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ABSTRACT

Recent advances in reinforcement learning have underscored the potential of dif-
fusion models, particularly in the context of policy learning. While earlier appli-
cations were predominantly focused on single-timestep settings, trajectory-based
diffusion policy learning promises significant superiority, especially for low-level
control tasks. In this context, we introduce DreamFuser, a trajectory-based value
optimization approach that seamlessly blends the merits of diffusion-based tra-
jectory learning and efficient Q function learning over state and noisy action. To
address the computational challenges associated with action sampling of diffu-
sion policy during the training phase, we design the DreamFuser based on the
Generalized Noisy Action Markov Decision Process (GNMDP), which views the
diffusion denoising process as part of the MDP transition. Through the empiri-
cal tests, the expressive and optimization abilities of the DreamFuser are verified.
The experiment results also reveal DreamFuser’s advantages over existing diffu-
sion policy algorithms, notably in low-level control tasks. When benchmarked
against the standard benchmark of offline reinforcement learning D4RL, Dream-
Fuser matches or even outperforms contemporary methods.

1 INTRODUCTION

In the domain of Offline Reinforcement Learning, we introduce the DreamFuser algorithm aimed at
seamlessly integrating Q-learning with trajectory-based diffusion policy. This algorithm leverages
an innovative structure designed to resolve the inherent incompatibility between these promising
features at a more refined level of granularity. We would introduce DreamFuser, an approach to
trajectory-based value optimization using the diffusion model and Generalized Noisy Action Markov
Decision Process (GNMDP), a structure indicating the motivation of our algorithm.

DreamFuser harmoniously combines the advantages of two pivotal techniques: diffusion-based se-
quence modeling and efficient Q function learning, which encompass both state information and
noisy actions. In light of the computational complexities arising from action sampling within the
diffusion policy during training, we’ve devised the DreamFuser based on the framework of the GN-
MDP. Within this framework, we treat the hidden sampling process of the diffusion policy as an
integral component of the Markov Decision Process (MDP) transition. Specifically, we could view
the denoising step as a transition, where the state of this transition comprises the current state and the
noisy action to be denoised, while the action of this transition is the predicted noise or equivalently
the predicted denoised action. Thus, each step of the new GNMDP only necessitates a single de-
noising step or inherits the transition of the original MDP. Meanwhile, the properties of the Markov
process are preserved. This enables us to define value and Q functions over observations and noisy
action sequences so that the rewards could be maximized through optimizing the denoising network.

The benefit of GNMDP lies in its capacity to apply the actor-critic algorithm over a finer granularity
without theoretical approximation. Instead of learning the Q-function solely over state and action,
we learn it over state and noisy action. By focusing on optimization within a denoising step rather
than across the entire sampling process, we can utilize multi-step temporal learning over GNMDP to
balance the Q-function’s variance and training speed. Drawing inspiration from TD3+BC (Fujimoto
& Gu, 2021), we adapt this idea to GNMDP, resulting in DreamFuser.

The DreamFuser offers several advantages. Firstly, it preserves the structure of trajectory-based
policies, facilitating more effective learning from sub-optimal and multimodal demonstrations. Si-
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multaneously, integrating the Q-function empowers it to optimize action sequences, thereby improv-
ing rewards. Notably, applying the Q-function to the noisy action sequence significantly reduces
computational demands, especially in resource-constrained scenarios. Unlike previous methods us-
ing pretrained value functions or approximating denoised actions, our method’s trained Q-function
aligns with the target policy and remains unbiased since it operates over noisy actions.

Moreover, DreamFuser has the potential to incorporate a learned dynamic model, further enhancing
the learning process related to action sequences. As demonstrated in model-based methods like
MOPO (Yu et al., 2020), MOReL (Kidambi et al., 2021), and COMBO (Yu et al., 2022), leveraging
a dynamic model can exploit information from the joint distribution of states and actions. Thus,
integrating a pretrained dynamics model injects transition features into our approach additionally.

We conducted a meticulous study to delineate the contributions of each component and empirically
showcased the advantages of our approach on standard benchmarks. In summary, our method’s
contributions can be highlighted as follows:

• Seamlessly integrating trajectory-based diffusion policies with efficient Q learning, en-
abling the optimization of diffusion policies in offline RL scenarios.

• Resolving the incompatibility between these promising features through a finer granular
perspective based on the versatile GNMDP structure, which is general and decoupled from
any specific RL algorithm.

• Proposing the DreamFuser algorithm based on GNMDP, backed by comprehensive empir-
ical evaluations that validate its effectiveness and demonstrate advantages using standard
benchmark environments.

2 RELATED WORK

Offline Reinforcement Learning Offline Reinforcement Learning(RL) seeks to learn the optimal
policy from a fixed and static dataset without interaction with the environment, which offline ac-
counts for (Kumar et al., 2020) (Fujimoto et al., 2019). The datasets for offline RL usually comprise
observations from the environment, actions of the agent, and the reward for the transition from the
environment. The challenges in offline RL lie in the gap between the transition distribution of the
offline dataset and the real distribution of interaction with the environment (Kostrikov et al., 2021).
The gap is inevitable since the collected demonstrations are impossible to cover the whole state-
action space in most cases. This gap poses extrapolation errors induced by actions from the learned
policy if they are outside the behavior policy, i.e., the action distribution in the dataset. The bias of
actions would be propagated through transitions and cause the agent to face totally unknown states.

Previously, the field has proposed different methods to restrict the learned action distribution close
to the behavior policy. BEAR (Kumar et al., 2019) and BRAC (Wu et al., 2019) use regularization
terms, like maximum mean discrepancy (MMD) or KL divergence between the learned policy and
behavior policy, to restrict the learned policy distribution. Among them, TD3+BC (Fujimoto &
Gu, 2021) uses the behavior-cloning loss term for policy regularization. Our approach builds upon
the basic TD3+BC framework with a BC regularization term, taking advantage of its competent
performance and compatibility with our backbone.

Diffusion model in offline RL As proposed by Chi et al. (2023), Chen et al. (2023), and Pearce et al.
(2023), a policy learner with limited expressive capability could struggle to capture the distribution
from the demonstrations, especially the demonstrations from the real world, which reveal multi-
modality and complex distribution (Chi et al., 2023). Using a conventional uni-modal approximator
would capture the average of behavior distributions and degrade the information learned from the
datasets. For an informal instance (Chen et al., 2023), if an agent is faced by a wall, it can go
either left or right to bypass it. However, if the leftward and rightward actions are comparable in the
demonstration, it will learn to stay static according to the maximum likelihood estimation rule.

The diffusion model has been proposed as an expressive policy in recent works (Janner et al., 2022;
Chi et al., 2023; Chen et al., 2023; Wang et al., 2022). The recent triumphs of diffusion models in
generative modeling, encompassing diverse data modalities such as images (Rombach et al., 2022),
audio (Kong et al., 2021), and video (Saharia et al., 2022), have ignited the advancement of diffu-
sion policies that harness diffusion models to sample either single actions (Pearce et al., 2023) or

2



Under review as a conference paper at ICLR 2024

sequences of actions (Janner et al., 2022). The actions are denoised through the reverse diffusion
process and conditional on the states. Given its nature as a generative model, the diffusion model
possesses the capability to effectively characterize the multi-modal distributions (Shafiullah et al.,
2022; Chi et al., 2023) of actions within the diverse policy learning datasets.

Diffusion policy for sequence modeling Sequence modeling has shown its promising characteris-
tics in reinforcement learning. Sequence modeling over observation sequences and action sequences
has the capacity to capture temporal correlations in long-horizon behavior policies. Chen et al.
(2021) leverages the powerful transformer architectures as a sequence modeling backbone and has
verified the power of trajectory-based learning. Chi et al. (2023) points out the promising role of
sequence modeling in real-world deployment.

The intuitive combination of sequence modeling and diffusion model gave birth to the diffusers
(Janner et al., 2022). The benefits come from the interplay between the sequence modeling and dif-
fusion model. On the one hand, the diffusion model shows superior ability in modeling the sequence
distribution (Vaswani et al., 2017; Janner et al., 2022; Ajay et al., 2022) to harness extensive data
resources. On the other hand, trajectory prediction could amortize the notorious computation cost
by sampling the diffusion model (Ho et al., 2020).

Diffusion policy with Q(value)-function In offline reinforcement learning, the challenge also lies
in improving policies based on sub-optimal trajectories. Merely replicating the behavior distribution
does not guarantee the maximization of rewards in such scenarios. Therefore, there is a necessity to
enhance the diffusion policy in conjunction with behavior cloning objectives. In previous works like
Janner et al. (2022) or Chi et al. (2023), a pretrained value function is learned to guide the sampling
of the diffusion policy. However, the Q-function of the behavior policy is biased as a role of the
learned policy, and the gradient of the Q-function could not align with the improved direction of the
noisy actions in the intermediate denoising steps.

Alternatively, Diffusion-QL (Wang et al., 2022) employs an actor-critic framework to learn the Q
function and policy alternatively. However, in the actor-critic training, both the policy evaluation
and policy improvement phases would require sampling actions given the current observations. The
back-propagation of action gradients throughout the reverse diffusion process is deemed impractical
in training. Besides, Diffusion-QL (Wang et al., 2022) focuses on reinforcement learning over one
time step. The integration of sequence modeling or trajectory-based learning would exaggerate the
dilemma. This underscores the pressing need for a novel algorithm capable of optimizing action
sequences while retaining the advantages of a diffusion model. Following works like EQP (Kang
et al., 2023) alleviate the challenges through the approximation of denoised action, at a cost of
precision.

3 PRELIMINARY

3.1 MDP AND OFFLINE RL

The Markov Decision Process (MDP) is denoted asM = {S,A, P,R}. S andA represent the state
and action spaces, respectively. We employ the subscript t to signify the MDP step. The transition
probability from state st ∈ S executing action a ∈ A and reach state st+1 ∈ S is captured by
P (st+1|st,a), while rt = R(st,a, st+1) quantifies the reward associated with the transition.

The goal in reinforcement learning is to find an optimal policy π∗, which is a conditional distribution
of action, that maximizes the expected cumulative reward under the discount factor γ ∈ [0, 1), i.e.

π∗ = argmax
π

E[
∞∑
t=0

γtrt] (1)

We can train a parameterized Q function, which approximates the expected cumulative rewards of a
state-action pair, for a policy π(a|s) by minimizing the bellman residual of sampled transitions, i.e.,
for transition (st, at, st+1, rt) we have

L =
((
rt + γEat+1∼πQ(st+1, at+1)

)
−Q(st, at)

)2
(2)

In the offline setting, the environment is not accessible. Instead of online interactions with the
environments, a static dataset D = (s, a, r, s′) collected by optimal or sub-optimal policies is used
for policy learning.
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3.2 DIFFUSION MODEL

Diffusion-based generative models (Sohl-Dickstein et al., 2015; Song et al., 2022; Ho et al., 2020)
construct a sequence of diffusion steps that incrementally introduce noise while learning to regener-
ate the original samples from their noisier counterparts. Given an original sample x ∼ q(x) drawn
from the true data distribution, a forward process employs a noise schedule β = (β1, . . . , βK),
applying Gaussian noise ϵk iteratively for K steps, thereby yielding a sequence of noisy samples
x1, ..., xK . This process is formalized as (Wang et al., 2022):

q(xk|xk−1) = N (xk;
√
1− βkx

k−1, βkI), q(x1:K |x0) =

K∏
k=1

q(xk|xk−1) (3)

Here, the superscript k denotes the diffusion timestep, serving to differentiate it from the MDP
timestep. Furthermore, as K approaches infinity and βK approaches 1, the distribution of the noisy
samples xK becomes indistinguishable from N (0, I).

Conversely, the reverse process initiates from pure Gaussian noise, xK ∼ N (0, I), and is articulated
as follows:

pθ(xk−1 | xk) = N (xk−1;µθ(xk, k),Σk) (4)

In practice, we use non-parameterized standard variance Σk = β̃tI and β̃t = 1−ᾱt−1

1−ᾱt
· βt. In

alignment with DDPMs (Ho et al., 2020), we uses a reparameterized denoising function ϵθ(xk, k)

such that µθ(x
k, k) = 1√

αk

(
xk − 1−αk√

1−ᾱk
ϵθ(x

k, k)
)

. The learning objective is defined as:

Lµ = Ek∼[1,K],x0∼p(x),ϵk∼N (0,I)

[
(ϵk − ϵθ(

√
ᾱkx0 +

√
1− ᾱkϵk, k))

2
]

(5)

Here, αk = 1− βk and ᾱk =
∏k

i=1 αi.

4 METHOD

Our method, DreamFuser, trains trajectory-based diffusion policies to sample a sequence of actions
based on past observations. In Section 4.1, we describe the formulation of our policy and then
explain the difficulty of applying it in the offline RL. Following this, we then present a novel for-
mulation in Section 4.2 that combines the diffusion process and the original MDP, which facilitates
efficient Q learning and policy improvement in Section 4.3.

4.1 TRAINING DIFFUSION POLICIES IN OFFLINE RL

Formulation of the diffusion policy Given an MDP M = {S,A, P,R}, we have a policy
π(At|Ot) determines a distribution over sequence of future actions At = {at, at+1, . . . , at+l−1} ∈
Al conditioning on the past observations Ot = {ot−h+1, . . . , ot} ∈ Sh of length h at time
step t. For clarity, we focus predominantly on the trajectory form as a more general case with
Ot and At in the following discussion. The action sequence At will be executed sequentially
to obtain {ot+1, ot+2, . . . , ot+l}. One can perceive policy π as integral to a new MDP, ex-
pressed as M′ = S ′,A′, P ′, R′, where S ′ = Sh, A′ = Al. Further, we have P ′(Ot,At) =
P ′({ot−h+1, . . . , ot}, {at, at+1, . . . , at+l−1}) = {ot+l−h, . . . , ot+l} = Ot+l, R′(Ot,At) =∑l−1

i=0 rt+i or
∑l−1

i=0 γ
irt+i} given discount factor γ.M′ can be viewed as trajectory-based MDP.

As shown in Figure1, the diffusion model representation characterizes the distribution of one-step
denoised action sequence Ak−1

t given observation sequence Ot and noisy action sequence Ak
t :

µθ,Ot
(Ak

t , k) =
1
√
αk

(
Ak

t −
1− αk√
1− ᾱk

ϵθ,Ot
(Ak

t , k)
)
,

Ak−1
t ∼ N (Ak−1

t ;µθ,Ot
(Ak

t , k),Σk),

(6)

where θ denotes the parameter of the diffusion model, µθ,Ot is the mean of the denoised action
distribution based on the noise predicted by ϵθ,Ot , and Σk denotes the covariance matrix. The
policy π(At | Ot) involves sequential denoising steps and ultimately yields At = A0

t derived from
AK

t ∼ N (0, I) given the current state Ot. The variable αk and ᾱk controls the variance as described
Section 3.2.
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Figure 1: Illustrative of the diffusion policy and our GNMDP. Above: the diffusion policy that
refines the noisy action sequences based on a sequence of past observations. Below: the Generalized
Noisy Action MDP which incorporates the sampling process as a part of the MDP as hidden steps
followed by an execution step.

Problems in optimizing diffusion policies In supervised learning, training the diffusion policy
is accomplished by maximizing an approximation of the log-likelihood of the ground-truth action
sequences, conditioned on past observation pairs. This process is achieved by minimizing the fol-
lowing objective function:

Ek∼[1,K],ϵt∼N (0,I),Ot,At
[ωk∥ϵθ,Ot

(Ak
t , k)− ϵt∥2],

where ωk refers to (1−αk)
2

2αk(1−ᾱk)∥Σk∥2
2

, and can be ignored in practice implementation(Ho et al., 2020).
These formulations enable us to prevent the expensive back-propagation through the full diffusion
process.

However, optimizing policies with reinforcement learning requires a different learning scheme. The
policy gradient theorem needs to evaluate EAt∼π(At|Ot) [Q(Ot,At)∇ log π(At|Ot)] where the Q
function Q(Ot,At) approximates the expected rewards of generating action sequence At under
observation sequence Ot. This objective requires the actions sampling from the current diffusion
model, making the sampling inefficient and requiring significant memory in the back-propagation.

4.2 GENERALIZED NOISY ACTION MDP

To avoid the back-propagation along the diffusion process, we introduce the concept of the Gen-
eralized Noisy Action MDP, abbreviated as GNMDP. The GNMDP views the diffusion policy’s
diffusion process as part of the original MDP structure. As illustrated in Figure 1, we insert K new
steps before the original transition as hidden transitions, mirroring the sampling process that pro-
gressively refines noisy action sequences into actions executed in the initial MDP. Although the new
MDP requires additional steps to go through the same trajectory, it ensures that in each transition
of the new MDP the policy needs to either denoise a noisy action sequence or execute an action
sequence. This approach avoids fully denoising the noisy actions through the reverse diffusion pro-
cess. We call the policy over GNMDP the “denoise” policy π̂, which can be easily trained by any
off-policy RL algorithms after collecting a batch of transitions.

Formally, we define I(t, k) = (K+1)t+(K−k) to indicate the time index in the new MDP, where
K is the number of diffusion steps and 0 ≤ k ≤ K. A new state consists of the original state st
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with observation Ot and a noisy action Ak
t , i.e., ŝI(t,k) ≜ (Ot,A

k
t ). As shown in Figure 1, the step

with timestamp t in the original MDP is extended to K+1 steps with timestamps I(t,K), I(t,K−
1), . . . , I(t, 0) respectively in GNMDP.

In GNMDP, for steps with k > 0, the denoising policy over GNMDP π̂ will denoise Ak
t to Ak−1

t

based on the observation Ot, that is, generate action sequence âI(t,k) = Ak−1
t from ŝI(t,k) =

(Ot,A
k
t ). We call these steps the denoise steps or hidden steps. Upon reaching k = 0, we will

have A0
t , serving as the counterpart of At in the MDP context. The action sequence A0

t is executed
similarly to how At is executed in the original MDP, resulting in a transition to the next observation
sequence Ot+l. We refer to this as an execution step. During this step, a new noisy action sequence
denoted as ϵ, is sampled fromN (0, I). The new noisy sequence is then combined with Ot+l to form
the new augmented state ŝI(t+l,K) = (Ot+l, ϵ) in the execution step as shown in Figure 1. The
associated reward for this transition is Rt = R(Ot,At) in normal MDP, as mentioned in Section
4.1. More details over GNMDP are left in D.

4.3 OFFLINE REINFORCEMENT LEARNING IN GNMDP

Q function learning We are now ready to apply the actor-critic framework to train our diffusion
policy. Q function is learnt over GNMDP to guide the optimization of policy at hidden steps and
execution steps. Recalling the Q function loss defined in Equation 2, for GNMDP and k > 0,
we have transition of form (ŝ,Ak−1

t , ŝ′) where ŝ = ŝI(t,k) = (Ot,A
k
t ) and ŝ′ = ŝI(t,k−1) =

(Ot,A
k−1
t ). Thus the loss take the form of

Lconsistency =
(
γ2EAk−1

t ∼π̂θ(·|ŝ)Q̂ϕ(ŝ
′,Ak−1

t )− Q̂ϕ(ŝ,A
k
t )
)2

, (7)

where γ2 ≈ 1 is the discount factor of hidden steps.

For k = 0, the bellman residual in GNMDP is of the same meaning as that in normal MDP. Let ŝ =
ŝI(t,0) = (Ot,At) and ŝ′ = ŝI(t+l,K) = (Ot+l, ϵ), ϵ ∼ N (0, I), we have the MSBE loss(Mean
Square Bellman Error loss):

LMSBE =
((
Rt + γQ̂ϕ(ŝ

′, ϵ)
)
− Q̂ϕ(ŝ,At)

)2
. (8)

Policy improvement Like TD3+BC, we combine a Q loss and a BC loss to train the policy. The
Q loss pertains to the optimization term, and it can be expressed as:

LQ = −Q̂ϕ(ŝI(t,k), âI(t,k)) = −Q̂ϕ((Ot,A
k
t ),A

k−1
t ). (9)

The BC loss serves as the regression term for preventing out-of-distribution actions, which could be
replaced by the loss of the diffusion model:

LBC =
(
ϵt,k − ϵθ,Ot(A

k
t , k)

)2
(10)

ϵt,k refers to the sampled diffusion noise corresponding to the I(t, k) step of GNMDP. That is the
noise sampled in the forward diffusion process of At to k-th step. The coefficients of the Q loss and
BC loss can be fine-tuned to balance the optimization goal and constraints on the action distribution.
Our method, DreamFuser, optimizes a diffusion policy in GNMDP. The training process involves
sampling trajectories from the dataset, training the Q networks, and optimizing the “denoise” policy.
The inference process includes sampling the action sequence through the diffusion model of Dream-
Fuser and applying it sequentially to obtain the next observations. Detailed steps of the proposed
algorithm are presented in Appendix Algorithm 1.

Pretrained dynamic model Optionally, we incorporate a dynamics model to enhance the policy’s
prediction capabilities. Complementary to our main algorithm, the dynamics model is equipped with
a GRU backbone. It has been pre-trained on the behavior dataset to predict future state transitions,
represented as O′

t. The inputs of the dynamics model include the noisy actions Ak
t , the previous

state Ot, and the diffusion timestep k. The superscript k on O′k
t indicates the diffusion timestep

associated with its corresponding input, Ak
t . The integration of the pre-trained dynamics model
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allows us to enhance the policy’s input with the predicted future state O′k
t , as the dynamics model

captures the transition features of the environment. In other words, the diffusion policy inputs Ot, k,
O′k

t , Ak
t , and outputs Ak−1

t in the case with a pretrained dynamics model. For a detailed exposition
of the dynamics model, including its integration and functionality, please refer to Appendix Section
B.3.

5 EXPERIMENTS

This section showcases our method’s ability to efficiently learn the Q function to optimize the dif-
fusion policy within the context of GNMDP. Our approach harnesses the advantages of trajectory-
based diffusion models and the learned Q function, thereby preserving the effectiveness of sequence
modeling during behavior cloning while enhancing diffusion policies in offline RL. We conduct
ablation studies to underscore the contributions of our approach’s individual components.

5.1 EVALUATION BENCHMARK

D4RL Our experimental assessment of the proposed algorithm is conducted on the D4RL (Fu et al.,
2021) benchmark, specifically focusing on the Gym locomotion and AntMaze environments. The
dataset for each environment comprises 1e6 timesteps. The locomotion datasets encompass a no-
table number of near-optimal trajectories with dense rewards. The AntMaze datasets contain very
few near-optimal trajectories and are primarily characterized by sparse rewards that are hard to
optimize. Successful navigation toward the maze’s intended goal requires the agent to effectively
integrate various sub-optimal trajectories.

Object manipulation The evaluation also emphasizes low-level object manipulation tasks, as we
observe saturation in the D4RL benchmarks for imitation learning. This focus is essential to more
effectively highlight the advantages of trajectory learning and diffusion model capabilities. We take
two environments from ManiSkill2 (Gu et al., 2023) as our testbed. ManiSkill2 offers diverse ob-
ject manipulation tasks executed in environments with authentic physical simulation, encompassing
dynamic grasping motions. The task Peg Insertion Side requires the agent to insert a cuboid-shaped
peg sideways into a hole of varied geometries and sizes, embodying a precise clearance task. An-
other task Stack Cube, a 6-DoF Pick-and-place task, requires the agent to pick up and lift a cube,
and position it atop another. Block Pushing, derived from BET (Shafiullah et al., 2022), evaluates
the policy’s proficiency in handling multimodal action distributions through the objective of push-
ing two blocks into two squares in no specific order, underlining the task’s multimodal nature. The
above datasets all contain 1k trajectories with maximum length not exceeding 50.

5.2 BASELINE COMPARISON

We incorporate comparisons with offline RL baselines within the realm of regularization-based
methodologies. This includes Behavior Cloning (BC), TD3 augmented with BC (Fujimoto & Gu,
2021), and Implicit Q-Learning (IQL) (Kostrikov et al., 2021). Furthermore, we also consider Q-
value constraint methodologies, specifically Conservative Q-Learning (CQL) (Kumar et al., 2020).
We also compare trajectory modeling algorithms like BeT (Shafiullah et al., 2022) and diffusion-
based sequence modeling methods such as Diffuser (Janner et al., 2022), Decision Diffusers (DD)
(Ajay et al., 2022), and Diffusion Policy (Chi et al., 2023) for comparison. The performance met-
rics of these baseline algorithms are based on either the best results recorded in their respective
publications(for D4RL) or results reproduced by us(for manipulation tasks).

Results for D4RL The results 1 highlight that while baselines yield satisfactory performance on
the Gym MuJoCo tasks, our proposed algorithm consistently enhances these performances, as ev-
idenced by the averaged normalized scores. Particularly noteworthy are the tasks classified as
”medium” where our method outperforms all the baselines listed. These ”medium” datasets in-
herently contain trajectories generated by agents exhibiting exploratory behaviors and deploying
non-optimized policies. The mere imitation of the data distribution will lead to sub-optimal policy.
As elucidated in Section 4, our method, DreamFuser, navigates through the policy improvement
phase, generating better actions based on the non-optimal sequences through Q-function guided op-
timization process. When considering the AntMaze tasks, it is needed to apply robust and stable
Q-learning to adeptly connect sub-optimal demonstrations, facilitating the agent’s progression to-
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Table 1: Averaged normalized scores on MuJoCo locomotion and Ant Maze tasks. Algorithms
demonstrating the top two performances are highlighted in the table. The locomotion tasks are
evaluated with 10 seeds and the Ant Maze tasks are measured with 3 seeds. For each seed, 20
episodes are evaluated

Gym Task BC TD3+BC Diffuser IQL DD DP Ours
halfcheetah-medium-v2 42.6 42.6 44.2 47.4 49.1 41.7 52.8 ± 0.0
hopper-medium-v2 52.9 67.6 58.5 66.3 79.3 51.1 93.8 ± 3.5
walker2d-medium-v2 75.3 74.0 79.7 78.3 82.5 77.2 85.9 ± 0.3
halfcheetah-medium-expert-v2 55.2 86.8 79.8 86.7 90.6 43.5 94.8 ± 0.0
hopper-medium-expert-v2 52.5 107.6 107.2 91.5 111.8 53.6 106.3 ± 3.5
walker2d-medium-expert-v2 107.5 108.1 108.4 109.6 108.8 77.2 109.5 ± 0.0
Average Score 64.3 81.11 79.6 80.0 87.0 57.3 90.5
AntMaze Tasks BC TD3+BC CQL IQL - DP Ours
antmaze-umaze-v0 54.6 78.6 74.0 87.5 - 64.0 92.1
antmaze-umaze-diverse-v0 45.6 71.4 84.0 62.2 - 60.0 82.7
antmaze-medium-diverse-v0 0.0 3.0 53.7 70.0 - 2.0 70.6
antmaze-large-diverse-v0 0.0 0.0 14.9 47.5 - 0.0 46.0
Average Score 25.0 38.3 56.7 66.4 - 31.5 72.9

Table 2: Averaged success rate (in %) on ManiSkill2 and multimodal Block Push tasks.

Object Manipulation Tasks BeT DD Diffusion Policy Ours
PegInsertionSide-v0 0.8 13.0 50.3 53.5
StackCube-v0 0.6 5.6 83.6 89.9
BlockPush 71 75 94 92.3
Average Score 24.1 31.2 76.0 78.6

wards the ultimate target. Our proposed trajectory learning optimization technique for Q values
proves effective, notably excelling in tasks labeled as ”umaze”. In summary, the DreamFuser shows
the advantages in optimizing diffusion policy, verified by the results of D4RL benchmark.

Results for object manipulation task Our methodologies distinctly surpass all benchmarked tra-
jectory baselines 2 on ManiSkill2 tasks, irrespective of whether they are diffusion-based or not.
When considering the Block Push task, DreamFuser achieves comparative results w.r.t state-of-the-
art diffusion sequence-based method Diffusion Policy. The challenges posed by the necessity for
high precision, the complexity of the control action space, or the multimodal nature of the data
distribution are effectively navigated by our approach.

5.3 ABLATION STUDY

Effectiveness of Q learning In our ablation study, we investigate the impact of Q optimization
on the performance of our proposed algorithm. The results are presented in Table 3, showcasing
the performances with and without applying Q optimization. From the displayed results, it is clear
that incorporating Q optimization substantially enhances the algorithm’s efficacy across the selected
tasks. In scenarios without Q optimization, the algorithm exhibits a reduction in performance, un-
derscoring the pivotal role that Q optimization plays in bolstering the model’s capabilities.

Length of the action sequence Within both experimental environments, the visualized results
presented in Figure 2c and 2b indicate that, under conditions of a fixed input horizon, approaches
employing trajectories modeling (horizon equals 7) exhibit substantially higher performance com-
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Table 3: Averaged normalized scores on MuJoCo locomotion and averaged success rate on Man-
iSkill2 tasks. Our method has a strong performance boost after including Q optimization.

Maniskill Task w/o Q w Q
PegInsertionSide-v0 49.3 53.5
StackCube-v0 86.4 89.9

Gym Task w/o Q w Q
halfcheetah-medium-v2 42.8 51.0
hopper-medium-v2 52.7 94.7
walker2d-medium-v2 56.4 88.5
halfcheetah-medium-expert-v2 66.4 92.9
hopper-medium-expert-v2 60.6 102.3
walker2d-medium-expert-v2 86.9 109.7

pared to those utilizing a singular time step (where the output horizon is set to 1). This empirical
observation underscores the substantial advantages of forecasting longer sequences when engaged
in low-level control tasks that deal with manipulation and movement at a finer, more granular level.
We conjecture that modeling longer action sequences helps the network capture the temporal corre-
lation of the behavior policy, enabling more accurate modeling of the behavior distributions. As a
result, modeling action sequences generates trajectories closer to the demonstrations and achieves a
higher success rate.

(a) Success rate for Stack Cube (b) Success rate for Peg Insertion (c) Success rate for Stack Cube

Figure 2: Performance curves for two tasks: Peg Insertion and Stack Cube. Each epoch corresponds
to a 50k gradients update.

Effectiveness of the learned model The pretrained dynamics model helps address the overfitting
problem. The overfitting issue occurs in some low level control tasks and it is due to the limited
capacity of low-level control dataset presumably. As depicted in Figure 2c, removing the learned
model shows a discernible decline in performance beyond the 10th epoch, whereas the model-based
policy continues to exhibit an ascending trajectory in terms of performance. This graphical repre-
sentation elucidates that the adoption of a model-based approach can mitigates the overfitting issue
as the learned model may help the network better generalize from the learned data patterns.

6 CONCLUSION AND FUTURE WORKS

This work introduced the DreamFuser algorithm, which seamlessly integrates the Diffusion Model
into a Generalized Noisy Action MDP framework for offline reinforcement learning. This integra-
tion enhanced memory utilization and computational efficiency compared to existing methodologies
while preserving the expressive capabilities of diffusion models on sequence modeling. As demon-
strated by empirical results, DreamFuser attains improved performance on benchmark datasets.

9
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A CODE

Algorithm 1 DreamFuser

Require: Given D = {st, at, rt, dt}, obtain trajectory dataset D′ = {Ot,At,Rt,Dt}. Condi-
tional Diffusion Model ϵθ(Ot,A

k
t , k) with noising function q sample: Ak

t = q(At, k, ϵ), and
denoising function p sample: Ak−1

t ≈ pθ(A
k
t , k,Ot). C1 and C2 are constant coefficients.

r ∈ {1, . . . ,K} is the denoising rollout step number.
1: while not converged do
2: k ← [r,K], b = {Ot,At,O

′
t,Rt,Dt} ← D′

3: Ak
t = q(At, k, ϵ), ϵ← N

4: for i ∈ {1, . . . , r} do
5: Āt

k−i
= pθ̄(A

k−i+1
t , k − i+ 1,Ot), Ak−i

t = pθ(A
k−i+1
t , k − i+ 1,Ot)

6: end for
7: LMSBE =

∥∥∥Q̂ϕ(At, 0,Ot)− (Rt + (1−Dt)γQ̂ϕ̄(ϵ
′,K,O′

t))
∥∥∥2, ϵ′ ← N

8: Lconsistency =
∥∥∥Q̂ϕ(A

k
t , k,Ot)− γ2Q̂ϕ̄(Āt

k−r
, k − r,Ot)

∥∥∥2
9: LQ = −Q̂ϕ(A

k−r
t , k − r,Ot)

10: LBC =
∥∥ϵθ(Ot,A

k
t , k)− ϵ

∥∥2
11: Lcritic = Lconsistency + C1LMSBE

12: Lactor = LQ + C2LBC

13: ϕ← ϕ− ηϕ∇ϕLcritic, θ ← θ − ηθ∇θLactor if update needed
14: if update needed then
15: ϕ̄ = τ ϕ̄+ (1− τ)ϕ, θ̄ = τ ′θ̄ + (1− τ ′)θ
16: end if
17: end while

Algorithm 2 DreamFuser Inference

Require: Given the current observations Ot, the trained model M , Kinference is the sampling steps
of the DDIM.

1: ϵ ∼ N (0, I).
2: At is denoised conditional on Ot from ϵ in Kinference steps by M and following the DDIM

denoising scheduler.

B ADDITIONAL DETAILS

Here we provide additional details for our algorithm implementation.

B.1 POLICY TRAINING

The training process consists of two phases: Q function learning(policy evaluation) and policy im-
provement.

We first sample trajectories from the provided dataset and add noise to get Ak
t as shown in the

pseudocode 1. In the Q function learning phase, we minimize the MSBE loss 8 and consistency
loss 7 to learn the Q function over GNMDP. The MSBE loss refers to the Mean Square Bellman
update Errors between the steps in the original MDP while the consistency loss refers to the Bellman
update loss between the denoising steps. We use the target network of actors to denoise noisy action
in this phase to stabilize the training process. We can adjust the ratio between the coefficient of
MSBE loss and consistency loss and determine a constant coefficient. The double Q method is
applied for both hidden steps and execution steps, so as to make Q-learning more stable.

In the policy improvement phase, we minimize the Q loss and BC loss terms. The actor is used to
denoise the noisy actions. The weight of BC loss can be tuned based on the environment. The Q
loss accounts to optimize the diffusion policy towards the direction maximizing the objectives. The
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BC loss is inspired by TD3+BC, which could would help control the distance between the target
policy distribution and the behavior policy distribution. We keep the BC loss coefficient the same
over most environments.

We introduce the multi-step value evaluation in our DreamFuser.For both actor and critic, we add
target networks. Given rollout number r, we continuously denoise the noisy actions Ak

t for r steps
to get Āt

k−r and Ak−r
t , as shown in 1, which could be used to obtain a better value estimation in

the computation of consistency loss and Q loss. The rollout number r can be tuned to control the
computation cost of denoising steps, enabling us to trade off between computation and performance.
As we know, the multi-step temporal learning would reduce the variance of Q-function.

B.2 INFERENCE OF THE DREAMFUSER

correct the grammar and keep the identifier in latex The inference of the DreamFuser is the same
as the diffusion policy. At the beginning, a noise is sampled from the Normal distribution. The
noise has the same shape as the action sequence and serve as the initial noisy action. The primary
inputs to the diffusion model in the DreamFuser are a sequence of observations, denoted as Ot, and
a sequence of noisy actions, Ak

t , as well as the diffusion step k. The Ot and k serve as the condition
of the diffusion model. Then the model would denoise and output Ak−1

t .

To accelerate the policy’s inference speed, we use Denoising Diffusion Implicit Models
(DDIM)(Song et al., 2021) in sampling. DDIM is instrumental in accelerating the inference pro-
cess by enabling the selection of a reduced number of diffusion steps, known as Kinference instead
of the original K. The training of DDIM is the same as the DDPM. Opting for a smaller Kinference

facilitates a swifter evaluation of the model, thereby enhancing efficiency without significantly com-
promising the quality of the generated actions. Thus, the above Ak

t and Ak−1
t of inference step are

in the context where k ∈ [1,Kinference] instead of k ∈ [1,K]. In practice, Kinferemce is chosen to
be 4 for faster evaluation, independently of the chosen value for K.

B.3 MODEL-AUGMENTED ACTION GENERATION

The policy’s capability is further enhanced by integrating a pre-trained dynamics model. That is,
apart from the inputs mentioned in B.2, the output of the dynamics model could serve as an addi-
tional input. The pretrained dynamics model uses a GRU(Chung et al., 2014) backbone to predict
future state transitions, denoted as O′

t. For the GRU model, we use the history observation sequence
Ot for the initial hidden and the noisy action sequence as input. The sequence length of future
states O′k

t is chosen to be the same as the length of action sequence At. Thus, the inputs of the
diffusion model would be Ot,O

′k
t ,Ak

t , k when equiped with the pretrained dynamics model. In the
pretraining process of the dynamics model, we use the supervised learning in predicting the next
observations given the current observations and actions sequence. The motivation of the additional
dynamic model is to embed the knowledge about the transition of environments into the diffusion
policy. We use the dynamics model in our low-level benchmarks evaluation.

B.4 NETWORK ARCHITECTURE

For the dynamics model mentioned in 4.3 and B.3, the GRU is used as the backbone. The hidden
dimension of the GRU is 256. The inputs Ot are fed into a conditional GRU, and the final hidden
states are extracted as the features of the current observations Ot. Then, the hidden states and
time embedding of k serve as the initial hidden states for the transition GRU, whose inputs are Ak

t .
Finally, the transition GRU will output O′k

t , which is further transferred to the diffusion model.

When it comes to the sequence-based denoising model, our approach adheres to the Transformer
backbone as delineated in (Chi et al., 2023). In this setup, the embedding of observation Ot is
combined with the embedding of the diffusion timestep k by summation, and they are then fed into
a multi-head cross-attention layer of each Transformer decoder block. Furthermore, the input for the
Transformer decoder is formulated by concatenating the noisy action sequence Ak

t and the predicted
future state O

′k
t , which can be expressed as [Ak

t ,O
′k
t ]. The alternatives of the current backbones

could be left as the future work.
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C HYPERPARAMETERS

Hyperparameter Value
batch size 256
number of steps per epoch 5000
number of epochs 2000
learning rate 3e-4
max episode length 1000
evaluation episodes 20

Table 4: Hyperparameter Configuration

When evaluating the policy, we tested over 3 seeds and 20 episodes for each. We use the average
reward sum and success rate to quantify the performance. The average reward sum is used in the
D4RL dataset while the success rate is referred to in the Maniskill2 dataset.

Hyperparameter Value
gamma 0.99
gamma2 1.0
tau 0.005
policy update frequency 2
policy ema frequency 5
critic ema frequency 1
grad norm 9.0
state length 3
action length 2
length of rollout 1
MSBE coefficient 1.0
Q coefficient 1.0
BC coefficient 1.0
consistency coefficient 1.0
beta schedule linear
predict epsilon False
sampler type ddim
diffusion steps 8
number of inference steps 4

Table 5: Hyperparameter Configuration

The policy update frequency refers to the number of critical updates between policy updates. policy
ema frequency and critic ema frequency refer to the frequency of updating the target network. The
gradient norm is used in the gradient clip in the backward propagation. The state length, and action
length are the number of states used as conditions and the number of actions predicted.

The default hyperparameters are listed above. For the D4RL dataset, over the Mujoco and Antmaze
environments, we use the default hyperparameters for all these environments. The results of
halfcheetah-medium-expert-v2 and walker2d-medium-expert-v2 are evaluated with state length and
action length as 1.

For the Maniskill2 dataset, we use state length of 2, action length of 7, and diffusion steps as 100.

D DETAILS ABOUT GNMDP

D.1 FORMULATION OF GNMDP

In order to present our approach, DreamFuser, we introduce the concept of the Generalized Noisy
Action MDP, abbreviated as GNMDP. The GNMDP serves as the foundation for incorporating the
diffusion policy’s diffusion process into the underlying original MDP structure. A similar notion

14
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has been put forth in Black et al. (2023), wherein the denoising procedure of the diffusion model
is treated as an MDP, utilizing a reinforcement learning (RL) framework to optimize an objective
function throughout the diffusion process. It’s worth noting that, in our context, the primary em-
phasis lies within the domain of reinforcement learning. Hence, we integrate the diffusion process
seamlessly into the RL framework of the original MDP, rather than constructing an MDP solely to
encapsulate the diffusion process from scratch.

Let’s consider the original MDP within the framework of reinforcement learning, denoted asM =
{S,A, P,R, γ}. Here, S and A represent the state and action spaces, respectively. The transition
probability from state s to state s′ following action a is captured by P (s′|s,a), while R(s,a, s′)
quantifies the reward associated with the transition. Within this context, γ ∈ [0, 1) serves as the
discount factor. To distinguish from the diffusion timestep, we employ the subscript t to signify the
MDP timestep.

On a different note, in the context of the diffusion model, we adopt the superscript k to represent
the diffusion timestep for ease of reference. Given a real distribution q(x), an initial sample x0 is
drawn from q(x). Progressively introducing Gaussian noise results in a sequence of noisy samples
x1, . . . ,xK , with a noise schedule β = (β1, . . . , βK). This noise incorporation process is defined
as follows:

q(xk|xk−1) = N (xk;
√

1− βkxk−1, βkI) (11)

q(x1:K |x0) =

K∏
k=1

q(xk|xk−1). (12)

Moreover, as K →∞, βK → 1, the distribution of noisy samples xK should become indistinguish-
able from N (0, I).

We then introduce the subsequent MDP M̂ = {Ŝ, Â, P̂ , R̂, γ̂}, defined as follows:

ŝI(t,k) ≜ (st,a
k
t ) (13)

âI(t,k) ≜

{
ak−1
t , (k > 0),

ϵ ∼ N (0, I), (k = 0),
(14)

P̂ (ŝI(t,k), âI(t,k)) ≜

{ (
st,a

k−1
t

)
, (k > 0),(

P (st,a
0
t ), ϵ

)
, (k = 0, ϵ∼ N (0, I)),

(15)

r̂I(t,k) ≜

{
0, (k > 0),
rt, (k = 0),

(16)

γ̂I(t,k) =≜

{
γ2, (k > 0),
γ, (k = 0),

(17)

Here, I(t, k) = (K + 1)t+ (K − k) indicates the time index in the new MDP, and γ2 = 1. k > 0
step is referred as denoise or hidden step while k = 0 step is referred as execution step.

D.2 POLICY AND VALUE FUNCTION OVER GNMDP

The policy π(a | s) pertains to the action distribution of a given the current state s in the original
MDP. The corresponding objective function for this MDP is as follows:

max
π

E

[ ∞∑
t=0

γtr(st, at)

]
. (18)

In addition, commonly used in reinforcement learning algorithms are the value function V (s) and
the action value (Q) function Q(s,a), defined respectively as:
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V (s) = Eπ

[ ∞∑
t=0

γtr(st,at)|s0 = s

]
, (19)

Q(s,a) = Eπ

[ ∞∑
t=0

γtr(st,at)|s0 = s,a0 = a

]
. (20)

Building upon the slightly revised definition of the GNMDP provided above, we can demonstrate
that the policy π̂, value function V̂ , and action value function Q̂ are well-defined. Notably, the action
at k = 0 has no effect. For clarity, we can alternatively define M̂ = {Ŝ, Â, P̂ , R̂, γ̂} as follows:

ŝI(t,k) ≜ (st,a
k
t ), (1 ≤ k) (21)

âI(t,k) = ak−1
t , (k > 0), (22)

P̂ (ŝI(t,k), âI(t,k)) = P̂ ((st,a
k
t ),a

k−1
t ) ≜

{ (
st,a

k−1
t

)
, (k > 1),(

P (st,a
0
t ), ϵ

)
, (k = 1, ϵ ∼ N (0, I)),

(23)

r̂I(t,k) ≜

{
0, (k > 1),
rt, (k = 1),

(24)

γ̂I(t,k) =≜

{
γ2, (k > 1),
γγ2, (k = 1),

(25)

Subsequently, π̂(â | ŝ) = π̂(ak−1
t | st,ak

t ) represents the distribution of a noisy action ak−1
t

and is well-defined. Additionally, we note that equation 18 is equivalent to (retaining the previous
definition for clarity):

max
π̂

E

[ ∞∑
t=0

γt
K∑

k=0

γK−k
2 r̂(st, a

k
t )

]
, (26)

=max
π̂

E

[ ∞∑
t=0

(
t∏

m=0

γ̂m

)
r̂(st, at)

]
. (27)

(28)

Thus, we can define the Q function and value function over the new MDP as follows:

Q̂(s,a) = Eθ

[ ∞∑
t=0

(
t∏

m=0

γ̂m

)
r̂(ŝt, ât)|ŝ0 = s, â0 = a

]
, (29)

V̂ (s) = Eθ

[ ∞∑
t=0

(
t∏

m=0

γ̂m

)
r̂(ŝt, ât)|ŝ0 = s

]
. (30)

D.3 DIFFUSION POLICY ON GNMDP

The diffusion policy, as defined in Wang et al. (2022) implicitly parametrizes the policy π using
a conditional diffusion model ϵθ(ak | s), wherein the action space A is conditioned on S. This
representation characterizes the distribution of ak−1

t given st,a
k
t as follows:

µθ,st(a
k
t , k) =

1
√
αk

(
ak
t −

1− αk√
1− ᾱk

ϵθ,st(a
k
t , k)

)
,

ak−1
t = N (ak−1

t ;µθ,st(a
k
t , k),Σk),

(31)
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Here, µθ,st is the mean of the denoised action based on the noise introduced by ϵθ,st , and Σk denotes
the covariance matrix. The policy π(at | st) involves sequential denoising steps and ultimately
yields at = a0

t derived from aK
t ∼ N given the current state st.

Given the framework of the GNMDP as defined earlier, it’s evident that we can explicitly parameter-
ize the π̂ using the expression equation 31. This parameterization precisely illustrates the generation
of âI(t,k) = ak−1

t from ŝI(t,k) = (st,a
k
t ). More formally, this can be articulated as:

ak−1
t = N (ak−1

t ;
1
√
αk

(
ak
t −

1− αk√
1− ᾱk

ϵθ,st(a
k
t , k)

)
,Σk). (32)

This parameterization within the context of the GNMDP structure aligns with the diffusion policy
concept and provides a clear mapping between denoised actions in diffusion policy and states and
actions in GNMDP.
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