
Published in Transactions on Machine Learning Research (July/2023)

mL-BFGS: A Momentum-based L-BFGS for Distributed
Large-Scale Neural Network Optimization

Yue Niu yueniu@usc.edu
Department of Electrical and Computer Engineering
University of Southern California
Zalan Fabian zfabian@usc.edu
Department of Electrical and Computer Engineering
University of Southern California
Sunwoo Lee sunwool@inha.ac.kr
Department of Computer Science and Engineering,
Inha University
Mahdi Soltanolkotabi soltanol@usc.edu
Department of Electrical and Computer Engineering
University of Southern California
Salman Avestimehr avestime@usc.edu
Department of Electrical and Computer Engineering
University of Southern California

Reviewed on OpenReview: https: // openreview. net/ forum? id= 9jnsPp8DP3

Abstract

Quasi-Newton methods still face significant challenges in training large-scale neural networks
due to additional compute costs in the Hessian related computations and instability issues
in stochastic training. A well-known method, L-BFGS that efficiently approximates the
Hessian using history parameter and gradient changes, suffers convergence instability in
stochastic training. So far, attempts that adapt L-BFGS to large-scale stochastic training
incur considerable extra overhead, which offsets its convergence benefits in wall-clock time.
In this paper, we propose mL-BFGS, a lightweight momentum-based L-BFGS algorithm
that paves the way for quasi-Newton (QN) methods in large-scale distributed deep neural
network (DNN) optimization. mL-BFGS introduces a nearly cost-free momentum scheme
into L-BFGS update and greatly reduces stochastic noise in the Hessian, therefore stabilizing
convergence during stochastic optimization. For model training at a large scale, mL-BFGS
approximates a block-wise Hessian, thus enabling distributing compute and memory costs
across all computing nodes. We provide a supporting convergence analysis for mL-BFGS
in stochastic settings. To investigate mL-BFGS’s potential in large-scale DNN training, we
train benchmark neural models using mL-BFGS and compare performance with baselines
(SGD, Adam, and other quasi-Newton methods). Results show that mL-BFGS achieves
both noticeable iteration-wise and wall-clock speedup.

1 Introduction

In supervised learning, a typical task is to minimize a empirical risk function,

min
θ

L(θ; X) := 1
N

N∑
i=1

ℓ(θ; xi, yi), (1)

where θ ∈ Rd denote the parameters to be optimized, and X represents training samples {xi, yi}N
i=1.

At present, stochastic gradient descent method (SGD) and its variants, such as Adam (Kingma & Ba, 2014)
are the preferred methods to optimize parameters θ due to their simplicity, especially for large-scale machine

1

https://openreview.net/forum?id=9jnsPp8DP3

Published in Transactions on Machine Learning Research (July/2023)

learning problems. Nevertheless, second-order or quasi-Newton (QN) methods have also been extensively
investigated due to their superior convergence over gradient descent (GD) in strongly convex optimization
settings (Gao & Goldfarb, 2019; Rodomanov & Nesterov, 2021).

However, the Achilles heel of QN methods that is impeding their wide adoption for large-scale machine learn-
ing problems is their substantial compute and memory costs. Specifically, these barriers stem from attaining
second-order information, including computing and storing the Hessian, performing matrix inversion, etc.
For large-scale neural networks, these operations pose daunting challenges to QN’s implementations and
significantly affect running time. Moreover, second-order methods are inherently hard to parallelize as the
Hessian inversion usually involves many sequential steps, making it difficult to leverage large-scale distributed
systems to partition computations and memory across multiple nodes. As a result, even though superior
convergence performance is observed in strongly convex settings, it still remains unclear how to convey such
benefits to large-scale model training in distributed settings.

Due to the prohibitive challenge above, approximation methods are getting increasing attention that attain
second-order information by formulating the Hessian inverse in different ways. These methods, to some
extent, open the door for second-order methods to large-scale machine learning. Among them, two lines
have proved very promising. The first one arises from the Fisher information matrix I (expectation of the
Hessian under a negative log-likelihood loss). Methods such as KFAC (Martens & Grosse, 2015; Ba et al.,
2017; Pauloski et al., 2020) first approximate I and then simplify matrix inversion by decomposing I into
small submatrices. However, the considerable overhead for obtaining the empirical Fisher information and its
inverse greatly neutralizes its faster per-iteration convergence promises. Another line of the approximation
methods directly approximates the Hessian inverse via BFGS update. With pairs of history gradient and
parameter changes, BFGS directly approaches the Hessian inverse with no additional costs on computing
and storing the Hessian matrix. However, BFGS or its variant L-BFGS (Nocedal, 1980) has not proved effi-
cient in large-scale stochastic optimization, where convergence instability is commonly observed. Additional
operations introduced in recent works stabilize the training but with substantial costs (Mokhtari & Ribeiro,
2015; Moritz et al., 2016; Gower et al., 2016). For instance, Moritz et al. (2016) uses a separate large batch
of inputs to compute the consistent gradient and parameter changes, which inevitably increase the wall-clock
time. Moreover, moving to distributed systems, these methods are not amenable to efficient parallelization
due to either direct matrix inverse (e.g., KFAC) or the iterative procedure in BFGS-like methods.

To simultaneously mitigate the challenges of compute and memory costs, and scalability in distributed
systems, we propose mL-BFGS, a stable distributed BFGS variant that preserves the convergence promises
of second-order methods, with modest compute and memory costs compared to other QN methods. mL-
BFGS addresses the aforementioned barriers as follows. First, mL-BFGS introduces an almost cost-free
momentum scheme into the BFGS update rule to stabilize the optimization. By using the momentum of
the history statistics (parameter and gradient changes) to estimate the Hessian inverse, mL-BFGS smooths
out the approximation with no needs of costly variance reduction methods (e.g., a separate large batch
size to estimate the Hessian). Hence, both stability and compute efficiency are achieved. For efficient
parallelization and low memory footprint in distributed systems, mL-BFGS presents a more generic block-
wise Hessian approximation with each block consisting of one or multiple layers. During optimization, each
node only computes and stores statistics for one block rather than the full Hessian. As a result, mL-BFGS
can perform the Hessian inverse and gradient conditioning in a distributed way with marginal communication
and synchronization overhead.

Our theoretical analysis shows mL-BFGS effectively suppresses noise in the Hessian approximation and
achieves stable convergence. Empirical evaluations show that, on benchmark datasets, CIFAR-10 and Ima-
geNet, and models such as ResNet and Vision Transformer, mL-BFGS achieves a faster per-iteration con-
vergence compared to SGD and Adam. Furthermore, due to the lightweight momentum-based Hessian
approximation, mL-BFGS needs a much shorter wall-clock time to achieve the target accuracy compared to
SGD, Adam and other QN methods such as KFAC.

In summary, our main contributions are as follows:

1. We develop mL-BFGS, a distributed stochastic QN method for large-scale models, that achieves fast and
stable convergence with low computational complexity.

2

Published in Transactions on Machine Learning Research (July/2023)

2. We provide theoretical analyses that show mL-BFGS significantly mitigates adverse effects of stochastic
noise on the Hessian approximation and achieves stable convergence for stochastic optimization problems.

3. We provide complexity analyses that demonstrate mL-BFGS incurs much less complexity than other QN
methods, leading to reductions in overall wall-clock training time.

4. Finally, we carry out comprehensive evaluations on various models and datasets that show mL-BFGS
empirically delivers faster per-iteration and wall-clock convergence compared to SGD, Adam, and other
second-order optimizers.

2 Preliminaries

The risk function L(θ, X) in Eq (1) is usually optimized through a form of gradient descent as:

θt+1 = θt − ηt · Ĥ · gt, (2)

where ηt denotes step size (learning rate) at iteration t and Ĥ is a gradient pre-conditioner. In stochastic
training, gradients are evaluated on a mini-batch input Xt ⊆ X , namely gt = ∇θL(θt, Xt).

If Ĥ is an identity matrix, the update above is reduced to SGD, whereas if Ĥ is a diagonal matrix, it becomes
an adaptive training algorithm such as Adagrad (Duchi et al., 2011) or Adam (Kingma & Ba, 2014). To
further improve convergence performance, esp. in an ill-conditioned problem (Nesterov, 2003), it is desired
to incorporate more second-order information into Ĥ as done in quasi-Newton (QN) methods.

A prime challenge in QN methods is the evaluation of Ĥ and in particular its inverse. A well-known Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Fletcher, 2013) addresses the challenge by formulating
the Hessian inverse as a minimization problem:

min
Ĥ

∥∥∥Ĥ − Ĥk−1

∥∥∥2
,

s.t. Ĥ · yk = sk, Ĥ is symmetric,

(3)

where sk = θk − θk−1 denotes the parameter changes, and yk = gk − gk−1 the gradient changes in two
consecutive updates 1. By imposing the secant condition during minimization, BFGS gradually attains
the curvature information close to the real Hessian. Rodomanov & Nesterov (2021) establishes that BFGS
converges to the real Hessian by a greedy strategy of choosing (sk, yk).

Knowing Ĥk−1, the current Ĥ is obtained via:

Ĥk = (I − ρkyksT
k)T Ĥk−1(I − ρkyksT

k) + ρksksT
k , (4)

where ρk = 1
yT

k
sk

. Hence the Hessian inverse Ĥ is constructed in an iterative manner with no need to
compute the Hessian matrix.

To simplify computation in the Hessian-vector product, Ĥ in BFGS is stored in the form of a sequence of
history vectors {yi} and {si}. The matrix-vector product Ĥk · gt is replaced by a sequence of fast vector-
vector products as shown in Algorithm 2 (See Appendix A.1). Furthermore, a limited-memory BFGS,
L-BFGS (Nocedal, 1980) is usually adopted that only uses several latest history vectors when approximating
the Hessian inverse.

3 mL-BFGS

mL-BFGS consists of two crucial techniques to improve convergence stability and scalability of using L-
BFGS in large-scale models. First, mL-BFGS introduces momentum into the Hessian approximation. The
momentum-based design effectively reduces the adverse effects of stochastic noise while without resorting to
costly noise-reduction techniques as in current solutions (Moritz et al., 2016). Second, in distributed training,

1k rather than t is used in the equation as parameter/gradient used might be different from the one in Eq (2)

3

Published in Transactions on Machine Learning Research (July/2023)

mL-BFGS allows a block-wise approximation along arbitrary diagonal blocks. mL-BFGS can flexibly assign
each computing node a block that comprises multiple layers to distribute the workload. We describe the
method in detail below.

3.1 Momentum-based Hessian: Reduce Effects of Stochastic Noise

While momentum is widely used in first-order methods, it is rarely explored in the second-order domain.
Surprisingly, we find that momentum is also a crucial component for a stable Hessian approximation. Fur-
thermore, compared to other noise-reduction methods, the momentum-based design is almost cost-free.

In this paper, we apply momentum to past parameters and gradients as

θ : Mθt = β · Mθt−1 + (1 − β)θt,

g : Mgt = β · Mgt−1 + (1 − β)gt,
(5)

where θt, gt denotes parameters and gradients at t-th iteration, β is the momentum coefficient.

Following the BFGS update rule in Eq (3) and assuming that Ĥ is updated for every T mini-batch iterations,
sk and gk are obtained as

sk = Mθ(k+1)T
− MθkT

, yk = Mg(k+1)T
− MgkT

. (6)

This simple but effective technique works surprisingly well when gradients are noisy. To intuitively show
improvements of using momentum over the vanilla L-BFGS, we visualize the stochastic optimization of
a simple quadratic loss function, L = 1

2 ∥θ∥2. We simulate gradients in stochastic settings at iteration
t as gt = θt + nt, where nt denotes the stochastic noise. We model the noise as i.i.d. Gaussian, namely
nt ∼ N (0, σ2). Figure 1 shows optimization trajectories for SGD, vanilla L-BFGS, L-BFGS with momentum
and the exact 2nd-order method given σ = 0.2. With the same initial point, we observe that L-BFGS with
momentum is as fast as the exact 2nd-order method, and much faster than SGD. On the other hand, vanilla
L-BFGS obviously suffers convergence issues due to noisy yk.

Figure 1: Optimization using SGD, vanilla L-BFGS, L-BFGS
with momentum (β = 0.9) and exact 2nd-order method. Vanilla
L-BFGS fails to find the desirable optimization path. However,
momentum reduces noise in gradients and significantly stabilizes
the optimization.

Analysis - We use a quadratic function as a show-
case to analyze important theoretical properties of
the momentum-based design:

L(θ) = L(θ0)+g(θ0)(θ−θ0)+ 1
2(θ−θ0)∗B(θ−θ0).

The following lemmas and theorem establish theo-
retical improvement of using momentum over vanilla
L-BFGS. Specifically, Lemma 1 shows that momen-
tum in Eq (5) significantly reduces stochastic noise
in gradient changes yk. Lemma 2 further provides
a theoretical guarantee that using momentum can
still obtain the same Hessian approximation as the
vanilla L-BFGS algorithm in the noise-free case.

Finally, Theorem 1 shows that in stochastic settings,
the achievable loss by L-BFGS is lower bounded by
a value depending on noise variance in yk. Com-
bined with Lemma 1 and 2, it is obvious that the
momentum-based approximation achieves a much
lower bound compared to the vanilla version. Such
a conclusion is aligned with our empirical observa-
tions in Figure 1.
Lemma 1. Given L(θ), and assuming gt in iteration t contains Gaussian noise nt with zero mean and
E[∥nt∥2] ≤ ϵ2, then the noise variance in Mgt in Eq (5) is reduced to 1−β

1+β ϵ2 as t → ∞. Furthermore, the
noise variance in yk is reduced to 4(1−β)

1+β ϵ2

4

Published in Transactions on Machine Learning Research (July/2023)

Lemma 2. Considering L(θ) above, with no noise involved, Eq (6) obtains the same Hessian approximation
as the vanilla L-BFGS.
Theorem 1. Considering L(θ) with λI ⪯ B ⪯ ΛI where Λ ≥ λ > 0, and noise variance in yk is bounded
by 2ϵ2. Assuming during the Hessian estimation, we always choose sk, yk such that ⟨sk, yk⟩ ≥ α · ϵ ∥sk∥ with
α > 2, then L(θt) ≥ (α−2)2λ

2Λ2 ϵ2 at any iteration t.
Remark 1. ⟨sk, yk⟩ ≥ α · ϵ ∥sk∥ with α > 2 ensures positive-definiteness in the Hessian approximation.

3.2 Block-wise Approximation: Improve Memory Efficiency in Distributed Training

With the L-BFGS update rule, we need to store a sufficient number of history vectors sk, yk to obtain a
good Hessian approximation. Given model parameters θ ∈ Rd and supposing M history vectors are needed,
it required O(2Md) memory space. While it is much smaller than storing the full Hessian (O(d2)) with
M ≪ d, it can still be a critical bottleneck when training large models.

Furthermore, when it comes to distributed training, simply adopting data parallelism (DP) unfortunately
does not help relieve memory pressure on each node, as parameters and gradients are duplicated on each
node in DP. A naive implementation of the L-BFGS update needs to maintain a copy of {sk, yk}M

k=1 on each
node. As a result, more nodes do not help reduce per-node memory costs in the Hessian approximation. A
more efficient design is needed to reduce per-node memory costs when more nodes are available.

To improve memory efficiency, we propose a new block-diagonal Hessian approximation. Unlike diagonal
approximation methods such as KFAC (Ba et al., 2017), our block-wise approximation method allows each
diagonal Hessian block to capture curvature information across multiple layers. Such a design enjoys a more
flexible configuration depending on the size of each layer’s parameters and each node’s capacity. For instance,
as shown in Figure 2, if node 1 and 2 have similar memory capacities, and the sizes of layers 1-2 and 3-4
are also close, we can approximate the Hessian blocks with layers 1-2 and 3-4 in node 1 and 2, respectively.
Otherwise, we can group layers in a different way and ensure node 1 and 2 share similar memory costs.

During training, for the Hessian approximation, the i-th node only collects parameters and gradients corre-
sponding to its block and computes and stores vectors

{
si

k, yi
k

}
based on Eq (6). When applying gradient

conditioning, each node performs the Hessian-vector product on the corresponding layers, followed by up-
dating parameters. And then, all nodes invoke a All-Gather operation to send/collect updated parameters
to/from other nodes

node 1 node 2

All-Gather

block1:

layer 1,2

block2:

layer 3,4

Hessian inverse matrix

Update

 Cond. Cond.

Update

Figure 2: A distributed block-wise approximation. Each node can compute the Hessian inverse of a diagonal block comprising
one or more layers. Unlike diagonal approximation methods such as KFAC, mL-BFGS allows much more flexible configurations
depending on the size of each layer’s parameters and each node’s capacity.

Analysis - Given p nodes and assuming a model’s parameters can be evenly distributed among these nodes,
then each node only needs O(2M

p d) memory to store the history vectors. If more nodes are available, per-

5

Published in Transactions on Machine Learning Research (July/2023)

node memory costs can be further reduced. On the other hand, it is easy to show that the Hessian inverse
comprising block-diagonal matrices is positive-definite if each of these blocks is positive-definite, therefore
ensuring stable convergence with positive-definite diagonal Hessian blocks.
Lemma 3. In k-th Hessian update, if block i(i = 1, · · · , p), Ĥi

k is bounded by ξiI ⪯ Ĥi
k ⪯ ΞiI, then

min ξi ⪯ Ĥk ⪯ max Ξi.

3.3 Put All Together

With the momentum-based design and block-wise approximation, we present the whole algorithm, mL-
BFGS, as shown in Alg 1. For each parameter block i at iteration t, we compute momentum of parameters
and gradients, and store them in Mθt and Mgt (line 6). For every T iterations, we compute si

k, yi, and
update the Hessian approximation (line 13-18). It is worth noting that in UpdateHessian, the Hessian inverse
is not explicitly computed. Instead, we only push si

k, yi
k to the history vector buffer. If the buffers are full,

we will pop the oldest vectors. In the first 2T iterations, we use SGD to conduct a warmup training as the
Hessian inverse is not available yet (line 8). After the initial warmup training, we will pre-condition gradients
gt before applying updates to θ (line 10-11). At the end of each iteration, a All-Gather is called to update
parameters on all nodes (line 20).

Algorithm 1 mL-BFGS algorithm (T , M , parameter block
{

θi
}p

i=1)

1: Initialize θ0, Mi
θ0

= θi
0, Mi

g0
= gi

0
|

2: for t = 1, · · · , max_iter do
3: Randomly choose mini-batch input Xt ∈ X
4: Perform model forward and backward, compute gradients gt given Xt

5: for each parameter block i do
6: Mi

θt
= β · Mi

θt−1
+ (1 − β) · θi

t, Mi
gt

= β · Mi
gt−1

+ (1 − β) · gi
t

|
7: if t ≤ 2T then
8: Warmup with SGD: θi

t+1 = θi
t − ηt · gi

t

9: else
10: Pre-condition: ∆θi

t = Ĥi
k · gi

t {Algorithm 2}
11: θi

t+1 = θi
t − ηt · ∆θi

t

12: end if
|

13: if t%T == 0 and t > T then
14: k = k + 1
15: si

k = Mi
θt

− Mi
θt−T

, yi
k = Mi

gt
− Mi

gt−T

16: Apply damping: ŷi
k = τ · yi

k + (1 − τ) · si
k

17: Update Hessian: Ĥi
k = UpdateHessian(Ĥi

k−1, si
k, ŷi

k, M)
18: end if

|
19: end for

|
20: All-Gather

{
θi

t+1
}p

i=1 across all nodes.
21: end for

Hessian damping - For non-convex QN optimization, damping is a common technique that ensures the
positive definiteness of the Hessian (Al-Baali et al., 2014; Al-Baali & Grandinetti, 2017; Martens & Grosse,
2015). Furthermore, even with momentum, stochastic training can still cause undesirable fluctuation in the
Hessian approximation. To preserve the positive of the Hessian, we adopt an adaptive damping scheme as

ŷi = τ · yi + (1 − τ) · si, (7)

6

Published in Transactions on Machine Learning Research (July/2023)

with τ obtained as

τ =


min(1−σL

1−µ , τ0) µ ≤ σL < 1
min(σH −1

µ−1 , τ0) µ ≥ σH > 1
τ0 otherwise

where µ = sT
i ·yi

sT
i

·si
, σL and σH are the lower and upper thresholds for restraining eigenvalues in Ĥ and

0 < τ0 < 1 is a constant coefficient.

It is easy to show that sT
i ·ŷi

sT
i

·si
is bounded between [σL, σH], so that the positive definiteness of the Hessian

approximation is preserved during training (See A.2.4 for the proof).

4 Theoretical Guarantees

In this section, we first prove that mL-BFGS achieves a linear convergence rate under non-convex settings
with proper assumptions. Then, in the second part of this section, we delve into the compute and memory
costs in mL-BFGS, and show its benefits in wall-clock convergence compared to other baseline methods:
stochastic L-BFGS, and KFAC.

4.1 Convergence Analysis

We assume the risk function L satisfies the following conditions:
AS 1. L(θ) is twice continuously differentiable.
AS 2. ℓi(θ) is Λ-smooth for 1 ≤ i ≤ N , Λ > 0: ∀θ1, θ2, ∥∇ℓi(θ2) − ∇ℓi(θ1)∥ ≤ Λ ∥θ2 − θ1∥.
AS 3. L(θ) is λ-PL: it satisfies Polyak-Lojasiewicz (PL) condition for a constant λ > 0: ∥∇L(θ)∥2 ≥ λL(θ).

The smooth condition in AS 2 is commonly used in analyzing convergence in practical optimization. In
addition, noting that compared to typical strong convexity assumptions, the PL condition in AS 3 applies
to a more general setting (Polyak, 1963). Strong convexity implies the PL condition, but not vice versa. In
AS 3, we relax the constraint and only require the gradient variance to be lower bounded.

With the assumptions, we present the convergence theorem as follows. Proofs are deferred to Appendix A.2.
Theorem 2. Assume AS 1-3 hold at each iteration t of mL-BFGS with mini-batch input Xt where each
sample is randomly sampled from X with replacement, then the expectation of L(θt) satisfies

EXt [L(θt)] ≤ αt−1EXt−1 [L(θt−1)],

where αt−1 = 1 − ηt−1λξ + η2
t−1Λ2Ξ2. ξ and Ξ denotes the lower and upper bound of the Ĥ.

By choosing ηt−1 such that αt−1 < 1, mL-BFGS converges at a linear rate. The convergence rate matches
the best rate in stochastic QN optimizations. It is worth mentioning that no convergence rate beyond linear
is observed in stochastic L-BFGS optimizations. Theorem 2 is not aimed to push the theoretical convergence
limit. Instead, it investigates the effects of momentum in the Hessian and block-diagonal approximation.
In addition, as mentioned earlier, Theorem 2 also applies to convex settings, as strong convexity implies
∥∇L(θ)∥2 is lower bounded by L(θ) for an appropriate λ > 0 and hence AS 3 holds.

4.2 Complexity Analysis

In this section, we analyse the compute and memory cost of SGD, KFAC(Ba et al., 2017), stochastic L-BFGS
(we call it sL-BFGS)(Chang et al., 2019) and mL-BFGS. As the main motivation, reducing the complexities
of QN methods is crucial for their deployment in real large-scale neural network optimization.

Given a model with parameter θ ∈ Rd, we use Cfb and Mfb to represent the compute and memory cost of a
forward/backward (Fwd/Bwd) pass with a batch size of b = 1. Furthermore, Copt denotes the compute cost
of model updates (Opt) which consists of gradient reduction, computing and apply the update ∆θ.

7

Published in Transactions on Machine Learning Research (July/2023)

Table 1 summarizes the total compute and memory cost of SGD, KFAC, sL-BFGS and mL-BFGS in a
general distributed system with p workers. Compared to SGD, during the forward and backward passes,
mL-BFGS needs to additionally compute Mθ , Mg , for which the complexity increases linearly with model
size (d). The main extra compute mL-BFGS introduces is the Hessian-vector product, in which we need to
iterate over {si}M

i=1 and {yi}M
i=1, as shown in Alg A.1. The complexity increases linearly with the number

of history vectors and model size (2Md). However, it only adds average cost of O(2Md
p) on each worker.

Compared to O(bCfb) complexity in forward and backward passes, such costs are relatively marginal.

As a comparison, KFAC adds significant additional computations through 1) possible multiple backward
passes to update factors (γbCfb with γ ≥ 1), 2) matrix inversion (

∑
(l3

i + (di

li
)3)) for every T iterations,

and 3) Matrix-vector products (2
∑

(li + di

li
)di). On the other hand, sL-BFGS also resorts to computation-

intensive operations including full-batch gradients and a separate large batch to estimate the Hessian, which
respectively adds amortized costs of O(bCfb) and 1

T bHCfb. With data parallelism, it requires each worker to
locally perform gradient conditioning, which adds another cost of O(2Md) in total.

As for memory usage, mL-BFGS mainly needs O(2Md) to store history vectors. The amortized costs of each
worker are O(2Md

p). In practice, M is set to be 10 ∼ 20, which ensures that memory usage is manageable
in mL-BFGS. sL-BFGS needs O(Md) storage for si, yi in total, and amortized cost of O(1

T bHMfb) for
additional backward passes. While KFAC needs O(2

∑
(l2

i + (di

li
)2)) to store sub-matrices and their inverse,

where the actual memory footprint hinges on model architectures.
Table 1: Computations and Memory in SGD, KFAC, sL-BFGS and mL-BFGS

SGD KFAC sL-BFGS mL-BFGS

Per-Node Computation

Fwd&Bwd O(bCfb) O(d + γbCfb + 1
T

∑
(l3

i + (di
li

)3)) O(d + 2bCfb + 1
T

bHCfb) O(d
p

+ bCfb)
Opt O(d) O(d + 2

∑
(li + di

li
)di) O(d + 2Md) O(d + 2Md

p
)

Per-Node Memory

Fwd&Bwd O(bMfb) O(d + bMfb) O(d + bMfb + 1
T

bHMfb) O(d
p

+ bMfb)
Opt O(d) O(d + 2

∑
(l2

i + (di
li

)2)) O(d + 2Md) O(d + 2Md
p

)

• b: per-node batch size. bH : batch size for the Hessian approx. p: #workers. T : Hessian update period.
• di: #params in i-th layer. li: #input neurons in i-th layer. M : max #history vectors.

Table 2 lists detailed amortized costs of different optimizers on ResNet-50/ImageNet in a distributed system.
Compared to KFAC and sL-BFGS, mL-BFGS significantly reduces compute costs in approximating the
Hessian and gradient conditioning. Due to the efficient distributed design, memory consumption on each
worker is also reduced compared to sL-BFGS.
Table 2: Computation (MACs) and memory costs of different optimizers on ResNet-50/ImageNet (b = 64, T = 20; M = 10;
bH = 1024, γ = 1, p = 8). “B" denotes billion, and “M" denotes million.

SGD KFAC sL-BFGS mL-BFGS
Fwd/Bwd 769B

Ĥ Compute - 570B 1414B 52M
Opt 26M 156B 4B 546M

Ĥ Memory - 308M 4B 520M

5 Experiments

We conduct various experiments on computer vision (CV) problems involving datasets such as CIFAR-10,
CIFAR-100 and ImageNet. We choose SGD and Adam as the main baselines since it is widely used in these
tasks and maintains the best training performance. We also compare with another quasi-Newton method,

8

Published in Transactions on Machine Learning Research (July/2023)

KFAC, in large-scale model training. We separately tune hyperparameters for each optimizer to ensure it
achieves the best validation accuracy.

We use a single GPU server with 8 Nvidia Quadro RTX 5000 GPUs to simulate a distributed system, where
each GPU is used as a worker to perform forward and backward passes, and model updates. Furthermore,
each worker is also assigned with one Hessian block to compute the Hessian inverse and gradient conditioning.
The current implementation is based on PyTorch. We set lower and upper thresholds of damping σL, σH to
be 0.01, 1.5 in all experiments to smooth the Hessian approximation.

5.1 Experiments on CIFAR-10/CIFAR-100

We first evaluate mL-BFGS on two small-scale problems: CIFAR-10 and CIFAR-100, and demonstrate
the convergence advantage of mL-BFGS compared to SGD and Adam. The models used are ResNet-18
and DeiT-Tiny Touvron et al. (2021), where DeiT-Tiny is an efficient image transformer with 12 layers, 3
attention heads, and hidden and MLP dimension of 192.

For ResNet18, we divide it into 4 blocks such that each block consists of 2 resblocks (He et al. (2016)). The
linear layer for classification is packed into the last block. For DeiT-Tiny, due to the small model size, we
choose to approximate the whole Hessian.

Hyperparameters are tuned to achieve the best validation accuracy. Details are provided in Appendix A.4.1.

Figure 3 shows training loss. We observe that mL-BFGS achieves a much faster convergence rate compared
to SGD and ADAM. Table 3 lists the validation accuracy on CIFAR-10 and CIFAR-100. We note that
mL-BFGS also achieves similar accuracy as SGD. On the other hand, as in Figure 3, although ADAM has
a convergence rate close to mL-BFGS, the validation accuracy are much lower in all experiments compared
to mL-BFGS. Therefore, we obverse mL-BFGS not only deliver faster convergence, but also achieves good
generalization performance.

(a) ResNet-18/CIFAR-10 (b) ResNet-18/CIFAR-100 (c) DeiT-Tiny/CIFAR-100

Figure 3: Training loss mL-BFGS, SGD, ADAM on ResNet-18 and Deit-Tiny on CIFAR-10/100. mL-BFGS delivers faster
convergence than SGD and ADAM.

Table 3: Validation accuracy of ResNet-18 and Deit-Tiny on CIFAR-10/100 using SGD, ADAM, and mL-BFGS.

ResNet-18/CIFAR-10 ResNet-18/CIFAR-100 DeiT-Tiny/CIFAR-100

SGD ADAM mL-BFGS SGD ADAM mL-BFGS SGD ADAM mL-BFGS
94.1 ± 0.1 92.7 ± 0.1 93.9 ± 0.1 75 ± 0.15 72.2 ± 0.16 74.4 ± 0.1 80.5 ± 0.2 75.3 ± 0.3 79.9 ± 0.2

9

Published in Transactions on Machine Learning Research (July/2023)

5.2 Experiments on ImageNet

ImageNet has been the gold standard for evaluating the performance of optimizers. It consists of ∼1.2M
training and ∼50K test images, categorized into 1000 classes. We follow the standard data pre-processing
procedure, where each image is first resized to 256 × 256, and randomly cropped to 224 × 224 and flipped
horizontally. Each image is then normalized using pre-computed mean and variance.

ResNet-50 – When approximating the Hessian, we divide ResNet-50 into 8 blocks such that each block
consists of 2 resblocks. Similar to ResNet-18 in CIFAR-10, the linear layer is packed into the last block.
Figure 4a shows iteration-wise convergence on ResNet-50 using SGD, Adam, KFAC and mL-BFGS. Detailed
hyperparameter settings are provided in Appendix A.4.2. Compared to Adam and SGD, mL-BFGS enjoys
much faster per-iteration convergence. Such fast convergence is also reflected in the validation dataset (Figure
4b). Furthermore, it also generalizes well on the validation set, and finally reaches comparable validation
accuracy to SGD.

(a) Training loss (b) Validation error (c) Wall-clock convergence

Figure 4: Training loss and validation error of mL-BFGS, SGD, Adam and KFAC on ImageNet using ResNet-50. mL-BFGS
delivers faster iteration-wise and real-time convergence compared to SGD and Adam. We plot the mean and standard error
over 3 runs with different random seeds

Table 4: Validation accuracy of ResNet-50 on ImageNet using SGD, ADAM, KFAC, and mL-BFGS.

SGD ADAM mL-BFGS KFAC

Acc Time/epoch Acc Time/epoch Acc Time/epoch Acc Time/epoch
74.9 ± 0.11 7.8min 73.95 ± 0.1 7.8min 74.6 ± 0.13 7.9min 74.5 ± 0.1 17min

The benefit of mL-BFGS is even more striking in terms of wall-clock time. As listed in Figure 4c and Table
4, due to light compute costs, the per-epoch runtime of mL-BFGS is almost the same as SGD and Adam. On
the other hand, for KFAC, while it delivers fast per-iteration convergence compared to SGD and ADAM, the
wall-clock performance is significantly diminished by its additional compute costs. The per-epoch runtime
is > 2× more than mL-BFGS.

5.3 Ablation Study: The Effects of Momentum and Damping

In this section, we give more insight into the effects of momentum and damping used in mL-BFGS. To this
end, we ablate two critical components in mL-BFGS: momentum and damping in the Hessian approximation,
and then use the ablated version to train ResNet-18 on CIFAR-10. We focus on CIFAR-10 since we observed
more convergence instability on this dataset compared to others.

Figure 5 shows convergence using the ablated mL-BFGS with only momentum (black), with only damping
(purple), and with no momentum or damping (red). Due to stochastic noise, the ablated version of mL-BFGS
without momentum/damping (vanilla L-BFGS) diverges easily in the early stages. With momentum (black),
the whole optimization is significantly stabilized. However, it still fails to converge when there is a radical
change in the loss landscape (for example, when learning rate decays). With damping (purple), the Hessian

10

Published in Transactions on Machine Learning Research (July/2023)

approximation is effectively restrained, especially when such sudden changes in the loss landscape happen.
It is interesting to observe that while damping prevents divergence, the whole training is still largely affected
by stochastic noise. Notable fluctuation in the loss is commonly observed during training. As a comparison,
the complete mL-BFGS (blue) effectively addresses these issues achieving much more stable convergence.

Figure 5: Ablation study for mL-BFGS on ResNet-18/CIFAR-10 (batch size: 256). Vanilla L-BFGS (red) diverges easily.
Damping-only scheme (purple) cannot effectively suppress stochastic noise. Momentum-only scheme (black) still diverges with
radical changes in the Hessian. While damping and momentum combined (blue) achieve a very smooth and stable optimization.

6 Related Works

While SGD is widely used in many machine learning tasks, other forms of optimization have also been
investigated extensively in the past years. Among these attempts, designing optimizers with preconditioned
gradients is one of the most promising areas.

Adaptive methods such as Adam, AdaGrad, AdaDelta (Kingma & Ba, 2014; Duchi et al., 2011; Zeiler, 2012)
construct a diagonal matrix by incorporating knowledge from the past gradients. Such a diagonal matrix
adaptively adjusts the learning rate for each parameter. For instance, AdaGrad uses a large learning rate
for those irrelevant features (small gradients), and small learning for those relevant ones (large gradients).
Adams further uses the first and second moment of gradients to adjust the learning rate.

Besides diagonal preconditioning matrices, constructing block diagonal matrices or even full matrices has
received increasing attention in recent years. Methods such as Shampoo (Gupta et al., 2018) approximate the
full matrix version of AdaGrad as a block-diagonal matrix to incorporate more curvature information during
optimization. Similarly, a well-known KFAC method (Martens & Grosse, 2015) approximates the Fisher
information matrix as a block-diagonal matrix. L-BFGS methods Moritz et al. (2016) on the other hand
directly construct the full Hessian matrix as a preconditioner during optimization. These preconditioners
have been empirically proved to achieve fast convergence compared to SGD, as well as adaptive methods.
Authors in Goldfarb et al. (2020) further adopt L-BFGS to efficiently compute matrix inversion in KFAC.

Variance reduction in the preconditioning matrix is also crucial to ensure stable optimization. The algorithm
in Moritz et al. (2016) adopts a separate large batch of data to estimate current curvature. On the other
hand, VITE Lucchi et al. (2015) chooses to use a pivot parameter together with full-batch gradients to
reduce variance in the Hessian approximation.

7 Conclusion

In this paper, we propose mL-BFGS, a quasi-Newton method that simultaneously mitigates computation and
convergence instability barriers in second-order methods, as well as scalability issues in distributed systems.
By introducing momentum and damping into the Hessian update, mL-BFGS obviates the need for highly
costly estimation on the Hessian. Approximation along diagonal blocks further reduces memory and compute
costs in distributed systems. Empirical analyses on CV models, such as ResNet-50 and Vision Transformer
show that mL-BFGS achieves faster convergence, and reaches similar accuracy compared to SGD.

11

Published in Transactions on Machine Learning Research (July/2023)

Acknowledgements

This material is based upon work supported by Defense Advanced Research Projects Agency (DARPA)
under Contract FASTNICS HR001120C0088. The views, opinions, and/or findings expressed are those of
the author(s) and should not be interpreted as representing the official views or policies of the Department
of Defense or the U.S. Government.

References
Mehiddin Al-Baali and Lucio Grandinetti. Improved damped quasi–newton methods for unconstrained

optimization. Pacific Journal of Optimization (To appear), 2017.

Mehiddin Al-Baali, Lucio Grandinetti, and Ornella Pisacane. Damped techniques for the limited memory
bfgs method for large-scale optimization. Journal of Optimization Theory and Applications, 161(2):688–
699, 2014.

Jimmy Ba, Roger Grosse, and James Martens. Distributed second-order optimization using kronecker-
factored approximations. In International Conference on Learning Representations, 2017.

Richard H Byrd and Jorge Nocedal. A tool for the analysis of quasi-newton methods with application to
unconstrained minimization. SIAM Journal on Numerical Analysis, 26(3):727–739, 1989.

Daqing Chang, Shiliang Sun, and Changshui Zhang. An accelerated linearly convergent stochastic l-bfgs
algorithm. IEEE transactions on neural networks and learning systems, 30(11):3338–3346, 2019.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research, 12(7), 2011.

Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

Wenbo Gao and Donald Goldfarb. Quasi-newton methods: superlinear convergence without line searches
for self-concordant functions. Optimization Methods and Software, 34(1):194–217, 2019.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical quasi-newton methods for training deep neural
networks. arXiv preprint arXiv:2006.08877, 2020.

Robert Gower, Donald Goldfarb, and Peter Richtárik. Stochastic block bfgs: Squeezing more curvature out
of data. In International Conference on Machine Learning, pp. 1869–1878. PMLR, 2016.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimization.
In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Aurelien Lucchi, Brian McWilliams, and Thomas Hofmann. A variance reduced stochastic newton method.
arXiv preprint arXiv:1503.08316, 2015.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate curva-
ture. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Aryan Mokhtari and Alejandro Ribeiro. Global convergence of online limited memory bfgs. The Journal of
Machine Learning Research, 16(1):3151–3181, 2015.

Philipp Moritz, Robert Nishihara, and Michael Jordan. A linearly-convergent stochastic l-bfgs algorithm. In
Artificial Intelligence and Statistics, pp. 249–258. PMLR, 2016.

12

Published in Transactions on Machine Learning Research (July/2023)

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science
& Business Media, 2003.

Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of computation, 35(151):
773–782, 1980.

J. Gregory Pauloski, Zhao Zhang, Lei Huang, Weijia Xu, and Ian T. Foster. Convolutional Neural Network
Training with Distributed K-FAC. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’20. IEEE Press, 2020. ISBN 9781728199986. doi:
10.5555/3433701.3433826.

Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal vychislitel’noi matematiki
i matematicheskoi fiziki, 3(4):643–653, 1963.

Anton Rodomanov and Yurii Nesterov. Greedy quasi-newton methods with explicit superlinear convergence.
SIAM Journal on Optimization, 31(1):785–811, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In International conference
on machine learning, pp. 10347–10357. PMLR, 2021.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

A Appendix

The appendix is arranged as follows: In Sec A.1, we include the Hessian-vector product used in mL-BFGS. In
Sec A.2 and A.3, we provide proofs of lemmas and theorems in the paper. In Sec A.4, we list hyperparameters
used in the experiments.

A.1 Hessian-Vector Product in L-BFGS

Algorithm 2 Hessian-Vector in L-BFGS

Input: gt, {yi}M
i=1 , {si}M

i=1
Output: gt

1: for i = 0, · · · , M − 1 do
2: ρi = sT

i · yi

3: end for
4: for i = 0, · · · , M − 1 do
5: αi = sT

M−i−1gt

ρM−i−1
6: gt = gt − αi · yM−i−1
7: end for
8: gt = Ĥ0 · gt {Ĥ0 = sT

M−1yM−1

yT
M−1yM−1

· I}
9: for i = 0, · · · , M − 1 do

10: βi = yT
i gt

ρi

11: gt = gt + (αM−i−1 − βi) · si

12: end for

A.2 Proof of Lemmas and Theorems

A.2.1 Proof of Lemma 1

Proof. Let Mnt denotes the stochastic noise in Mgt , then it can be written as:

13

Published in Transactions on Machine Learning Research (July/2023)

Mnt
= βMnt−1 + (1 − β)nt = βtn0 + (1 − β)

∑t
i=1 β(t−i)ni

Since ni for i = 0, · · · , t are independent, therefore

E
[
∥Mnt∥

2
]

= β2tE
[
∥n0∥2

]
+

∑t
i=1(1 − β)2β2(t−i)E

[
∥ni∥2

]
Since E

[
∥ni∥2

]
is bounded by ϵ2, therefore

E
[
∥Mnt

∥2
]

≤ β2tϵ2 +
∑t

i=1(1 − β)2β2(t−i)ϵ2 = ϵ2(β2t + (1−β)2

1−β2 (1 − β2t))

It is obvious that limt→∞ E
[
∥Mnt

∥2
]

≤ 1−β
1+β ϵ2.

Furthermore, noise variance in yk is bounded by limt→∞ E
[∥∥Mnt − Mnt−L

∥∥2
]

≤ 4(1−β)
1+β ϵ2.

A.2.2 Proof of Lemma 2

Proof. First, consider the case with T = 1, then

s0 = Mθ1 − Mθ0 = (1 − β)(θ1 − θ0)
y0 = Mg1 − Mg0 = (1 − β)(g1 − g0)

Since g1 − g0 = B(θ1 − θ0) in L-BFGS update, then it is also valid that y0 = Bs0.

Assume for (k − 1)th approximation, yk = Mgk
− Mgk−1 = Bsk = B(Mθk

− Mθk−1).

Expand Mθk
, we can easily get yk = Mgk

− Mgk−1 = (1 − β)B(θk − Mθk−1).

Then, for kth approximation, we have

Bsk+1 = B(Mθk+1 − Mθk
) = B(1 − β)(θk+1 − Mθk

)

Further expand Mθk
, we get

Bsk+1 = (1 − β)B(θk+1 − θk + β(θk − Mθk−1))

Similarly, since gk+1 − gk = B(θk+1 − θk), we have

Bsk+1 = (1 − β)(gk+1 − gk) + β(Mgk
− Mgk−1) = yk.

Consider the case with T > 1, yk can be written as

yk =
∑T −1

i=0 Mgg(k+1)T −i
− Mgg(k+1)T −i−1

According to the result with T = 1, yk can be further written as

yk =
∑T −1

i=0 B(Mθg(k+1)T −i
− Mθg(k+1)T −i−1) = B

∑T −1
i=0 (Mθg(k+1)T −i

− Mθg(k+1)T −i−1) = Bsk.

Therefore, it is equivalent to use the momentum based scheme to estimate the Hessian without losing accuracy
compared to naive L-BFGS.

14

Published in Transactions on Machine Learning Research (July/2023)

A.2.3 Proof of Theorem 1

Proof. First, we show that ⟨sk,yk⟩
⟨sk,sk⟩ is well bounded, so that most iterates using BFGS goes toward desirable

direction according to Byrd & Nocedal (1989).

Given ⟨sk, yk⟩ ≥ α · ϵ ∥sk∥, we have ⟨sk,yk⟩
⟨sk,sk⟩ ≥ αϵ

∥sk∥ .

Let vk denotes gradient changes with no noise added, then yk = vk + nk − nk−1. Since noise variance in yk

is bounded by 2ϵ2, we have E
[
∥nk∥2

]
≤ ϵ2.

Then,

E
[

⟨sk,yk⟩
⟨sk,sk⟩

]
= E

[
⟨sk,vk⟩
⟨sk,sk⟩ − ⟨sk,nk−nk−1⟩

⟨sk,sk⟩

]
≥ ⟨sk,vk⟩

⟨sk,sk⟩ − 2ϵ
∥sk∥ ≥ λ − 2ϵ

∥sk∥

According to the two inequalities above, we have E
[

⟨sk,yk⟩
⟨sk,sk⟩

]
≥ α

α+2 λ.

As for the upper bound, first have E [⟨sk, yk⟩] = E [⟨sk, vk + nk − nk−1⟩] ≤ ⟨sk, vk⟩ + 2ϵ ∥sk∥.

Because H ⪯ ΛI, then ⟨sk, vk⟩ ≤ Λ ∥sk∥2. Combined with ⟨sk, yk⟩ ≥ αϵ ∥sk∥, we have

∥sk∥ ≥ α − 2
Λ ϵ, ⟨sk, yk⟩ ≤ ∥sk∥ (Λ ∥sk∥ + 2ϵ) (8)

.

With λI ⪯ H ⪯ ΛI, we have

⟨sk, vk⟩ ≥ λΛ
λ+Λ ∥sk∥2 + 1

λ+Λ ∥vk∥2

Rearrange this inequality, we have ∥∥vk − λ+Λ
2 sk

∥∥ ≤ Λ−λ
2 ∥sk∥

Due to yk = vk + nk − nk−1, we can convert the equation above to

E
[∥∥yk − λ+Λ

2 sk

∥∥2]
≤ (Λ−λ

2 ∥sk∥ + 2ϵ)2.

Expand the equation, we have

E
[
∥yk∥2 − (Λ + λ) ⟨sk, yk⟩ + (Λ+λ

2)2 ∥sk∥2
]

≤ (Λ−λ
2)2 ∥sk∥2 + 2(Λ − λ) ∥sk∥ ϵ + 4ϵ2

Divide by ⟨sk, sk⟩ on both sides, we have

E
[

⟨yk,yk⟩
⟨sk,sk⟩

]
≤ E

[
(Λ+λ)⟨sk,yk⟩

⟨sk,sk⟩

]
+ (2ϵ+Λ∥sk∥)(2ϵ−λ∥sk∥)

⟨sk,sk⟩

According to Eq (8), we simplify the expectation as

E

[
⟨yk, yk⟩
⟨sk, sk⟩

]
≤ (Λ + λ)(Λ ∥sk∥ + 2ϵ)

∥sk∥
+ (2ϵ + Λ ∥sk∥)(2ϵ − λ ∥sk∥)

⟨sk, sk⟩

= Λ(Λ + λ) + 2(Λ + λ)ϵ
∥sk∥

+ 4ϵ2

∥sk∥2 + 2Λϵ

∥sk∥
− 2λϵ

∥sk∥
− Λλ

= Λ2 + 4Λϵ

∥sk∥
+ 4ϵ2

∥sk∥2

≤ Λ2 + 4Λ2

α − 2 + 4Λ2

(α − 2)2 = (α

α − 2Λ)2

15

Published in Transactions on Machine Learning Research (July/2023)

With the well-bounded Hessian approximation, we show that there is an lower bound for the optimization
with noise involved.

With ⟨sk, yk⟩ ≥ αϵ ∥sk∥ and E
[
∥nt∥2

]
≤ ϵ2, we get ⟨sk, yk⟩ = ⟨sk, vk + nt+1 − nt⟩ ≤ ⟨sk, vk⟩ + 2ϵ ∥sk∥.

Then ⟨sk, vk⟩ ≥ (α − 2)ϵ ∥sk∥.

With the upper bound of H, we have (α − 2)ϵ ∥sk∥ ≤ Λ ∥sk∥2.

With the lower bound of H, we have L(θt) − L(θt−1) ≥ gt+1(−sk) + λ
2 ∥sk∥2.

We focus on near-optimal region, where L(θt+1) = 0 and gt+1 = 0, then we get L(θt) ≥ λ
2 ∥sk∥2 ≥ (α−2)2λ

2Λ2 ϵ2.

Therefore, the achievable loss by L-BFGS with noise is lower bounded by (α−2)2λ
2Λ2 ϵ2.

A.2.4 Proof of Hessian Damping in Eq (7)

Proof. According to Eq (7), sT
i ŷi = sT

i (τyi + (1 − τ)si) = (µτ + 1 − τ)sT
i si, where µ = sT

i yi

sT
i

si
.

For µ ≤ σL, two cases need to be considered:

If τ = τ0, then 1−σL

1−µ ≥ τ0, and µτ + 1 − τ ≥ σL.

If τ = 1−σL

1−µ , then µτ + 1 − τ = σL

Therefore, when µ ≤ σL, sT
i ŷi ≥ σLsT

i si

For σL < µ < σH :

We can write µτ + 1 − τ = µτ0 + 1 − τ0. It is easy to show that

µτ0 + 1 − τ0 − σL ≥ (1 − σL)(1 − τ0) > 0

µτ0 + 1 − τ0 − σH ≤ (1 − σH)(1 − τo) < 0

Therefore, when σL < µ < σH , σLsT
i si < sT

i ŷi < σHsT
i si.

For µ ≥ σH , similarly two cases might arise:

If τ = τ0, then σH −1
µ−1 ≥ τ0, and µτ + 1 − τ ≤ σH .

If τ = σH −1
µ−1 , then µτ + 1 − τ = σH .

Therefore, when µ ≥ σH , sT
i ŷi ≤ σHsT

i si

In summary, σL ≤ sT
i ·ŷi

sT
i

·si
≤ σH .

A.2.5 Proof of Lemma 3

Proof. For any arbitrary vector x ̸= 0, xT · Ĥk · x can be written as

(x1T · Ĥ1
k , · · · , xpT · Ĥp

k) · (x1T

, · · · , xpT)T =
∑p

i=1 xiT · Ĥi
k · xi,

where xi is a sub-vector corresponding to block i.

Let ξ ≡ min ξi and Ξ ≡ max Ξi, therefore, ξ ≤ xT · Ĥk · x ≤ Ξ.

16

Published in Transactions on Machine Learning Research (July/2023)

A.3 Proof of Theorem 2

To prove Theorem 2, we need several lemmas to bound the Hessian approximation and the gradient variance
of the objective function.

A.3.1 Some Lemmas for Theorem 2

Lemma 4. Given damping scheme in Eq (7), at the k-th Hessian update, Ĥk during the optimization is
bounded by ξI ⪯ Ĥk ⪯ ΞI, where Ξ = (M + 1) 1

σL
, and ξ = 1

σH
.

Proof. Lower bound: Ĥ is initialized as Ĥ0 = sT
0 ŷ0

ŷT
0 ŷ0

· I. According to the damping scheme A.2.4, there
exists H0(θ) ⪯ σHI such that ŷ0 = H0 · s0.

Therefore, sT
0 ŷ0

ŷT
0 ŷ0

· I = sT
0 H0s0

sT
0 H0·H0s0

· I = (sT
0 H

1/2
0)(H

1/2
0 s0)

(sT
0 H

1/2
0)·H0·(H

1/2
0 s0)

· I ⪰ 1
σH

I.

Then for k ≥ 1, assuming Ĥk−1 ⪰ 1
σH

I hold, based on Eq (4), Ĥk = (I −ρkŷksT
k)T Ĥk−1(I −ρkŷksT

k)+ sksT
k

sT
k

ŷk
.

Because (I − ρkŷksT
k)T Ĥk−1(I − ρkŷksT

k) is positive definite, we can bound Ĥk as: Ĥk ⪰ sksT
k

sT
k

ŷk
= sksT

k

sT
k

·Hk·sk
⪰

1
σH

I

Therefore, lower bound of Ĥk, ξ = 1
σH

.

Upper bound: Since H0(θ) ⪰ σL, we can get sT
0 ŷ0

ŷT
0 ŷ0

· I = (sT
0 H

1/2
0)(H

1/2
0 s0)

(sT
0 H

1/2
0)·H0·(H

1/2
0 s0)

· I ⪯ 1
σL

.

Similarly, for k ≥ 1, we assume Ĥk−1 ⪯ k 1
σL

hold.

For the first part in Eq (4), let Q = (I−ρkŷksT
k). Then for ∀ x ̸= 0, xT ·QT Ĥk−1Q·x = (Qx)T ·Ĥk−1 ·(Qx) ≤

k
σL

xT · (QT Q) · x.

Let P = skŷT
k ŷksT

k

sT
k

ŷksT
k

ŷk
− ŷksT

k +skŷT
k

sT
k

ŷk
, then QT Q = I + P .

Because P is rank-1 matrix with eigenvalue −1 and eigenvector ŷk, we have xT · QT Ĥk−1Q · x ≤ k
σL

xT ·
(I + P) · x ≤ k

σL
xT x

For the second part in Eq (4), we can directly get sksT
k

sT yk
= sksT

k

sT
k

·Hk·sk
⪯ 1

σL
I.

Therefore, xT · Ĥk · x ≤ k
σL

xT x + 1
σL

xT x = k+1
σL

xT x

In mL-BFGS, k is at most M , which is the length of history vector, therefore Ξ = (M + 1) 1
σL

.

In summary, 1
σH

I ⪯ Ĥk ⪯ (M + 1) 1
σL

I

Lemma 5. Assume AS 2 holds, then loss function L(θ) is at least Λ-smooth. At iteration t with mini-batch
input St, where each sample is randomly sampled from X with replacement, gradient ∇L(θt; St) satisfies

ESt
[∥∇L(θt; St)∥2] ≤ 2Λ · L(θt).

Proof. Smoothness of L(θ).

Given AS 2 hold, we have ∥∇ℓi(θ1) − ∇ℓi(θ2)∥ ≤ Λ ∥θ1 − θ2∥.

For L, we have ∇L(θ1) − ∇L(θ2) = 1
N

∑N
i=1 ∇ℓi(θ1) − ∇ℓi(θ2).

17

Published in Transactions on Machine Learning Research (July/2023)

Then,

∥∇L(θ1) − ∇L(θ2)∥ = 1
N

∥∥∥∥∥
N∑

i=1
∇ℓi(θ1) − ∇ℓi(θ2)

∥∥∥∥∥
TI
≤ 1

N

N∑
i=1

∥∇ℓi(θ1) − ∇ℓi(θ2)∥

≤ 1
N

N∑
i=1

Λ ∥θ1 − θ2∥

= Λ ∥θ1 − θ2∥

“TI" indicates triangle inequality. Therefore, L is at least Λ-smooth.

Gradient variance bound.

ESt
[∥∇L(θt; St)∥2] = ESt

[
〈

1
b ∇

∑b
i=1 ℓi(θt), 1

b ∇
∑b

i=1 ℓi(θt)
〉

]

Expand summation and regroup,

ESt
[∥∇L(θt; St)∥2] = ESt

[1
b2

∑b
i=1 ∥∇ℓi(θt)∥2 + 1

b2

∑b
i=1

∑b
j=1,̸=i ⟨∇ℓi(θt), ∇ℓj(θt)⟩]

Take expectation on each sample,

ESt [∥∇L(θt; St)∥2] = 1
b2

∑b
i=1 Exi [∥∇ℓi(θt)∥2] + 1

b2

∑b
i=1

∑b
j=1,̸=i Exi,xj [⟨∇ℓi(θt), ∇ℓj(θt)⟩]

Because xi and xj are independent, the second part can be simplified as,

ESt [∥∇L(θt; St)∥2] = 1
b2

∑b
i=1 Exi [∥∇ℓi(θt)∥2] + 1

b2

∑b
i=1

∑b
j=1,̸=i ∥∇L(θt)∥2

With further simplification, we get

ESt
[∥∇L(θt; St)∥2] = 1

b2

∑b
i=1 Exi

[∥∇ℓi(θt)∥2] + b−1
b ∥∇L(θt)∥2

Given AS 2, we have ∥∇ℓi(θt)∥2 ≤ 2Λ · ℓi(θt) and ∥∇L(θt)∥2 ≤ 2Λ · L(θt)

Therefore,

ESt
[∥∇L(θt; St)∥2] ≤ 1

b2

b∑
i=1

Exi
[2Λℓi(θt)] + b − 1

b
2ΛL(θt)

= 1
b

2ΛL(θt) + b − 1
b

2ΛL(θt)

= 2Λ · L(θt)

A.3.2 Proof of Theorem 2

Proof. Given AS 2 and Lemma 5, L(θt) can be bounded by L(θt) ≤ L(θt−1) + ∇L(θt−1)T (θt − θt−1) +
Λ
2 ∥θt − θt−1∥2 for ∀θt−1, θt

18

Published in Transactions on Machine Learning Research (July/2023)

In mL-BFGS, θt = θt−1 − ηt−1Ĥk∇L(θt−1; St−1). Therefore, we can upper bound L(θt) as:

L(θt) ≤L(θt−1) − ηt−1 · ∇L(θt−1)T Ĥk∇L(θt−1; St−1)

+ n2
t−1

Λ
2

∥∥∥Ĥk∇L(θt−1; St−1)
∥∥∥2

≤L(θt−1) − ηt−1 · ∇L(θt−1)T Ĥk∇L(θt−1; St−1)

+ n2
t−1

ΛΞ2

2 ∥∇L(θt−1; St−1)∥2

Since Ĥk is independent with St−1, we take expectation w.r.t St−1 and St,

ESt
[L(θt)|St−1] ≤L(θt−1) − ηt−1 · ∇L(θt−1)T ĤkESt−1 [∇L(θt−1; St−1)]

+ n2
t−1

ΛΞ2

2 ESt−1 [∥∇L(θt−1; St−1)∥2]

=L(θt−1) − ηt−1 · ∇L(θt−1)T Ĥk∇L(θt−1)

+ n2
t−1

ΛΞ2

2 ESt−1 [∥∇L(θt−1; St−1)∥2]

According AS 3, we have

L(θt−1) ≤ 1
λ ∥∇L(θt−1)∥2

According to Lemma 5, we have

ESt−1 [∥∇L(θt−1; St−1)∥2] ≤ 2ΛL(θt−1)

Therefore, ESt [L(θt)|St−1] ≤ L(θt−1) − ηt−1λξL(θt−1) + η2
t−1Λ2Ξ2L(θt−1).

After simply regrouping, we can get

ESt
[L(θt)|St−1] ≤ (1 − ηt−1λξ + η2

t−1Λ2Ξ2)[L(θt−1]

Apply total expectation rule w.r.t St, we have

ESt
[L(θt)] ≤ (1 − ηt−1λξ + η2

t−1Λ2Ξ2)ESt−1 [L(θt−1)]

A.4 Hyperparameter Settings

A.4.1 CIFAR-10/CIFAR-100

For ResNet-18 and DeiT, detailed settings are shown in Table 5. The batch size is set to be 256 for all
optimizers. For the learning rate, we use a cosine annealing scheduling strategy with a minimum learning
rate of 0.0001. Maximum epoch is 150 for ResNet-18 and 50 for DeiT.

A.4.2 ImageNet

For ResNet50, detailed settings are shown in Table 6. The batch size is set to be 512 for all optimizers. For
the learning rate, we used a cosine annealing scheduling strategy with a minimum learning rate of 0.0001.
Maximum epoch is 100.

19

Published in Transactions on Machine Learning Research (July/2023)

Table 5: Hyperparameters for SGD, Adam, mL-BFGS on CIFAR-10/CIFAR-100

Optimizer b lr momentum wd τ0 β T M

SGD 256 0.1 0.9 1e-4 - - - -
Adam 256 0.01 0.9/0.999 1e-2 - - - -

mL-BFGS 256 0.1 0.9 2e-4 0.99 0.999 50 10
β: momentum for the Hessian; τ0: initial damping; T : frequency for updating the Hessian; M : length of history vector (s, y)

Table 6: Hyperparameters for SGD, Adam, KFAC and mL-BFGS of ResNet50 on ImageNet

Optimizer b lr momentum wd τ0 β T M

SGD 512 0.1 0.9 1e-4 - - - -
Adam 512 0.07 0.9/0.999 3e-2 - - - -
KFAC 512 0.06 0.9 3e-2 - - 50 -

mL-BFGS 256 0.1 0.9 2e-4 0.99 0.999 50 10
β: momentum for the Hessian; τ0: initial damping; T : frequency for updating the Hessian; M : length of history vector (s, y)

(a) Training loss (b) Validation accuracy

Figure 6: Training loss and validation accuracy of using mL-BFGS on ResNet-18/CIFAR-100 with different block sizes.

A.5 Ablation Study: Impact of Granularity of Block-wise Approximation

We study the impact of granularity of block-wise approximation in this section. We train ResNet-18 on
CIFAR-100 using mL-BFGS with a different number of Hessian blocks: 1, 2, 4 blocks. mL-BFGS with one
block approximates the whole Hessian matrix, while mL-BFGS with two blocks approximates two diagonal
Hessian blocks with each one consisting of 4 resblocks in ResNet-18. At last, mL-BFGS with four blocks
is the default setting in our CIFAR-100 experiment, where each block consists of 2 resblocks. As shown in
Figure 6, as we increase the size of the blocks, mL-BFGS converges faster and achieve better generaliza-
tion performance. This observation aligns with the argument that mL-BFGS can estimate more accurate
curvature information by approximating a large Hessian block, improving training performance.

A.6 Justification of PL-condition in Real Neural Networks

Figure 7 shows gradient norm and loss when training ResNet-18 on CIFAR-100. We can observe that with
an appropriate parameter λ, the PL-condition can be easily satisfied.

20

Published in Transactions on Machine Learning Research (July/2023)

Figure 7: The relation of gradient norm and loss during training (ResNet-18 on CIFAR-100).

A.7 Other Second-order Methods on CIFAR-10/100

(a) Training loss on CIFAR-10 (b) Training loss on CIFAR-100

Figure 8: Training loss using mL-BFGS, KFAC, Adam and SGD on CIFAR-10/100.

Figure 8 show training loss of using mL-BFGS, KFAC, Adam, and SGD on CIFAR-10/100. Compared
to the second-order method KFAC, mL-BFGS converges faster as it can estimate more accurate curvature
information by approximating large Hessian blocks. On the validation dataset, mL-BFGS achieves higher
accuracy than KFAC (KFAC on CIFAR-10: 93.1 ± 0.1, CIFAR-100: 73.2 ± 0.13).

21

	Introduction
	Preliminaries
	mL-BFGS
	Momentum-based Hessian: Reduce Effects of Stochastic Noise
	Block-wise Approximation: Improve Memory Efficiency in Distributed Training
	Put All Together

	Theoretical Guarantees
	Convergence Analysis
	Complexity Analysis

	Experiments
	Experiments on CIFAR-10/CIFAR-100
	Experiments on ImageNet
	Ablation Study: The Effects of Momentum and Damping

	Related Works
	Conclusion
	Appendix
	Hessian-Vector Product in L-BFGS
	Proof of Lemmas and Theorems
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Hessian Damping in Eq (7)
	Proof of Lemma 3

	Proof of Theorem 2
	Some Lemmas for Theorem 2
	Proof of Theorem 2

	Hyperparameter Settings
	CIFAR-10/CIFAR-100
	ImageNet

	Ablation Study: Impact of Granularity of Block-wise Approximation
	Justification of PL-condition in Real Neural Networks
	Other Second-order Methods on CIFAR-10/100

