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ABSTRACT

Continuous learning of novel classes is crucial for edge devices to preserve data
privacy and maintain reliable performance in dynamic environments. However,
the scenario becomes particularly challenging when data samples are insufficient,
requiring on-device few-shot class-incremental learning (FSCIL) to maintain con-
sistent model performance. Although existing work has explored parameter-
efficient FSCIL frameworks based on artificial neural networks (ANNS), their
deployment is still fundamentally constrained by limited device resources. In-
spired by neural mechanisms, Spiking neural networks (SNNs) process spatiotem-
poral information efficiently, offering lower energy consumption, greater bio-
logical plausibility, and compatibility with neuromorphic hardware than ANNSs.
In this work, we present an SNN-based method for On-Device FSCIL, i.e.,
Sparsity-Aware and Fast Adaptive SNN (SAFA-SNN). We first propose sparsity-
conditioned neuronal dynamics, in which most neurons remain stable while a sub-
set stays active, thereby mitigating catastrophic forgetting. To further cope with
spike non-differentiability in gradient estimation, we employ zeroth-order opti-
mization. Moreover, during incremental learning sessions, we enhance the dis-
criminability of new classes through subspace projection, which alleviates over-
fitting to novel classes. Extensive experiments conducted on two standard bench-
mark datasets (CIFAR100 and Mini-ImageNet) and three neuromorphic datasets
(CIFAR-10-DVS, DVS128gesture, and N-Caltech101) demonstrate that SAFA-
SNN outperforms baseline methods, specifically achieving at least 4.01% im-
provement at the last incremental session on Mini-ImageNet and 20% lower en-
ergy cost over baseline methods with practical implementationﬂ

1 INTRODUCTION

In many real-world scenarios, mobile users are exposed to dynamic contexts, and data collection of-
ten spans years, making it challenging to acquire sufficient data for continual batch learning (Wang
et al., 2022b). For example, in intelligent surveillance systems, the monitoring framework is typ-
ically trained on a predefined set of behavioral categories, yet novel anomalous behaviors may
emerge over time. To ensure the system to learn newly emerging classes with scarce samples from
a sequence of tasks, on-device Few-Shot Class-Incremental Learning (FSCIL) is introduced. Spik-
ing Neural Networks (SNNs), different from traditional Artificial Neural Networks (ANNs), have
recently achieved competitive results in computer vision tasks. SNNs offer natural energy-saving
characteristics through event-driven computation (Maass, [1997;|Yao et al.,2023; Zhang et al., 2024;
Fan et al., |2024), significantly reducing unnecessary cost (Lv et al.} 2024}, which make them attrac-
tive for edge devices, where memory and power budgets are stringent (Yu et al., 2024b)).

However, FSCIL faces two significant challenges, i.e., catastrophic forgetting and overfitting (Chen
et al.| [2019; |Snell et al.l 2017). Catastrophic forgetting reflects the model’s difficulty adapting to
new tasks while preserving knowledge from previously learned classes, necessitating a delicate bal-

"Example codes can be found in the supplementary material.
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Figure 1: Top: the on-Device FSCIL scenario includes three stages: base data training, few-shot
data collection and learning. Bottom: the comparison of SNN and ANN neuron on devices.

ance between plasticity and stability. Overfitting occurs when the model memorizes limited training
samples, leading to a loss of generalization. On the one hand, recent advanced solutions tackle these
challenges by parameter-efficient fine-tuning (PEFT) (Liu et al., | 2024a), which involves fine-tuning
parameters on top of a frozen pre-trained model. Nonetheless, these approaches are ineffective
for on-device settings due to limited memory capacity (i.e., 4-12 GB) (Ma et al., [2023). On the
other hand, concurrent on-device SNNs concentrate on integrating SNN algorithms with specialized
neuromorphic hardware, which shifts the consideration of the above problems to the later model.
However, most existing neuromorphic systems are still trained offline and remain static during de-
velopment (Safal [2024)), presenting a dependency on abundant labeled classes.

Besides, on-device FSCIL scenarios present practical challenges, including long-term data collec-
tion spanning years, extremely scarce labeled samples, and the persistent need for model updates.
Edge devices cannot accumulate comprehensive data on all classes due to the limited storage ca-
pacity, and must simultaneously perform low power inference while continuously learning from
real-time data streams (Liu et al., 2024a; [Wang et al., |2024)). We provide the process of on-device
FSCIL scenario and SNN-ANN neurons comparison in Figure[T]

To tackle the above challenges, we propose a Sparsity-Aware, Fast-Adaptive SNN (SAFA-SNN)
with neuronal dynamics for general on-device FSCIL. First, we align spike outputs via dynamic
thresholds in incremental sessions to alleviate catastrophic forgetting. Specifically, we maintain
most neurons stable and keep others active in incremental learning. Then, considering the non-
differentiable gradient in SNNs, we adopt zeroth-order optimization in backpropagation. Finally,
prototypes are updated via subspace projection, which calibrates biased predictions to boost incre-
mental learning. In addition, we conduct practical implementation and extensive experiments on
five datasets, demonstrating the performance of SAFA-SNN.

The main contributions of this paper are as follows:

* We emphasize practical challenges of on-device FSCIL, where both training and inference
are performed on resource-constrained devices using energy-efficient, hardware-friendly
SNNs, contrasting with ANN-based FSCIL that depends on large-scale server models.

* We propose a sparsity-aware FSCIL method, called SAFA-SNN, with three key features.
First, incorporating spikes for prediction, we propose the Sparsity-Aware Dynamic SNN.
Then, to prevent the non-differentiable spikes in back propagation, we adopt zeroth-order
optimization within neuronal dynamics. Finally, we enhance the discriminability of proto-
types by subspace projection in incremental inference. To the best of our knowledge, this
is the first SNN-based solution towards general on-device FSCIL.

* To prove the effectiveness of our proposed SAFA-SNN for on-device FSCIL, we implement
SAFA-SNN on realistic devices (i.e., Jetson Orin AGX), and evaluate on five datasets (CI-
FAR100, MinilmageNet, CIFAR-10-DVS, DVS128gesture, and N-Caltech101), and var-
ious models (Spiking VGG, Spiking Resnet, and Spikingformer), demonstrating SAFA-
SNN achieves excellent performance and notable sparsity advantages. We further compare
the actual on-device energy consumption, demonstrating our efficiency advantage.
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2 RELATED WORK

2.1 FEW-SHOT CLASS-INCREMENTAL LEARNING

To the best of our knowledge, existing methods for few-shot class-incremental learning (FSCIL) are
mostly ANN-based, with little exploration in SNNs. The primary work (Tao et al., 2020) preserves
feature topology using a neural gas network. Researchers (Zhang et al., 2021) model prototypes
as nodes in graph attention network to propagate context information. Existing methods (Zhou
et al., 2022; [Wang et al., 2023) commonly adopt prototypes to replace traditional MLPs and refine
them (Song et al.l 2023). Some studies (Shi et al., [2021} |Liu et al., [2023)) tackle class imbalance
by exploring optimal base class distributions. Recent advances (Park et al., [2024; Sun et al., [2024;
Wang et al., 2024) train a few parameters (prompts) from the frozen pre-trained model, achieving
high accuracy. However, memory overhead limits their use for resource-constrained devices. Prior
work focuses on a specific processor (Huo et al.| 2025)), while we explore FSCIL on general devices.

2.2 SPIKING NEURAL NETWORKS WITH DYNAMIC THRESHOLD

In the realm of SNNs, the dynamic threshold mechanism aims to manipulate the threshold spon-
taneously. BDETT computes thresholds via average membrane potentials for neuronal homeosta-
sis (Ding et al., |2022)), but excessive spiking remains. Highly active neurons skew the average,
causing aggressive firing and reduced sparsity. LTMD learns initial membrane potentials for heuris-
tic neuron thresholding (Wang et al. [2022a)), but neuron behaviors across layers remain interde-
pendent in spatial and temporal processing. Soft threshold schemes enable adaptive layer-wise
sparsity (Chen et al., [2023), but independent pruning causes error accumulation, affecting overall
model performance. Efforts with combinations of adaptive threshold methods have led to innovative
approaches (Wei et al.l 2023; Hao et al., 2024). Our paper further tackles FSCIL challenges via
sparsity-aware dynamic thresholds that shift networks to task-specific local contexts.

2.3 ON-DEVICE SNN TRAINING AND INFERENCE

Previous studies on on-device SNNs can be classified into two categories: inference, and train-
ing with updating. The lightweight SNN is a crucial application for resource-constrained edge de-
vices (Yu et al. 2024b). For instance, Lite-SNN (Liu et al., [2024b)) proposes a spatial-temporal
compression strategy to enable low memory and computational cost. Most researchers focus on
efficient quantization for SNN-training like SNN pruning (Wei et al., 2025} |Qiu et al.| 2025} Yu
et al.| [2025) to enhance SNN deployment. Current SNN training and updating focus on gradient
update (Anumasa et al., 2024)) or local SNN training optimization (Mukhoty et al., 2023} [Yu et al.,
2024a)) to enable low-latency SNN training on devices. In this work, we explore both SNN-batch
training on abundant base classes and inference in FSCIL phases, which typically occur in the over-
changing on-device environments, achieving high performance and low energy consumption.

3 PRELIMINARIES

3.1 SPIKING NEURAL NETWORK

We use the leaky integrate-and-fire (LIF) neuron model, a simplified but common approach to neu-
romorphic computing that mimics biological neurons through charging, leakage, and firing. The
process of state updating in LIF neurons follows certain principles:

Ul =71 + U1, I = f(x;0) (H
St = H(Ut/ - Uth) (2)
Ut - StUreset + (1 - St)Ut/ (3)

where H = 1y, >u,,, 7 is the time constant, I; is the spatial input calculated by applying function
f with z as input and 6 as learnable parameters, and U] is a temporary voltage at time step t, whose
value instantly changes. At time step ¢, if the membrane U/ rises and reaches the threshold Uy,
a spike denoted by S; is generated as 1, and U, will be reset to U,.cset; otherwise, .S; remains 0.
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Afterwards, U/ changes to U;. SNNs present challenges in terms of the non-differentiable Equation
(2). The backpropagation of directly training SNNs can be described as

T
oL 95, 0U; o1, w

oL
ow P a8, oU, oI, OW’
where L denotes the loss, W is the weight of input, and gg’i represents the non-differentiable gra-
dient in Equation [2{ which is typically replaced by surrogate functions (Wu et al., [2018)). However,
surrogate functions introduce gradient errors. To address this issue, we employ zeroth-order opti-

mization in backpropagation, inspired by prior work (Mukhoty et al., 2023)).

3.2 CLASS PROTOTYPE

Class prototypes are widely used in few-shot learning based on the observation (Snell et al.,[2017).
In FSCIL, researchers use prototypes as dynamic classifiers (Zhao et al., 2021} [Zhang et al., [2021]).
In detail, they decouple the FSCIL model into a feature encoder ¢y (-) with parameters 6 and a linear
classifier W, and freeze ¢y(-) during incremental sessions, with only the classifier being updated.
For each new class i, the weight WW; in the classifier is parameterized by the mean embeddings of

|| [gy,—iyp(x;), where K

each class, i.e., the prototype P;, which can be denoted as P; = % > =1

denotes the number of samples in the class C;.

4 ON-DEVICE FSCIL PROBLEM

On-device FSCIL problem depicts data with scarce samples always coming, device models need to
maintain performance on all seen classes while maintaining lower latency and security, enhanced
data privacy, and reliable performance under resource-limited scenarios. The encountered data are
always scarce, for example, users take photos at an average of 4.9 every day (Gong et al., [2024).

Assuming FSCIL tasks contain a base session and a sequence of S incremental sessions, the train-
ing data available for each session can be denoted as {Df ™, Diren . Dien} — plram —

train

{(x’;,yf)}gg |, where x$ € X, is the training instance and y; € Yj is its corresponding la-
bel in session s. Each session s is disjoint with another session s/, i.e., DI 0 Dirain — (). The
training data in session O have abundant instances while the incremental session has much smaller
instances, i.e., |[D§@"| >> |D!4%"|. Each incremental session has training sets in the form of
N-way K-shot, i.e, there are N classes and each class has K samples. In session s, the model’s per-
formance is assessed on validation sets from all encountered datasets (< s) to minimize the expected
risk R(f, s) over all seen classes:

E (s, yo)~pireinueuptrain (£ (f (25 DY, 0°71), 43)] ()

where the algorithm f constructs a new model using current training data D"*™ and parameters
65~ to minimize the loss £. The general goal is to continually minimize the risk of each new

session, i.e., Zf:o R(f,s). Note that in this paper, “session” and “task” are used interchangeably.

In many real-world scenarios, when FSCIL applications are deployed on resource-limited edge de-
vices, the learning efficiency w.r.t. both few-shot inference speed and memory footprint becomes a
crucial metric. Being able to quickly adapt deep prediction models in low computational cost at the
edge is necessary to better suit the needs of personal mobile users. However, these aspects are rarely
explored in prior FSCIL research, which motivates us to solve these on-device FSCIL challenges
beyond catastrophic forgetting and overfitting.

5 METHODOLOGY

5.1 MOTIVATION

Conventional FSCIL methods tackle catastrophic forgetting by freezing most parameters to preserve
learned knowledge, keeping only a few parameters trainable in incremental sessions (Zhou et al.,
2022; |Zhao et al.l 2023). Inspired by this, we propose neuronal dynamics that balance plasticity



Under review as a conference paper at ICLR 2026

]

OO

—— | gl B
Th EHE >
=t T @8
"""" oL oL T oL
! — - [ffus2z) —=
0, v, oW, aI, as,
:||||||||5‘“: = W,;
-—> 50% 12.5% JL % == 5oL
TR 2 g Pt o
Sam— Wl )bk
(a) Sparsity-Aware Neuron Dynamics (b) Zeroth-Order Optimization (c) Prototype Subspace Projection

O Stable Neurons O Active Neurons 2 Sampled Points ® Subspace Projection @ Orthogonalization

Figure 2: SAFA-SNN framework include three main components: (a) Training abundant data and
selecting active and stable neurons by masks. (b) Top: forward propagation through FSCIL process;
Bottom: backpropagation using zeroth-order optimization only in the base class training. (c) Freez-
ing backbones and updating the prototypes by subspace projection in the incremental inference.

and stability by dividing neurons into active neurons and stable types. Active neurons facilitate
knowledge updating while stable neurons align with base-class representations to preserve learned
knowledge. Despite ongoing efforts, overfitting remains a challenge. Subspace projection, using
class-specific matrices, offers robustness in few-shot learning (Simon et al.,|2020). Inspired by this,
we propose subspace projection to calibrate biased prototypes in incremental inference.

Algorithm 1 Overall SAFA-SNN Algorithm

Input: Dataset Dy, Ds~o, membrane U, feature extractor ¢
Parameter: ,7, S, M, ©
Output: Spike trains S;, parameters ¢

1: Random Initialize membrane U
2: Initialize mask M by randomly setting % adaptive neurons 1 and setting others 0 in each
channel

3: Initialize threshold ® with zeros

4: for t = 1 to time step 7" do

5: Ut :TUt_l +X{»
6.
7
8

S, =1(U, > ©)
Ut = Ut(l — St)
: end for
9: Update © by Eq.
10: Sample point z; ~ N(0,1),7 =1,2,...,.8
11: if |z| < dz;| then
12:  Estimate the gradient §; = m; - |z
13: end if
14: Estimate 2% by all selected points %(%Efﬂ Gi)
15: Conduct base session optimization L and update ¢(6) by Loss in Eq.
16: Compute the projection subspace by Eq. (I4)
17: Conduct incremental inference with P in Eq.

5.2 OVERVIEW OF SAFA-SNN

SAFA-SNN for on-device FSCIL comprises three parts: a sparsity-aware dynamic mechanism to
mitigate forgetting, the formulation of zeroth-order optimization for non-differentiable spikes, and a
fast-adaptive prototype subspace projection for fast adaptation. Figure [2]illustrates the overview of
SAFA-SNN in FSCIL, and the full FSCIL procedure is detailed in Algorithm [I]

5.3 SPARSITY-AWARE NEURONAL DYNAMICS

Complex neuronal dynamics force a trade-off between biological realism and computational com-
plexity in simulations. To address catastrophic forgetting while maintaining the model’s discrim-
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inability, most neurons remain stable by aligning with spike firing to preserve stability, while oth-
ers adapt to incremental learning. Define the firing rate of neuron ¢ with spike output St(l) as
7 o= %EtTZOS (1), which can also be denoted as sparsity. However, the formulation may limit
the expressiveness of latent dynamics for real-world applications. We introduce a channel-wise
mask M = {m.},c = 1,2,...,C, where C is the number of channels and m, = 1.<|,c|, where
n € (0, 1) is the adaptive ratio controlling active neurons to enable new class learning. Other neurons
align their firing with old neurons to reduce spiking bias in new tasks.

A=351I-M)+M (6)
where 3 and ~y are hyper-parameters. Finally, the updated threshold can be described as
O =0, —A(r, —74) (7)

where 7, and 7, denote firing rates of neurons in incremental and base tasks, respectively.

5.4 ZEROTH-ORDER OPTIMIZATION

Multi-point estimate. Zeroth-order optimization is beneficial to computation-difficult or infeasible
gradient problems, since it can approximate the full gradients or stochastic gradients through func-
tion value (Liu et al, [2020). We start by presenting the gradient estimate of f(x) with two-point
directional derivative as

¢(d)

Vi@) = =B e+ ow) - f(e - du)] (®)

where b is the number of i.i.d. samples {u;}’_,, and d is a dimension-dependent factor. Let g(u)

denotes the central finite difference approximation glsji with membrane potential ©u = u; — uyp,.

Then, for u € R"™,

9% (u;6,2) = 9)

26 2]

H(u+6z) — H(u—6z) 0, |u] > d|z]
z =
§,|U/‘ <6|Z|

where z obeys a specific distribution P over b empirical samples {z;}°_, and H is the heaviside
function defined in Section[3.1] Assessing whether perturbations u + 20 and u — 2§ induce a spike
in the neuron allows for an approximation of the gradient. Through random permutation, g*(u)
accommodates the influence of all neighbors, for a balanced depiction of local dynamics. The

approximation to Vg(x) at a given input u can be computed as

S, 1<
aTLZ =797 (ui0,2), (10)
i=1

Gradients are typically approximated by averaging multiple perturbed samples, where each pertur-
bation produces a local gradient, resulting in a more reliable estimate (See Appendix |A.I).

Convergence analysis of ZOO. We start with some conventional assumptions for convergence anal-
ysis in zeroth-order optimization literature (See Appendix [A.Z). The non-differentiability of Equa-
tion [2] renders the entire optimization problem non-convex. The convergence is evaluated using the
first-order stationary condition via the squared gradient norm (Proof in Appendix [A.3):

-
1 P |
T;EWMH—O®+Q ()
where 7 is the iteration. The convergence upper bound is
. 1
Elg(ur) —g(u”) < O(TT)] (12)

Loss function. Globally, the total loss function, incorporating both the temporal error term (TET)
(Deng et al.,[2022)) and the MSE loss, given by

T
1
L=(1- )\)T ZLCE(UMY) + ALlwsg (ut,y) (13)
=1

where T' denotes the number of time steps, and A is a hyperparameter that governs the relative
contribution of the temporal prediction error term and Lysg.
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Table 1: Comparison with SOTA methods on MinilmageNet dataset for On-Device FSCIL.

Acc. in each session (%) T

Method Avg.t Ajst
0 1 2 3 4 5 6 7 8
CEC (SNN) 54.331914 49814198  46.821180  44.284160 42284163 40311140 38264136  36.754133  35.784+1.09 43184163  +12.92
FACT (SNN) 63.0310.91 52514150 49254108 46594113 44324919 42351104 40164147 38474108 37441947 46.014448  +11.26
S3C(SNN) 3155405 16524007 17.80i081 31171007  24.69:0s2  29.02508s 153540062  27.30i022  26.564001 24454000 +22.14
BIDIST (SNN)  43.721032  40.661045 37.8l:o60 35514070 33581061  31.721057 30121064  28.954070  27.854049 34441058 +20.85

SAVC (SNN) 41754041 38541030 35.79:021 33401013 31311006 29471100 27.834004 26.3T10s9  25.054085 32.171108 +23.65

TEEN (SNN) 62871160 52751115 49.64s101 46914085 44820085 4281075 40594077 39181085  38.0lioss 46401005 +10.69

WARP (SNN) 50.07+4.06  31.67+372  29.93:350  28.074341 25494403 24284430 22844434 22131406 21.3013.06 27474371 +27.40
CLOSER (SNN) = 65.88+0.00  61.39+0.08  57.7210.03 54.741010 52344007 49981021  47.6910as  45.941014  44.69:007 53381000  +4.01
ALADE (FSCIL)  57.914045 47.041060 44.072055 41754045  39.724050 37.924047  36.04p04s 34571045  33.731040 41424047 +14.97

SAFA-SNN 74.661062 68.931046 64.62.057 61.291085 58.3040095 55.38:078 52.601062 50.581060 48.70:067 59.451067

5.5 FAST ADAPTIVE PROTOTYPE SUBSPACE PROJECTION

Class prototypes averaging extracted features often causes discrepancies with actual data distribu-
tions (See Appendix [A:4). As denoted in Section [3.2] we further define two specific prototypes

~ pY pb Pt T BxD
that belong to Cp base classes and Cy new classes as B = B TSRy - - - TR eR
IPLl2” P32 P52
dC = |i—, 22 Pi ] ¢ pNxD tively, where D is the feature di
an = | TP TPE 0 TP € , respectively, where D is the feature dimen-

sion, B = |Cp|, and N = |Cy/|. To obtain information on the subspace structure spanned by the
base classes, we construct a new prototype representation G to represent a generalized inverse of a
covariance-like matrix in projection calculation, given by

G-BBB)'BT (14)

Note that the normalization term BT B is required because the bases {P?} are not orthogonal to
each other. Hence, we construct |Cp| distinct orthogonal subspaces represented by G for base
classes. As classes increase, diverse class information allows extending classifiers with prototypes.
The projection vectors Py,,.,; are updated by mapping the coordinates in the base subspace back to
the original D-dimensional space, denoted as P,,; = CG. Finally, we integrate base and new
knowledge by reconstructing the new information within the base subspace by

P=(1-0a)C+aP,.,, (15)

where € (0,1) is a trade-off weight factor for C and f’pm-. The current classifier weights are
updated by P to enable new class prediction (See Appendix for analysis).

6 EXPERIMENTS

6.1 EXPERIMENTS SETUP

Datasets and Spiking architecture. We eval-
uate the generalization performance of SAFA- I 3
SNN on two standard benchmark datasets, i.e., T, T
CIFAR100 (Krizhevsky et al.,|2009) and Mini- . \\<
ImageNet (Russakovsky et al.L[2015)), each split -

into eight 5-way 5-shot incremental tasks. We »

also extend experiments on three neuromor- .

phic datasets: CIFAR-10-DVS (Li et al., 2017)), L e
DVS128gesture (Amir et al., 2017)), and N-

Caltech101 (Orchard et al 2015). CIFAR- Figure 3: Accuracy in each session.
10-DVS is split into four 1-way I-shot tasks,

DVS128gesture into five 1-way 1-shot tasks, and N-Caltech101 into eight 5-way 5-shot incremen-
tal tasks. We adopt Spiking VGG variants (5, 9, 11), Spiking Resnet variants (18, 19, 20), and
Spikingformer. Details can be found in Appendix

Accuracy (%)
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Realistic Implementation. All experiments are conducted on a mobile platform NVIDIA Jetson
AGX Orin (NVIDIA| 2025), which features a 12-core Arm Cortex-A78AE processor, supporting
64-bit Armv8.2 architecture, with 60W peak power and idle power below 15W.

Training Details. Our implementation uses PyTorch with Adam optimizer. Models are trained
for 300 epochs on CIFAR-100 and MinilmageNet, and for 100 epochs on CIFAR-10-DVS,
DVS128Gesture, and N-Caltech101, all with a batch size of 128. The learning rate, 3, 0, .S, and
¢ are set to 0.001, 1.2, 0.001, 5, and 0.5, respectively. Each experiment is repeated three times with
different seeds.

6.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Baselines. We select nine FSCIL methods in Table 2: Comparative results on neuromorphic
their SNN version, i.e., CEC (Zhang et al] datasets.

2021), FACT (Zhou et al.| [2022), S3C (Kalla|

& BlSWaSL , BIDIST (Zhao et a1|, , Dataset Method Avg.(%) Lst.(%)
SAVC 2023), TEEN wwr  moaor i
2023), WARP (Kim et al.,[2023)), CLOSER CIFARIODVS —  TEEN N ao7xro2  34.60%0.70
etal.,2024) and FSCIL-ASP (Liu et alJ 2024a), i Bt

B ‘WARP 35.41 13.02
as baselines. We adopt an SNN-based CIL DVS128gesture TEEN 83135000 TA311) o
method, ALADE-SNN (Ni et al 2025), and SAFASNN  86.7410.46  TT.9110.s
two SNN training methods (Kim et al., 2022} WARP 25344163 14404207

N-Caltech101 TEEN 34.23 27.86
Meng et all, [2023) to evaluate FSCIL perfor- SAFASNN  45.68 14 vs  39.69 1 o
mance. See Appendix [A.7]for details.

Accuracy. We test the Top-1 accuracy on all seen tasks 0, 1, ...s after the session s. A5 means
our relative improvement in the last session. Harmonic Accuracy (HAcc) measures the balance
between base and novel class performance after each session s, i.e., A, = 21:‘172?", where A,
denotes test accuracy in base session, and A,, the average accuracy over sessions s > 0. As reported
in Table [T, SAFA-SNN surpasses the second-best approach by 4.01% for improvement in the final
session and boosts the average performance by 6.07% on Mini-ImageNet. The performance curves
presented in Figure[3]show that SAFA-SNN achieves state-of-the-art performance across CIFAR100
and Minilmagenet, respectively. Table[2]shows accuracy on average (Avg.) and the last session (Lst.)
compared with WARP and TEEN on three neuromorphic datasets, verifying its generalization and
robustness performance. We find baseline WARP has the worst performance, indicating that the
ability of space compaction to obtain effective parameter presentation is totally limited, far inferior
to our spiking alignment and prototype adaptation. Table[3|shows that our method achieves accuracy
of 31.06%, outperforming SNN training methods. This confirms the effectiveness and potential of
our method on the SNN deployment. Additional results are provided in Appendix [A-8]

Table 3: Comparative results with SNN-based training methods for on-device FSCIL.

Method Dataset Time step Backbone Param Size (M) HAcc.(%) Lst.(%) Avg.(%)
Early Bird CIFAR100 4 Spiking VGG5 221.35 24.2040.54 41.2140.66 50.87+0.60
(Kim et al.][2022} CIFAR100 5 Spiking VGG9 106.87 22.2540.85 39.9241.07 49.30+1.49
SLTT CIFAR100 6 Spiking VGG5 32.85 25.17+1.05 41.6310.27 51.1240.28
| 2023 Mini-Imagenet 4 Spjk@ng VGG9 106.87 18.9340.31 32.58+10.77 40.45+0.64
CIFAR-10-DVS 4 Spiking VGG9 262.87 10.87+0.62 26.6041.27 34.4640.85
SAFA-SNN CIFAR100 4 Spiking VGG5 32.86 27.3240.91 46.471053 56.72410.25
Mini-Imagenet 4 Spiking VGG9 22.63 24.674+0.55 49.2540.24 60.98410.62
CIFAR-10-DVS 4 Spiking VGG9 262.63 14.4710.86 35.654048 41.67+0.34

BN CEC £ FACT [IN S3C WM SAVC (7S] WARP [N TEEN NN CLOSER  [Z SAFASNN

EEE CEC [0 FACT EZS] SAVC E= WARP [N TEEN [N CLOSER EEE] SAFA-SNN (a) Spiking VG65 (b) Splking V668 {c) Splking VG611

Energy Consumption (J)

mNEEEE
. FEESTESS SEFSEESS SEFTFEESS
Spiking Resnet20 o'e;" o/e,«v or"‘,«v
Figure 4: Training Energy Cost. Figure 5: Average Training Time.
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Energy consumption. Following (Yao et al., 2023)), we present the theoretical inference energy of
different ANNs and SNNs (See Appendix for[A.9|for formulations and results). The measurement
of Training Energy Consumption uses the built-in sensor values (e.g., GPU, I/O) between the RAM
and storage on the Jetson Orin AGX device (NVIDIA|2025), which is gauged by multiplying power
(W) by time. We put the training energy consumption in Figure 4] It can be seen that SAFA-SNN
exhibits notably lower energy consumption than baselines.

The Run-Time Cost. Figure [5|compares the run-time cost of SAFA-SNN and baselines with Spik-
ing VGG variant. Our neuronal dynamics, combined with ZOO and prototype subspace projection,
reduce unnecessary training time without modifying synaptic weights or adjusting parameter spaces,
achieving lower runtime and outperforming other baselines in both efficiency and effectiveness.

6.3 ABLATION STUDY

Ablation on SAFA-SNN. We conduct an ablation study to analyze the importance of each compo-
nent in SAFA-SNN: Sparsity-Aware neuronal dynamics (SA), Zeroth-Order Optimization (ZOO),
and subspace projection of prototypes (SP). We report incremental performance curves on CI-
FAR100 and MiniImageNet with time step 4 and Spiking VGG-9, as shown in Figure[] We can infer
that SA has the worst performance, since it does not consider possible adjustments in feature space,
and we view it as the baseline. When equipped with SP, it shows significant performance gains
as the model adapts to extract more informative features from base prototypes. We then use ZOO
for gradient estimation, as shown in the highest curve, which corresponds to our full SAFA-SNN.
Ablations verify that every component in SAFA-SNN boosts FSCIL performance.

acy (%)

Accur:

Accuracy (%)

(a) CIFAR100 (b) Mini-imagenet (a) DVS128-Gesture (b) CIFAR10-DVS

Figure 6: Ablation results of SAFA-SNN. Figure 7: All-session accuracy of variant shots

Effects on different N-way-K-shots. We assess shot count impact on accuracy by varying
1,2,5,10,15,20,50 on DVS128gesture and CIFAR-10-DVS in Figure(Analysis in Appendix[A.10).

Hyper-parameters Analysis. Results on the effects of key parameters (i.e., 5, v, S, §, 7 and A) and
time step 7', are provided in the Appendix [A.TT|and [A.T2] respectively.

Sparsity-Accuracy trade-off Analysis. The sparsity remain up to 80% even when setting 7' =
2, 3,4 on different datasets through the training process, indicating a balance in spiking sparsity and
accuracy, showing potential computation efficiency (Results in Appendix [A.T3).

7 DISCUSSION

A possible limitation is the performance degradation in deep networks, such as Spiking ResNet-34,
which suggests that additional training epochs are required to maintain performance. In addition, as-
suming a fixed number of classes per session oversimplifies the dynamics of real-world data streams.
Future work will address imbalanced way-shot settings to better reflect practical on-device FSCIL.

8 CONCLUSION

This paper focuses on few-shot class-incremental learning with SNN on-device scenarios. We pro-
posed SAFA-SNN by incorporating sparsity-aware dynamics to preserve learned classes, zeroth-
order optimization for non-differential spike, and subspace projection for incremental learning. Ex-
tensive experiments on benchmark and neuromorphic datasets indicate that SAFA-SNN outperforms
existing FSCIL methods in both performance and energy efficiency on realistic implementation.
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A APPENDIX

A.1 CONVERGENCE

The mean squared approximation error (MSE) of the gradient estimate of g as

d

where @g(m) is the ture gradient obeys (Berahas et al., [2022)), d is the dimensionality and b is the
number of samples. At the non-differentiable point © = 0, the true gradient does not exist. However,
the expected value of the estimation is zero when z is drawn from a symmetric distribution, so the
bias is zero. The key is that the non-zero contribution of the estimation is concentrated around
u = 0, where the true gradient is non-zero.

’@g(m) - Vg(w)Hj = 0(8%) + O(b32d?) (16)

The perturbation radius (or smoothing factor) § affects gradient estimation error. As it becomes
smaller, the gradient estimate gets better. A smaller J reduces the bias but drastically increases the
variance. In practice, an overly small § may cause the function difference to be masked by system
noise, rendering it ineffective in representing the true differential. In contrast, a larger § reduces
variance but increases the bias. The choice of 4 is critical to minimize the total error. As the number
of samples b increases, this approximation converges to the true gradient, and as the sample size
tends to infinity, it converges to the expected value E of the perturbation distribution.

At a differentiable point with v # 0, both the bias and variance of the single point estimation vanish,
implying that the MSE of the multi-point average is also zero, reflecting a form of deterministic
convergence. In contrast, when multi-point averaging is applied, the variance becomes ﬁ. Thus,
by increasing the number of samples b, we can effectively offset the variance explosion caused by
letting 6 — 0, thus ensuring a bounded and low variation gradient estimate.

A.2 ASSUMPTION

We provide four assumptions regarding convergence rates on zeroth-order algorithms which can be
applicable to different types of problems according to the previous literature (Liu et al.,[2020).

Assumption 1. (Convex optimization) The convergence error is measured by the optimality gap of

function values:
E[f(zr) — f(z")] (17)

for a convex objective f, where x7 denotes the updated point at the final iteration 7', x* denotes the
optimal solution, and the expectation is taken over the full probability space.

Assumption 2. (Online convex optimization) The cumulative regret (Hazan et al.| [2016) is typically
used in place of the optimality gap for an online convex cost function f; as

E[Y  filw:) —mxiant(fﬂ)] (18)
t=1 t=1

Assumption 3. (Unconstrained nonconvex optimization) The convergence is evaluated by the first-
order stationary condition in terms of the squared gradient norm for the nonconvex objective f:

T
LS E[IVAl3) (19)
t=1

Assumption 4. (Constrained nonconvex optimization) The criterion for convergence is commonly
determined by detecting a sufficiently small squared norm of the gradient mapping (Ghadimi et al.,
20165 () Reddi et al., 2016):

Px (24, Vf(2e),m) == % [wt — Iy (2 — ntvf(wt))} (20)

where Px (2, Vf(xt),n:) can naturally be interpreted as the projected gradient, which offers a
feasible update from the previous point ;.
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A.3 PROOF OF ZEROTH-ORDER OPTIMIZATION

We provide a theoretical proof of the estimation function g(¢) according to literature (Mukhoty et al.,
2023)) as follows.

Definition 1. We say that a function g : R — R is a surrogate function (gradient surrogate) if it
is even, non-decreasing on the interval (—00,0), and ¢ := [*_g(z)dz < cc.

Assume that

/Oo 22TIN\(2) dz < 0. 1)

0
Then, E,[g?(u; 2, )] is a surrogate function.

Theorem 1. Let p be a distribution and p(t) its corresponding probability density function(PDF).

Assume that the integrals [;° t*p(t)dt and [t p(t)dt exist and are finite. Let further \ be the
distribution with corresponding PDF function

~ 1 o0
Az) = ,M/ tUA(t) dt, (22)
c — 00
where c is the scaling constant such thatffooo S\(Z)dz = 1. Then,

d
E-plg® (43 2,0)] = —-Eaplch(u + 62)]. (23)

The probability density function characterizing the standard normal distribution A/(0, 1) takes the
form \/% exp ( —é) Consequently, it is straightforward to obtain
2

E.p[g*(u; 2 5)]—/OO lal 1 e —i dz—il e v 24)
z~pg » <~ - e 25\/% Xp 2 75\/% Xp 252

Theorem 3. Let g(u) be a surrogate function. Suppose further that ¢ = ffooo g(z)dz < oo and
2%g’ (28 .
define p(z) = W/((%))dz (so that \(2) is a PDF). Then,
cBenplg?(u5 2,0)] = BanpcG (us 2,6)] = g(u)

Consider the Sigmoid surrogate function, where the differentiable Sigmoid function approximates
the Heaviside. The corresponding surrogate gradient is given by

d( 1 )_ k exp(—ku) —: g(u). (25)

du 1 +exp(—ku) ) (14 exp(—ku))2

Observe that ¢(t) satisfies our definition of a surrogate (i.e., g(t) is even, non-decreasing on
(—00,0), and [%_g(t)du = 1 < oo). Thus, we have ¢ = —262 [~ ¢/(t6)tdt, where a :=

\/% . The corresponding PDF is given by

6% g(6t)  a®exp(—kdz)(1 — exp(—kdz))
R R (e ) L =

Table 4: Detailed prediction results of MBR and MAR (%) between soft calibration-based method
TEEN and SAFA on CIFAR100.

Method CBNT MBNJ| MNNJ] CNNt MBR| MAR] Seenf Unseent

TEEN 649778 4222 12108 5092 0.704 0.005 6235 14.95
SAFA-SNN 650935 3065 10180 7020 0.592 0.006 73.57 1543
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A.4 ANALYSIS OF PERFORMANCE ON FEW-SHOT NOVEL-CLASS

We define “Misclassified to Base classes Ratio” (MBR) for new classes and “Misclassified to most
similar New classes Ratio” (MNR) for base classes. As shown in Table @] MBR is much higher
than the MNR, indicating that new classes are misclassified as base than base classes as new, and
poor base prototypes rarely occurs. Correspondingly, the “Correctly classified to Base class Number
and to New class number” as CBN and CNN, otherwise, the “Mistakenly classified to Base class
Number and to New class number” as MBN and MNN. We also report the accuracy on seen classes
and unseen clsses.

Table 5: Performance Comparison across Sessions (HMean / NAcc).

Session 1 2 3 4 5 6 7 8

TEEN 36.05/25.00 29.07/18.80 26.40/16.67 25.53/16.00 24.10/14.92 24.74/1543 2457/1531 24.06/14.95
SAFA-SNN  41.90/28.80 34.51/2230 29.25/18.13 27.13/16.55 27.74/17.04 27.30/16.73 26.53/16.17 27.14/16.68
A +5.85/+43.80 +5.44/+43.50 +2.85/+1.46 +1.60/+0.55 +3.64/+2.12 +2.56/+1.30 +1.96/+0.86 +3.08/+1.73

Table 6: Comparison with FSCIL baselines on static dataset CIFAR100 with S5way-5shot incremen-
tal learning setting and Spiking VGG-9.

Acc. in each session (%) T
0 1 2 3 4 5 6 7 8

CEC 60.82 5749 5393 5080 48.18 4575 43.69 4195 40.22 4920 +7.87
FACT 69.82 61.46 57.83 5433 5135 48.64 4620 4445 42,61 5297 +548
S3C 61.72 31.60 16.00 1540 11.00 19.40 18.00 2520 23.00 24.59 +25.09
BIDIST 61.30 57.69 54.17 5088 4833 4572 4382 42.08 4036 4937 +7.73
SAVC 41.75 3854 3579 3340 3131 29.47 27.83 2637 2505 32.17 +23.04
TEEN 69.87 6320 59.49 5567 5279 50.11 48.12 4633 4451 5934 +3.58
WARP 6132 4488 41.84 39.11 36.68 3460 3220 31.07 2874 38.94 +19.35
CLOSER 5522 5255 4939 4641 4423 4206 4023 38.67 3721 4510 +10.88
ASP 58.55 46.05 3329 27.76 27.52 27.48 2137 21.06 16.04 31.01 +32.05

SAFA-SNN 76.03 7091 66.1 61.55 58.19 5522 5277 5033 48.09 56.59

Method Avet Ast

Table 7: Comparison with FSCIL baselines on static dataset CIFAR100 with S5way-5shot incremen-
tal learning setting and Spiking VGG-11.

Acc. in each session (%) T
0 1 2 3 4 5 6 7 8

CEC 64.37 59.85 55.89 52.04 4888 4637 4392 4172 39.60 50.63 +7.30
FACT 61.98 5748 53.54 50.05 47.06 4448 42.13 3992 38.02 48.62 +8.88
S3C 4528 2480 1440 1620 13.60 1580 11.00 2240 18.00 20.28 +28.90
SAVC 6295 58.11 53.96 5036 4721 4444 4197 39.76 3777 4839 +9.13
TEEN 6430 59.79 5573 5191 4886 46.14 43.68 4142 3934 5079 +7.56
WARP 62.28 57.95 53.99 5041 4725 44.69 4234 4020 3828 48.16 +8.62
CLOSER  67.87 63.52 59.57 56.15 5283 49.89 4754 4543 4338 5402 +352

SAFA-SNN 7695 7120 66.00 61.81 58.14 54.74 5194 49.16 46.90 58.12

Method Avgt Ajast

A.5 SUBSPACE PROJECTION

Prototypical networks are a few-shot learning framework designed to recognize novel classes using
only a small number of labeled examples. The model uses a shared feature extractor to embed
both labeled support images into a common feature space. For each class, the embeddings of its
support samples are averaged to form a prototype vector that represents the class in the feature
space. Classification is performed by comparing embeddings to these prototypes using a distance
metric, typically Euclidean distance. Predictions are made on embeddings based on L2 proximity to
each class prototype (Wertheimer & Hariharan,|2019)). Since classification in prototypical networks
is non-parametric, training focuses on optimizing the feature extractor. The model is trained using
episodic tasks consisting of small support and query sets, enabling it to produce discriminative
prototypes from limited examples. Constructing complex classifiers f(-) is challenging under such
constraints. In SAFA-SNN, we employ a simple yet effective prototype update strategy, Subspace
Projection, which isolates attribute-relevant information without relying on auxiliary networks or
weighted loss terms (L1 et al., [2020).
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Table 8: Comparison with FSCIL baselines on static dataset CIFAR100 with 5way-5shot incremen-
tal learning setting and Spiking Resnet20.

Acc. in each session (%) 1

Method Avg.t  Ast
0 1 2 3 4 5 6 7 8

CEC 1295 1222 1127 1055 10.04 948 893 853 815 1043 +38.75

FACT 64.03 56.51 53.11 49.77 47.31 4451 4253 40.86 39.09 47.13 +7.81

S3C 49.15 2640 22.80 2220 22.80 22.00 2520 3340 3040 2738 +16.5

TEEN 65.68 57.79 54.64 5107 4830 4553 43.69 42.00 4025 4921 +6.65
WARP 46.85 36.85 3439 3156 29.64 27.88 2640 2525 2393 31.64 +22.97
CLOSER  56.02 5343 50.33 4721 44.65 4248 4044 3886 37.10 4561 +9.80

SAFA-SNN 7695 7120 66.00 61.81 58.14 54.74 5194 49.16 46.90 58.12

Table 9: Comparison with FSCIL baselines on static dataset CIFAR100 with 5way-5shot incremen-
tal learning setting and Spiking Resnet19.

Acc. in each session (%) 1
0 1 2 3 4 5 6 7 8

FACT 67.67 62.17 58.03 5441 5123 48.64 46.17 44.14 4209 5328 +4.17
TEEN 66.71 61.71 5732 53.69 50.35 47.67 45.13 43.14 41.03 5246 +5.23
WARP 66.58 6.12 294 347 246 1.91 1.87 1.92 130 10.83 +44.96

SAFA-SNN 7398 68.74 63.99 59.99 56.38 5349 51.03 48.60 46.26 56.35

Method Avg.t Ajast

A.6 DATASETS AND SPIKING ARCHITECTURE DETAILS

Neuromorphic datasets exhibit sparse features, typically obtained from event-based simulators or
converted frame-based datasets. CIFAR10-DVS (Li et all [2017) is a neuromorphic dataset de-
rived from the original CIFAR10, where visual inputs are recorded by a Dynamic Vision Sensor
(DVS), capturing changes in pixel intensity as asynchronous events instead of static frames. It
contains 9,000 training samples and 1,000 test samples. DVS128-Gesture (Amir et al 2017) is a
gesture recognition dataset consisting of 11 hand gesture categories collected from 29 individuals
under three different lighting conditions. N-Caltech101 (Orchard et al., [2015) comprises 8,246 event
streams, each 300 milliseconds in duration, recorded by an event-based camera as it captured dy-
namic visual inputs of Caltech101 (Fei-Fei et al.,|2004) images displayed on an LCD screen. These
recordings span 101 object categories, preserving the diversity of the original dataset while incorpo-
rating temporal event-based representations. We provide our neuromorphic dataset splitting method
in the codes.

We modify three types of ANNs (VGG, Resnet, and Transformers) to their SNN counterparts with
no floating-point multiplication and division, aiming to offer a guideline for proper SNN model
selection for FSCIL. In addition, we configure the Spikingformer with a depth of 2, five tokenizer
convolutional blocks, and a spike-form dimensionality of 128.

We directly encode spikes with layers of LIF neurons. Each formulated unit .S generating spikes can

be represented as
S =SN((BN(CONV(X)))), 27

where X € RTXBXCOXHXW g the input with time, BN(-) is the batch normalization layer and
SN(+) is the LIF neuron model.

A.7 BASELINES DESCRIPTION

We establish several baselines to better evaluate our proposed framework. To this end, we ex-
plore nine of the existing SOTA from the FSCIL literature, CEC (Zhang et al.| 2021]), FACT (Zhou
et al., 2022), S3C (Kalla & Biswas, 2022), BIDIST (Zhao et al., 2023), SAVC (Song et al., |[2023)),
TEEN (Wang et al.| [2023), WARP (Kim et al., [2023), CLOSER (Oh et al 2024) and ASP (Liu
et al., |2024a). CEC, BIDIST, and S3C establish dynamically evolving architectures to effectively
support incremental learning. CEC incrementally transforms newly added linear classifiers into a
graph-based structure. BIDIST assigns a learnable weight W to each task and employs bilateral
distillation between the representations of current and previous tasks. S3C expands its stochas-
tic classifiers by progressively incorporating four angular representations. FACT, SAVC, TEEN,
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Table 10: Comparison with FSCIL baselines on static dataset CIFAR100 with Sway-5shot incre-
mental learning setting and Spikingformer.

Acc. in each session (%) 1
0 1 2 3 4 5 6 7 8

TEEN 68.37 5242 48.67 4543 4259 40.08 3786 3586 34.07 4537 +2.48
WARP 6330 645 4.04 420 248 334 236 235 259 1038 +33.96
CLOSER 2353 21.86 20.24 18.87 1795 1692 1597 1520 1447 18.89 +22.08

SAFA-SNN 62.65 52.09 4890 46.01 43.65 4134 39.70 38.25 36.55 45.68

Method Avet  Agst

Table 11: Comparison with FSCIL baselines on static dataset MinilmageNet with Sway-5shot in-
cremental learning setting and Spiking VGG-5.

Acc. in each session (%) T
0 1 2 3 4 5 6 7 8

CEC 5728 5293 4998 47.12 4490 4276 4029 38.77 3757 4573 +1.06
FACT 5451 4391 41.16 3927 37.68 3580 3395 3264 3182 3897 +6.81
S3C 41.01 1256 1743 29.85 24.01 2587 2132 3095 2850 2528 +10.13
TEEN 5532 4489 4223 41.12 39.19 3749 3559 3434 3334 40.72 +5.29
WARP 50.24 25.84 24.13 2234 21.00 1997 1875 1838 17.66 2470 +20.97
CLOSER  48.07 44.54 41.89 40.16 3828 3641 3454 3339 32,67 38.66 +5.96

SAFA-SNN 61.31 53.06 49.92 48.12 46.19 43.88 41.40 3986 38.63 46.93

Method Avgt Apast

and CLOSER represent prototype tuning approaches that employ a prototype-based classifier gp(-)
instead of the conventional MLP classifier g, (-). FACT facilitates forward compatibility by synthe-
sizing virtual prototypes during the base training stage, thereby enabling more flexible adaptation
to future tasks. Meanwhile, SAVC advances base task performance through leveraging semantic-
aware fantasy classes combined with contrastive learning, which enhances feature representation.
TEEN presents a training-free prototype rectification technique, which effectively improves classi-
fication robustness without requiring additional training. Lastly, CLOSER strikes an effective bal-
ance between transferability and discriminability by employing a mechanism of compressed feature
spreading, thereby improving generalization across tasks.WARP trains backbone and classifier on
base tasks, then fine-tunes classifier and subnetworks of 6 with multi-axis rotations for distinct rep-
resentations. ASP efficiently fine-tunes small prompts on a frozen backbone, leveraging task-aware
and task-invariant prompts to improve selection during testing.

A.8 MORE COMPARATIVE RESULTS

HMean Accuracy. Table[5|reports the novel class accuracy and harmonic mean comparison against
the runner-up method on CIFAR100 with Spiking VGG-9, further emphasizing the consistent per-
formance improvements and the effectiveness of SAFA-SNN.

Comparison of all-session Accuracy. Comparisons with SOTA methods on CIFAR100 using Spik-
ing VGG-9, VGG-11, Spiking ResNet-20, Spiking ResNet-19, and Spikingformer are presented in
Table[6] [71 [8] 0] and [I0]and on Mini-ImageNet with Spiking VGG-5, Spiking Resnet-18 are listed
in Table [[1[and [T2] These results demonstrate that SAFA-SNN consistently achieves the highest
final-session performance, highlighting its robustness and effectiveness.

A.9 ENERGY CONSUMPTION

According to previous studies (Horowitz, 2014; [Yao et al., 2023} [Lv et al., |2024)), for SNNs, the
theoretical energy consumption of layer [ can be calculated as:

E(l) = Fac x SOPs(1) (28)
where SOPs is the number of spike-based accumulate (AC) operations.

For traditional artificial neural networks (ANNS), the theoretical energy consumption required by
layer b can be estimated by:
E(b) = E]MAC X FLOPS(b) (29)
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Table 12: Comparison with FSCIL baselines on static dataset MinilmageNet with Sway-5shot in-
cremental learning setting and Spiking RESNET18.

Acc. in each session (%) 1
0 1 2 3 4 5 6 7 8

CEC 5523 51.07 47.62 4515 4284 40.64 3842 36.64 3503 43.63 +13.06
TEEN 5453 4759 4454 42.19 40.14 38.03 36.06 3453 33.11 4141 +14.98
CLOSER 5693 52777 49.16 46.72 4431 4212 40.04 3847 37.17 4597 +10.92

SAFA-SNN 76.03 7091 66.1 61.55 58.19 5522 5277 5033 48.09 56.59

Method Avet  Agst

Table 13: Inference Energy Consumption Comparison of ANNs and SNNs.

Model Energy (J) Model Energy (J)

Spiking VGGS5 7916.53 VGGS5 10115.57
Spiking VGG9 3958.41 VGG 5057.97
Spiking VGG11 494.92 VGGI11 632.39

Spiking VGG13 495.00 VGG13 5689.97
Spiking VGG16 495.08 VGG16 5689.97

where FLOPs denotes the number of floating-point multiply-and-accumulate (MAC) operations. We
assume that both MAC and AC operations are implemented on 45nm hardware (Yao et al.l |2023)),
where Ejrac = 4.6pJ and Exc = 0.9pJ. Note that 1 J = 10% mJ = 102 pJ.

The number of synaptic operations at the layer [ of an SNN is estimated as:
SOPs(l) =T x ¢ x FLOPs(l) (30)

where 7T is the number of time steps in the simulation, ( is the firing rate of the input spike train of
layer .

Based on these theoretical analysis, we report the theoretical inference energy consumption results
with variable structures in Table[I3] which shows that the energy consumption of ANNS is obviously
higher than SNNss, the larger the model is, the more significant the differences between them, which
further hardens the ability of ANNs to implement on edge devices.

A.10 EFFECT ON N-WAY K-SHOT

SAFA-SNN leverages N-way K-shot datasets to estimate prototypes for novel classes. To eval-
vate the impact of the number of shots on accuracy, we fix the incremental way and vary shots
1,2,5,10,15,20,50 on DVS128gesture and CIFAR-10-DVS. We can infer that with more instances
per class, the estimation of prototypes will be more precise, and the performance will correspond-
ingly improve.

A.11 HYPER-PARAMETER SENSITIVITY

We report the last-session accuracy on CIFAR100 varying the § in {0.4,0.9,1.2} and ~ in {0.01,
0.04,0.07}. We also change the sampled point number S from {5,10,15} and constant § from
{0.1,0.3,0.5}, resulting compared results in Figure Our method is robust to the choices of hyper-
parameters, and it achieves the best performance when § = 0.5and S =5,y =0.01 and 5 = 1.2.
The adaptive ratio n varys in {0.1,0.3,0.5,0.7,0.9} and X in {0.01,0.05} (See Table .

A.12 EFFECTS ON DIFFERENT TIME STEPS

Upon proving the importance of SAFA-SNN modules, we further evaluate the impacts of the in-
troduced time steps in SNN. We choose time steps 7" among 1,2,4,6,8 and 10. We report the per-
formance in incremental sessions on CIFAR100 and Mini-ImageNet in Figure 0] respectively. As
illustrated in the figures, the best performance is observed when 7' is approximately between 4 and 6.
Since the larger time step often corresponds to challenges like gradient vanishing or exploding (Yu
et al.,[2024b), we suggest T' = 4 as the default in our experiment.
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Figure 8: Comparison of different hyper-parameters on 9, S, «v and § for on-device FSCIL.

Table 14: Comparison on various 7 and A.

A " Acc. in each session (%) 1 Avg.t
0 1 2 3 4 5 6 7 8

0.05 0.1 76.12 70.06 6531 60.76 57.50 54.65 5199 4896 4577 59.01
005 03 76.12 7051 6544 60.83 57.81 5472 5230 4944 46.63 59.31
005 05 7793 72.69 68.16 64.09 6049 5735 54.80 5220 49.88 61.96
005 0.7 76.12 7057 6589 61.71 58.09 5574 5233 4985 47.60 59.77
0.05 09 7518 6945 6497 6084 57.14 5420 51.74 49.23 4721 5888
001 05 7673 7088 6641 61.73 59.04 5567 5324 5040 4540 59.95
0.1 05 7667 7059 6611 6143 5851 5502 52.13 4952 4540 59.49

A.13 ACCURACY AND SPARSITY TRADE-OFF

We trained the CIFAR100 dataset on the original Spiking VGG network with 285,448 neurons in
all layers with dynamic threshold. We found that the training is very robust to even extreme values
of adaptive ratio, as shown in Figure [I0]and [IT] The points features red dot with black border is
the start point in each settings while the points features green dot with black border is the end point.
We can see that both the sparsity and accuracy convergence at high level, showing the promise in
sparsity-accuracy trade-off in SAFA-SNN.

A.14 VISUALIZATION OF FIRING RATE

We visualize the average firing rates in each time step of non-adaptive (dashed lines) neurons and
adaptive neurons (solid lines) on CIFAR100 dataset in Figure [T2] where “S-k-A” and “S-k-N"" are
the firing rete of adaptive neurons in the % session and non-adaptive neurons in the £ — th session,
respectively. It is observed that non-adaptive neurons exhibit higher firing rates than adaptive neu-
rons in the same session. This implies that adaptive neurons constrain their activity to remain within
threshold limits, potentially reducing their responsiveness to novel classes, whereas non-adaptive
neurons sustain stable firing behavior to mitigate the risk of catastrophic forgetting.

A.15 NEURONAL DYNAMICS IN SNN

We provide Discrete temporal dependency representation in SNNs following 2024).The
continuous neuronal dynamics of a general one-dimensional integrate-and-fire neuron is a linear
differential equation with a thresholding criterion (Gerstner et al,[2014):

d
T = —f(u(t)) + RI(1) (31)
61—i>%1+ w(t +6) = urest (Integration) (32)
u(t) > 0y, (Thresholding) (33)
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Figure 10: Sparsity-Accuracy on Mini-Imagenet. Figure 11: Sparsity-Accuracy on CIFAR100.

where time ¢ € RT, dynamics function f(u) : R — R, input current I(¢) at time ¢, membrane
potential u, resting potential .., threshold 6y, membrane resistance R, membrane capacitance
C, and membrane constant 7,,, = RC.

Integrate-and-fire models are simplified phenomenological models of biological neuronal dynam-
ics (Gerstner et al., |2014). They consist of two components: (i) a time-evolution of membrane
potential (Integration) and (ii) a firing mechanism to create a spike (Thresholding). Its continu-
ous neuronal dynamics is a differential equation with a thresholding criterion. For computational
tractability, the general one-dimensional integrate-and-fire model is discretized as follows:
R
Uprery = u(t — 1) + fu(t —1) + —1I(t) (34)

m

s(t) = H(upre(t) — 0un) (35)
where time ¢ € N, dynamics function f(u) : R — R, pre-firing potential w,,.«), s(t) € {0,1}
a spike, post-firing potential u(t), Heaviside step function H, influx current I(t), threshold 0y,

membrane resistance 7, and membrane constant 7,,,. The potential wu,,,..(;) resets to u after the spike
s(t) fires based on its pre-defined reset mechanism:

u(t) = Uppe(r) — Otn5(t)  (reset-by-subtraction) (36)

u(t) = tprer) (1 — 5(t))  (reset-to-zero) (37

Integrate-and-fire (IF) neuron has the simplest neuronal dynamics defined as f(u) = 0, 7, = 1 in
equation 34
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Figure 12: Firing rate of adaptive and non-adaptive neurons.

Upre(y = ult — 1) + RI(t) (38)

Leaky-Integrate-and-Fire (LIF) neuron introduces linear leakage f(u) = —(u — Urest)/Trm into the
dynamics:

u(t - 1) — Urest + E

Tm Tm

Upre(t) = u(t—1) — 1(t) 39)

A.16 DISCUSSION

Our method significantly improves the recognition accuracy of new classes in on-device FSCIL sce-
narios, where catastrophic forgetting and resource constraints severely limit model performance. By
addressing the underperformance of new classes, our approach offers new insights into the over-
looked challenges of class imbalance and forgetting. To the best of our knowledge, this is the first
study in the on-device FSCIL literature to systematically analyze the performance degradation of
new classes, highlighting the need to prioritize their evaluation in future on-device FSCIL research.
In addition, our method may also have offer potential heuristic effects on initiating training with
sparse models for implementing edge intelligence on neuromorphic hardware.

A.17 THE USE OF LLM

We only use LLM to polish some descriptive sentences and check grammatical errors.
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