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ABSTRACT

Graph clustering is a fundamental task in data analysis, aiming at grouping nodes
with similar characteristics in the graph into clusters. This problem has been
widely explored using graph neural networks (GNNs) due to their ability to lever-
age node attributes and graph topology for effective cluster assignments. How-
ever, representations learned through GNNs typically struggle to capture global
relationships between nodes via local message-passing mechanisms. Moreover,
the redundancy and noise inherently present in the graph data may easily result in
node representations lacking compactness and robustness. To address the afore-
mentioned issues, we propose a conjoint framework called CoCo, which captures
compactness and consistency in the learned node representations for deep graph
clustering. Technically, our CoCo leverages graph convolutional filters to learn ro-
bust node representations from both local and global views, and then encodes them
into low-rank compact embeddings, thus effectively removing the redundancy and
noise as well as uncovering the intrinsic underlying structure. To further enrich
the node semantics, we develop a consistency learning strategy based on compact
embeddings to facilitate knowledge transfer from the two perspectives. Our ex-
perimental findings indicate that our proposed CoCo outperforms state-of-the-art
counterparts on various benchmark datasets.

1 INTRODUCTION

Graph clustering, as a critical task in network analysis and machine learning, plays a significant role
in organizing and understanding complex relational data (Yue et al., 2022). It involves partitioning
the nodes of a graph into clusters, aiming to group nodes that exhibit similar characteristics or share
related patterns. Its application spans across various domains, including social network analysis,
biological networks, and recommender systems, among others. By identifying cohesive groups of
nodes, graph clustering provides valuable insights into the underlying structure and connections
within the data, enabling more effective knowledge extraction and decision-making processes.

For the past decades, many efforts have been devoted to gaining a profound understanding of this
fundamental problem, traditional methods typically rely on hand-crafted features (Yan et al., 2006)
or graph partitioning algorithms (Ng et al., 2001; Vidal, 2011), which aim to project data samples
into a low-dimensional space while incorporating constraints to ensure clear separation between
the samples. However, the conventional training paradigm tends to yield unsatisfactory outcomes,
as the limited model capacity restricts their potential, failing to fully exploit the abundant struc-
tural information contained in the graph. This has led us to study deep graph clustering, offering
superior adaptability and expressive power by automatically extracting informative features from
graphs (Caron et al., 2018; Ren et al., 2024).

Recently, graph neural networks (GNNs) have emerged as an effective approach, achieving remark-
able success in capturing complex dependencies in graph-structured data and serving as a promising
tool for deep graph clustering. Based on this strength, many researchers have explored the potential
of GNNs for deep graph clustering (Bo et al., 2020; Liu et al., 2022; Yang et al., 2023; 2024; Liu
et al., 2024a). For example, SDCN (Bo et al., 2020) is the first to integrate structural information into
deep clustering by bridging autoencoder representations with GCN layers through a delivery oper-
ator. while GraphLearner (Yang et al., 2024) introduces learnable augmentors to capture attribute
and structural information, leverages refinement matrices for reliable affinity learning. Recently,
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MAGI (Liu et al., 2024a) introduces a community-aware graph clustering framework that uses mod-
ularity maximization as a contrastive pretext task to uncover communities and mitigate semantic
drift. In addition, DMGC-GTN (Wang et al., 2025) explores a novel multi-modal graph clustering
method that integrates structural and feature information via graph smoothing and transformer to
exploit their complementarity. These GNN-based methods offer a data-driven way to learn node
representations inherently capturing node attributes and the relational dependencies among neigh-
boring nodes, potentially leading to more meaningful cluster assignments.

Despite the success of previous methods, there still exist some inherent limitations. First, exist-
ing graph clustering methods often struggle to effectively capture global relationships among
nodes without any intervention (Chen et al., 2020a). Since effective local message passing mech-
anisms (Gilmer et al., 2017) in GNNs typically propagate information for only a few layers, they
often overlook long-range dependencies, limiting their ability to capture the underlying node distri-
bution and resulting in suboptimal clustering. For instance, existing works (GraphLearner, MAGI
and DMGC-GTN) typically only perform local augmentation or random walks on the original graph,
which fails to capture longer-range dependencies and consequently prevents clusters from accurately
representing the underlying community structure. Second, the inherent redundancy and noise
present in graph data poses challenges in learning compact and informative node representa-
tions (Kang et al., 2019). Existing graph clustering methods often overlook the inherent redundancy
and noise in data, which inevitably skews the training process and hinders the exploration of the
underlying structure among data, thereby obscuring important relationships and patterns, and ulti-
mately leading to less discriminative embeddings.

Recognizing the limitations of existing methods in addressing the aforementioned challenges, we
propose a conjoint framework capturing both Compactness and Consistency in the learned node
representations, which we abbreviate as CoCo. Specifically, to explore both neighborhood informa-
tion and long-range relationships between nodes from local and global views respectively, our CoCo
first leverages the power of graph convolutional filters to encode the node attributes and graph topol-
ogy based on the original graph and graph diffusion matrix, thus effectively learning informative
node representations. Then, we encode node representations into low-rank compact embeddings,
which learns the optimal low-dimensional subspace to characterize the intrinsic underlying struc-
ture, thereby fully eliminating redundancy and noise. To well facilitate the knowledge sharing of
the compact embeddings from the two perspectives, we introduce a consistency learning strategy
to encourage the model to produce consistent similarity distributions for each node, thus further
enabling the learned node representations with richer semantics from both local and global infor-
mation. Comprehensive experimental results across various graph datasets demonstrate the superior
performance and effectiveness of our method over previous approaches.

2 METHODOLOGY

Notations. Let G = {V, E ,X,A} denote an attribute graph of N nodes, where V = {v1, · · · , vN}
represents the set of nodes and E ⊆ V × V is the set of edges. Denote by X ∈ RN×F the attribute
matrix of all nodes, where F is the dimension of attributes. A ∈ {0, 1}N×N is the adjacency matrix,
where Aij = 1 if (vi, vj) ∈ E . The normalized adjacency matrix is denoted as Ã = D̂−1/2ÂD̂−1/2,
where Â equals to A + IN with added self-connections, and D̂ is the diagonal degree matrix with
D̂ii =

∑N
j=1 Âij . Then the symmetric normalized graph Laplacian matrix is defined as L̃ = IN−Ã.

Deep Graph Clustering. The task of deep graph clustering is to partition an unlabeled graph with N
nodes into C disjoint clusters, denoted as {C1, . . . , CC} based on a well-trained node representation
matrix Z ∈ RN×D. In general, a self-supervised loss is developed to guide the training process
to learn informative node representations. Then, a clustering algorithm such as K-means, spectral
clustering, or a neural-network clustering layer, is performed on the trained node representations to
output the clustering results. In this section, we present a novel framework CoCo for deep graph
clustering. The complete framework is depicted in Figure 1.

2.1 LOCAL- AND GLOBAL-VIEW FEATURE EXTRACTION

To learn effective node representations, most existing methods employ graph convolution on the
adjacency matrix, which propagates messages between one-hop neighbors. For capturing long-
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Figure 1: Illustration of the proposed framework CoCo.

range neighbor information, the convolution layers are deepened, which inevitably leads to the over-
smoothing issue, i.e., indistinguishable node representations of different clusters, due to the over-
mixing of features and noises (Chen et al., 2020a). To alleviate this issue and fully explore graph
topology, we leverage graph diffusion in this paper to smooth out the neighborhood over the graph.
Formally, the graph diffusion matrix S is defined as: S = α(IN − (1 − α)Ã)−1, which adopts the
personalized PageRank (Page et al., 1999) with teleport probability α ∈ (0, 1). The elements in S
measures the influence/correlation between all pairs of nodes. Compared with the adjacency matrix
A, S characterizes the soft relationships among the nodes, thus achieving the ability to globally
exploit the long-range neighbor information. To reduce the computational complexity, there are
fast approximations to achieves a linear runtime (Andersen et al., 2006; Wei et al., 2018) and we
also sparsify (e.g., set values below a certain threshold to zero) S to obtain S′, and modify it as
Ŝ ≜ (S′ + S′⊤)/2 to maintain symmetry. In the following, we treat the tuples {X,A} and {X, Ŝ}
as the local and global views to retrieve different knowledge over the given graph.

Inspired by Wu et al. (2019), the entanglement of graph convolutional filter and weight matrix in
GNN will harm both the performance and robustness when learning node representations. Instead,
we adopt the disentangled architecture to encode the attribute and structure information from lo-
cal and global views. First, we utilize the generalized Laplacian smoothing filters to denoise the
high-frequency components and integrate node attributes and structure information, which can be
mathematically formulated as:

X̃l = (IN − 1

kl L̃
l)tX, X̃g = (IN − 1

kg L̃
g)tX, (1)

where kl, kg(> 0) are real values and t is the number of the filter layers. L̃l(= L̃) and L̃g are the
local- and global-view normalized graph Laplacian matrix, in which L̃g can be acquired like the
expression of L̃ except replacing A with S. Theoretically, we can derive the following conclusion
and the proof is shown in Appendix B.1.

Theorem 1. kl = λ̃l
max and kg = λ̃g

max are the optimal choice to pursue low-pass filters, where
λ̃g

max and λ̃l
max are the maximal eigenvalues of L̃l and L̃g, respectively.

Then, to make node representations trainable, we learn weight parameters by feeding the filtered
features into the multi-layer perceptron (MLP) as follows:

Zl = MLP1(X̃
l), Zg = MLP2(X̃

g), (2)

where MLP1 and MLP2 are two unshared MLPs to capture abundant semantic information from
different perspectives.

2.2 COMPACTNESS LEARNING FOR REDUNDANCY ELIMINATION

Low-rank representations can effectively exploit the inherent underlying correlation structure among
data and suppress the impact of noise under the assumption that high-dimensional data points of-
ten intrinsically lie on a low-dimensional subspace (Ren et al., 2019; Tang et al., 2019). For self-
supervised learning, to achieve better fusion of the semantics from the local and global views, we
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expect to utilize the same set of low-dimensional subspace to abstract and reconstruct the low-rank
node representations of the two perspectives, which closes the gap between their semantic spaces
and eliminates the redundancies in features, thereby uncovering the underlying data structure and
yielding compact node representations from the two views.

Low-rank Subspace Training. Technically, we leverage the Gaussian mixture model (GMM, in
Appendix A) (Richardson & Green, 1997) to learn the optimal low-dimensional subspace that can
represent the local- and global-view node embeddings in Equation 2. Let N̄ = 2N , denote the em-
bedding space as Z = (Zl⊤,Zg⊤)⊤ ∈ RN̄×D, the learnable subspace as Λ ∈ RN̄×K (K ≪ D), the
j-th column of Z as z·,j = (z1j , . . . , zN̄j)

⊤, and the k-th column of Λ as λ·,k = (λ1k, . . . , λN̄k)
⊤.

We introduce the latent variable matrix Y ∈ RD×K , where the element yjk in Y indicates whether
z·,j is related to λ·,k. Under GMM, the goal is to maximize log p(Z|λ) and the likelihood functions
for the observed data Z and the complete data {Z,Y} are proportionally formulated as:

p(Z|λ) ∝
∏D

j=1

(∑K

k=1
N (z·,j |λ·,k, σIN̄ )

)
, p(Z,Y|λ) ∝

∏D

j=1

∏K

k=1
N (z·,j |λ·,k, σIN̄ )yjk ,

where σ is a hyper-parameter to adjust the distribution. By implementing the expectation-
maximization (EM) algorithm (Dempster et al., 1977), introduced in Appendix A , we can obtain in
the E step that the posterior probability of the latent variable (p(Y|Z,λ)) is calculated by:

γ(yjk) = p(yjk = 1|z·,j ,λold
·,k) =

N (z·,j |λold
·,k, σIN̄ )∑K

k′=1 N (z·,j |λold
·,k′ , σIN̄ )

;

and the posterior expectation Q(λ,λold) is: Q(λ,λold) = EY|Z,λold(log p(Z,Y|λ)). In the M step,
we maximize Q(λ,λold) and the subspace is updated by:

λnew
ik =

1∑D
j=1 γ(yjk)

∑D

j=1
γ(yjk)zij . (3)

Here, the qualities of the Gaussian means λ·,k and the posteriors γ(yjk) are critical. To simplify the
model, we fix the mixture weights (priors) to be equal and the covariance matrices to be isotropic. It
does not compromise the model’s generality, since the equal prior does not affect the posterior trends,
which are primarily data-driven. It also has advantages: (1) equal weights mitigate cluster collapse
and promotes uniform coverage of the embedding space; and (2) fixing the covariance focuses the
model’s fitting capacity on the “mean-defined subspace”, since based on the negative ELBO bound,
maximizing the log-likelihood in the M-step is equivalent to minimizing the weighted squared-
distance objective

∑
j,k γ(yjk)∥z·,j − λ·,k∥2. Theoretically, the iterative algorithm is guaranteed

to converge (Dempster et al., 1977), as stated in Remark 1 and proven in Appendix B.2. In the
experiment, we verify that the subspace searching algorithm can achieve good performance within
10 iterations across different datasets, incurring negligible additional computational cost.

Remark 1. In each iteration, we have log p(Z|λnew) ≥ log p(Z|λold).

By repeatedly iterating the E step and M step until converging, the algorithm enforces the trained
subspace Λ to effectively represent the core characteristics of the embedded representation Z, as
only the principal and cluster-level directions captured by the GMM means are retained while cor-
related or weakly informative variations are removed. As such, the intrinsic data relationship is
preserved in Λ while removing the redundancy. Discussion on the comparison with other rank
reduction ways can be found in Appendix C.

Feature Reconstruction. Further, to hold the main energy of the “clean” data (Ren et al., 2019),
we perform data reconstruction to produce low-rank and compact representations stripped of redun-
dancy. Concretely, we use the well-trained posterior probability of the latent variable γ̂(yjk) and
the optimal subspace Λ̂ = (λ̂ik) to linearly reconstruct the original features, i.e., each entry in the
reconstructed embedding Ẑ = (ẑij) ∈ RN̄×D is formulated as:

ẑij =
∑K

k=1
λ̂ikγ̂(yjk). (4)

Since the noise or unstable fluctuations in the original embeddings cannot be expressed within the
constrained subspace and thus vanish when reconstructing onto the original dimensions (mathemat-
ically, we have rank(Ẑ) = rank(Λ̂Γ̂⊤) ≤ min{rank(Λ̂), rank(Γ̂)} = K, whcih indicates that Ẑ
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maintains the low-rank property). Further, we argue in Theorem 2 that the proposed approach re-
constructs embedding Ẑ in a way that optimally preserves individual information and total variation
of the original embedding Z. The proof is shown in Appendix B.3.

Theorem 2. Under the low-rank feature reconstruction defined in Equation 4, the following
two conservation properties hold:

(1) Individual Mass Conservation: the aggregated information for each individual is pre-
served: ∑D

j=1
zij =

∑D

j=1
ẑij for all i ∈ {1, . . . , N̄}.

(2) Maximal Variation Preservation: the reconstruction Ẑ maximally preserves the total vari-
ation of the original embedding Z among all low-rank factorizations. Specifically, it is the
solution to the optimization problem:

Ẑ = arg min
Z′∈RN̄×D

∑N̄

i=1

∑D

j=1
zij(zij − z′ij) subject to Z′ = ΛΓ⊤,

where Λ ∈ RN̄×K and Γ ∈ RD×K with K ≪ D.

Theorem 2 (1) guarantees the invariance of each individual’s total signal mass. This is crucial for
fairness and interpretability, as it prevents the model from systematically biasing the reconstructed
profiles of any individual; while Theorem 2 (2) ensures that our reconstruction prioritizes the reten-
tion of the significant variations (with large zij) due to the cross-term

∑
i,j zijz

′
ij . This enables our

low-rank reconstruction to align strongly with these dominant patterns. By leveraging the optimal
low-dimensional subspace to reconstruct both the local- and global-view node embeddings, the se-
mantic gap between them is also well alleviated. The obtained compact representation from both
views can express the underlying data structure better, which is promising and beneficial to enhance
the graph clustering. The implementation is performed outside the gradient flow. Therefore, we
inject the tuned representations back into the gradient path using a residual connection:

Z̃ = (Z̃l⊤, Z̃g⊤)⊤ = Ẑ+ Z. (5)

On one hand, it ensures the model remains trainable by allowing gradients to flow through the
residual path; on the other hand, it combines the global trends captured by the low-rank component
with the local details preserved in the original Z, mitigating the over-smoothing that may result from
relying solely on a low-rank constraint and preventing model collapse (He et al., 2016).

2.3 CONSISTENCY LEARNING FOR SEMANTIC ENHANCING

On the basis of compact node representations Z̃l = (z̃l
1, . . . , z̃

l
N )⊤ and Z̃g = (z̃g

1, . . . , z̃
g
N )⊤ in

Equation 5, we develop the consistency learning to facilitate the exchange of knowledge between
the two complementary perspectives. Meanwhile, we expect that the final representations can finely
reflect the inherent relationships among nodes, thereby enhancing the label-free graph clustering.
Toward this end, we share the compact semantics by comparing the similarities of each node to
other samples in the embedding spaces of the two views.

We first randomly select a set of nodes over the given graph with indices {a1, . . . , aM} as the anchor
samples. Then, we calculate the cosine similarities between each node and these anchor samples
and formulate the similarity distribution by the softmax operation. Mathematically, for the i-th node
representations from the local and global views, the similarity scores of the m-th anchor are:

pim =
exp(cos(z̃l

i, z̃
l
am

)/τ)∑M
m′=1 exp(cos(z̃

l
i, z̃

l
a′
m
)/τ)

, qim =
exp(cos(z̃g

i , z̃
g
am)/τ)∑M

m′=1 exp(cos(z̃
g
i , z̃

g
a′
m
)/τ)

,

where cos(a,b) = a⊤b/(||a|| · ||b||) is the cosine similarity, τ denotes the temperature parameter.
For a comprehensive similarity measure, we need a large number of anchor samples so that they have
large variations to cover the neighborhood of any node. However, it requires high computational
costs to process too many samples in a single iteration. To address this problem, we maintain a
memory bank with size M as a queue defined on the fly by random nodes and calculate the similarity
scores for each node and the samples in the queue. By dynamically updating the queue, we improve
the diversity of the anchors with low complexity.
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Table 1: Clustering performance on five benchmark datasets (mean ± standard deviation). The top
two results for each method are marked in bold and underline, respectively.

Dataset Metric SDCN DFCN AutoSSL AFGRL GDCL ProGCL CCGC GraphLearner MAGI CoCo (Ours)

Cora

ACC 35.60±2.83 36.33±0.49 63.81±0.57 26.25±1.24 70.83±0.47 57.13±1.23 73.88±1.20 74.91±1.78 76.21±0.50 79.36+0.69
NMI 14.28±1.91 19.36±0.87 47.62±0.45 12.36±1.54 56.30±0.36 41.02±1.34 56.45±1.04 58.16±0.83 59.84±0.43 60.71±0.59
ARI 07.78±3.24 04.67±2.10 38.92±0.77 14.32±1.87 48.05±0.72 30.71±2.70 52.51±1.89 53.82±2.25 57.63±0.81 58.76±1.47
F1 24.37±1.04 26.16±0.50 56.42±0.21 30.20±1.15 52.88±0.97 45.68±1.29 70.98±2.79 73.33±1.86 74.07±0.45 77.95±0.72

AMAP

ACC 53.44±0.81 76.82±0.23 54.55±0.97 75.51±0.77 43.75±0.78 51.53±0.38 77.25±0.41 77.24±0.87 75.42±3.22 79.27±0.70
NMI 44.85±0.83 66.23±1.21 48.56±0.71 64.05±0.15 37.32±0.28 39.56±0.39 67.44±0.48 67.12±0.92 64.98±1.92 68.85±1.55
ARI 31.21±1.23 58.28±0.74 26.87±0.34 54.45±0.48 21.57±0.51 34.18±0.89 57.99±0.66 58.14±0.82 55.68±2.88 60.94±1.51
F1 50.66±1.49 71.25±0.31 54.47±0.83 69.99±0.34 38.37±0.29 31.97±0.44 72.18±0.57 73.02±2.34 73.03±3.30 72.36±1.15

BAT

ACC 53.05±4.63 55.73±0.06 42.43±0.47 50.92±0.44 45.42±0.54 55.73±0.79 75.04±1.78 75.50±0.87 59.54±3.90 78.85±0.91
NMI 25.74±5.71 48.77±0.51 17.84±0.98 27.55±0.62 31.70±0.42 28.69±0.92 50.23±2.43 50.58±0.90 29.83±5.13 55.00±0.87
ARI 21.04±4.97 37.76±0.23 13.11±0.81 21.89±0.74 19.33±0.57 21.84±1.34 46.95±3.09 47.45±1.53 23.91±3.76 53.52±1.15
F1 46.45±5.90 50.90±0.12 34.84±0.15 46.53±0.57 39.94±0.57 56.08±0.89 74.90±1.80 75.40±0.88 59.12±6.11 78.56±1.01

EAT

ACC 39.07±1.51 49.37±0.19 31.33±0.52 37.42±1.24 33.46±0.18 43.36±0.87 57.19±0.66 57.22±0.73 49.10±1.50 58.87±0.49
NMI 08.83±2.54 32.90±0.41 07.63±0.85 11.44±1.41 13.22±0.33 23.93±0.45 33.85±0.87 33.47±0.34 27.00±2.65 34.10±1.26
ARI 06.31±1.95 23.25±0.18 02.13±0.67 06.57±1.73 04.31±0.29 15.03±0.98 27.71±0.41 26.21±0.81 21.52±1.01 27.91±1.52
F1 33.42±3.10 42.95±0.04 21.82±0.98 30.53±1.47 25.02±0.21 42.54±0.45 57.09±0.94 57.53±0.67 44.38±2.20 58.06±2.64

UAT

ACC 52.25±1.91 33.61±0.09 42.52±0.64 41.50±0..25 48.70±0.06 45.38±0.58 56.34±1.11 55.31±2.42 50.35±0.16 59.68±0.36
NMI 21.61±1.26 26.49±0.41 17.86±0.22 17.33±0.54 25.10±0.01 22.04±2.23 28.15±1.92 24.40±1.69 21.45±0.28 30.12±0.51
ARI 21.63±1.49 11.87±0.23 13.13±0.71 13.62±0.57 21.76±0.01 14.74±1.99 25.52±2.09 22.14±1.67 17.79±0.23 29.46±0.47
F1 45.59±3.54 25.79±0.29 34.94±0.87 36.52±0.89 45.69±0.08 39.30±1.82 55.24±1.69 52.77±2.61 47.52±0.13 58.03±0.34

With the local- and global-view similarity distributions pi = (pi1, . . . , p
i
M ) and qi = (qi1, . . . , q

i
M ),

we encourage the consistency of them to facilitate the knowledge transfer and mutually enhance the
representation semantics. Formally, we define the consistency learning loss as:

L =
1

2N

∑N

i=1

(
KL(pi||qi) + KL(qi||pi)

)
, (6)

where KL(·||·) is the Kullback-Leibler (KL) divergence. In the training, we minimize L to optimize
our proposed CoCo and enhance self-supervised learning. After converging, we fuse the local- and
global-view representations by:

ZF = (Z̃l + Z̃g)/2. (7)
Then, we perform K-means on the fused node representation ZF to obtain the clustering results. An
outline of the training procedure is provided in Appendix D. A detailed analysis of time and space
complexities can be found in Section 3.8 and Appendix E.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

We evaluate our CoCo with five widely used benchmark datasets for deep graph clustering, i.e.,
Cora (Sen et al., 2008), AMAP (Shchur et al., 2018), BAT (Liu et al., 2023c), EAT (Liu et al.,
2023c), and UAT (Liu et al., 2023c). To comprehensively assess the effectiveness of our CoCo, we
benchmark it against leading state-of-the-art methods, including antoencoder-based methods, i.e.,
DEC (Xie et al., 2016), IDEC (Guo et al., 2017), DAEGC (Wang et al., 2019), ARGA (Pan et al.,
2019), SDCN (Bo et al., 2020), DFCN (Tu et al., 2021), and contrastive learning-based methods,
i.e., AGE (Cui et al., 2020), MVGRL (Hassani & Khasahmadi, 2020), GDCL (Zhao et al., 2021),
AutoSSL (Jin et al., 2022), AGC-DRR (Gong et al., 2022), AFGRL (Lee et al., 2022), GDCL (Zhao
et al., 2021), ProGCL (Xia et al., 2022), RGC (Liu et al., 2023a), Dink-Net (Liu et al., 2023b),
CCGC (Yang et al., 2023), GraphLearner (Yang et al., 2024), and MAGI (Liu et al., 2024a). Details
on evaluation metrics and implementation are presented in Appendix F.

3.2 EXPERIMENTAL RESULTS

In Table 1 and Appendix G, we present the quantitative results of our proposed CoCo, compared
with various competitive deep graph clustering baselines. From the tables, we draw the following
key observations. On the one hand, compared to autoencoder-based methods, contrastive learning-
based approaches show better performance. The reason lies in the ability of contrastive learning to
more effectively exploit the intrinsic semantic information of the graph-structured data. By learning
discriminative representations in a principled manner, contrastive learning better serves the cluster-
ing task. On the other hand, our approach achieves almost the best results on all five datasets, and
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significantly outperforms the runner-ups on many datasets. For instance, on Cora and BAT in Ta-
ble 1, our proposed CoCo surpass the runner-ups by {4.13%, 1.45%, 2.00%, 5.23%} and {4.16%,
8.74%, 12.79%, 4.19%} under four evaluation metrics, providing substantial evidence for the su-
periority of our approach. These results substantiate the success of the compactness learning and
consistency learning embodied in CoCo for graph clustering, while also implicitly suggesting the
superiority of cross-view consistency learning over contrastive learning, which is further validated
in detail in Section 3.3 and Appendix H.

3.3 ABLATION STUDY

In this section, we analyze the impact of various components of our proposed method.

Comparison of different model variants.We first define different model variants as: (i) M1: solely
adopt the local Laplacian smoothing filter to extract node representations (i.e., X̃l) for clustering;
(ii) M2: solely adopt the global one (i.e., X̃g) for clustering; (iii) M3: adopt local low-rank em-
beddings (i.e., Z̃l) by compactness learning based on X̃l for clustering; (iv) M4: adopt global
low-rank embeddings (i.e., Z̃g) by compactness learning based on X̃g for clustering; (v) M5: re-
move compactness learning from our full model CoCo. The results are summarized in Figure 2.
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Figure 2: The ablation experimental results.

Comparing M3 with M1 and M4 with M2,
mapping raw node features to low-rank em-
beddings improves the performance in both
cases, indicating the effectiveness of our
low-rank representations in learning better
cluster assignments. Similarly, when com-
paring M5 with our CoCo, removing the
low-rank mapping also leads to performance
degradation, further emphasizing the neces-
sity of compactness learning. In addition,
comparing M5 and CoCo with M1-M4, we
observe a significant performance difference
between the two groups, possibly because
our consistency learning effectively inte-
grates semantic knowledge from both local
and global perspectives, enabling more dis-
criminative and robust representations compared to any single viewpoint. Below, we further consider
the comparison between the consistency loss and other surrogate losses.

Table 2: The comparative results of consistency learn-
ing loss v.s MSE and InfoNCE.

Dataset Loss ACC NMI ARI F1

Cora
MSE 77.84±0.67 60.31±0.89 57.81±1.42 73.89±1.09
InfoNCE 75.57±1.16 58.03±1.44 54.69±1.85 72.58±1.81
Consistency 79.36+0.69 60.71±0.59 58.76±1.47 77.95±0.72

AMAP
MSE 77.62±0.44 67.68±0.76 58.51±0.97 71.84±0.77
InfoNCE 77.25±0.33 67.12±0.46 58.24±0.57 71.89±0.53
Consistency 79.27±0.70 68.85±1.55 60.94±1.51 72.36±1.15

UAT
MSE 57.18±0.74 28.43±0.62 25.65±1.11 56.96±0.73
InfoNCE 56.72±0.23 27.67±0.42 25.01±0.45 56.39±0.39
Consistency 59.68±0.36 30.12±0.51 29.46±0.47 58.03±0.34

Influence of Consistency Learning. To
investigate the advantages of our pro-
posed consistency learning, we compare
two widely used loss functions, Mean
Squared Error (MSE) and contrastive loss
InfoNCE (Chen et al., 2020b), on all
datasets. The comparative results are pre-
sented in Table 2 and Appendix H. It can
be observed that InfoNCE performs worse
than MSE in most cases. This could be po-
tentially attributed to InfoNCE’s reliance
on extensive negative instance sampling in
contrastive learning, which may introduce more complexity and sensitivity to hyper-parameter tun-
ing compared to the direct regression-based optimization of MSE. Moreover, the performance of
consistency learning significantly outperforms the other two loss functions, which fully demon-
strates the effectiveness of semantic enhancement brought by aligning the similarity distributions of
local and global perspectives in consistency learning.

3.4 VISUALIZATION ANALYSIS

To visually verify the validity of our proposed CoCo, we plot the projected distributions (t-SNE) of
the learned embeddings on Cora and AMAP (Van der Maaten & Hinton, 2008), compared with six
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SDCN AutoSSL ProGCL CCGC GraphLearner MAGI CoCo (Ours)

Figure 3: The t-SNE results comparing our CoCo with competitive baselines on two datasets. The
first row and second row correspond to Cora and AMAP, respectively.

baselines. The visualization results are displayed in Figure 3. It can be observed that CoCo exhibits
a lower degree of inter-cluster confusion on Cora and better separability among different clusters on
AMAP, showcasing CoCo’s ability to learn more discriminative representations and effective cluster
assignments compared with competitive methods.

3.5 SENSITIVITY ANALYSIS

Here, we study the sensitivity of key hyper-parameters: the subspace dimension K, the anchor
number M , and the teleport probability α. The results are presented in Figure 4 and Appendix I. We
also perform robust analysis with varying t (in Equation 1) in Appendix J.

Effect of K. As shown in the first row of Figure 4, when K ranges from 32 to 128, the clus-
tering performance under four metrics on two datasets increases slowly. However, as K fur-
ther increases, the performance of the model starts to decline. This is because incorporating
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Figure 4: Sensitivity experimental results.

too high-dimensional subspace introduces redun-
dant or irrelevant underlying structural information,
which hinders the compactness of node embeddings.

Effect of M . The second row of Figure 4 reports the
impact of the number of anchor samples M in the
queue. It can be observed that when M is very small
(M=64), the model’s performance is poorer. This
is because for each node, there are not enough an-
chor samples in its vicinity to adequately represent
the node’s neighborhood structure. As M increases,
the model maintains relatively high performance and
remains stable. This allows the model to better cap-
ture the neighborhood structure information of nodes
and enhances consistency learning.

Effect of α. In the third row of Figure 4, we report
the impact of the teleport probability α in graph dif-
fusion matrix S. It can be observed that the model
performance remains relatively stable when α is set
to 0.1 or 0.2. However, as α continues to increase,
the performance begins to decline, with a particu-
larly noticeable drop at α = 0.8. This is because a
larger α leads to a more “localized” diffusion scope
(prioritizing the node’s own information), causing the two branches to capture increasingly simi-
lar information and thus failing to provide additional benefits. In contrast, a smaller α results in a
more “global” diffusion (integrating information across the entire graph), which is more critical for
capturing richer and complementary knowledge.

3.6 ROBUSTNESS ANALYSIS ON NOISY GRAPHS

To further assess the effectiveness and robustness of CoCo, we construct noisy graphs from BAT
under three noise settings: (1) attribute noise by adding Gaussian noise N (0, 5); (2) edge noise by
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Table 4: Comparison on heterophilic graphs.

Dataset GraphLearner MAGI CoCo (Ours)
ACC NMI ACC NMI ACC NMI

Cornell 43.00 14.17 34.26 7.63 59.68 24.34
Wisconsin 46.06 19.38 33.39 8.40 56.39 17.04

Table 5: Comparison on homophilic graphs.

Dataset DGCN CoCo (Ours)
ACC NMI ACC NMI

Cora 72.89 56.82 79.36 60.71
AMAP 76.06 65.36 79.27 68.85

(a) Cora-Runtime (b) Cora-Memory (c) AMAP-Runtime (d) AMAP-Memory

Figure 5: Comparisons of average training time per epoch and memory cost.

Table 3: Comparison of accuracy on noisy BAT.

Noise Type Attribute Edge Attribute & Edge

GraphLearner 52.52 36.79 38.63
MAGI 36.26 38.70 35.19

CoCo (Ours) 64.12 55.57 48.78

randomly adding/deleting edges with probabil-
ity 0.3; and (3) both attribute and edge noise.
The clustering accuracy results in Table 3 show
that, although noise degrades performance for
all methods (cf. Table 1), our CoCo still consis-
tently outperforms GraphLearner and MAGI. It
highlights the strong redundancy-reduction and
noise-resistant ability of compactness learning, as well as the role of consistency learning in captur-
ing richer semantic information to ensure robustness when facing noise.

3.7 PERFORMANCE COMPARISON ON HETEROPHILIC GRAPHS

To further validate the applicability of our method, we compare the proposed CoCo with competitive
baselines on the heterophilic graphs Cornell and Wisconsin (Pei et al., 2020), and we also compare
CoCo on homophilic graphs with method tailored for homophilic graphs, i.e., DGCN (Pan & Kang,
2023). From Table 4, our CoCo mostly outperforms the recent competitive baselines GraphLearner
and MAGI on heterophilic graphs, likely due to its robustness against cross-class edges via compact-
ness and consistency learning. From Table 5, CoCo also surpasses DGCN on homophilic graphs,
further confirming the effectiveness and applicability of CoCo.

3.8 TIME AND SPACE COMPLEXITY COMPARISON

In this part, we compare the time and space complexities of our CoCo with several latest and com-
petitive methods, i.e., CCGC, Dink-Net, GraphLearner, MAGI, in Figure 5. The results show a
comparison of clustering accuracy (ACC, ↑) and average runtime/memory cost (↓) among different
methods. Our CoCo achieves best clustering performance on Cora and AMAP while maintaining
relatively low time and space complexity, which further demonstrates the efficiency and scalability
of our approach. Detailed theoretical analysis and comparison are provided in Appendix E.

Table 6: Impact of EM iterations.

Iterations Cora AMAP
NMI Efficiency NMI Efficiency

1 47.99±4.07 1.62% 62.96±2.16 2.23%
5 59.81±0.73 2.93% 68.50±1.25 3.27%

10 60.71±0.59 4.28% 68.85±1.55 4.24%
20 60.69±0.57 6.69% 68.87±1.88 6.16%
30 60.70±0.60 8.46% 68.81±1.70 8.42%

Besides, to explore the impact of EM iterations
on efficiency, we here we examine how differ-
ent iteration counts affect performance (using
NMI as an example) and efficiency (EM time
per iteration / total time per iteration), with the
results presented in Table 6. From the results,
we can see that although the proportion of EM
iteration time in the total runtime gradually in-
creases with the number of iterations, the per-
formance stabilizes after 10 iterations, indicat-
ing that the model has already converged. Further increasing the number of EM iterations yields no
additional benefits. Therefore, it can be concluded that the EM iterative algorithm accounts for only
about 4% of the total training time, demonstrating remarkably high efficiency.
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3.9 EVALUATION ON NODE CLASSIFICATION TASK

Table 7: Performance comparison on node classification
task (OOM denotes Out of Memory).

Dataset WikiCS Computers Photo Coauthor CS Coauthor Physics
GCN 77.19±0.12 86.51±0.54 92.42±0.22 93.03±0.31 95.65±0.16

node2vec 71.79±0.05 84.39±0.08 89.67±0.12 85.08±0.03 91.19±0.04
DeepWalk 74.35±0.06 85.68±0.06 89.44±0.11 84.61±0.22 91.77±0.15

DGI 75.35±0.14 83.95±0.47 91.61±0.22 92.15±0.63 94.51±0.52
GMI 74.85±0.08 82.21±0.31 90.68±0.17 OOM OOM

MVGRL 77.52±0.08 87.52±0.11 91.74±0.07 92.11±0.12 95.33±0.03
GCA 78.30±0.62 88.49±0.51 92.99±0.27 92.76±0.16 OOM

GRACE 78.25±0.65 88.15±0.43 92.52±0.32 92.60±0.11 OOM
CCA-SSG 77.88±0.41 87.01±0.41 92.59±0.25 92.77±0.17 95.16±0.10

BGRL 79.36±0.53 88.35±0.32 92.87±0.27 91.72±0.21 95.43±0.09
GTCA 79.58±0.65 89.15±0.57 92.97±0.31 92.33±0.18 95.24±0.07

CoCo 80.06±0.45 89.62±0.43 93.34±0.37 93.07±0.13 95.52±0.08

We further analyze the generaliza-
tion ability of our CoCo to verify
whether the learned node represen-
tations perform well on downstream
tasks beyond graph clustering task,
taking node classification as an exam-
ple. We evaluate its performance un-
der the predicted accuracy metric us-
ing widely adopted datasets including
WikiCS (Mernyei & Cangea, 2020),
Computers (McAuley et al., 2015),
Photo (McAuley et al., 2015), Coau-
thor CS (Sinha et al., 2015), and
Coauthor Physics (Sinha et al., 2015),
and compare it with several compet-
itive state-of-the-art methods, i.e., GCN (Kipf & Welling, 2016), node2vec (Grover & Leskovec,
2016), DeepWalk (Perozzi et al., 2014), DGI (Velickovic et al., 2019), GMI (Peng et al., 2020),
MVGRL (Hassani & Khasahmadi, 2020), GCA (Zhu et al., 2020), GRACE (Zhu et al., 2021), CCA-
SSG (Zhang et al., 2021), BGRL (Thakoor et al., 2021) and GTCA (Liang et al., 2025). Specifically,
we first perform unsupervised pre-training using the proposed framework, followed by supervised
fine-tuning on a labeled dataset. As shown in Table 7, our proposed CoCo outperforms all baseline
methods across all datasets, demonstrating the strong generalizability of our learned node represen-
tations. This superior performance can be attributed to our method’s ability to capture structural
information from multiple perspectives and learn low-rank node representations that align more
closely with the data distribution, effectively supporting various downstream tasks.

4 CONCLUSION

In this paper, we propose a novel approach named CoCo for deep graph clustering. CoCo first
encodes the attribute and topology information from local and global views. Then CoCo exploits
low-rank embeddings via GMM to remove noise and redundancy, thereby uncovering the intrinsic
structure of nodes. Based on the compact low-rank embeddings, CoCo also performs consistency
learning of node similarities to enrich semantics information. Experiments under different data types
(homophilic, heterophilic, noisy, and large-scale graphs) and different tasks (graph clustering mainly
and node classificaion) show that our CoCo outperforms the state-of-the-art methods. In addition,
the comparison of spatiotemporal complexity demonstrates the efficiency of our method. For future
work, we aim to extend our model to temporal graph clustering and single-cell genomics clustering,
facilitating the analysis of dynamic structures and accurate grouping of cells by genetic profiles.
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A EXPECTATION-MAXIMIZATION ALGORITHM FOR GAUSSIAN MIXTURE
MODEL.

The Gaussian mixture model (GMM) (Richardson & Green, 1997) is a linear superposition of mul-
tiple Gaussian components. Assuming GMM consists of K Gaussians, given the observed data
X = (x1, . . . ,xN )⊤, the likelihood function is given by

p(X|θ) =
N∏
i=1

(
K∑

k=1

πkN (xi|µk,Σk)

)
,

where θ = {πk,µk,Σk}Kk=1, N (x|µk,Σk) is the probability density function of the k-th Gaus-
sian, and πk is the prior probability. We can employ the expectation-maximization (EM) algorithm
(Dempster et al., 1977) to fit GMM, in which the latent variables Y = (yik) ∈ RN×K are introduced
to indicate whether the i-th sample belongs to the k-th Gaussian by yik.

In the E step, EM computes the posterior probability:

γ(yik) = p(yik = 1|xi,θ
old) =

πold
k N (xi|µold

k ,Σold
k )∑K

j=1 π
old
j N (xi|µold

j ,Σold
j )

,

and the posterior expectation:

Q(θ,θold) =

K∑
k=1

N∑
i=1

γ(yik)(log πk + logN (xi|µk,Σk)).

In the M step, EM maximizes Q(θ,θold) to achieve the updated parameters θnew:

µnew
k =

1∑N
i=1 γ(yik)

N∑
i=1

γ(yik)xi, πnew
k =

∑N
i=1 γ(yik)

N
,

Σnew
k =

1∑N
i=1 γ(yik)

N∑
i=1

γ(yik)(xi − µnew
k )(xi − µnew

k )⊤.

B PROOFS

B.1 PROOF OF THEOREM 1.

Proof. The smoothness of a graph signal x, defined on the vertices of the graph, can be characterized
by the Rayleigh quotient based on the normalized graph Laplacian matrix L̃ (Horn & Johnson,
2012), i.e., x⊤L̃x/x⊤x, which expresses the normalized variance score of x. The smaller this value
is, the smoother the signal is. Denote by Ũp = (ũp

1, . . . , ũ
p
N )⊤ and Λ̃p = diag(λ̃p

1, . . . , λ̃
p
N ) the

eigenvector matrix and eigenvalue matrix of L̃p(p = l, g). Based on the eigendecomposition of L̃p,
the signal x can be decomposed into:

Ũpcp =

N∑
i=1

cp
i ũ

p
i (Fourier inverse transform),

where cp is the coefficient vector. Then the filtered signal by Equation 1 is x̃p =
∑N

i=1(1 −
λ̃p
i/k

p)tcp
i ũ

p
i and the corresponding Rayleigh quotient is:

x̃p⊤L̃px̃p

x̃p⊤x̃p =

∑N
i=1[(1− λ̃p

i/k
p)tcp

i ]
2λ̃p

i∑N
i=1[(1− λ̃p

i/k
p)tcp

i ]
2

.

To filter high-frequency noise, kp should be set to ensure the low-pass property of the filter (for any
t), also the smoothness. On the one hand, 1 − λ̃p

i/k
p should be non-negative. Hence, kp ≥ λ̃p

i for
any 1 ≤ i ≤ N , which leads to kp ≥ λ̃p

max. On the other hand, 1− λ̃p
i/k

p should become smaller as
λ̃p
i becomes larger to ensure that the filter captures low-frequency signal. So the value of kp should

be small and the optimal kp is set to λ̃p
max, , which completes the proof.
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B.2 PROOF OF REMARK 1.

Proof. By the conditional probability formula, we have:

log p(Z|λnew) = log p(Z,Y|λnew)− log p(Y|Z,λnew).

Hence, we further have:

log p(Z|λnew) =

∫
p(Y|Z,λold) log p(Z|λnew)dY

=

∫
p(Y|Z,λold) log p(Z,Y|λnew)dY−∫
p(Y|Z,λold) log p(Y|Z,λnew)dY

≜Q(λnew,λold)−H(λnew,λold).

If Q(λnew,λold) ≥ Q(λold,λold) and H(λnew,λold) ≤ H(λold,λold) hold, we can conclude that:

log p(Z|λnew) ≥ log p(Z|λold).

In the E step, we maximized the Q-function, which implies that Q(λnew,λold) ≥ Q(λold,λold). As
for the H-function, we have:

H(λnew,λold)−H(λold,λold)

=

∫
p(Y|Z,λold) log

p(Y|Z,λnew)

p(Y|Z,λold)
dY

≤ log

∫
p(Y|Z,λnew)dY = log 1 = 0,

which follows from the Jensen inequality, i.e., E(logX) ≤ logE(X). The proof is completed.

B.3 PROOF OF THEOREM 2.

Proof. After the subspace training algorithm converges, according to Equation 3 and summing over
k, we have:

K∑
k=1

λ̂ik

D∑
j=1

γ̂(yjk) =

K∑
k=1

D∑
j=1

γ̂(yjk)zij .

Then the following equality also holds:

D∑
j=1

(
K∑

k=1

λ̂ikγ̂(yjk)

)
=

D∑
j=1

(
K∑

k=1

γ̂(yjk)

)
zij .

It implies that
∑D

j=1 ẑij =
∑D

j=1 zij , which follows from that
∑K

k=1 γ̂(yjk) = 1 and Equation 4
holds. This guarantees that the total mass of each row in Z is preserved, meaning that the aggregated
information associated with individual i remains unchanged after reconstruction. Also, it ensures
that the individual-level signal encoded in the original embedding is retained.

In addition, the Q-function defined in the proof of Remark 1 can be rewritten as:

Q(λ,λold) =

D∑
j=1

K∑
k=1

γ(yjk) log
[ 1

(2π)
N̄
2 σ

1
2

exp

(
−||z·,j − λ·,k||2

2σ

)]

=

D∑
j=1

K∑
k=1

γ(yjk) log
1

(2π)
N̄
2 σ

1
2

+

D∑
j=1

K∑
k=1

γ(yjk) ·
||z·,j − λ·,k||2

2σ

=−D log[(2π)
N̄
2 σ

1
2 ] +

1

2σ

N̄∑
i=1

D∑
j=1

K∑
k=1

p(yjk = 1|z·,j ,λ·,k)(zij − λik)
2,
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which is maximized in the M step. Obviously, continuously maximizing Q-function throughout the
entire iteration process is equivalent to minimizing the objective:

N̄∑
i=1

D∑
j=1

K∑
k=1

p(yjk = 1|z·,j ,λ·,k)(zij − λik)
2. (8)

Again, when converging, due to that
∑K

k=1 γ̂(yjk) = 1 and Equation 4 holds, the optimized objec-
tive in Equation 8 can be written as:

N̄∑
i=1

D∑
j=1

(
z2ij +

K∑
k=1

γ̂(yjk)λ̂
2
ik − 2zij ẑij

)
.

As for the term
∑K

k=1 γ̂(yjk)λ̂
2
ik, we have:

D∑
j=1

K∑
k=1

γ̂(yjk)λ̂
2
ik =

K∑
k=1

λ̂2
ik

D∑
j=1

γ̂(yjk)

=

K∑
k=1

λ̂2
ik ·

∑D
j=1 γ̂(yjk)zij

λ̂ik

(by Equation 3)

=

D∑
j=1

zij

K∑
k=1

λ̂ikγ̂(yjk) =

D∑
j=1

zij ẑij .

Thus, we can obtain that the objective in Equation 8 is minimized to

N̄∑
i=1

D∑
j=1

zij(zij − ẑij) =
∑
i,j

z2ij︸ ︷︷ ︸
original total variation

−
∑
i,j

zij ẑij︸ ︷︷ ︸
alignment with reconstruction

.

The first term,
∑

i,j z
2
ij , measures the total variation (energy) of the original embedding, while∑

i,j zij ẑij quantifies how much of this variation is preserved in the reconstructed representation.
Notably, compared with the self-energy

∑
i,j(ẑij)

2, the cross-term zij ẑij directly captures how well
the reconstructed embedding aligns with the original signal rather than merely measuring its own
magnitude. Hence, maximizing the cross-correlation term corresponds to keeping the dominant
variations present in Z, and the above minimized objective brings a reconstruction Ẑ that preserves
as much of the original total variation as possible while suppressing redundant or noisy components,
which completes the proof.

C MORE DISCUSSIONS ON THE PROPOSED COCO

GMM v.s. Other optional Rank Reduction Methods. In order to obtain low-rank representations,
many methods can achieve this goal. However, the advantage of GMM lies in its linear modeling
complexity, with time and space complexities of O(NDK) and O(ND), respectively, while PCA
has time and space complexities of O(ND2+D3) and O(ND+D2). When the number of features
is high, the complexity of PCA is also high. Compared to K-means, since GMM is a probabilistic
model and belongs to soft clustering algorithms, it is more robust to outliers and can be applied
to a wider range of data distributions. Compared to methods like autoencoders for dimensionality
reduction, GMM has fewer training parameters and lower time and space complexities. Therefore,
our paper chooses GMM to achieve low-rank representation learning. Of course, other better ways
to conduct low-rank space training can be further explored.

Consistency Learning v.s. Contrastive Learning. Contrastive learning (Chen et al., 2020b; You
et al., 2020) shares similar ideas with our consistency learning, utilizing the similarity of data rep-
resentations under different data augmentations to bring similar samples closer and push dissimilar
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samples apart. However, there are significant differences between contrastive learning and our con-
sistency learning. First, the proposed consistency learning aims to uncover relationship information
among non-iid nodes, thereby better reflecting the underlying structural distribution of nodes in the
representation. Second, we consider consistency learning at the relational information level from
both local and global perspectives, emphasizing alignment learning. This enables representations
from two perspectives to interact, guide each other, and learn, thereby obtaining more semantically
rich node representations to better serve graph clustering. Third, contrastive learning involves neg-
ative samples, whereas our consistency learning does not. In summary, contrastive learning focuses
on sample discriminability at the instance level, whereas our consistency learning considers to bridge
the gap between the considered local and global views at the relational distribution level. This is a
higher-order, more global approach to capturing semantic knowledge in graph data.

Besides, in Table 2 of the experiments section and Appendix H, we also compare the performance
of our consistency learning loss with the contrastive learning loss (InfoNCE) (Chen et al., 2020b;
You et al., 2020). It’s clear that our consistency learning outperforms contrastive learning by a con-
siderable margin, which fully demonstrates that our distribution-based consistency is more capable
of capturing the intrinsic dependencies between nodes at a higher semantic level.

D TRAINING PROCEDURE

The training procedure is shown in Algorithm 1. The source code is available for reproducibility at:
https://anonymous.4open.science/r/CoCo-7D8B.

Algorithm 1 The Optimization Framework of CoCo
Input: Graph G = {V, E ,X,A}; Cluster number C;
Output: Clustering result c;

1: Obtain the local- and global-view filtered attribute matrix X̃l and X̃g in Equation 1;
2: Initialize the trainable parameters in MLP1 and MLP2;
3: while not converge do
4: Update Zl and Zg by encoding X̃l and X̃g in the unshared MLP encoders;
5: Update the optimal subspace Λ̂ by performing iterations through Equation 3;
6: Update the reconstructed embeddings Z̃l and Z̃g by Equation 4 and Equation 5;
7: Update the similarity distributions pi and qi for i = 1, . . . , N ;
8: Calculate the loss L in Equation 6;
9: Perform backpropagation and update the entire network in CoCo by minimizing L;

10: end while
11: Derive the clustering result c by applying K-means to the fused representations from Equation 7;
Return c;

E COMPLEXITY ANALYSIS

Table 8: Theoretical analysis of complexity

Method Time Space

MVGRL O(N2D) O(N2)
RGC O(N2D) O(N2)

CCGC O(N2D) O(N2)
Dink-Net O(NCD) O(NC +ND)

GraphLearner O(N2D) O(N2)
MAGI O(ND2) O(ND + |E|+N2)

CoCo (Ours) O(NDK +NMD) O(ND +NM)

Given a graph dataset comprising N
nodes and E edges. The sparse diffu-
sion matrix Ŝ can be approximately
calculated in linear time and space,
i.e., O(N) (Klicpera et al., 2019).
Assume the number of non-zero ele-
ments in the sparse diffusion matrix
Ŝ is denoted as nnz(Ŝ), the com-
putational complexity of graph con-
volutional filters is O(nnz(Ŝ) ∗ N).
For each dataset, they only need to be
computed once at the beginning of training. In each epoch, GMM training and feature reconstruction
have linear time complexity of O(NDK) and space complexity of O(ND). Consistency learning
has time complexity of O(NMD) and space complexity of O(NM). In summary, the preprocess-
ing time and space complexities of CoCo based on sparsification are O(N) and O(E), respectively.
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In each training epoch, the time complexity of CoCo is O(NDK+NMD) and the space complex-
ity of CoCo is O(ND +NM).

Comparison between our CoCo and several recent and competitive baselines is presented in the
Table 8. It can be observed that, comparing with the quadratic time complexity of MVGRL, RGC,
CCGC and GraphLearner, our CoCo scales linearly with the number of samples, making it more
suitable for large-scale datasets where computational efficiency is crucial.

F DETAILS OF EXPERIMENTAL SETUP

Datasets. Following Yang et al. (2023), we assess the performance of our CoCo with five widely
used benchmark datasets for deep graph clustering, i.e., Cora (Sen et al., 2008), AMAP (Shchur
et al., 2018), BAT (Liu et al., 2023c), EAT (Liu et al., 2023c), and UAT (Liu et al., 2023c).

Baseline Methods. To comprehensively assess the effectiveness of our proposed CoCo, we
benchmark it against leading state-of-the-art methods, including autoencoder-based deep graph
clustering/self-supervised learning methods: DEC (Xie et al., 2016), IDEC (Guo et al., 2017),
DAEGC (Wang et al., 2019), ARGA (Pan et al., 2019), SDCN (Bo et al., 2020), DFCN (Tu et al.,
2021); and contrastive deep graph clustering/self-supervised learning methods: AGE (Cui et al.,
2020), MVGRL (Hassani & Khasahmadi, 2020), GDCL (Zhao et al., 2021), AutoSSL (Jin et al.,
2022), AGC-DRR (Gong et al., 2022), AFGRL (Lee et al., 2022), GDCL (Zhao et al., 2021),
ProGCL (Xia et al., 2022), RGC (Liu et al., 2023a), Dink-Net (Liu et al., 2023b), CCGC (Yang
et al., 2023), GraphLearner (Yang et al., 2024), and MAGI (Liu et al., 2024a).

Evaluation Metrics and Implementation Details. We adopt four benchmark metrics following
Bo et al. (2020) for evaluation: Accuracy (ACC), Normalized Mutual Information (NMI), Average
Rand Index (ARI), and Macro F1-score (F1). Larger values imply better clustering results. For each
method, we present the mean and standard deviation of the four metrics across 10 runs. The proposed
model is implemented with PyTorch and all experiments are carried out on NVIDIA GeForce RTX
4090. The hidden dimension d is set to 500 for AMAP/UAT, and 1500 for other datasets. We set
the total number of training epochs to 1000 and the number of filter layers to 3. The dimension of
the subspace K is set to 64 and the number of the selected anchor samples M is set to 128. The
parameters of temperature τ and teleport probability α are set to 0.02 and 0.2, respectively.

G ADDITIONAL MAIN EXPERIMENTAL RESULTS

Table 9: Clustering performance on five benchmark datasets (mean ± standard deviation). The top
two results for each method are marked in bold and underline, respectively.

Dataset Metric DEC IDEC DAEGC ARGA AGE MVGRL GDCL AGC-DRR RGC Dink-Net CoCo (Ours)

Cora

ACC 46.50±0.26 51.61±1.02 70.43±0.36 71.04±0.25 73.50±1.83 70.47±3.70 70.83±0.47 40.62±0.55 - 77.11±0.10 79.36±0.69
NMI 23.54±0.34 26.31±1.22 52.89±0.69 51.06±0.52 57.58±1.42 55.57±1.54 56.30±0.36 18.74±0.73 57.60+1.36 59.76±0.10 60.71±0.59
ARI 15.13±0.42 22.07±1.53 49.63±0.43 47.71±0.33 48.05±0.72 48.70±3.94 50.10±2.14 14.80±1.64 49.46+2.72 38.16±0.13 58.76±1.47
F1 39.23±0.17 47.17±1.12 68.27±0.57 69.27±0.39 69.28±1.59 67.15±1.86 52.88±0.97 31.23±0.57 - 74.76±0.10 77.95±0.72

AMAP

ACC 47.22±0.08 47.62±0.08 75.96±0.23 69.28±2.30 75.98±0.68 41.07±3.12 43.75±0.78 76.81±1.45 - 79.11±0.43 79.27±0.70
NMI 37.35±0.05 37.83±0.08 65.25±0.45 58.36±2.76 65.38±0.61 30.28±3.94 37.32±0.28 66.54±1.24 69.61+0.36 67.70±0.30 68.85±1.55
ARI 18.59±0.04 19.24±0.07 58.12±0.24 44.18±4.41 55.89±1.34 18.77±2.34 21.57±0.51 60.15±1.56 59.58+0.39 59.76±0.76 60.94±1.51
F1 46.71±0.12 47.20±0.11 69.87±0.54 64.30±1.95 71.74±0.93 32.88±5.50 38.37±0.29 71.03±0.64 - 72.86±0.32 72.36±1.15

BAT

ACC 42.09±2.21 39.62±0.87 52.67±0.00 67.86±0.80 56.68±0.76 37.56±0.32 45.42±0.54 47.79±0.02 - 54.20±0.13 78.85±0.91
NMI 14.10±1.99 12.80±1.74 21.43±0.35 49.09±0.54 36.04±1.54 29.33±0.70 31.70±0.42 19.91±0.24 51.58+0.83 28.33±0.32 55.00±0.87
ARI 07.99±1.21 07.85±1.31 18.18±0.29 42.02±1.21 26.59±1.83 13.45±0.03 19.33±0.57 14.59±0.13 47.16+1.35 23.00±0.54 53.52±1.15
F1 42.63±2.35 40.11±0.99 52.23±0.03 67.02±1.15 55.07±0.80 29.64±0.49 39.94±0.57 42.33±0.51 - 53.22±0.17 78.56±1.01

EAT

ACC 36.47±1.60 35.56±1.34 36.89±0.15 52.13±0.00 47.26±0.32 32.88±0.71 33.46±0.18 37.37±0.11 - 50.78±0.17 58.87±0.49
NMI 04.96±1.74 04.63±0.97 05.57±0.06 22.48±1.21 23.74±0.90 11.72±1.08 13.22±0.33 07.00±0.85 37.77+0.13 21.66±0.36 34.10±1.26
ARI 03.60±1.87 03.19±0.76 05.03±0.08 17.29±0.50 16.57±0.46 04.68±1.30 04.31±0.29 04.88±0.91 30.16+0.15 18.87±0.66 27.91±1.52
F1 34.84±1.28 35.52±1.50 34.72±0.16 52.75±0.07 45.54±0.40 25.35±0.75 25.02±0.21 35.20±0.17 - 48.28±0.19 58.06±2.64

UAT

ACC 45.61±1.84 46.90±0.17 52.29±0.49 49.31±0.15 52.37±0.42 44.16±1.38 48.70±0.06 42.64±0.31 - 57.65±0.09 59.68±0.36
NMI 16.63±2.39 17.84±0.35 21.33±0.44 25.44±0.31 23.64±0.66 21.53±0.94 25.10±0.01 11.15±0.24 28.79±0.35 25.28±0.15 30.12±0.51
ARI 13.14±1.97 16.34±0.40 20.50±0.51 16.57±0.31 20.39±0.70 17.12±1.46 21.76±0.01 09.50±0.25 19.89±1.30 26.42±0.14 29.46±0.47
F1 44.22±1.51 46.51±0.17 50.33±0.64 50.26±0.16 50.15±0.73 39.44±2.19 45.69±0.08 35.18±0.32 - 54.52±0.10 58.03±0.34

Apart from the comparisons with a range of competitive baselines in Table 1, we carry out more
extensive comparative experiments herein. Table 9 presents a performance comparison between
our proposed CoCo and several other graph clustering or unsupervised learning methods. It can be
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seen that RGC (Liu et al., 2023a) outperforms our model on certain metrics in AMAP and EAT,
possibly because RGC can automatically learn the number of clusters, which may, to some extent,
better approximate the true data distribution. However, we still achieved the best performance on
most datasets. It can be attributed to the fact that our proposed CoCo captures complementary se-
mantic information from both local and global views, enabling a more comprehensive exploration
of the graph’s characteristics. Moreover, our CoCo learns low-rank embeddings, which effectively
removes redundancies and noise. Finally, consistency learning enriches the semantics of node rep-
resentations from both local and global perspectives. Hence, different modules complement each
other to facilitate better clustering assignments.

H ADDITIONAL RESULTS ON INFLUENCE OF CONSISTENCY LEARNING

Table 10: The comparative analysis of consistency learning across all datasets.

Dataset Loss ACC NMI ARI F1

Cora
MSE 77.84±0.67 60.31±0.89 57.81±1.42 73.89±1.09
InfoNCE 75.57±1.16 58.03±1.44 54.69±1.85 72.58±1.81
Consistency 79.36+0.69 60.71±0.59 58.76±1.47 77.95±0.72

AMAP
MSE 77.62±0.44 67.68±0.76 58.51±0.97 71.84±0.77
InfoNCE 77.25±0.33 67.12±0.46 58.24±0.57 71.89±0.53
Consistency 79.27±0.70 68.85±1.55 60.94±1.51 72.36±1.15

BAT
MSE 76.87±0.60 53.30±1.18 50.85±1.07 76.32±0.71
InfoNCE 78.70±0.53 53.99±0.74 51.85±1.14 78.03±0.51
Consistency 78.85±0.91 55.00±0.87 53.52±1.15 78.56±1.01

EAT
MSE 57.42±0.45 32.80±0.86 26.27±0.74 57.83±0.38
InfoNCE 55.26±1.25 30.34±0.96 23.76±0.94 55.53±0.94
Consistency 58.87±0.49 34.10±1.26 27.91±1.52 58.06±2.64

UAT
MSE 57.18±0.74 28.43±0.62 25.65±1.11 56.96±0.73
InfoNCE 56.72±0.23 27.67±0.42 25.01±0.45 56.39±0.39
Consistency 59.68±0.36 30.12±0.51 29.46±0.47 58.03±0.34

To further comprehensively verify the effectiveness of our proposed consistency learning strategy,
we conduct additional experiments on two more datasets beyond Table 2. As clearly shown in Table
10, the reported results consistently show that our consistency learning significantly outperforms
both MSE and InfoNCE across all evaluated datasets. This superior overall performance strongly
highlights the ability of our method to effectively capture high-order semantic similarity relations
via the powerful distribution-based alignment. The reason why the two compared metrics perform
poorly may be that MSE only focuses on point-wise errors and ignores inter-sample correlations,
while InfoNCE is prone to instability due to the influence of negative sample selection. Overall,
these additional results provide a broader and more empirical basis for our conclusions, further
reinforcing the superiority, and robustness of our proposed consistency learning approach.

I ADDITIONAL SENSITIVITY ANALYSIS

Here we extend the sensitivity analysis of the key hyper-parameters K, M and α to three additional
datasets. The results in Figure 6 show that the clustering performance on all datasets increases
slowly as K ranges from 32 to 128, but starts to decline when K becomes too large. This is con-
sistent with the observations on the two datasets in Figure 4 of the main text, indicating that a too
high-dimensional subspace introduces redundant or irrelevant information, which hinders the com-
pactness of node embeddings. For the number of anchor samples M , the model’s performance is
poor when M is very small, due to the insufficient anchor samples to represent the neighborhood
structure of nodes. As M increases, the performance improves and remains stable, which aligns
with the findings in the main text. For the teleport probability α, the model performance is stable
at low α values but deteriorates with further increases, showing a marked decline at α=0.8. This
trend aligns with findings in the main text. The degradation occurs because a higher α results in a
more localized diffusion process, which over-prioritizes the node’s own information. Conversely,
a smaller α promotes global integration of graph information, which is essential for learning di-
verse and complementary representations. These consistent trends across different datasets further
validate the robustness of our model with respect to the three hyper-parameters.
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Figure 6: The sensitivity analysis of three hyper-parameters on all five datasets.
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Figure 7: Robustness analysis.

To demonstrate that our proposed dis-
entangling of graph convolutional fil-
ters (GCF) and weight matrices can
enhance the robustness of the model,
we conduct comparative experiments
between GCF+MLP and GCN under
the CoCo framework as the number
of convolutional layers (i.e., the pa-
rameter t in GCF, Equation 1) in-
creased. The results are shown in
Figure 7. It can be observed that
GCF+MLP consistently outperforms GCN in terms of clustering performance across different con-
volutional layers. We also note that the performance of GCF+MLP remains relatively stable as the
number of layers (t in Equation 1) increases, whereas GCN tends to first improve and then deteriorate
with the addition of more layers in most cases. This evidences the high performance and robustness
brought about by disentangling the GCF from the weight matrices within our CoCo framework.

K RELATED WORK

K.1 DEEP GRAPH CLUSTERING

Over the years, substantial research efforts have been devoted to advancing deep graph clustering,
with the goal of partitioning nodes in a graph into cohesive and well-connected clusters in an end-
to-end framework (Yue et al., 2022). Deep learning breakthroughs have enabled the development
of graph algorithms that leverage both graph structures and node attributes to tackle this inherently
complex task (Shi et al., 2019; Cheng et al., 2021; Yang et al., 2023; Liu et al., 2024b; Trivedi et al.,
2024; Guo et al., 2025). Specifically, SDCN (Bo et al., 2020) and DFCN (Tu et al., 2021) provide
a foundation for integrating graph structure into clustering objectives, laying the groundwork for
more recent models. Several advanced methods have since been proposed, each targeting specific
challenges in graph clustering. AGCN (Peng et al., 2021) designs a dynamic attention mechanism to
adaptively aggregate the multi-scale features, while MCGC (Pan & Kang, 2021) learns a consensus
graph by filtering out high-frequency noise, preserving graph geometric features. GLCC (Ju et al.,
2023) is the first to extend clustering tasks to the graph-level scenario using the concept of contrastive
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learning. To address the challenges of large-scale graph data, Dink-Net (Liu et al., 2023b) integrates
representation learning with clustering optimization through dilation-shrink mechanisms and uses
mini-batches for scalability. To eliminate the need for a predefined cluster number, RGC (Liu et al.,
2023a) employs reinforcement learning to jointly learn representations and adaptively adjust cluster
numbers for better cohesion and separation. To generalize graph clustering to heterophilic scenarios,
DGCN (Pan & Kang, 2023) and DMGC (Guo et al., 2025) reconstructs homophilic and heterophilic
graphs with a mixed filter that captures multi-frequency features. Additionally, GCLR (Trivedi et al.,
2024) and MARK (Fu et al., 2025) leverage large language models to enhance text-attributed graph
clustering. Despite these advancements, a common challenge remains: the inability to capture long-
range dependencies in graphs and the neglect of inherent redundant information and noise in data.
These factors are crucial to capturing cohesive clusters in complex graph structures. By learning
robust and compact node representations in our method CoCo, it is promising to uncover meaningful
patterns and communities within the graph.

K.2 GLOBAL DEPENDENCIES IN GNNS

Despite the remarkable success of GNNs in various graph-structured applications, their message-
passing mechanism (Gilmer et al., 2017) usually restricts them from capturing long-range depen-
dencies. To overcome this, a growing body of research has been dedicated to enhancing GNNs with
global dependency capabilities, which can be roughly categorized into two lines: implicit global in-
teraction and explicit structural augmentation. The first group keeps the original graph unchanged
and introduces model-level global interactions, enabling node representations to exchange informa-
tion globally in feature space (Ying et al., 2021; Zhang et al., 2022; Cai et al., 2023; Xing et al.,
2024). For example, Graphormer (Ying et al., 2021) leverages structural encodings within a Trans-
former framework to effectively capture graph dependencies, while CoBFormer (Xing et al., 2024)
adopts a bi-level architecture and collaborative training to more effectively capture global dependen-
cies while retaining important local information. The second group focuses on directly modifying
the graph’s connectivity by adding ‘shortcuts’ to physically shorten the distance between distant
nodes, enabling standard GNNs to more flexibly capture global relationships (Wu et al., 2022; Guo
et al., 2024). Specifically, GraphEdit (Guo et al., 2024) leverages large language models to learn
global node-wise dependencies, denoise connections, and enhance graph structure learning through
instruction-tuned reasoning. In our work, we follow the second paradigm by constructing a graph
diffusion matrix to capture global dependencies, effectively modeling indirect connections and en-
abling clusters to accurately represent underlying community structures.

K.3 NOISE-RESILIENT LEARNING IN GNNS

GNNs are highly sensitive to various types of noise, including feature perturbations and redun-
dant information, which can distort feature distributions and degrade performance. Existing noise-
resilient learning approaches can be broadly divided into two lines: adversarial defense and loss
refinement. The first line explicitly defends against malicious or worst-case perturbations by sim-
ulating or constraining adversarial noise (Zügner et al., 2018; Feng et al., 2019; Alchihabi et al.,
2023). For instance, BVAT (Deng et al., 2023) employs batch virtual adversarial training to coun-
teract noise and better capture local graph structures, while GCORN (ABBAHADDOU et al., 2024)
enhances robustness against node feature attacks by enforcing orthonormal weight matrices. The
second line enhances robustness by modifying training objectives to handle noisy or redundant in-
puts (Wang & Yang, 2022; Huo et al., 2023). Specifically, BRGCL (Wang & Yang, 2022) iteratively
estimates confident nodes to compute robust cluster prototypes and applies prototypical contrastive
learning to learn noise-resistant node representations, while T2-GNN (Huo et al., 2023) uses a dual
teacher-student framework to transfer clean patterns and recover noisy or corrupted node attributes.
Unlike adversarial or loss refinement approaches, we introduce the idea of low-rank learning to help
the model learn compact representations for graph clustering, as it explicitly models the underlying
low-dimensional structure, and separate noise and redundancy at the data-distribution level, thereby
producing more robust and more clustering-friendly representations.
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