
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SAFA-SNN: SPARSITY-AWARE ON-DEVICE FEW-
SHOT CLASS-INCREMENTAL LEARNING WITH FAST-
ADAPTIVE STRUCTURE OF SPIKING NEURAL NET-
WORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Continuous learning of novel classes is crucial for edge devices to preserve data
privacy and maintain reliable performance in dynamic environments. However,
the scenario becomes particularly challenging when data samples are insufficient,
requiring on-device few-shot class-incremental learning (FSCIL) to maintain con-
sistent model performance. Although existing work has explored parameter-
efficient FSCIL frameworks based on artificial neural networks (ANNs), their
deployment is still fundamentally constrained by limited device resources. In-
spired by neural mechanisms, Spiking neural networks (SNNs) process spatiotem-
poral information efficiently, offering lower energy consumption, greater bio-
logical plausibility, and compatibility with neuromorphic hardware than ANNs.
In this work, we present an SNN-based method for On-Device FSCIL, i.e.,
Sparsity-Aware and Fast Adaptive SNN (SAFA-SNN). We first propose sparsity-
conditioned neuronal dynamics, in which most neurons remain stable while a sub-
set stays active, thereby mitigating catastrophic forgetting. To further cope with
spike non-differentiability in gradient estimation, we employ zeroth-order opti-
mization. Moreover, during incremental learning sessions, we enhance the dis-
criminability of new classes through subspace projection, which alleviates over-
fitting to novel classes. Extensive experiments conducted on two standard bench-
mark datasets (CIFAR100 and Mini-ImageNet) and three neuromorphic datasets
(CIFAR-10-DVS, DVS128gesture, and N-Caltech101) demonstrate that SAFA-
SNN outperforms baseline methods, specifically achieving at least 4.01% im-
provement at the last incremental session on Mini-ImageNet and 20% lower en-
ergy cost over baseline methods with practical implementation.1

1 INTRODUCTION

In many real-world scenarios, mobile users are exposed to dynamic contexts, and data collection of-
ten spans years, making it challenging to acquire sufficient data for continual batch learning (Wang
et al., 2022b). For example, in intelligent surveillance systems, the monitoring framework is typ-
ically trained on a predefined set of behavioral categories, yet novel anomalous behaviors may
emerge over time. To ensure the system to learn newly emerging classes with scarce samples from
a sequence of tasks, on-device Few-Shot Class-Incremental Learning (FSCIL) is introduced. Spik-
ing Neural Networks (SNNs), different from traditional Artificial Neural Networks (ANNs), have
recently achieved competitive results in computer vision tasks. SNNs offer natural energy-saving
characteristics through event-driven computation (Maass, 1997; Yao et al., 2023; Zhang et al., 2024;
Fan et al., 2024), significantly reducing unnecessary cost (Lv et al., 2024), which make them attrac-
tive for edge devices, where memory and power budgets are stringent (Yu et al., 2024b).

However, FSCIL faces two significant challenges, i.e., catastrophic forgetting and overfitting (Chen
et al., 2019; Snell et al., 2017). Catastrophic forgetting reflects the model’s difficulty adapting to
new tasks while preserving knowledge from previously learned classes, necessitating a delicate bal-

1Example codes can be found in the supplementary material.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

෍

𝒕,𝒋

𝟒

Edge Device

Few-shot Data CollectionAbundant Base Data Training Few-shot Class Incremental Learning

Span Years

…
Model AlgorithmData

SNN Neuron

U

෍

𝒋

𝟒

𝑠𝑖1

𝑠𝑖2

𝑠𝑖𝑗

𝑼𝒕𝒉 𝑠0 y

t

𝑥𝑖1

𝑥𝑖2

𝑥𝑖𝑗

𝑥0

x

ANN Neuron

B
in

a
ry

 S
p

ik
e

V
a

lu
es

 𝑺

Sparse single-bit matrixes

accumulation reduce On-

device Memory.

Dense floating-point

multiplication brings

Intractable On-device Memory.

M
u

lt
i-

b
it

 V
a

lu
es

 𝑿

subtraction

reset to zero

Input spikes

Figure 1: Top: the on-Device FSCIL scenario includes three stages: base data training, few-shot
data collection and learning. Bottom: the comparison of SNN and ANN neuron on devices.

ance between plasticity and stability. Overfitting occurs when the model memorizes limited training
samples, leading to a loss of generalization. On the one hand, recent advanced solutions tackle these
challenges by parameter-efficient fine-tuning (PEFT) (Liu et al., 2024a), which involves fine-tuning
parameters on top of a frozen pre-trained model. Nonetheless, these approaches are ineffective
for on-device settings due to limited memory capacity (i.e., 4–12 GB) (Ma et al., 2023). On the
other hand, concurrent on-device SNNs concentrate on integrating SNN algorithms with specialized
neuromorphic hardware, which shifts the consideration of the above problems to the later model.
However, most existing neuromorphic systems are still trained offline and remain static during de-
velopment (Safa, 2024), presenting a dependency on abundant labeled classes.

Besides, on-device FSCIL scenarios present practical challenges, including long-term data collec-
tion spanning years, extremely scarce labeled samples, and the persistent need for model updates.
Edge devices cannot accumulate comprehensive data on all classes due to the limited storage ca-
pacity, and must simultaneously perform low power inference while continuously learning from
real-time data streams (Liu et al., 2024a; Wang et al., 2024). We provide the process of on-device
FSCIL scenario and SNN-ANN neurons comparison in Figure 1.

To tackle the above challenges, we propose a Sparsity-Aware, Fast-Adaptive SNN (SAFA-SNN)
with neuronal dynamics for general on-device FSCIL. First, we align spike outputs via dynamic
thresholds in incremental sessions to alleviate catastrophic forgetting. Specifically, we maintain
most neurons stable and keep others active in incremental learning. Then, considering the non-
differentiable gradient in SNNs, we adopt zeroth-order optimization in backpropagation. Finally,
prototypes are updated via subspace projection, which calibrates biased predictions to boost incre-
mental learning. In addition, we conduct practical implementation and extensive experiments on
five datasets, demonstrating the performance of SAFA-SNN.

The main contributions of this paper are as follows:

• We emphasize practical challenges of on-device FSCIL, where both training and inference
are performed on resource-constrained devices using energy-efficient, hardware-friendly
SNNs, contrasting with ANN-based FSCIL that depends on large-scale server models.

• We propose a sparsity-aware FSCIL method, called SAFA-SNN, with three key features.
First, incorporating spikes for prediction, we propose the Sparsity-Aware Dynamic SNN.
Then, to prevent the non-differentiable spikes in back propagation, we adopt zeroth-order
optimization within neuronal dynamics. Finally, we enhance the discriminability of proto-
types by subspace projection in incremental inference. To the best of our knowledge, this
is the first SNN-based solution towards general on-device FSCIL.

• To prove the effectiveness of our proposed SAFA-SNN for on-device FSCIL, we implement
SAFA-SNN on realistic devices (i.e., Jetson Orin AGX), and evaluate on five datasets (CI-
FAR100, MiniImageNet, CIFAR-10-DVS, DVS128gesture, and N-Caltech101), and var-
ious models (Spiking VGG, Spiking Resnet, and Spikingformer), demonstrating SAFA-
SNN achieves excellent performance and notable sparsity advantages. We further compare
the actual on-device energy consumption, demonstrating our efficiency advantage.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 FEW-SHOT CLASS-INCREMENTAL LEARNING

To the best of our knowledge, existing methods for few-shot class-incremental learning (FSCIL) are
mostly ANN-based, with little exploration in SNNs. The primary work (Tao et al., 2020) preserves
feature topology using a neural gas network. Researchers (Zhang et al., 2021) model prototypes
as nodes in graph attention network to propagate context information. Existing methods (Zhou
et al., 2022; Wang et al., 2023) commonly adopt prototypes to replace traditional MLPs and refine
them (Song et al., 2023). Some studies (Shi et al., 2021; Liu et al., 2023) tackle class imbalance
by exploring optimal base class distributions. Recent advances (Park et al., 2024; Sun et al., 2024;
Wang et al., 2024) train a few parameters (prompts) from the frozen pre-trained model, achieving
high accuracy. However, memory overhead limits their use for resource-constrained devices. Prior
work focuses on a specific processor (Huo et al., 2025), while we explore FSCIL on general devices.

2.2 SPIKING NEURAL NETWORKS WITH DYNAMIC THRESHOLD

In the realm of SNNs, the dynamic threshold mechanism aims to manipulate the threshold spon-
taneously. BDETT computes thresholds via average membrane potentials for neuronal homeosta-
sis (Ding et al., 2022), but excessive spiking remains. Highly active neurons skew the average,
causing aggressive firing and reduced sparsity. LTMD learns initial membrane potentials for heuris-
tic neuron thresholding (Wang et al., 2022a), but neuron behaviors across layers remain interde-
pendent in spatial and temporal processing. Soft threshold schemes enable adaptive layer-wise
sparsity (Chen et al., 2023), but independent pruning causes error accumulation, affecting overall
model performance. Efforts with combinations of adaptive threshold methods have led to innovative
approaches (Wei et al., 2023; Hao et al., 2024). Our paper further tackles FSCIL challenges via
sparsity-aware dynamic thresholds that shift networks to task-specific local contexts.

2.3 ON-DEVICE SNN TRAINING AND INFERENCE

Previous studies on on-device SNNs can be classified into two categories: inference, and train-
ing with updating. The lightweight SNN is a crucial application for resource-constrained edge de-
vices (Yu et al., 2024b). For instance, Lite-SNN (Liu et al., 2024b) proposes a spatial-temporal
compression strategy to enable low memory and computational cost. Most researchers focus on
efficient quantization for SNN-training like SNN pruning (Wei et al., 2025; Qiu et al., 2025; Yu
et al., 2025) to enhance SNN deployment. Current SNN training and updating focus on gradient
update (Anumasa et al., 2024) or local SNN training optimization (Mukhoty et al., 2023; Yu et al.,
2024a) to enable low-latency SNN training on devices. In this work, we explore both SNN-batch
training on abundant base classes and inference in FSCIL phases, which typically occur in the over-
changing on-device environments, achieving high performance and low energy consumption.

3 PRELIMINARIES

3.1 SPIKING NEURAL NETWORK

We use the leaky integrate-and-fire (LIF) neuron model, a simplified but common approach to neu-
romorphic computing that mimics biological neurons through charging, leakage, and firing. The
process of state updating in LIF neurons follows certain principles:

U ′
t = γIt + Ut−1, It = f(x; θ) (1)

St = H(U ′
t − Uth) (2)

Ut = StUreset + (1− St)U
′
t (3)

where H = 1Ut′>Uth
, γ is the time constant, It is the spatial input calculated by applying function

f with x as input and θ as learnable parameters, and U ′
t is a temporary voltage at time step t, whose

value instantly changes. At time step t, if the membrane U ′
t rises and reaches the threshold Uth,

a spike denoted by St is generated as 1, and U ′
t will be reset to Ureset; otherwise, St remains 0.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Afterwards, U ′
t changes to Ut. SNNs present challenges in terms of the non-differentiable Equation

(2). The backpropagation of directly training SNNs can be described as

∂L

∂W
=

T∑
t=1

∂L

∂St

∂St

∂Ut

∂Ut

∂It

∂It
∂W

, (4)

where L denotes the loss, W is the weight of input, and ∂St

∂Ut
represents the non-differentiable gra-

dient in Equation 2, which is typically replaced by surrogate functions (Wu et al., 2018). However,
surrogate functions introduce gradient errors. To address this issue, we employ zeroth-order opti-
mization in backpropagation, inspired by prior work (Mukhoty et al., 2023).

3.2 CLASS PROTOTYPE

Class prototypes are widely used in few-shot learning based on the observation (Snell et al., 2017).
In FSCIL, researchers use prototypes as dynamic classifiers (Zhao et al., 2021; Zhang et al., 2021).
In detail, they decouple the FSCIL model into a feature encoder ϕθ(·) with parameters θ and a linear
classifier W , and freeze ϕθ(·) during incremental sessions, with only the classifier being updated.
For each new class i, the weight Wi in the classifier is parameterized by the mean embeddings of
each class, i.e., the prototype Pi, which can be denoted as Pi =

1
K

∑|Ds|
j=1 I{yj=i}ϕ(xj), where K

denotes the number of samples in the class Ci.

4 ON-DEVICE FSCIL PROBLEM

On-device FSCIL problem depicts data with scarce samples always coming, device models need to
maintain performance on all seen classes while maintaining lower latency and security, enhanced
data privacy, and reliable performance under resource-limited scenarios. The encountered data are
always scarce, for example, users take photos at an average of 4.9 every day (Gong et al., 2024).

Assuming FSCIL tasks contain a base session and a sequence of S incremental sessions, the train-
ing data available for each session can be denoted as {Dtrain

0 , Dtrain
1 , ..., Dtrain

S }. Dtrain
s =

{(xt
i, y

t
i)}

|Dtrain
s |

i=0 , where xs
i ∈ Xs is the training instance and ysi ∈ Ys is its corresponding la-

bel in session s. Each session s is disjoint with another session s′, i.e., Dtrain
s ∩Dtrain

s′ = ∅. The
training data in session 0 have abundant instances while the incremental session has much smaller
instances, i.e., |Dtrain

0 | >> |Dtrain
s>0 |. Each incremental session has training sets in the form of

N-way K-shot, i.e, there are N classes and each class has K samples. In session s, the model’s per-
formance is assessed on validation sets from all encountered datasets (≤ s) to minimize the expected
risk R(f, s) over all seen classes:

E(xi,yi)∼Dtrain
0 ∪···∪Dtrain

s

[
L
(
f(xi;Dtrain

s , θs−1), yi
)]

(5)

where the algorithm f constructs a new model using current training data Dtrain
s and parameters

θs−1 to minimize the loss L. The general goal is to continually minimize the risk of each new
session, i.e.,

∑S
s=0 R(f, s). Note that in this paper, “session” and “task” are used interchangeably.

In many real-world scenarios, when FSCIL applications are deployed on resource-limited edge de-
vices, the learning efficiency w.r.t. both few-shot inference speed and memory footprint becomes a
crucial metric. Being able to quickly adapt deep prediction models in low computational cost at the
edge is necessary to better suit the needs of personal mobile users. However, these aspects are rarely
explored in prior FSCIL research, which motivates us to solve these on-device FSCIL challenges
beyond catastrophic forgetting and overfitting.

5 METHODOLOGY

5.1 MOTIVATION

Conventional FSCIL methods tackle catastrophic forgetting by freezing most parameters to preserve
learned knowledge, keeping only a few parameters trainable in incremental sessions (Zhou et al.,
2022; Zhao et al., 2023). Inspired by this, we propose neuronal dynamics that balance plasticity

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

𝜕𝐿

𝜕𝐼𝑡

(c) Prototype Subspace Projection

Stable Neurons Active Neurons

P

𝜕𝐿

𝜕𝑆𝑡

𝜕𝐿

𝜕𝑊

P Subspace Projection Orthogonalization

(b) Zeroth-Order Optimization

mask

C
O

N
V

B
N

Base

P
O

O
L

B
a

se C
la

ss

𝓛
N

ew
 C

la
ss

(a) Sparsity-Aware Neuron Dynamics

C
O

N
V

B
N

New

P
O

O
L

𝑈𝑡−1𝐼𝑡−1 𝑆𝑡−1

𝑈𝑡𝐼𝑡 𝑆𝑡 𝓛
𝑊

𝑈𝑡𝐼𝑡 𝑆𝑡𝑊
50%

50%

25%

12.5%

logits

B
a

se F
C

𝑮

N
ew

 F
C

logits

𝓛

ො𝒛 Sampled Points

𝜕𝐿

𝜕𝐼𝑡−1

𝜕𝐿

𝜕𝑆𝑡−1

𝜕𝐿

𝜕𝑊

𝑈𝑡−1𝐼𝑡−1 𝑆𝑡−1𝑊 𝓛

𝑷
𝑩𝑷
𝑩

𝒇𝟐(𝒖𝒕−𝟏; ො𝒛)

𝒇𝟐(𝒖𝒕; ො𝒛)

𝑷
𝑵

𝑷
𝑵

Figure 2: SAFA-SNN framework include three main components: (a) Training abundant data and
selecting active and stable neurons by masks. (b) Top: forward propagation through FSCIL process;
Bottom: backpropagation using zeroth-order optimization only in the base class training. (c) Freez-
ing backbones and updating the prototypes by subspace projection in the incremental inference.

and stability by dividing neurons into active neurons and stable types. Active neurons facilitate
knowledge updating while stable neurons align with base-class representations to preserve learned
knowledge. Despite ongoing efforts, overfitting remains a challenge. Subspace projection, using
class-specific matrices, offers robustness in few-shot learning (Simon et al., 2020). Inspired by this,
we propose subspace projection to calibrate biased prototypes in incremental inference.

Algorithm 1 Overall SAFA-SNN Algorithm
Input: Dataset D0, Ds>0, membrane U, feature extractor ϕ
Parameter: η, T, S,M,Θ
Output: Spike trains St, parameters θ

1: Random Initialize membrane U
2: Initialize mask M by randomly setting η% adaptive neurons 1 and setting others 0 in each

channel
3: Initialize threshold Θ with zeros
4: for t = 1 to time step T do
5: Ut = τUt−1 +Xt

6: St = I(Ut ≥ Θ)
7: Ut = Ut(1− St)
8: end for
9: Update Θ by Eq. (7)

10: Sample point zi ∼ N (0, 1), i = 1, 2, ..., S
11: if |x| < δ|zi| then
12: Estimate the gradient ĝi = mi · |zi|
13: end if
14: Estimate ∂L

∂x by all selected points ∂L
∂y (

1
2δSΣ

S
i=1ĝi)

15: Conduct base session optimization L and update ϕ(θ) by Loss in Eq. (13)
16: Compute the projection subspace by Eq. (14)
17: Conduct incremental inference with P̃ in Eq. (15)

5.2 OVERVIEW OF SAFA-SNN

SAFA-SNN for on-device FSCIL comprises three parts: a sparsity-aware dynamic mechanism to
mitigate forgetting, the formulation of zeroth-order optimization for non-differentiable spikes, and a
fast-adaptive prototype subspace projection for fast adaptation. Figure 2 illustrates the overview of
SAFA-SNN in FSCIL, and the full FSCIL procedure is detailed in Algorithm 1.

5.3 SPARSITY-AWARE NEURONAL DYNAMICS

Complex neuronal dynamics force a trade-off between biological realism and computational com-
plexity in simulations. To address catastrophic forgetting while maintaining the model’s discrim-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

inability, most neurons remain stable by aligning with spike firing to preserve stability, while oth-
ers adapt to incremental learning. Define the firing rate of neuron i with spike output S(i)

t as
r̄i = 1

T Σ
T
t=0S

(i)
t , which can also be denoted as sparsity. However, the formulation may limit

the expressiveness of latent dynamics for real-world applications. We introduce a channel-wise
mask M = {mc}, c = 1, 2, ..., C, where C is the number of channels and mc = 1c≤⌊ηC⌋, where
η ∈ (0, 1) is the adaptive ratio controlling active neurons to enable new class learning. Other neurons
align their firing with old neurons to reduce spiking bias in new tasks.

A = β(I−M) + γM (6)
where β and γ are hyper-parameters. Finally, the updated threshold can be described as

Θt+1 = Θt −A (r̄n − r̄b) (7)
where r̄n and r̄b denote firing rates of neurons in incremental and base tasks, respectively.

5.4 ZEROTH-ORDER OPTIMIZATION

Multi-point estimate. Zeroth-order optimization is beneficial to computation-difficult or infeasible
gradient problems, since it can approximate the full gradients or stochastic gradients through func-
tion value (Liu et al., 2020). We start by presenting the gradient estimate of f(x) with two-point
directional derivative as

∇̂f(x) :=
ϕ(d)

µ
Σb

i=1[f(x+ δui)− f(x− δui)] (8)

where b is the number of i.i.d. samples {ui}bi=0, and d is a dimension-dependent factor. Let g(u)
denotes the central finite difference approximation ∂St

∂Ut
with membrane potential u = ut − uth.

Then, for u ∈ Rn,

g2(u; δ, z) =
H(u+ δz)−H(u− δz)

2δ
z =

{
0, |u| > δ |z|
|z|
2δ , |u| < δ |z|

(9)

where z obeys a specific distribution P over b empirical samples {zi}bi=0 and H is the heaviside
function defined in Section 3.1. Assessing whether perturbations u+ zδ and u− zδ induce a spike
in the neuron allows for an approximation of the gradient. Through random permutation, g2(u)
accommodates the influence of all neighbors, for a balanced depiction of local dynamics. The
approximation to ∇̂g(x) at a given input u can be computed as

∂St

∂ut
:=

1

b

b∑
i=1

g2(u; δ, zi), (10)

Gradients are typically approximated by averaging multiple perturbed samples, where each pertur-
bation produces a local gradient, resulting in a more reliable estimate (See Appendix A.1).

Convergence analysis of ZOO. We start with some conventional assumptions for convergence anal-
ysis in zeroth-order optimization literature (See Appendix A.2). The non-differentiability of Equa-
tion 2 renders the entire optimization problem non-convex. The convergence is evaluated using the
first-order stationary condition via the squared gradient norm (Proof in Appendix A.3):

1

T

T∑
t=1

E
[
∥g(u)∥22

]
= O(δ2 +

1

b
) (11)

where T is the iteration. The convergence upper bound is

E[g(uT)− g(u∗) ≤ O(
1√
T
)] (12)

Loss function. Globally, the total loss function, incorporating both the temporal error term (TET)
(Deng et al., 2022) and the MSE loss, given by

L = (1− λ)
1

T

T∑
t=1

LCE(ut,y) + λLMSE(ut,y) (13)

where T denotes the number of time steps, and λ is a hyperparameter that governs the relative
contribution of the temporal prediction error term and LMSE.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison with SOTA methods on MiniImageNet dataset for On-Device FSCIL.

Method
Acc. in each session (%) ↑

Avg.↑ ∆last

0 1 2 3 4 5 6 7 8

CEC (SNN) 54.33±2.14 49.81±1.98 46.82±1.82 44.28±1.69 42.28±1.63 40.31±1.40 38.26±1.36 36.75±1.33 35.78±1.29 43.18±1.63 +12.92

FACT (SNN) 63.03±0.91 52.51±1.52 49.25±1.28 46.59±1.13 44.32±1.19 42.35±1.24 40.16±1.17 38.47±1.08 37.44±1.17 46.01±1.18 +11.26

S3C (SNN) 31.55±0.51 16.52±0.97 17.89±0.84 31.17±0.97 24.69±0.82 29.02±0.86 15.35±0.62 27.30±0.22 26.56±0.04 24.45±0.19 +22.14

BIDIST (SNN) 43.72±0.32 40.66±0.45 37.81±0.69 35.51±0.79 33.58±0.61 31.72±0.57 30.12±0.64 28.95±0.70 27.85±0.49 34.44±0.58 +20.85

SAVC (SNN) 41.75±0.41 38.54±0.30 35.79±0.21 33.40±0.13 31.31±0.06 29.47±1.00 27.83±0.94 26.37±0.89 25.05±0.85 32.17±1.08 +23.65

TEEN (SNN) 62.87±1.69 52.75±1.15 49.64±1.01 46.91±0.85 44.82±0.85 42.81±0.78 40.59±0.77 39.18±0.85 38.01±0.84 46.40±0.96 +10.69

WARP (SNN) 50.07±4.16 31.67±3.72 29.93±3.50 28.07±3.41 25.49±4.23 24.28±4.32 22.84±4.34 22.13±4.16 21.30±3.96 27.47±3.71 +27.40

CLOSER (SNN) 65.88±0.09 61.39±0.08 57.72±0.03 54.74±0.10 52.34±0.07 49.98±0.21 47.69±0.18 45.94±0.14 44.69±0.07 53.38±0.09 +4.01

ALADE (FSCIL) 57.91±0.45 47.04±0.62 44.07±0.55 41.75±0.45 39.72±0.50 37.92±0.47 36.04±0.48 34.57±0.45 33.73±0.49 41.42±0.47 +14.97

SAFA-SNN 74.66±0.62 68.93±0.46 64.62±0.57 61.29±0.88 58.30±0.95 55.38±0.78 52.60±0.62 50.58±0.60 48.70±0.67 59.45±0.67

5.5 FAST ADAPTIVE PROTOTYPE SUBSPACE PROJECTION

Class prototypes averaging extracted features often causes discrepancies with actual data distribu-
tions (See Appendix A.4). As denoted in Section 3.2, we further define two specific prototypes

that belong to CB base classes and CN new classes as B̃ =
[

Pb
1

∥Pb
1∥2

,
Pb

2

∥Pb
2∥2

, . . . ,
Pb

B

∥Pb
B∥2

]⊤
∈ RB×D

and C̃ =
[

Pn
1

∥Pn
1 ∥2

,
Pn

2

∥Pn
2 ∥2

, . . . ,
Pn

n

∥Pn
N∥2

]⊤
∈ RN×D, respectively, where D is the feature dimen-

sion, B = |CB |, and N = |CN |. To obtain information on the subspace structure spanned by the
base classes, we construct a new prototype representation G to represent a generalized inverse of a
covariance-like matrix in projection calculation, given by

G = B̃(B̃⊤B̃)−1B̃⊤ (14)

Note that the normalization term B̃⊤B̃ is required because the bases {Pb
i} are not orthogonal to

each other. Hence, we construct |CB | distinct orthogonal subspaces represented by G for base
classes. As classes increase, diverse class information allows extending classifiers with prototypes.
The projection vectors P̃proj are updated by mapping the coordinates in the base subspace back to
the original D-dimensional space, denoted as P̃proj = C̃G. Finally, we integrate base and new
knowledge by reconstructing the new information within the base subspace by

P̃ = (1− α)C̃+ αP̃proj (15)

where α ∈ (0, 1) is a trade-off weight factor for C̃ and P̃proj. The current classifier weights are
updated by P̃ to enable new class prediction (See Appendix A.5 for analysis).

6 EXPERIMENTS

6.1 EXPERIMENTS SETUP

1 2 3 4 5 6 7 8 9
Sessions

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (
%

)

(a) CIFAR100

CEC
FACT
TEEN
SAFA-SNN

WARP
S3C
CLOSER

ALADE
SAVC
ASP

1 2 3 4 5 6 7 8 9
Sessions

20

30

40

50

60

70

Ac
cu

ra
cy

 (
%

)

(b) MiniImageNet

CEC
FACT
TEEN
SAFA-SNN

WARP
S3C
CLOSER

ALADE
SAVC
BIDIST

Figure 3: Accuracy in each session.

Datasets and Spiking architecture. We eval-
uate the generalization performance of SAFA-
SNN on two standard benchmark datasets, i.e.,
CIFAR100 (Krizhevsky et al., 2009) and Mini-
ImageNet (Russakovsky et al., 2015), each split
into eight 5-way 5-shot incremental tasks. We
also extend experiments on three neuromor-
phic datasets: CIFAR-10-DVS (Li et al., 2017),
DVS128gesture (Amir et al., 2017), and N-
Caltech101 (Orchard et al., 2015). CIFAR-
10-DVS is split into four 1-way 1-shot tasks,
DVS128gesture into five 1-way 1-shot tasks, and N-Caltech101 into eight 5-way 5-shot incremen-
tal tasks. We adopt Spiking VGG variants (5, 9, 11), Spiking Resnet variants (18, 19, 20), and
Spikingformer. Details can be found in Appendix A.6.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Realistic Implementation. All experiments are conducted on a mobile platform NVIDIA Jetson
AGX Orin (NVIDIA, 2025), which features a 12-core Arm Cortex-A78AE processor, supporting
64-bit Armv8.2 architecture, with 60W peak power and idle power below 15W.

Training Details. Our implementation uses PyTorch with Adam optimizer. Models are trained
for 300 epochs on CIFAR-100 and MiniImageNet, and for 100 epochs on CIFAR-10-DVS,
DVS128Gesture, and N-Caltech101, all with a batch size of 128. The learning rate, β, θ, S, and
δ are set to 0.001, 1.2, 0.001, 5, and 0.5, respectively. Each experiment is repeated three times with
different seeds.

6.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Table 2: Comparative results on neuromorphic
datasets.

Dataset Method Avg.(%) Lst.(%)

CIFAR-10-DVS
WARP 30.92±0.70 12.75±0.14
TEEN 40.57±1.02 34.60±0.79

SAFA-SNN 47.56±0.94 36.96±0.38

DVS128gesture
WARP 35.41±1.76 13.02±1.25
TEEN 83.13±0.80 74.31±1.42

SAFA-SNN 86.74±0.69 77.91±0.63

N-Caltech101
WARP 25.34±1.63 14.40±2.07
TEEN 34.23±0.18 27.86±0.49

SAFA-SNN 45.68±0.63 39.69±0.67

Baselines. We select nine FSCIL methods in
their SNN version, i.e., CEC (Zhang et al.,
2021), FACT (Zhou et al., 2022), S3C (Kalla
& Biswas, 2022), BIDIST (Zhao et al., 2023),
SAVC (Song et al., 2023), TEEN (Wang et al.,
2023), WARP (Kim et al., 2023), CLOSER (Oh
et al., 2024) and FSCIL-ASP (Liu et al., 2024a),
as baselines. We adopt an SNN-based CIL
method, ALADE-SNN (Ni et al., 2025), and
two SNN training methods (Kim et al., 2022;
Meng et al., 2023) to evaluate FSCIL perfor-
mance. See Appendix A.7 for details.

Accuracy. We test the Top-1 accuracy on all seen tasks 0, 1, ...s after the session s. ∆last means
our relative improvement in the last session. Harmonic Accuracy (HAcc) measures the balance
between base and novel class performance after each session s, i.e., Ah = 2×Ab×An

Ab+An
, where Ab

denotes test accuracy in base session, and An the average accuracy over sessions s > 0. As reported
in Table 1, SAFA-SNN surpasses the second-best approach by 4.01% for improvement in the final
session and boosts the average performance by 6.07% on Mini-ImageNet. The performance curves
presented in Figure 3 show that SAFA-SNN achieves state-of-the-art performance across CIFAR100
and MiniImagenet, respectively. Table 2 shows accuracy on average (Avg.) and the last session (Lst.)
compared with WARP and TEEN on three neuromorphic datasets, verifying its generalization and
robustness performance. We find baseline WARP has the worst performance, indicating that the
ability of space compaction to obtain effective parameter presentation is totally limited, far inferior
to our spiking alignment and prototype adaptation. Table 3 shows that our method achieves accuracy
of 31.06%, outperforming SNN training methods. This confirms the effectiveness and potential of
our method on the SNN deployment. Additional results are provided in Appendix A.8.

Table 3: Comparative results with SNN-based training methods for on-device FSCIL.

Method Dataset Time step Backbone Param Size (M) HAcc.(%) Lst.(%) Avg.(%)

Early Bird
(Kim et al., 2022)

CIFAR100 4 Spiking VGG5 221.35 24.20±0.54 41.21±0.66 50.87±0.60
CIFAR100 5 Spiking VGG9 106.87 22.25±0.85 39.92±1.07 49.30±1.49

SLTT
(Meng et al., 2023)

CIFAR100 6 Spiking VGG5 32.85 25.17±1.05 41.63±0.27 51.12±0.28
Mini-Imagenet 4 Spiking VGG9 106.87 18.93±0.31 32.58±0.77 40.45±0.64
CIFAR-10-DVS 4 Spiking VGG9 262.87 10.87±0.62 26.60±1.27 34.46±0.85

SAFA-SNN CIFAR100 4 Spiking VGG5 32.86 27.32±0.91 46.47±0.53 56.72±0.25
Mini-Imagenet 4 Spiking VGG9 22.63 24.67±0.55 49.25±0.24 60.98±0.62
CIFAR-10-DVS 4 Spiking VGG9 262.63 14.47±0.86 35.65±0.48 41.67±0.34

Spiking VGG9
6000

8000

10000

12000

14000

16000

En
er

gy
 C

on
su

m
pt

io
n

(J
)

13945 14391 14948 14447

12842
13942

12621

Spiking Resnet20

15752 15754 15851 15752 15754 15752

12624

CEC FACT SAVC WARP TEEN CLOSER SAFA-SNN

Figure 4: Training Energy Cost.

CE
C

FA
CT S3

C
SA

VC
WARP

TE
EN

CL
OSE

R

SA
FA

-S
NN

0

20

40

60

80

100

120

140

Tr
ai

ni
ng

 T
im

e
(s

)

(a) Spiking VGG5

CE
C

FA
CT S3

C
SA

VC
WARP

TE
EN

CL
OSE

R

SA
FA

-S
NN

(b) Spiking VGG9

CE
C

FA
CT S3

C
SA

VC
WARP

TE
EN

CL
OSE

R

SA
FA

-S
NN

(c) Spiking VGG11
CEC FACT S3C SAVC WARP TEEN CLOSER SAFA-SNN

Figure 5: Average Training Time.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Energy consumption. Following (Yao et al., 2023), we present the theoretical inference energy of
different ANNs and SNNs (See Appendix for A.9 for formulations and results). The measurement
of Training Energy Consumption uses the built-in sensor values (e.g., GPU, I/O) between the RAM
and storage on the Jetson Orin AGX device (NVIDIA, 2025), which is gauged by multiplying power
(W) by time. We put the training energy consumption in Figure 4. It can be seen that SAFA-SNN
exhibits notably lower energy consumption than baselines.

The Run-Time Cost. Figure 5 compares the run-time cost of SAFA-SNN and baselines with Spik-
ing VGG variant. Our neuronal dynamics, combined with ZOO and prototype subspace projection,
reduce unnecessary training time without modifying synaptic weights or adjusting parameter spaces,
achieving lower runtime and outperforming other baselines in both efficiency and effectiveness.

6.3 ABLATION STUDY

Ablation on SAFA-SNN. We conduct an ablation study to analyze the importance of each compo-
nent in SAFA-SNN: Sparsity-Aware neuronal dynamics (SA), Zeroth-Order Optimization (ZOO),
and subspace projection of prototypes (SP). We report incremental performance curves on CI-
FAR100 and MiniImageNet with time step 4 and Spiking VGG-9, as shown in Figure 6. We can infer
that SA has the worst performance, since it does not consider possible adjustments in feature space,
and we view it as the baseline. When equipped with SP, it shows significant performance gains
as the model adapts to extract more informative features from base prototypes. We then use ZOO
for gradient estimation, as shown in the highest curve, which corresponds to our full SAFA-SNN.
Ablations verify that every component in SAFA-SNN boosts FSCIL performance.

0 1 2 3 4 5 6 7 8

(a) CIFAR100

30

40

50

60

70

80

Ac
cu

ra
cy

 (
%

)

SA
ZOO
SP
SA+ZOO
SA+SP
ZOO+SP
SAFA-SNN

0 1 2 3 4 5 6 7 8

(b) Mini-Imagenet

30

40

50

60

70

80

Figure 6: Ablation results of SAFA-SNN.

0 1 2 3 4 5
Sessions

50

60

70

80

90

Ac
cu

ra
cy

 (
%

)

(a) DVS128-Gesture

1­Shot
2­Shot
5­Shot

10­Shot
20­Shot
50­Shot

0 1 2 3 4
Sessions

25

30

35

40

45

50

55

(b) CIFAR10-DVS

Figure 7: All-session accuracy of variant shots

Effects on different N-way-K-shots. We assess shot count impact on accuracy by varying
1,2,5,10,15,20,50 on DVS128gesture and CIFAR-10-DVS in Figure 7 (Analysis in Appendix A.10).

Hyper-parameters Analysis. Results on the effects of key parameters (i.e., β, γ, S, δ, η and λ) and
time step T , are provided in the Appendix A.11 and A.12, respectively.

Sparsity-Accuracy trade-off Analysis. The sparsity remain up to 80% even when setting T =
2, 3, 4 on different datasets through the training process, indicating a balance in spiking sparsity and
accuracy, showing potential computation efficiency (Results in Appendix A.13).

7 DISCUSSION

A possible limitation is the performance degradation in deep networks, such as Spiking ResNet-34,
which suggests that additional training epochs are required to maintain performance. In addition, as-
suming a fixed number of classes per session oversimplifies the dynamics of real-world data streams.
Future work will address imbalanced way-shot settings to better reflect practical on-device FSCIL.

8 CONCLUSION

This paper focuses on few-shot class-incremental learning with SNN on-device scenarios. We pro-
posed SAFA-SNN by incorporating sparsity-aware dynamics to preserve learned classes, zeroth-
order optimization for non-differential spike, and subspace projection for incremental learning. Ex-
tensive experiments on benchmark and neuromorphic datasets indicate that SAFA-SNN outperforms
existing FSCIL methods in both performance and energy efficiency on realistic implementation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo,
Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low
power, fully event-based gesture recognition system. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 7243–7252, 2017.

Srinivas Anumasa, Bhaskar Mukhoty, Velibor Bojkovic, Giulia De Masi, Huan Xiong, and Bin Gu.
Enhancing training of spiking neural network with stochastic latency. In AAAI, 2024.

Albert S Berahas, Liyuan Cao, Krzysztof Choromanski, and Katya Scheinberg. A theoretical and
empirical comparison of gradient approximations in derivative-free optimization. Foundations of
Computational Mathematics, 22(2):507–560, 2022.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer
look at few-shot classification. In International Conference on Learning Representations, 2019.

Yanqi Chen, Zhengyu Ma, Wei Fang, Xiawu Zheng, Zhaofei Yu, and Yonghong Tian. A unified
framework for soft threshold pruning. arXiv e-prints, pp. arXiv–2302, 2023.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. In International Conference on Learning Representa-
tions, 2022.

Jianchuan Ding, Bo Dong, Felix Heide, Yufei Ding, Yunduo Zhou, Baocai Yin, and Xin Yang.
Biologically inspired dynamic thresholds for spiking neural networks. Advances in neural infor-
mation processing systems, 35:6090–6103, 2022.

Yimeng Fan, Wei Zhang, Changsong Liu, Mingyang Li, and Wenrui Lu. Sfod: Spiking fusion
object detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 17191–17200, 2024.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. Computer Vision
and Pattern Recognition Workshop, 2004.

Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press, 2014.

Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation meth-
ods for nonconvex stochastic composite optimization. Mathematical Programming, 155(1):267–
305, 2016.

Chen Gong, Zhenzhe Zheng, Fan Wu, Xiaofeng Jia, and Guihai Chen. Delta: A cloud-assisted
data enrichment framework for on-device continual learning. In Proceedings of the 30th Annual
International Conference on Mobile Computing and Networking, pp. 1408–1423, 2024.

Zecheng Hao, Xinyu Shi, Yujia Liu, Zhaofei Yu, and Tiejun Huang. Lm-ht snn: Enhancing the
performance of snn to ann counterpart through learnable multi-hierarchical threshold model. Ad-
vances in Neural Information Processing Systems, 37:101905–101927, 2024.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Opti-
mization, 2(3-4):157–325, 2016.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
international solid-state circuits conference digest of technical papers (ISSCC), pp. 10–14. IEEE,
2014.

Dexuan Huo, Jilin Zhang, Xinyu Dai, Jian Zhang, Chunqi Qian, Kea-Tiong Tang, and Hong Chen.
Anp-g: A 28-nm 1.04-pj/sop sub-mm 2 asynchronous hybrid neural network olfactory processor
enabling few-shot class-incremental on-chip learning. IEEE Journal of Solid-State Circuits, 2025.

Sashank J Reddi, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. Proximal stochastic methods
for nonsmooth nonconvex finite-sum optimization. Advances in neural information processing
systems, 29, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jayateja Kalla and Soma Biswas. S3c: Self-supervised stochastic classifiers for few-shot class-
incremental learning. In European Conference on Computer Vision, pp. 432–448. Springer, 2022.

Do-Yeon Kim, Dong-Jun Han, Jun Seo, and Jaekyun Moon. Warping the space: Weight space
rotation for class-incremental few-shot learning. In The Eleventh International Conference on
Learning Representations, 2023.

Youngeun Kim, Yuhang Li, Hyoungseob Park, Yeshwanth Venkatesha, Ruokai Yin, and
Priyadarshini Panda. Exploring lottery ticket hypothesis in spiking neural networks. In Euro-
pean Conference on Computer Vision, pp. 102–120. Springer, 2022.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. d, 2009.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
dataset for object classification. Frontiers in neuroscience, 11:309, 2017.

Xiao Li, Chenghua Lin, Ruizhe Li, Chaozheng Wang, and Frank Guerin. Latent space factorisa-
tion and manipulation via matrix subspace projection. In International conference on machine
learning, pp. 5916–5926. PMLR, 2020.

Binghao Liu, Boyu Yang, Lingxi Xie, Ren Wang, Qi Tian, and Qixiang Ye. Learnable distribution
calibration for few-shot class-incremental learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(10):12699–12706, 2023.

Chenxi Liu, Zhenyi Wang, Tianyi Xiong, Ruibo Chen, Yihan Wu, Junfeng Guo, and Heng Huang.
Few-shot class incremental learning with attention-aware self-adaptive prompt. In European Con-
ference on Computer Vision, pp. 1–18. Springer, 2024a.

Qianhui Liu, Jiaqi Yan, Malu Zhang, Gang Pan, and Haizhou Li. Lite-snn: Designing lightweight
and efficient spiking neural network through spatial-temporal compressive network search and
joint optimization. arXiv preprint arXiv:2401.14652, 2024b.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Signal Processing Magazine, 37(5):43–54,
2020.

Changze Lv, Yansen Wang, Dongqi Han, Xiaoqing Zheng, Xuanjing Huang, and Dongsheng Li.
Efficient and effective time-series forecasting with spiking neural networks. In International
Conference on Machine Learning, pp. 33624–33637. PMLR, 2024.

Xinyue Ma, Suyeon Jeong, Minjia Zhang, Di Wang, Jonghyun Choi, and Myeongjae Jeon. Cost-
effective on-device continual learning over memory hierarchy with miro. In Proceedings of the
29th Annual International Conference on Mobile Computing and Networking, pp. 1–15, 2023.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Towards
memory-and time-efficient backpropagation for training spiking neural networks. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 6166–6176, 2023.

Bhaskar Mukhoty, Velibor Bojkovic, William de Vazelhes, Xiaohan Zhao, Giulia De Masi, Huan
Xiong, and Bin Gu. Direct training of snn using local zeroth order method. Advances in Neural
Information Processing Systems, 36:18994–19014, 2023.

Wenyao Ni, Jiangrong Shen, Qi Xu, and Huajin Tang. ALADE-SNN: adaptive logit alignment in
dynamically expandable spiking neural networks for class incremental learning. In Toby Walsh,
Julie Shah, and Zico Kolter (eds.), AAAI-25, Sponsored by the Association for the Advancement
of Artificial Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA, pp. 19712–19720.
AAAI Press, 2025. doi: 10.1609/AAAI.V39I18.34171. URL https://doi.org/10.1609/
aaai.v39i18.34171.

11

https://doi.org/10.1609/aaai.v39i18.34171
https://doi.org/10.1609/aaai.v39i18.34171

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

NVIDIA. Nvidia jetson orin. https://www.nvidia.cn/autonomous-machines/
embedded-systems/jetson-orin/, 2025. Accessed: 2025-08-02.

Hyunseok Oh and Youngki Lee. Sign gradient descent-based neuronal dynamics: Ann-to-snn con-
version beyond relu network. arXiv preprint arXiv:2407.01645, 2024.

Junghun Oh, Sungyong Baik, and Kyoung Mu Lee. Closer: Towards better representation learning
for few-shot class-incremental learning. In European Conference on Computer Vision, pp. 18–35.
Springer, 2024.

Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image
datasets to spiking neuromorphic datasets using saccades. Frontiers in neuroscience, 9:437, 2015.

Keon-Hee Park, Kyungwoo Song, and Gyeong-Moon Park. Pre-trained vision and language trans-
formers are few-shot incremental learners. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 23881–23890, 2024.

Xuerui Qiu, Malu Zhang, Jieyuan Zhang, Wenjie Wei, Honglin Cao, Junsheng Guo, Rui-Jie Zhu,
Yimeng Shan, Yang Yang, and Haizhou Li. Quantized spike-driven transformer. arXiv preprint
arXiv:2501.13492, 2025.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

Ali Safa. Continual learning with hebbian plasticity in sparse and predictive coding networks: a
survey and perspective. Neuromorphic Computing and Engineering, 4(4):042001, 2024.

Guangyuan Shi, Jiaxin Chen, Wenlong Zhang, Li-Ming Zhan, and Xiao-Ming Wu. Overcoming
catastrophic forgetting in incremental few-shot learning by finding flat minima. Advances in
neural information processing systems, 34:6747–6761, 2021.

Christian Simon, Piotr Koniusz, Richard Nock, and Mehrtash Harandi. Adaptive subspaces for
few-shot learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4136–4145, 2020.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Zeyin Song, Yifan Zhao, Yujun Shi, Peixi Peng, Li Yuan, and Yonghong Tian. Learning with
fantasy: Semantic-aware virtual contrastive constraint for few-shot class-incremental learning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 24183–
24192, 2023.

Hongbo Sun, Jiahuan Zhou, Xiangteng He, Jinglin Xu, and Yuxin Peng. Finefmpl: fine-grained
feature mining prompt learning for few-shot class incremental learning. In Proceedings of the
Thirty-Third International Joint Conference on Artificial Intelligence, pp. 1299–1307, 2024.

Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin Dong, Xing Wei, and Yihong Gong. Few-
shot class-incremental learning. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 12183–12192, 2020.

Qi-Wei Wang, Da-Wei Zhou, Yi-Kai Zhang, De-Chuan Zhan, and Han-Jia Ye. Few-shot class-
incremental learning via training-free prototype calibration. Advances in Neural Information
Processing Systems, 36:15060–15076, 2023.

Siqi Wang, Tee Hiang Cheng, and Meng-Hiot Lim. Ltmd: learning improvement of spiking neu-
ral networks with learnable thresholding neurons and moderate dropout. Advances in Neural
Information Processing Systems, 35:28350–28362, 2022a.

Xuan Wang, Zhong Ji, Xiyao Liu, Yanwei Pang, and Jungong Han. On the approximation risk of
few-shot class-incremental learning. In European Conference on Computer Vision, pp. 162–178.
Springer, 2024.

12

https://www.nvidia.cn/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.cn/autonomous-machines/embedded-systems/jetson-orin/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zifeng Wang, Zheng Zhan, Yifan Gong, Geng Yuan, Wei Niu, Tong Jian, Bin Ren, Stratis Ioannidis,
Yanzhi Wang, and Jennifer Dy. Sparcl: Sparse continual learning on the edge. Advances in Neural
Information Processing Systems, 35:20366–20380, 2022b.

Wenjie Wei, Malu Zhang, Hong Qu, Ammar Belatreche, Jian Zhang, and Hong Chen. Temporal-
coded spiking neural networks with dynamic firing threshold: Learning with event-driven back-
propagation. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
10552–10562, 2023.

Wenjie Wei, Malu Zhang, Zijian Zhou, Ammar Belatreche, Yimeng Shan, Yu Liang, Honglin Cao,
Jieyuan Zhang, and Yang Yang. Qp-snn: Quantized and pruned spiking neural networks. arXiv
preprint arXiv:2502.05905, 2025.

Davis Wertheimer and Bharath Hariharan. Few-shot learning with localization in realistic settings.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
6558–6567, 2019.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi
Li. Attention spiking neural networks. IEEE transactions on pattern analysis and machine intel-
ligence, 45(8):9393–9410, 2023.

Di Yu, Xin Du, Linshan Jiang, Shunwen Bai, Wentao Tong, and Shuiguang Deng. Fedlec: Effective
federated learning algorithm with spiking neural networks under label skews. arXiv e-prints, pp.
arXiv–2412, 2024a.

Di Yu, Xin Du, Linshan Jiang, Wentao Tong, and Shuiguang Deng. Ec-snn: splitting deep spiking
neural networks for edge devices. In Proceedings of the Thirty-Third International Joint Confer-
ence on Artificial Intelligence, pp. 5389–5397, 2024b.

Di Yu, Changze Lv, Xin Du, Linshan Jiang, Wentao Tong, Zhenyu Liao, Xiaoqing Zheng, and
Shuiguang Deng. Ecc-snn: Cost-effective edge-cloud collaboration for spiking neural networks.
arXiv preprint arXiv:2505.20835, 2025.

Chi Zhang, Nan Song, Guosheng Lin, Yun Zheng, Pan Pan, and Yinghui Xu. Few-shot incremental
learning with continually evolved classifiers. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 12455–12464, 2021.

Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei Huang, Xiaopeng Fan, Li Yuan, Zhengyu Ma, Huihui
Zhou, Yonghong Tian, et al. Qkformer: Hierarchical spiking transformer using qk attention.
Advances in Neural Information Processing Systems, 37:13074–13098, 2024.

Hanbin Zhao, Yongjian Fu, Mintong Kang, Qi Tian, Fei Wu, and Xi Li. Mgsvf: Multi-grained slow
versus fast framework for few-shot class-incremental learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(3):1576–1588, 2021.

Linglan Zhao, Jing Lu, Yunlu Xu, Zhanzhan Cheng, Dashan Guo, Yi Niu, and Xiangzhong Fang.
Few-shot class-incremental learning via class-aware bilateral distillation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 11838–11847, 2023.

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, Liang Ma, Shiliang Pu, and De-Chuan Zhan. Forward
compatible few-shot class-incremental learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9046–9056, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 CONVERGENCE

The mean squared approximation error (MSE) of the gradient estimate of g as

E
[∥∥∥∇̂g(x)−∇g(x)

∥∥∥2
2

]
= O(δ2) +O(bδ2d2) (16)

where ∇̂g(x) is the ture gradient obeys (Berahas et al., 2022), d is the dimensionality and b is the
number of samples. At the non-differentiable point u = 0, the true gradient does not exist. However,
the expected value of the estimation is zero when z is drawn from a symmetric distribution, so the
bias is zero. The key is that the non-zero contribution of the estimation is concentrated around
u = 0, where the true gradient is non-zero.

The perturbation radius (or smoothing factor) δ affects gradient estimation error. As it becomes
smaller, the gradient estimate gets better. A smaller δ reduces the bias but drastically increases the
variance. In practice, an overly small δ may cause the function difference to be masked by system
noise, rendering it ineffective in representing the true differential. In contrast, a larger δ reduces
variance but increases the bias. The choice of δ is critical to minimize the total error. As the number
of samples b increases, this approximation converges to the true gradient, and as the sample size
tends to infinity, it converges to the expected value E of the perturbation distribution.

At a differentiable point with u ̸= 0, both the bias and variance of the single point estimation vanish,
implying that the MSE of the multi-point average is also zero, reflecting a form of deterministic
convergence. In contrast, when multi-point averaging is applied, the variance becomes 1

4δ2b . Thus,
by increasing the number of samples b, we can effectively offset the variance explosion caused by
letting δ → 0, thus ensuring a bounded and low variation gradient estimate.

A.2 ASSUMPTION

We provide four assumptions regarding convergence rates on zeroth-order algorithms which can be
applicable to different types of problems according to the previous literature (Liu et al., 2020).

Assumption 1. (Convex optimization) The convergence error is measured by the optimality gap of
function values:

E[f(xT)− f(x∗)] (17)
for a convex objective f , where xT denotes the updated point at the final iteration T , x∗ denotes the
optimal solution, and the expectation is taken over the full probability space.

Assumption 2. (Online convex optimization) The cumulative regret (Hazan et al., 2016) is typically
used in place of the optimality gap for an online convex cost function ft as

E[
T∑

t=1

ft(xt)−min
x

T∑
t=1

ft(x)] (18)

Assumption 3. (Unconstrained nonconvex optimization) The convergence is evaluated by the first-
order stationary condition in terms of the squared gradient norm for the nonconvex objective f :

1

T

T∑
t=1

E
[
∥∇f(xt)∥22

]
(19)

Assumption 4. (Constrained nonconvex optimization) The criterion for convergence is commonly
determined by detecting a sufficiently small squared norm of the gradient mapping (Ghadimi et al.,
2016; J Reddi et al., 2016):

PX(xt,∇f(xt), ηt) :=
1

ηt

[
xt −ΠX

(
xt − ηt∇f(xt)

)]
(20)

where PX(xt,∇f(xt), ηt) can naturally be interpreted as the projected gradient, which offers a
feasible update from the previous point xt.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 PROOF OF ZEROTH-ORDER OPTIMIZATION

We provide a theoretical proof of the estimation function g(t) according to literature (Mukhoty et al.,
2023) as follows.

Definition 1. We say that a function g : R → R≥0 is a surrogate function (gradient surrogate) if it
is even, non-decreasing on the interval (−∞, 0), and c :=

∫∞
−∞ g(z) dz < ∞.

Assume that ∫ ∞

0

zα+1λ(z) dz < ∞. (21)

Then, Ez∼λ[g
2(u; z, δ)] is a surrogate function.

Theorem 1. Let p be a distribution and p(t) its corresponding probability density function(PDF).
Assume that the integrals

∫∞
0

tαp(t)dt and
∫∞
0

tα+1p(t)dt exist and are finite. Let further λ̃ be the
distribution with corresponding PDF function

λ̃(z) =
1

c
|z|

∫ ∞

−∞
tαλ(t) dt, (22)

where c is the scaling constant such that
∫∞
−∞ λ̃(z)dz = 1. Then,

Ez∼p[g
2(u; z, δ)] =

d

du
Ez∼p̃[ch(u+ δz)]. (23)

The probability density function characterizing the standard normal distribution N (0, 1) takes the
form 1√

2π
exp

(
− z2

2

)
. Consequently, it is straightforward to obtain

Ez∼p[g
2(u; z, δ)] =

∫ ∞

−∞

|z|
2δ

1√
2π

exp

(
−z2

2

)
dz =

1

δ
√
2π

exp

(
− u2

2δ2

)
(24)

Theorem 3. Let g(u) be a surrogate function. Suppose further that c =
∫∞
−∞ g(z)dz < ∞ and

define p(z) = zαg′(zδ)∫ ∞
0

zαg′(zδ) dz
(so that λ(z) is a PDF). Then,

cEz∼p[g
2(u; z, δ)] = Ez∼p[cG

2(u; z, δ)] = g(u)

Consider the Sigmoid surrogate function, where the differentiable Sigmoid function approximates
the Heaviside. The corresponding surrogate gradient is given by

d

du

(
1

1 + exp(−ku)

)
=

k exp(−ku)

(1 + exp(−ku))2
=: g(u). (25)

Observe that g(t) satisfies our definition of a surrogate (i.e., g(t) is even, non-decreasing on
(−∞, 0), and

∫∞
−∞ g(t) du = 1 < ∞). Thus, we have c = −2δ2

∫∞
0

g′(tδ)tdt, where a :=√
1

0.4262 . The corresponding PDF is given by

p(z) = −δ2

c
· g

′(δt)

z
=

a2 exp(−kδz)(1− exp(−kδz))

z(1 + exp(−kδz))3
. (26)

Table 4: Detailed prediction results of MBR and MAR (%) between soft calibration-based method
TEEN and SAFA on CIFAR100.

Method CBN↑ MBN↓ MNN↓ CNN↑ MBR↓ MAR↓ Seen↑ Unseen↑
TEEN 649778 4222 12108 5092 0.704 0.005 62.35 14.95
SAFA-SNN 650935 3065 10180 7020 0.592 0.006 73.57 15.43

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 ANALYSIS OF PERFORMANCE ON FEW-SHOT NOVEL-CLASS

We define “Misclassified to Base classes Ratio” (MBR) for new classes and “Misclassified to most
similar New classes Ratio” (MNR) for base classes. As shown in Table 4, MBR is much higher
than the MNR, indicating that new classes are misclassified as base than base classes as new, and
poor base prototypes rarely occurs. Correspondingly, the “Correctly classified to Base class Number
and to New class number” as CBN and CNN, otherwise, the “Mistakenly classified to Base class
Number and to New class number” as MBN and MNN. We also report the accuracy on seen classes
and unseen clsses.

Table 5: Performance Comparison across Sessions (HMean / NAcc).

Session 1 2 3 4 5 6 7 8

TEEN 36.05 / 25.00 29.07 / 18.80 26.40 / 16.67 25.53 / 16.00 24.10 / 14.92 24.74 / 15.43 24.57 / 15.31 24.06 / 14.95
SAFA-SNN 41.90 / 28.80 34.51 / 22.30 29.25 / 18.13 27.13 / 16.55 27.74 / 17.04 27.30 / 16.73 26.53 / 16.17 27.14 / 16.68

∆ +5.85 / +3.80 +5.44 / +3.50 +2.85 / +1.46 +1.60 / +0.55 +3.64 / +2.12 +2.56 / +1.30 +1.96 / +0.86 +3.08 / +1.73

Table 6: Comparison with FSCIL baselines on static dataset CIFAR100 with 5way-5shot incremen-
tal learning setting and Spiking VGG-9.

Method Acc. in each session (%) ↑ Avg.↑ ∆last

0 1 2 3 4 5 6 7 8

CEC 60.82 57.49 53.93 50.80 48.18 45.75 43.69 41.95 40.22 49.20 +7.87
FACT 69.82 61.46 57.83 54.33 51.35 48.64 46.20 44.45 42.61 52.97 +5.48
S3C 61.72 31.60 16.00 15.40 11.00 19.40 18.00 25.20 23.00 24.59 +25.09

BIDIST 61.30 57.69 54.17 50.88 48.33 45.72 43.82 42.08 40.36 49.37 +7.73
SAVC 41.75 38.54 35.79 33.40 31.31 29.47 27.83 26.37 25.05 32.17 +23.04
TEEN 69.87 63.20 59.49 55.67 52.79 50.11 48.12 46.33 44.51 59.34 +3.58
WARP 61.32 44.88 41.84 39.11 36.68 34.60 32.20 31.07 28.74 38.94 +19.35

CLOSER 55.22 52.55 49.39 46.41 44.23 42.06 40.23 38.67 37.21 45.10 +10.88
ASP 58.55 46.05 33.29 27.76 27.52 27.48 21.37 21.06 16.04 31.01 +32.05

SAFA-SNN 76.03 70.91 66.1 61.55 58.19 55.22 52.77 50.33 48.09 56.59

Table 7: Comparison with FSCIL baselines on static dataset CIFAR100 with 5way-5shot incremen-
tal learning setting and Spiking VGG-11.

Method Acc. in each session (%) ↑ Avg.↑ ∆last

0 1 2 3 4 5 6 7 8

CEC 64.37 59.85 55.89 52.04 48.88 46.37 43.92 41.72 39.60 50.63 +7.30
FACT 61.98 57.48 53.54 50.05 47.06 44.48 42.13 39.92 38.02 48.62 +8.88
S3C 45.28 24.80 14.40 16.20 13.60 15.80 11.00 22.40 18.00 20.28 +28.90

SAVC 62.95 58.11 53.96 50.36 47.21 44.44 41.97 39.76 37.77 48.39 +9.13
TEEN 64.30 59.79 55.73 51.91 48.86 46.14 43.68 41.42 39.34 50.79 +7.56
WARP 62.28 57.95 53.99 50.41 47.25 44.69 42.34 40.20 38.28 48.16 +8.62

CLOSER 67.87 63.52 59.57 56.15 52.83 49.89 47.54 45.43 43.38 54.02 +3.52

SAFA-SNN 76.95 71.20 66.00 61.81 58.14 54.74 51.94 49.16 46.90 58.12

A.5 SUBSPACE PROJECTION

Prototypical networks are a few-shot learning framework designed to recognize novel classes using
only a small number of labeled examples. The model uses a shared feature extractor to embed
both labeled support images into a common feature space. For each class, the embeddings of its
support samples are averaged to form a prototype vector that represents the class in the feature
space. Classification is performed by comparing embeddings to these prototypes using a distance
metric, typically Euclidean distance. Predictions are made on embeddings based on L2 proximity to
each class prototype (Wertheimer & Hariharan, 2019). Since classification in prototypical networks
is non-parametric, training focuses on optimizing the feature extractor. The model is trained using
episodic tasks consisting of small support and query sets, enabling it to produce discriminative
prototypes from limited examples. Constructing complex classifiers f(·) is challenging under such
constraints. In SAFA-SNN, we employ a simple yet effective prototype update strategy, Subspace
Projection, which isolates attribute-relevant information without relying on auxiliary networks or
weighted loss terms (Li et al., 2020).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: Comparison with FSCIL baselines on static dataset CIFAR100 with 5way-5shot incremen-
tal learning setting and Spiking Resnet20.

Method Acc. in each session (%) ↑ Avg.↑ ∆last

0 1 2 3 4 5 6 7 8

CEC 12.95 12.22 11.27 10.55 10.04 9.48 8.93 8.53 8.15 10.43 +38.75
FACT 64.03 56.51 53.11 49.77 47.31 44.51 42.53 40.86 39.09 47.13 +7.81
S3C 49.15 26.40 22.80 22.20 22.80 22.00 25.20 33.40 30.40 27.38 +16.5

TEEN 65.68 57.79 54.64 51.07 48.30 45.53 43.69 42.00 40.25 49.21 +6.65
WARP 46.85 36.85 34.39 31.56 29.64 27.88 26.40 25.25 23.93 31.64 +22.97

CLOSER 56.02 53.43 50.33 47.21 44.65 42.48 40.44 38.86 37.10 45.61 +9.80

SAFA-SNN 76.95 71.20 66.00 61.81 58.14 54.74 51.94 49.16 46.90 58.12

Table 9: Comparison with FSCIL baselines on static dataset CIFAR100 with 5way-5shot incremen-
tal learning setting and Spiking Resnet19.

Method Acc. in each session (%) ↑ Avg.↑ ∆last

0 1 2 3 4 5 6 7 8

FACT 67.67 62.17 58.03 54.41 51.23 48.64 46.17 44.14 42.09 53.28 +4.17
TEEN 66.71 61.71 57.32 53.69 50.35 47.67 45.13 43.14 41.03 52.46 +5.23
WARP 66.58 6.12 2.94 3.47 2.46 1.91 1.87 1.92 1.30 10.83 +44.96

SAFA-SNN 73.98 68.74 63.99 59.99 56.38 53.49 51.03 48.60 46.26 56.35

A.6 DATASETS AND SPIKING ARCHITECTURE DETAILS

Neuromorphic datasets exhibit sparse features, typically obtained from event-based simulators or
converted frame-based datasets. CIFAR10-DVS (Li et al., 2017) is a neuromorphic dataset de-
rived from the original CIFAR10, where visual inputs are recorded by a Dynamic Vision Sensor
(DVS), capturing changes in pixel intensity as asynchronous events instead of static frames. It
contains 9,000 training samples and 1,000 test samples. DVS128-Gesture (Amir et al., 2017) is a
gesture recognition dataset consisting of 11 hand gesture categories collected from 29 individuals
under three different lighting conditions. N-Caltech101 (Orchard et al., 2015) comprises 8,246 event
streams, each 300 milliseconds in duration, recorded by an event-based camera as it captured dy-
namic visual inputs of Caltech101 (Fei-Fei et al., 2004) images displayed on an LCD screen. These
recordings span 101 object categories, preserving the diversity of the original dataset while incorpo-
rating temporal event-based representations. We provide our neuromorphic dataset splitting method
in the codes.

We modify three types of ANNs (VGG, Resnet, and Transformers) to their SNN counterparts with
no floating-point multiplication and division, aiming to offer a guideline for proper SNN model
selection for FSCIL. In addition, we configure the Spikingformer with a depth of 2, five tokenizer
convolutional blocks, and a spike-form dimensionality of 128.

We directly encode spikes with layers of LIF neurons. Each formulated unit S generating spikes can
be represented as

S = SN ((BN(CONV(X)))), (27)
where X ∈ RT×B×C×H×W is the input with time, BN(·) is the batch normalization layer and
SN (·) is the LIF neuron model.

A.7 BASELINES DESCRIPTION

We establish several baselines to better evaluate our proposed framework. To this end, we ex-
plore nine of the existing SOTA from the FSCIL literature, CEC (Zhang et al., 2021), FACT (Zhou
et al., 2022), S3C (Kalla & Biswas, 2022), BIDIST (Zhao et al., 2023), SAVC (Song et al., 2023),
TEEN (Wang et al., 2023), WARP (Kim et al., 2023), CLOSER (Oh et al., 2024) and ASP (Liu
et al., 2024a). CEC, BIDIST, and S3C establish dynamically evolving architectures to effectively
support incremental learning. CEC incrementally transforms newly added linear classifiers into a
graph-based structure. BIDIST assigns a learnable weight Wt to each task and employs bilateral
distillation between the representations of current and previous tasks. S3C expands its stochas-
tic classifiers by progressively incorporating four angular representations. FACT, SAVC, TEEN,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 10: Comparison with FSCIL baselines on static dataset CIFAR100 with 5way-5shot incre-
mental learning setting and Spikingformer.

Method Acc. in each session (%) ↑ Avg.↑ ∆last

0 1 2 3 4 5 6 7 8

TEEN 68.37 52.42 48.67 45.43 42.59 40.08 37.86 35.86 34.07 45.37 +2.48
WARP 63.30 6.45 4.04 4.20 2.48 3.34 2.36 2.35 2.59 10.38 +33.96

CLOSER 23.53 21.86 20.24 18.87 17.95 16.92 15.97 15.20 14.47 18.89 +22.08

SAFA-SNN 62.65 52.09 48.90 46.01 43.65 41.34 39.70 38.25 36.55 45.68

Table 11: Comparison with FSCIL baselines on static dataset MiniImageNet with 5way-5shot in-
cremental learning setting and Spiking VGG-5.

Method Acc. in each session (%) ↑ Avg.↑ ∆last

0 1 2 3 4 5 6 7 8

CEC 57.28 52.93 49.98 47.12 44.90 42.76 40.29 38.77 37.57 45.73 +1.06
FACT 54.51 43.91 41.16 39.27 37.68 35.80 33.95 32.64 31.82 38.97 +6.81
S3C 41.01 12.56 17.43 29.85 24.01 25.87 21.32 30.95 28.50 25.28 +10.13

TEEN 55.32 44.89 42.23 41.12 39.19 37.49 35.59 34.34 33.34 40.72 +5.29
WARP 50.24 25.84 24.13 22.34 21.00 19.97 18.75 18.38 17.66 24.70 +20.97

CLOSER 48.07 44.54 41.89 40.16 38.28 36.41 34.54 33.39 32.67 38.66 +5.96

SAFA-SNN 61.31 53.06 49.92 48.12 46.19 43.88 41.40 39.86 38.63 46.93

and CLOSER represent prototype tuning approaches that employ a prototype-based classifier gP (·)
instead of the conventional MLP classifier gϕ(·). FACT facilitates forward compatibility by synthe-
sizing virtual prototypes during the base training stage, thereby enabling more flexible adaptation
to future tasks. Meanwhile, SAVC advances base task performance through leveraging semantic-
aware fantasy classes combined with contrastive learning, which enhances feature representation.
TEEN presents a training-free prototype rectification technique, which effectively improves classi-
fication robustness without requiring additional training. Lastly, CLOSER strikes an effective bal-
ance between transferability and discriminability by employing a mechanism of compressed feature
spreading, thereby improving generalization across tasks.WARP trains backbone and classifier on
base tasks, then fine-tunes classifier and subnetworks of θ with multi-axis rotations for distinct rep-
resentations. ASP efficiently fine-tunes small prompts on a frozen backbone, leveraging task-aware
and task-invariant prompts to improve selection during testing.

A.8 MORE COMPARATIVE RESULTS

HMean Accuracy. Table 5 reports the novel class accuracy and harmonic mean comparison against
the runner-up method on CIFAR100 with Spiking VGG-9, further emphasizing the consistent per-
formance improvements and the effectiveness of SAFA-SNN.

Comparison of all-session Accuracy. Comparisons with SOTA methods on CIFAR100 using Spik-
ing VGG-9, VGG-11, Spiking ResNet-20, Spiking ResNet-19, and Spikingformer are presented in
Table 6, 7, 8, 9, and 10 and on Mini-ImageNet with Spiking VGG-5, Spiking Resnet-18 are listed
in Table 11 and 12. These results demonstrate that SAFA-SNN consistently achieves the highest
final-session performance, highlighting its robustness and effectiveness.

A.9 ENERGY CONSUMPTION

According to previous studies (Horowitz, 2014; Yao et al., 2023; Lv et al., 2024), for SNNs, the
theoretical energy consumption of layer l can be calculated as:

E(l) = EAC × SOPs(l) (28)

where SOPs is the number of spike-based accumulate (AC) operations.

For traditional artificial neural networks (ANNs), the theoretical energy consumption required by
layer b can be estimated by:

E(b) = EMAC × FLOPs(b) (29)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 12: Comparison with FSCIL baselines on static dataset MiniImageNet with 5way-5shot in-
cremental learning setting and Spiking RESNET18.

Method Acc. in each session (%) ↑ Avg.↑ ∆last

0 1 2 3 4 5 6 7 8

CEC 55.23 51.07 47.62 45.15 42.84 40.64 38.42 36.64 35.03 43.63 +13.06
TEEN 54.53 47.59 44.54 42.19 40.14 38.03 36.06 34.53 33.11 41.41 +14.98

CLOSER 56.93 52.77 49.16 46.72 44.31 42.12 40.04 38.47 37.17 45.97 +10.92

SAFA-SNN 76.03 70.91 66.1 61.55 58.19 55.22 52.77 50.33 48.09 56.59

Table 13: Inference Energy Consumption Comparison of ANNs and SNNs.

Model Energy (J) Model Energy (J)
Spiking VGG5 7916.53 VGG5 10115.57
Spiking VGG9 3958.41 VGG9 5057.97
Spiking VGG11 494.92 VGG11 632.39
Spiking VGG13 495.00 VGG13 5689.97
Spiking VGG16 495.08 VGG16 5689.97

where FLOPs denotes the number of floating-point multiply-and-accumulate (MAC) operations. We
assume that both MAC and AC operations are implemented on 45nm hardware (Yao et al., 2023),
where EMAC = 4.6pJ and EAC = 0.9pJ. Note that 1 J = 103 mJ = 1012 pJ.

The number of synaptic operations at the layer l of an SNN is estimated as:

SOPs(l) = T × ζ × FLOPs(l) (30)

where T is the number of time steps in the simulation, ζ is the firing rate of the input spike train of
layer l.

Based on these theoretical analysis, we report the theoretical inference energy consumption results
with variable structures in Table 13, which shows that the energy consumption of ANNs is obviously
higher than SNNs, the larger the model is, the more significant the differences between them, which
further hardens the ability of ANNs to implement on edge devices.

A.10 EFFECT ON N-WAY K-SHOT

SAFA-SNN leverages N-way K-shot datasets to estimate prototypes for novel classes. To eval-
uate the impact of the number of shots on accuracy, we fix the incremental way and vary shots
1,2,5,10,15,20,50 on DVS128gesture and CIFAR-10-DVS. We can infer that with more instances
per class, the estimation of prototypes will be more precise, and the performance will correspond-
ingly improve.

A.11 HYPER-PARAMETER SENSITIVITY

We report the last-session accuracy on CIFAR100 varying the β in {0.4,0.9,1.2} and γ in {0.01,
0.04,0.07}. We also change the sampled point number S from {5,10,15} and constant δ from
{0.1,0.3,0.5}, resulting compared results in Figure 8. Our method is robust to the choices of hyper-
parameters, and it achieves the best performance when δ = 0.5 and S = 5, γ = 0.01 and β = 1.2.
The adaptive ratio η varys in {0.1, 0.3, 0.5, 0.7, 0.9} and λ in {0.01, 0.05} (See Table 14).

A.12 EFFECTS ON DIFFERENT TIME STEPS

Upon proving the importance of SAFA-SNN modules, we further evaluate the impacts of the in-
troduced time steps in SNN. We choose time steps T among 1,2,4,6,8 and 10. We report the per-
formance in incremental sessions on CIFAR100 and Mini-ImageNet in Figure 9, respectively. As
illustrated in the figures, the best performance is observed when T is approximately between 4 and 6.
Since the larger time step often corresponds to challenges like gradient vanishing or exploding (Yu
et al., 2024b), we suggest T = 4 as the default in our experiment.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

5 10 15
S

0.1

0.3

0.5

47.98 48.39 48.94

48.11 51.51 49.03

51.69 50.21 49.94

0.4 0.9 1.2

0.01

0.04

0.07

44.73 44.69 50.71

50.39 44.55 44.55

49.82 49.66 45.33

40

42

44

46

48

50

52

54

Figure 8: Comparison of different hyper-parameters on δ, S, γ and β for on-device FSCIL.

Table 14: Comparison on various η and λ.

λ η
Acc. in each session (%) ↑ Avg.↑

0 1 2 3 4 5 6 7 8

0.05 0.1 76.12 70.06 65.31 60.76 57.50 54.65 51.99 48.96 45.77 59.01
0.05 0.3 76.12 70.51 65.44 60.83 57.81 54.72 52.30 49.44 46.63 59.31
0.05 0.5 77.93 72.69 68.16 64.09 60.49 57.35 54.80 52.20 49.88 61.96
0.05 0.7 76.12 70.57 65.89 61.71 58.09 55.74 52.33 49.85 47.60 59.77
0.05 0.9 75.18 69.45 64.97 60.84 57.14 54.20 51.74 49.23 47.21 58.88
0.01 0.5 76.73 70.88 66.41 61.73 59.04 55.67 53.24 50.40 45.40 59.95
0.1 0.5 76.67 70.59 66.11 61.43 58.51 55.02 52.13 49.52 45.40 59.49

A.13 ACCURACY AND SPARSITY TRADE-OFF

We trained the CIFAR100 dataset on the original Spiking VGG network with 285,448 neurons in
all layers with dynamic threshold. We found that the training is very robust to even extreme values
of adaptive ratio, as shown in Figure 10 and 11. The points features red dot with black border is
the start point in each settings while the points features green dot with black border is the end point.
We can see that both the sparsity and accuracy convergence at high level, showing the promise in
sparsity-accuracy trade-off in SAFA-SNN.

A.14 VISUALIZATION OF FIRING RATE

We visualize the average firing rates in each time step of non-adaptive (dashed lines) neurons and
adaptive neurons (solid lines) on CIFAR100 dataset in Figure 12, where “S-k-A” and “S-k-N” are
the firing rete of adaptive neurons in the k session and non-adaptive neurons in the k − th session,
respectively. It is observed that non-adaptive neurons exhibit higher firing rates than adaptive neu-
rons in the same session. This implies that adaptive neurons constrain their activity to remain within
threshold limits, potentially reducing their responsiveness to novel classes, whereas non-adaptive
neurons sustain stable firing behavior to mitigate the risk of catastrophic forgetting.

A.15 NEURONAL DYNAMICS IN SNN

We provide Discrete temporal dependency representation in SNNs following (Oh & Lee, 2024).The
continuous neuronal dynamics of a general one-dimensional integrate-and-fire neuron is a linear
differential equation with a thresholding criterion (Gerstner et al., 2014):

τm
du

dt
= −f(u(t)) +RI(t) (31)

lim
δ→0+

u(t+ δ) = urest (Integration) (32)

u(t) ≥ θth (Thresholding) (33)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9
Sessions

40

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (
%

)

(a) CIFAR100

1 2 3 4 5 6 7 8 9
Sessions

40

45

50

55

60

65

70

75

80

(b) MINIIMAGENET

T=1 T=2 T=4 T=6 T=8 T=10

Figure 9: Accuracy in each session on different time steps.

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90
Sparsity

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

T=2
T=3

Figure 10: Sparsity-Accuracy on Mini-Imagenet.

0.85 0.86 0.87 0.88 0.89 0.90
Sparsity

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Spiking-VGG5-T2
Spiking-VGG5-T3
Spiking-VGG9-T4

Figure 11: Sparsity-Accuracy on CIFAR100.

where time t ∈ R+, dynamics function f(u) : R → R, input current I(t) at time t, membrane
potential u, resting potential urest, threshold θth, membrane resistance R, membrane capacitance
C, and membrane constant τm = RC.

Integrate-and-fire models are simplified phenomenological models of biological neuronal dynam-
ics (Gerstner et al., 2014). They consist of two components: (i) a time-evolution of membrane
potential (Integration) and (ii) a firing mechanism to create a spike (Thresholding). Its continu-
ous neuronal dynamics is a differential equation with a thresholding criterion. For computational
tractability, the general one-dimensional integrate-and-fire model is discretized as follows:

upre(t) = u(t− 1) + f u(t− 1) +
R

τm
I(t) (34)

s(t) = H(upre(t)− θth) (35)

where time t ∈ N, dynamics function f(u) : R → R, pre-firing potential upre(t), s(t) ∈ {0, 1}
a spike, post-firing potential u(t), Heaviside step function H , influx current I(t), threshold θth,
membrane resistance R, and membrane constant τm. The potential upre(t) resets to u after the spike
s(t) fires based on its pre-defined reset mechanism:

u(t) = upre(t) − θths(t) (reset-by-subtraction) (36)

u(t) = upre(t)(1− s(t)) (reset-to-zero) (37)

Integrate-and-fire (IF) neuron has the simplest neuronal dynamics defined as f(u) = 0, τm = 1 in
equation 34:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 1 2 3
Time Step

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Av
er

ag
e

Fi
ri

ng
 R

at
e

S-0-A
S-0-N
S-1-A
S-1-N
S-2-A
S-2-N
S-3-A
S-3-N
S-4-A
S-4-N
S-5-A
S-5-N
S-6-A
S-6-N
S-7-A
S-7-N
S-8-A
S-8-N

Figure 12: Firing rate of adaptive and non-adaptive neurons.

upre(t) = u(t− 1) +RI(t) (38)

Leaky-Integrate-and-Fire (LIF) neuron introduces linear leakage f(u) = −(u− urest)/τm into the
dynamics:

upre(t) = u(t− 1)− u(t− 1)− urest

τm
+

R

τm
I(t) (39)

A.16 DISCUSSION

Our method significantly improves the recognition accuracy of new classes in on-device FSCIL sce-
narios, where catastrophic forgetting and resource constraints severely limit model performance. By
addressing the underperformance of new classes, our approach offers new insights into the over-
looked challenges of class imbalance and forgetting. To the best of our knowledge, this is the first
study in the on-device FSCIL literature to systematically analyze the performance degradation of
new classes, highlighting the need to prioritize their evaluation in future on-device FSCIL research.
In addition, our method may also have offer potential heuristic effects on initiating training with
sparse models for implementing edge intelligence on neuromorphic hardware.

A.17 THE USE OF LLM

We only use LLM to polish some descriptive sentences and check grammatical errors.

22

	Introduction
	Related Work
	Few-Shot Class-Incremental Learning
	Spiking Neural Networks with Dynamic Threshold
	On-Device SNN Training and Inference

	Preliminaries
	Spiking Neural Network
	Class Prototype

	On-Device FSCIL Problem
	Methodology
	Motivation
	Overview of SAFA-SNN
	Sparsity-Aware Neuronal Dynamics
	Zeroth-Order Optimization
	Fast Adaptive Prototype Subspace Projection

	Experiments
	Experiments setup
	Comparison with State-of-the-Art Methods
	Ablation Study

	Discussion
	Conclusion
	Appendix
	Convergence
	Assumption
	Proof of Zeroth-Order optimization
	Analysis of performance on Few-shot novel-class
	Subspace projection
	Datasets and Spiking architecture details
	Baselines description
	More Comparative Results
	Energy Consumption
	Effect on N-way K-shot
	Hyper-parameter sensitivity
	Effects on different time steps
	Accuracy and sparsity Trade-off
	Visualization of firing rate
	Neuronal dynamics in SNN
	Discussion
	The Use of LLM

