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ABSTRACT

Accurate and scalable machine-learned inter-atomic potentials (MLIPs) are es-
sential for molecular simulations ranging from drug discovery to new material
design. Current state-of-the-art models enforce roto-translational symmetries
through equivariant neural network architectures, a hard-wired inductive bias
that can often lead to reduced flexibility, computational efficiency, and scala-
bility. In this work, we introduce TransIP: Transformer-based Inter-Atomic
Potentials, a novel training paradigm for interatomic potentials achieving sym-
metry compliance without explicit architectural constraints. Our approach guides
a generic non-equivariant Transformer-based model to learn SO(3)-equivariance
by optimizing its representations in the embedding space. Trained on the recent
Open Molecules (OMol25) collection, a large and diverse molecular dataset built
specifically for MLIPs and covering different types of molecules (including small
organics, biomolecular fragments, and electrolyte-like species), TransIP attains
comparable performance in machine-learning force fields versus state-of-the-art
equivariant baselines. Further, compared to a data augmentation baseline, Tran-
sIP achieves 40% to 60% improvement in performance across varying OMol25
dataset sizes. More broadly, our work shows that learned equivariance can be
a powerful and efficient alternative to equivariant or augmentation-based MLIP
models.

1 INTRODUCTION

Atomistic simulations are a fundamental task in chemistry and materials science (Zhang et al., 2018;
Deringer et al., 2019), with Density Functional Theory (DFT) serving as a basis for accurately
calculating interatomic forces and energies. However, the utility of DFT is severely restricted by
its computational costs, which typically scale cubically with system size, rendering large-scale or
long-timescale simulations intractable. This has motivated machine-learned interatomic potentials
(MLIPs) to overcome this limitation by learning the potential energy surface from data, offering
orders-of-magnitude speed-ups compared to DFT calculations (Noé et al., 2020; Batzner et al., 2022;
Batatia et al., 2022; Jacobs et al., 2025; Leimeroth et al., 2025).

Equivariant neural networks have become a central paradigm for MLIPs due to their ability to encode
the three-dimensional structure of molecular graphs (Anderson et al., 2019; Thölke & Fabritiis,
2022; Liao et al., 2024a; Fu et al., 2025). These architectures are designed to explicitly respect roto-
translational symmetries (SE(3) equivariance) by construction, often employing compute-intensive
mechanisms like spherical harmonics or equivariant message passing (Fuchs et al., 2020; Passaro &
Zitnick, 2023a; Liao & Smidt, 2023; Maruf et al., 2025). However, due to the design difficulties and
limited expressive power of these architectures (Joshi et al., 2023; Cen et al., 2024), a recent trend
in predictive and generative modeling is to use unconstrained models when enough data is available
(Wang et al., 2024; Abramson et al., 2024; Zhang et al., 2025a; Joshi et al., 2025).

In this paper, we introduce TransIP (Transformer-based Interatomic Potentials), a training
paradigm that achieves molecular symmetry for interatomic potentials without imposing architec-
tural SO(3) constraints. TransIP steers a standard transformer toward SO(3) equivariance via an
additional contrastive objective, allowing the model to retain the scalability and hardware efficiency
of attention mechanisms while learning symmetry from data.
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Figure 1: TransIP: Transformer-based Interatomic Potentials.

Our contributions are as follows:

• We propose an MLIP training pipeline with a general transformer-based model to obtain
SO(3) equivariance through training rather than hard-wired equivariant layers.

• We introduce an architecture-agnostic contrastive loss function that promotes SO(3) equiv-
ariance in the embedding space of an unconstrained model. By aligning latent features
across SO(3) transformations in the model’s backbone, we show that TransIP scales better
across different datasets and model sizes compared to traditional data augmentation tech-
niques.

• On a diverse molecular benchmark, Open Molecules 25 (Levine et al., 2025) (that includes
small organics, biomolecular fragments, electrolyte-like species), we show that TransIP
outperforms data augmentation techniques and achieves comparable performance versus
current state-of-the-art MLIP baselines.

2 SYMMETRY IN EMBEDDING SPACE

2.1 PROBLEM FORMULATION

Molecular representations. LetM denote the space of molecular configurations. Each molecule
m ∈M is represented by atomic features x = (r, z, q, s), where r ∈ R|m|×3 are atomic coordinates,
z ∈ N|m| are atomic numbers, q ∈ Z is the total molecular charge, and s ∈ N is the spin multiplicity,
with |m| denoting the number of atoms in molecule m.
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Our goal is to learn an embedding function fθ : M → Rd that maps molecular configurations to
a d-dimensional latent space, and a prediction function gφ : Rd → R that acts in the embedding
space Rd and outputs molecular properties (e.g., energy). Both fθ and gφ are neural networks
parameterized by θ and φ, respectively.

Symmetry groups. We define a symmetry group G that acts on a set X as a group of bijective
functions from X to itself, and the group operation is function composition. We say a function f is
equivariant w.r.t. the group G if for every transformation g ∈ G and every input x ∈ X ,

f(ϕ(g)(x)) = ρ(g)(f(x)) (1)

The group representations ϕ and ρ specify how we apply the elements of the group G on input
and output data. As a concrete case, we can define G as a rotation group SO(3) over molecular
configurations M, with g ∈ SO(3) representing an element of G that acts on a molecule m by
rotating the coordinates of each atom in 3D space. Formally, for a molecule m = (r, z, q, s) with
coordinates r = (r1, . . . , r|m|), ri ∈ R3, the input action rotates each atom:(

ϕ(g)m
)
=
(
(Rr1, . . . , Rr|m|), z, q, s

)
.

Here R is a 3 × 3 rotation matrix (orthogonal with detR = 1); z, q, s are unchanged. An asso-
ciated output representation rotates vector-valued quantities—e.g., for forces F = (F1, . . . ,F|m|),
ρ(g)F = (RF1, . . . , RF|m|)—while scalar outputs such as energies remain invariant, ρ(g)E = E.

2.2 IMPLICIT EQUIVARIANCE IN EMBEDDING SPACE

We seek an embedding function f that behaves equivariantly with respect to the symmetry group G,
meaning there exists a transformation ρ(g) : Rd → Rd such that:

f(ϕ(g)(m)) = ρ(g)(f(m)) ∀g ∈ G,m ∈M (2)

Common approaches enforce equivariance constraints through specialized architectures. Instead,
we want the embedding function f to learn symmetry without equivariance constraints. However,
with G being the rotation group SO(3) onM and the output of f being a high-dimensional vector,
there is no direct representation of ρ(g) to act in the space of Rd. Thus, rather than specifying
ρ(g) analytically, we propose to learn the group transformation on an embedding vector in Rd using
a neural network Tτ : SO(3) × Rd → Rd parameterized by τ . T can be understood as a non-
linear function that learns the group action implicitly on a latent vector, by providing the group
representation on the input data.

3 LEARNING INTER-ATOMIC POTENTIALS WITHOUT EXPLICIT
EQUIVARIANCE

In this section, we introduce our training framework: TransIP (Transformer-based Inter-atomic Po-
tentials), a new approach that achieves SO(3)-equivariance through learned transformations in an
embedding space without explicit equivariance constraints. Our method, illustrated in Figure 1, con-
sists of three key components: (i) an unconstrained Transformer backbone that processes molecular
configurations, (ii) a learned transformation network that performs group actions in the embedding
space, and (iii) a contrastive objective that enforces latent equivariance (equiv.) during training.

3.1 TRANSIP: TRANSFORMER-BASED INTERATOMIC POTENTIALS

Atom as tokens. We model each molecule as a variable-length sequence of tokens, where each
token represents an atom. Unlike conventional graph neural networks that construct edges based on
distance cutoffs or neighbours’ atoms, we process all atoms within a molecule through self-attention,
bounded by a maximum context length Nctx. For batch processing, we use padding masks to prevent
cross-molecule attention, ensuring each molecule is processed independently.

In addition, we apply rotary position embeddings (RoPE) (Su et al., 2023) to the queries qi ∈ Rd/h

and keys kj ∈ Rd/h of each attention head, where i, j denote the sequence positions of atoms within
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a molecule, d is the model dimension, and h is the number of attention heads. The attention weights
are computed as:

q̃i = RoPE(qi, i), k̃j = RoPE(kj , j)

αij = softmax

(
q̃⊤
i k̃j√
d/h

+mij

)

where RoPE(·, ·) is the rotary position encoding operator, and mij ∈ {0,−∞} is the attention mask
that blocks padding tokens and enforces within-molecule attention. This approach eliminates the
need for explicit distance cutoffs while maintaining flexibility in modeling molecular interactions.

Transformer Backbone. We implement the embedding function fθ :M→Rd as a Transformer
encoder that processes atom-level tokens. Each atom i is initialized with a token representation:

h
(0)
i = κz(zi)⊕ κr(ri)

where κz : N→Rd and κr : R3→Rd are learnable MLPs that embed atomic numbers and centered
coordinates (with ri ← ri − 1

|m|
∑

j rj), and ⊕ denotes concatenation. These tokens are processed
through L Transformer layers with masked self-attention within each molecule, producing final per-
atom embeddings H = [h1, . . . ,h|m|]

⊤ ∈ R|m|×d.

Global Molecular Properties. Following Levine et al. (2025), we incorporate global molecular
properties (total charge q and spin multiplicity s of a molecule m) through learnable embeddings,
and form a graph-level bias:

c(q, s) = κchg(q) + κspin(s) ∈ Rd

where κchg and κspin are learnable embedding functions for charge and spin, respectively. This
global bias is broadcast-added at each Transformer layer: H(ℓ) ← H(ℓ) + 1c(q, s)⊤.

Energy and Force Predictions. For molecular property prediction, we employ a permutation-
invariant aggregator a : R|m|×d→Rd followed by an energy prediction head gφ : Rd→R:

Eφ(m) = gφ(a(H))

Forces are computed as conservative gradients of the energy with respect to atomic positions:

F(m) = −∇rEφ(m) ∈ R|m|×3

3.2 LEARNED LATENT EQUIVARIANCE

Transformation Network. We propose a transformation network Tτ : SO(3) × Rd → Rd that
learns how group actions (e.g., rotations) act on molecular embeddings. We implement Tτ as a
multilayer perceptron that takes as input the group representation in the input domain ϕ(g) and the
molecular embedding f(m). Formally,

Tτ (ϕ(g), f(m)) = MLPτ ([ϕ(g), f(m)])

where [·, ·] denotes concatenation and MLPτ is a multilayer perceptron with parameters τ .

Contrastive Objective for Latent Equivariance: To learn the molecular symmetry without archi-
tectural constraints, we define our latent equivariance loss as:

Lleq(ϕ(g),m, f, T ) = ∥f(ϕ(g)(m))− Tτ (ϕ(g), f(m))∥2 (3)

This loss encourages the embedding function f to behave equivariantly with respect to the symmetry
group G, as mediated by the transformation network Tτ . During training, we sample a molecule m
from the dataset and a rotation element g uniformly from SO(3) and minimize the expected latent
loss:

minEm∼M,g∼SO(3)[Lleq(ϕ(g),m, f, T )] (4)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 TRAINING OBJECTIVE

Our training objective combines three complementary losses for accurate prediction of energy and
forces as well as implicitly learning molecular symmetry.

Prediction Losses. For energy and force predictions, we use:

LE = 1
|m| |Eφ(m)− E⋆| (per-atom mean absolute error (MAE)) (5)

LF = 1
3|m|∥F(m)− F⋆∥2F (per-molecule mean squared error (MSE)) (6)

where E⋆ and F⋆ are ground-truth energies and forces, and ∥ · ∥F denotes the Frobenius norm. For
energies, we use referenced targets as described by Levine et al. (2025).

Combined Objective. Training combines three weighted terms: (i) the latent equivariance target
Lleq defined in Eq. 3; (ii) energy loss LE ; and (iii) force loss LF . The total objective is

Ltotal = λELE + λFLF + λleq Lleq (7)

where λE , λF , and λleq are hyperparameters for each loss. The optimal hyperparameters are given
in Table 5 of Appendix A.

4 RELATED WORK

ML Interatomic Potentials. Using machine learning (ML) methods to predict energies and forces
of different molecular systems and materials has been an active area of research (Schütt et al., 2017;
Chmiela et al., 2022; Musaelian et al., 2023; Liao et al., 2024b; Yang et al., 2025). Due to the
intricate 3D structures of atomistic systems, equivariant designs such as steerable convolution (Co-
hen & Welling, 2017; Brandstetter et al., 2022) and higher-order tensors (Thomas et al., 2018), as
well as covariant representation (Anderson et al., 2019), have been essential backbones for mod-
eling molecular systems. For example, Gasteiger et al. (2020); Klicpera et al. (2021) introduced
equivariant directional message passing between pairs of atoms with a spherical harmonics repre-
sentation. In contrast, Batzner et al. (2022) developed equivariant convolution with tensor-products
and Batatia et al. (2022) built higher-order messages with equivariant graph neural networks (Sator-
ras et al., 2021). Additionally, Passaro & Zitnick (2023b) reduced the computational complexity of
SO(3) convolution and replaced it with SO(2) convolutions, which have been used as a backbone
for MLIPs (Fu et al., 2025). More recently, Rhodes et al. (2025) presented Orb-v3 models with
improved computational efficiency, built on Graph Network Simulators (Sanchez-Gonzalez et al.,
2020).

Unconstrained ML models. While current-state-of-the-art MLIP models primarily rely on equiv-
ariant GNNs, unconstrained models are actively used in other domains. For example, integrating
data augmentation via image transformations has been used in different vision tasks, from classi-
fication (Inoue, 2018; Dosovitskiy et al., 2021; Rahat et al., 2024) to segmentation (Negassi et al.,
2022; Yu et al., 2023). For geometric data, the use of unconstrained models and diffusion Trans-
formers (without explicit equivariance constraints) has been a recent trend in generative tasks, e.g.,
AlphaFold 3 for biomolecular structure prediction (Abramson et al., 2024) as well as molecular
conformation and materials generation (Wang et al., 2024; Zhang et al., 2025a; Joshi et al., 2025).
In contrast, several works have been introduced to overcome the limitations of strictly equivariant
GNNs by enforcing symmetry via frame averaging over geometric inputs (Puny et al., 2022; Duval
et al., 2023; Lin et al., 2024; Huang et al., 2024; Dym et al., 2024); learning canonicalization func-
tions that map inputs to a canonical orientation before prediction (Kaba et al., 2022; Baker et al.,
2024; Ma et al., 2024; Lippmann et al., 2025); or learning equivariance through data augmentation
with molecule-specific graph-based architectures (Qu & Krishnapriyan, 2024; Mazitov et al., 2025).
However, in this work, we demonstrate that an unconstrained general-purpose Transformer model
can serve as a backbone for MLIPs, which replaces graph-based inductive biases with a scalable
latent equivariance objective that implicitly learns equivariant features without explicit equivariance
constraints.
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5 EXPERIMENTAL SETUP

Dataset. We train and evaluate our proposed method TransIP on the Open Molecules 2025
(OMol25) collection (Levine et al., 2025), a large-scale molecular DFT dataset for ML interatomic
potentials. OMol25 covers 83 atomic elements and diverse chemistries including: metal complexes,
electrolytes, biomolecules, SPICE, neutral organic, and reactivity. It contains molecules from sev-
eral datasets such as ANI-2X (Devereux et al., 2020), Transition-1X (Schreiner et al., 2022), ANI-
1xBB (Zhang et al., 2025b), Orbnet Denali (Christensen et al., 2021), SPICE2 (Eastman et al., 2022;
2024), and Solvated Protein Fragments (Unke & Meuwly, 2019). Following Levine et al. (2025),
we use the official 4M training split (3,986,754) and the out-of-distribution composition validation
split Val-Comp (2,762,021). Val-Comp consists of molecules gathered from various datasets and
domains, such as biomolecules, neutral organics, and metal complexes.

Model Configurations. We evaluate TransIP across three model scales: Small (14M parameters),
Medium (85M parameters), and Large (302M parameters). All models use MLP-based coordinate
embeddings and RoPE positional encodings. The transformation network Tτ is a 2-layer MLP with
GELU activations and 2d hidden dimension.

Training Setup. Using the standardized FAIRCHEM Python package (Shuaibi et al., 2025), we train
TransIP on the OMol25 dataset using an AdamW optimizer with learning rate 5 × 10−4, weight
decay 10−3, and gradient norm clipping at 200. We use a cosine learning rate schedule with linear
warmup over the first 1% of training, followed by cosine decay down to 1% of the initial lr. The
loss weights are set to λE = 5 for energies and λF = 15 for forces. For the latent equivariance
objective λleq, we sweep the values in {1, 5, 10, 100} and selected λleq = 5 based on validation
performance.

Scalability Experiments. We conduct three sets of experiments to assess TransIP’s scaling behav-
ior:

• Data scaling: We train the Small (14M parameter) model on three dataset sizes (1M, 2M,
4M molecules) for 5 epochs using 8 NVIDIA 80GB GPUs, comparing TransIP with learned
equivariance against an unconstrained Transformer version with SO(3) data augmentation
(TransAug).

• Model size scaling. We compare TransIP and TransAug with different model sizes (Smal-
l/Medium/Large) trained on the same number of samples from the OMol25 4M dataset and
report the evaluation metrics as a function of the processed number of atoms per second.

• Extended training: We train TransIP (Small) on the OMol25 4M dataset for 40 epochs
using 64 NVIDIA 80GB GPUs to evaluate its performance against standardized equivariant
baselines.

Baselines. We compare TransIP against: (i) an unconstrained TransIP variant trained with SO(3)
rotation augmentation to assess the impact of learned latent equivariance versus data augmentations,
and (ii) state-of-the-art equivariant models on OMol25: eSCN (Fu et al., 2025) in small/medium con-
figurations with both direct and energy-conserving force variants as well as GemNet-OC (Gasteiger
et al., 2022).

Evaluation metrics. Following the OMol25 official benchmark, we report: Force MAE (meV/Å),
Force cosine similarity, Energy per atom MAE (meV/atom), and Total energy MAE (meV). Detailed
metric definitions are provided in Appendix A.4.

6 RESULTS AND DISCUSSION

6.1 SCALING DATA SIZE

To assess how performance scales with different training dataset sizes, we compare our latent
equivariance-based model (TransIP) against an unconstrained baseline that uses SO(3) data aug-
mentation (TransAug). Both models use a (small) 14M parameter Transformer architecture. Given
our tight compute budget, we train on 1M, 2M, and 4M OMol25 molecules for 5 epochs and report
validation (Val-Comp) results.
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Figure 2: Val-Comp performance across different dataset sizes (1M / 2M / 4M): The top row presents
force metrics, while the bottom row reports energy metrics.

Performance in a limited data regime. Figure 2 shows that TransIP delivers large gains when
trained on 1M samples and outperforms TransAug across all evaluation metrics with a large mar-
gin on the total validation split. We also include the performance comparison for each molecule
category in Appendix B. In Figure 2, the learned latent equivariance objective provides substantial
improvements in force MAE (255 meV/Å vs 600 meV/Å MAE) and directional consistency (0.7 vs
0.44 force cosine similarity). Energy predictions also benefit from the latent equivariance objective,
with TransIP achieving 58 meV/atom compared to TransAug’s 120 meV/atom. These results sug-
gest that learning equivariance in a latent space is a more effective scheme to incorporate molecular
symmetry than data augmentation, particularly when training data is limited.

Performance in a larger data regime. As we scale to 2M and 4M molecules, both models (Tran-
sIP and TransAug) improve across the evaluation metrics. However, on larger datasets, TransIP still
achieves better force MAEs and cosine similarity metrics compared to TransAug. This might in-
dicate that the learned transformation network can successfully capture the geometric relationships
necessary for accurate force predictions. Notably, energy prediction performance converges between
the two at larger data scales, with both methods achieving comparable per-atom MAE values. This
convergence suggests that while learned equivariance provides crucial benefits for force-related met-
rics in all data regimes, its advantages for energy prediction become less pronounced as the model
can learn invariant energy representations from sufficient augmented data.

6.2 LEARNED LATENT EQUIVARIANCE

We investigate how learned equivariance affects the embedding space in relation to validation perfor-
mance as the data scale increases. Figure 3 plots each metric against latent equiv. error for TransIP
(Small) trained for 5 epochs on 1M, 2M, and 4M molecules (see Table 3 for a detailed definition of
each model configuration).

Lower latent equivariance error leads to better accuracy. We found that the learned equiv.
error serves as a strong predictor of model performance. Across all metrics, we observe a clear
monotonic trend: lower equiv. error is associated with better performance (Figure 3). However, en-
ergy and force predictions respond differently to improvements in equivariance. Energy predictions

7
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Figure 3: Latent equivariance (embedding) error versus validation performance. The top row reports
force metrics, while the bottom row presents energy metrics.

show near-linear scaling with equiv. error, indicating that energy accuracy is directly limited by
equivariance quality. This strong coupling aligns with energies being scalar invariants that depend
primarily on learning correct symmetry-preserving features. In contrast, force predictions exhibit a
two-regime behavior: initial improvements in equivariance (1M→2M) yield modest force improve-
ments, while further tightening of equivariance (2M→4M) produces disproportionate gains. This
might indicate that forces require both accurate equivariant features and sufficient data diversity to
learn the energy landscape’s geometry.

These results demonstrate that implicitly learning equivariance through our learned transformation
network provides an efficient inductive bias, accelerating learning. The 48% reduction in equiv.
error from 1M to 4M training examples translates to 40-60% performance improvements, being
more efficient than what would be expected from data scaling alone.

Learning equivariance leads to faster inference. To measure the inference efficiency of our
method, we compare TransIP and TransAug with different model sizes (Small/Medium/Large)
trained on 4M samples and report the evaluation metrics as a function of the processed number
of atoms per second. However, due to limited compute, we compare models under a fixed training
budget (i.e., with the same number of samples), which is 10k, 25k, and 100k steps for our Small,
Medium, and Large models, respectively.

From the results in Figure 4, we see that TransIP scales smoothly with parameter count despite lim-
ited training: As model size grows, performance improves across all metrics. In contrast, TransAug
exhibits poorer scaling—larger models perform worse than smaller ones, with the Large model con-
figuration yielding the lowest performance. This might indicate that augmentation alone does not
provide a sufficiently informative and stable inductive bias for large-capacity models trained for
molecular force field prediction.

6.3 ARCHITECTURAL EQUIVARIANCE VERSUS LEARNED EQUIVARIANCE

Table 1 compares the energy and force prediction performance of TransIP-S (Small) against
TransAug-S (Small) as well as several well-known equivariant baselines for the OMol 2M Val-
Comp evaluation dataset. The results of this comparison demonstrate that TransIP-S outperforms

8
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Figure 4: Validation total inference trade-off (atoms/s versus performance). The top row presents
force metrics, while the bottom row represents energy metrics.

Biomolecules Electrolytes Metal Complexes Neutral Organics Total

Model Epochs Energy ↓ Forces ↓ Energy ↓ Forces ↓ Energy ↓ Forces ↓ Energy ↓ Forces ↓ Energy ↓ Forces ↓
eSEN-sm-d. 80 0.88 8.12 1.93 12.64 3.37 40.44 2.16 20.17 2.19 13.01
eSEN-sm-cons. 80 0.86 6.17 1.61 11.16 2.72 35.33 1.50 16.92 1.89 11.10
eSEN-md-d. 80 0.47 3.38 1.18 6.51 2.53 27.31 1.21 9.26 1.32 6.78
GemNet-OC-r6 80 0.40 5.84 1.39 9.37 2.74 33.60 1.88 16.55 1.41 9.83
GemNet-OC 80 0.25 5.20 1.04 8.42 2.66 32.76 1.64 15.59 1.13 8.98

TransAug-S 5 16.6 219.3 17.5 161.9 20.7 150.6 28.9 218.8 23.5 180.3
TransIP-S 5 17.3 181.1 15.9 129.6 18.5 132.5 23.5 165.0 22.3 146.6
TransIP-S 40 13.8 121.5 12.7 94.0 15.2 105.6 18.5 125.4 17.9 103.8
TransIP-S 80 10.5 103.2 10.2 82.4 13.8 96.1 16.0 111.4 14.2 90.1
TransIP-M 60 6.3 35.2 5.7 33.0 7.4 58.5 7.9 51.0 8.1 35.4

Table 1: Comprehensive Val-Comp energy and force MAE results.

TransAug-S (trained for 5 epochs) in all but one evaluation metric, particularly differentiating itself
in terms of force prediction (we include the performance comparison for SPICE and reactivity splits
in Table 7). We further report the performance of TransIP-S trained for 40 epochs and 80 epochs
as well as TransIP-M for 60 epochs (for fair comparison to each equivariant baseline). Results with
TransIP-M after 60 training epochs suggest steady improvement is likely to be observed during the
remainder of the model’s training epochs, which, despite limited compute, we are currently working
towards. We also report the inference speed for our TransIP versions and eSEN baseline using the
same hardware with 8 A100 GPUs in Table 2. For eSEN, we follow the small version indicated by
Levine et al. (2025) with hyperparameters in Table 4. Both TransIP’s small and medium versions
are significantly faster than the eSEN baseline, while TransIP-L is slightly faster than eSEN.

TransIP-S TransIP-M TransIP-L eSEN

Approx. atoms/sec 60,000 18,500 4,200 3,900

Table 2: Inference speed for TransIP variants and eSEN baseline.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 WHAT TRANSIP LEARNS

To understand the structure of learned equivariance, we ask whether the effect of rotating different
inputs can be explained by a single group action in the latent space; i.e., whether there exists a rep-
resentation ρ(g) : Rd→ Rd such that f

(
ϕ(g)(m)

)
≈ ρ(g) f(m), where fθ : M→ Rd denotes

the embedding network, and g∈SO(3) acts on a molecule m via the input representation ϕ(g) (ro-
tation of atomic coordinates). Because ρ(g) is unknown, we compute an approximate group action
ρ̂(g)∈O(d) by solving an orthogonal Procrustes problem on embeddings from 100 validation sam-
ples (obtained from a trained TransIP model). Writing Z = [ f(m1)

⊤, . . . , f(mn)
⊤ ], Zg =

[ f(ϕ(g)(m1))
⊤, . . . , f(ϕ(g)(mn))

⊤ ], we first pool-whiten the two views (shared mean and stan-
dard deviation per channel) and then solve ρ̂(g) = argminQ∈O(d)

∥∥ Z̃Q − Z̃g

∥∥2
F
, which has the

closed form ρ̂(g) = UV ⊤ for the SVD of Z̃⊤Z̃g = UΣV ⊤.

(a) (b)

Figure 5: Group action in the embedding
space. (a) Per-molecule residuals before align-
ment, ∥f(m) − f(ϕ(g)(m))∥2, and after apply-
ing a global orthogonal map ρ̂(g) on pool-whitened
latents, ∥ρ̂(g)f(m) − f(ϕ(g)(m))∥2. (b) Entry-
wise comparison: hexbin density of (ρ̂(g)f(m))(:)
vs. f(ϕ(g)(m))(:), pooled over molecules’ embed-
dings.

In Figure 5a, we report per-molecule residu-
als before alignment, ∥ f(m)−f(ϕ(g)(m)) ∥2,
and after applying the global orthogonal map,
∥ ρ̂(g)f(m) − f(ϕ(g)(m)) ∥2. A left→right
drop in the distribution indicates that a sin-
gle orthogonal transform explains most of the
rotation-induced change in the embedding. In
Figure 5b, we compare the channel-level rela-
tion by plotting a hexbin density of all pairs
(ρ̂(g)f(m))k, (f(ϕ(g)(m)))k, k =
1, . . . , d, m ∈ val. where color encodes the
log count of points in each hexagonal bin. A
tight diagonal concentration after the single
global alignment ρ̂(g) might suggest that the
two views are almost identical at entrywise-
level and the group action in latent space is ap-
proximately orthogonal and shared across dif-
ferent molecules.

Takeaways. Figure 5a shows that the magnitude of the rotation-induced discrepancy of different
molecules drops after a single orthogonal alignment, and Figure 5b shows that the aligned channels
match entrywise, concentrating along the identity. These results indicate that TransIP learns an
embedding where input rotations act approximately as a shared orthogonal transformation, even
though explicit equivariance was not enforced in the architecture.

8 CONCLUSION

In this work, we introduced TransIP for modeling interatomic potentials with a modern Transformer-
based architecture and a scalable latent equivariance objective. Empirical results across a variety of
chemical systems as well as model and dataset scales suggest that TransIP’s latent equivariance
objective enables better performance scaling than popular data augmentation-based alternatives to
learning geometric equivariance. Further, we find that improvements in learning latent equivariance
are strongly related to improved modeling of interatomic potentials, suggesting a complementary
nature between the two prediction objectives. With sufficient compute, future work could involve
studying the performance of TransIP in larger data, modeling, and runtime regimes in addition to the
behavior of TransIP in a context amenable to the double-descent phenomenon (Power et al., 2022).

While equivariant models for molecular machine learning have recently gained much research in-
terest, with the large amount of data being generated and the need for larger model sizes, it is also
important that models used for interatomic potentials be highly scalable. Through our work, we have
shown that the generic Transformer is capable of modeling molecules accurately but is also able to
learn equivariance effectively through our novel latent objective, all while being highly scalable. By
making our code openly available to the research community, we hope that our work inspires future
research that explores ways to leverage the simpler and more scalable Transformer architecture to
better model equivariant molecular properties through learned equivariance.
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9 ETHICS STATEMENT

This work focuses on developing scalable machine-learned interatomic potentials (MLIPs). Our
contributions are based on the principle of equivariance and do not involve sensitive personal data,
human subjects, or personally identifiable information. The dataset used, OMol25, is an open-source
quantum chemistry benchmark for research use. The potential broader impacts of our method are
that it can accelerate research in drug discovery and material sciences. By making MLIP models
cheaper to train, we make molecular modeling more accessible to the broader research community.
However, misuse in safety-critical applications like drug discovery could lead to adverse outcomes.
No dual-use is identified beyond the general risks of over-reliance on approximate ML models in
scientific workflows.

10 REPRODUCIBILITY STATEMENT

Dataset: All experiments were conducted on the Open Molecules 2025 (OMol25) dataset, which is
publicly available and documented (Levine et al., 2025). We follow its official training and validation
splits (4M train dataset, 2M out-of-distribution validation dataset).

Architectures and hyperparameters: We include detailed architectural configurations (e.g., model
sizes, layers, hidden dimensions, attention heads) in Appendix A.

Evaluation: We report standardized OMol25 metrics: Force MAE, Force cosine similarity, Energy
per atom MAE, and Total Energy MAE.

Code and models: We build our implementation on the FAIRCHEM framework for standardized
MLIP training and evaluation. However, we also plan to release our code as an open-source reposi-
tory upon acceptance.

Scaling experiments: We perform scaling experiments with varying model and dataset sizes, with
corresponding results presented in Figures 2, 3, and 4.

Compute resources: Experiments were run on a limited number of NVIDIA A100 80GB GPUs.
Small-scale experiments used 8 GPUs for 5 epochs, while extended runs used 64 GPUs for up to 80
epochs (currently in progress).
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A IMPLEMENTATION DETAILS

A.1 MODEL ARCHITECTURE

Table 3 provides the complete architectural specifications for TransIP’s model versions, as well as
eSEN hyperparameters for the inference test in Table 2. For eSEN, we follow the small version
reported by Levine et al. (2025).

Table 3: TransIP model configurations. All versions share the same embedding method and activa-
tion functions.

Configuration Small (S) Medium (M) Large (L)
Hidden dimension (d) 384 768 1024
Number of layers (L) 8 12 24
Number of heads 6 12 16
Total parameters 14M 85M 302M

Shared configurations:
Coordinate embedding MLP
Activation function GELU
Context length 1024
Projection dropout 0.01
Attention dropout 0.0

Transformation network Tτ :
Number of layers 2
Hidden dimension 2× d
Activation GELU

Table 4: eSEN hyperparameters for inference test in Table 2.

Configuration Value

sphere channels 128
lmax 2
mmax 2
edge channels 128
distance function gaussian
num distance basis 64
num layers 4
hidden channels 128
max neighbors 30
cutoff radius 6
normalization type rms norm sh
activation type gate
ff type spectral

A.2 TRAINING HYPERPARAMETERS

Table 5 provides TransIP’s optimal hyperparameters.

A.3 DATA PROCESSING AND AUGMENTATION

TransIP processes molecular data with the following pipeline:

• Coordinate centering: Atomic coordinates are centered by subtracting the center of mass:
ri ← ri − 1

|m|
∑

j rj
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Table 5: Training hyperparameters used for all TransIP experiments.

Hyperparameter Value
Optimization:
Optimizer AdamW
Learning rate 5× 10−4

Weight decay 1× 10−3

Gradient clip norm 200

Learning rate schedule:
Scheduler type Cosine
Warmup fraction 0.01
Min LR factor 0.01

Loss weights:
Energy (λE) 5
Forces (λF ) 15
Equivariance (λleq) 5 (selected from {1, 5, 10, 100})

• Equivariance pairs: For training with learned equivariance, we create pairs (m,ϕ(g)(m))
where g is sampled uniformly from SO(3) per molecule.

A.4 EVALUATION METRICS

We evaluate model performance using the following metrics:

Force Mean Absolute Error (MAE):

Force MAE =
1

3|m|

N∑
i=1

∑
α∈{x,y,z}

|Fi,α − F∗
i,α| (meV/Å) (8)

Force Cosine Similarity:

Force CosSim =
1

|m|

|m|∑
i=1

Fi · F∗
i

∥Fi∥∥F∗
i ∥

(9)

Energy per Atom MAE:

Energy/atom MAE =
1

|m|
|E − E∗| (meV/atom) (10)

Total Energy MAE:
Total Energy MAE = |E − E∗| (meV) (11)

where F and E denote predicted forces and energies, F∗ and E∗ are ground truth values, and |m| is
the total number of atoms. For energies, we use referenced targets following Levine et al. (2025).

A.5 COMPUTATIONAL RESOURCES

• 5-epoch experiments: 8 NVIDIA 80GB GPUs
• 80-epoch experiments: 64 NVIDIA 80GB GPUs

A.6 VALIDATION SPLITS

For 5-epoch runs, we evaluate on domain-specific validation subsets sampled from the OMol25
validation (Val-Comp) dataset:

• Metal complexes: 20,000 samples
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• Electrolytes: 20,000 samples
• Biomolecules: 20,000 samples
• SPICE: 9,630 samples (complete subset)
• Neutral organics: 20,000 samples (including ANI2x, OrbNet-Denali, GEOM, Trans1x,

RGD)
• Reactivity: 20,000 samples
• Full validation set: 20,000 samples.

We use the full (2M) Val Comp dataset to evaluate TransIP and TransAug in Table 1.

B ADDITIONAL RESULTS

B.1 OPEN CATALYST BENCHMARK

We also evaluate our method on the Open Catalyst 2020 (OC20) benchmark (Chanussot et al., 2021),
a large-scale dataset for modeling catalyst-adsorbate interactions. We train on the 2M subset from
the Structure-to-Energy-and-Forces (S2EF) task, and for validation, we selected 20, 000 samples
from each validation split: val id (in-distribution) and val ood (out-of-distribution). We use the
small version of TransIP and TransAug with the same hyperparameters in Tables 3 and 5, trained
for 30000 steps. Our results are presented in Table 6. Our results show that TransIP consistently
outperforms TransAug on energy metrics on both in-distribution and out-of-distribution splits, and
matches TransAug on force MAE.

val id val ood

Model Energy ↓ Forces ↓ Energy ↓ Forces ↓
TransAug-S 56 82 72 95
TransIP-S 45 82 55 95

Table 6: OC20 S2EF energy and force MAE on val id and val ood splits.

B.2 OMOL25 SPLITS

In this section, we include additional dataset scaling results on OMol25 splits for TransIP and
TransAug.

SPICE Reactivity

Model Epochs Energy ↓ Forces ↓ Energy ↓ Forces ↓
TransAug-S 5 11.5 151.3 23.0 179.7
TransIP-S 5 8.7 121.8 17.8 136.4

Table 7: Val-Comp energy and force MAE for SPICE and Reactivity splits.
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Figure 6: Metal Complexes scaling across training dataset sizes (1M / 2M / 4M). The top row
presents force metrics, while the bottom row displays energy metrics.

Figure 7: Electrolytes scaling across training dataset sizes (1M / 2M / 4M). The top row presents
force metrics, while the bottom row displays energy metrics.
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Figure 8: Biomolecules scaling across training dataset sizes (1M / 2M / 4M). The top row presents
force metrics, while the bottom row displays energy metrics.

Figure 9: Neutral Organics scaling across training dataset sizes (1M / 2M / 4M). The top row presents
force metrics, while the bottom row displays energy metrics.
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Figure 10: SPICE scaling across training dataset sizes (1M / 2M / 4M). The top row presents force
metrics, while the bottom row displays energy metrics.

Figure 11: Reactivity scaling across training dataset sizes (1M / 2M / 4M). The top row presents
force metrics, while the bottom row displays energy metrics.
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