measured by the audit, and the true fairness gap during the Service Phase (Definition 4.1).
The more unfair P’s model is, the higher they need to set ϵ to pass the audit. Meanwhile, the probabil-
ity of evading detection for cheating decreases exponentially as ϵ gets bigger (Figure 5 right column).

I.3 Additional Benchmarks

Figure 6 shows the accumulative runtime of computing fairness and checking the correctness of the
model using all five datasets.

J Limitations

In this study we present OATH, the first method for privacy-preserving certificates of online group
fairness. In particular, we use zero-knowledge proofs which make it possible to measure fairness
directly from evaluation data, thus removing onerous resource requirements for third-party auditors
and the generalization error incurred by using validation sets. Further, our method makes dramatic
improvements to scalability in comparison to baselines.

23



1,000 5,000 9,000
0.0

0.2

0.4

0.6

0.8

1.0

Verified Queries 2ν
E

va
di

ng
pr

ob
ab

ili
ty ϵ = 0.005

ϵ = 0.010

ϵ = 0.020

0.04 0.08
10−85

10−45

10−5

Deviation amount ϵ
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Figure 6: Effect of the number of verified witnesses on the runtime of computing fairness and
verifying the inference using the correct model.
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While OATH improves the scalability of ZKP fairness auditing by orders of magnitude, the computa-
tional requirements could still be an obstacle to adoption in applications that use very large models.
Improving the consistency check which comprises our runtime bottleneck is thus an interesting future
direction. Of note, our work uses ZKPs of inference (e.g. [48, 10, 42]), and thus will automatically
benefit from ongoing advancements in this area.

We also note that while verification of group fairness is important, the metric itself has limitations.
Machine learning models can cause inequitable treatment of minority populations even while satisfy-
ing group fairness, and thus it is important to not consider cryptographic verification of group fairness
as a satisfactory end goal in isolation. Rather, we intend that OATH is used as part of an ensemble
of auditing approaches in order to achieve more equitable outcomes from ML tools. To realize this,
it may be of interest to expand our cut and choose methodology as a more general framework for
efficient ZKP-based ML auditing. Extending this design pattern to wider classes of ML models,
fairness metrics, and other trustworthy properties (such as reliability, interpretability, and privacy) is
a promising avenue for future work.

Lastly, we comment that while OATH provides security against malicious service providers, auditors,
and clients individually, it does not account for collusion between parties. ‘Sybil’ attacks, wherein a
malicious service provider produces fake clients, could be used in a real world attack to make a model
appear fair on evaluation data. This could be handled by authentication of clients by the auditor, but
it is worth noting as a potential real world attack.

K Impact Statement

The present study proposes a method for auditing ML systems for fairness. It is the hope of the
authors that OATH and other ZKP-based auditing techniques can be used in service of making
deployed ML systems function more ethically by providing accountability for equitable treatment of
disadvantaged populations. We stress that OATH and other ZKP-based methods should not be seen
as a replacement for other forms of auditing. Mathematical fairness criteria alone are not sufficient
to determine whether an ML system is functioning ethically - a human needs to be in the loop
somewhere. Rather we see these methods as a pathway for providing accountability and transparency
in ML systems, to be used as a complement with other methods, so that AI can be regulated more
effectively and with lesser expenditure of resources.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim that existing methods for confidential certification of fairness either
lack reliability, due to the problems with offline fairness outlined in our introduction, and/or
scalability, due to the high computational overhead of cryptographic methods for verifying
ML operations. Our method remediates these problems by proving group fairness online, as
detailed in Section 4.1 and 4.2, and doing so efficiently as detailed in Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Appendix J.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Theorem 4.1 is proven in Appendix G.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully disclose our algorithms, datasets, and experimental setup.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will release code upon acceptance of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our experiments are runtime benchmarks, and they run identically regardless
of training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard deviations for our main benchmarks in Table 1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As mentioned in the experimental evaluation, all of our experiments are run on
a MacBook Pro laptop CPU.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research complies with the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide an Impact Statement in Appendix K.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Justification: Methods in our paper do not have high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide citations and licenses for all datasets (Appendix H) and EMP-
toolkit in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper includes no crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper includes no crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used in any part of this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

31

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background, Preliminaries & Related Work
	Problem Formulation
	OATH
	Service Phase
	Audit Phase
	Analysis of Probabilistic Audit

	Empirical Evaluation
	Efficiency of Certifying Standard Fairness Benchmarks
	Parametrization of Probabilistic Audit
	Scalability for Neural Networks

	Conclusion
	Comparison of fairness auditing approaches
	Certifying Other Group Fairness Metrics
	Details of Cryptographic Preliminaries
	Properties of Zero-Knowledge Proofs
	IT-MAC Authentication
	Hash-Based Commitments
	Digital Signatures

	Notation
	Details of Blame Attribution
	ZKP Verification of Group-Balanced Uniform Sample
	Proof of Soundness
	Datasets
	Supplementary Results
	Details of Audit Phase Ablation Study
	Additional Details for Parameterizing the Number of Verified Queries
	Additional Benchmarks

	Limitations
	Impact Statement

