
Published as a conference paper at ICLR 2024

ON THE LEARNABILITY OF WATERMARKS
FOR LANGUAGE MODELS

Chenchen Gu, Xiang Lisa Li, Percy Liang, Tatsunori Hashimoto
Stanford University
{cygu, xlisali, thashim}@stanford.edu, pliang@cs.stanford.edu

ABSTRACT

Watermarking of language model outputs enables statistical detection of model-
generated text, which can mitigate harms and misuses of language models. Ex-
isting watermarking strategies operate by altering the decoder of an existing lan-
guage model. In this paper, we ask whether language models can directly learn
to generate watermarked text, which would have significant implications for the
real-world deployment of watermarks. First, learned watermarks could be used to
build open models that naturally generate watermarked text, enabling watermark-
ing for open models, where users can control the decoding procedure. Second,
if watermarking is used to determine the provenance of generated text, an ad-
versary can hurt the reputation of a victim model by spoofing its watermark and
generating damaging watermarked text. To investigate the learnability of water-
marks, we propose watermark distillation, which trains a student model to behave
like a teacher model that uses decoding-based watermarking. We test our ap-
proach on three decoding-based watermarking strategies and various hyperparam-
eter settings, finding that models can learn to generate watermarked text with high
detectability. We also find limitations to learnability, including the loss of water-
marking capabilities under fine-tuning on normal text and high sample complexity
when learning low-distortion watermarks.1

1 INTRODUCTION

As language models (LMs) become more capable and widely used, watermarking LM outputs be-
comes increasingly important to mitigate potential harms and misuses of LMs. Watermarking en-
ables statistical detection of LM-generated text, which enables enforcing policies on LM usage, e.g.,
removing LM-generated disinformation from social media platforms or detecting academic dishon-
esty. Another proposed use case of watermarking is identifying the provenance of text, i.e., tracing
text to the specific LM that generated it (Abdelnabi & Fritz, 2021; Kuditipudi et al., 2023).

Recent works have shown that it is possible for an LM provider to inject specific, known watermark
signals into text using specialized decoding algorithms (Kirchenbauer et al., 2023a; Aaronson, 2023;
Kuditipudi et al., 2023), but little is known about whether these watermarks are learnable by a
model. The learnability of watermarks has significant implications for the real-world deployment of
watermarks, as it could enable downstream applications and adversarial spoofing attacks.

In this work, we study the learnability of watermarks by studying weights-based watermarking,
which involves learning parameters for a language model that cause it to generate watermarked text
under its natural sampling distribution, without using a special decoding-time watermarking algo-
rithm. Our investigation is motivated by its relevant implications for two applications: (i) developing
watermarking for open language models and (ii) spoofing watermarks.

First, existing watermarking methods depend upon using a specialized decoding algorithm, making
them too inflexible for open LMs. For open LMs, where the weights are released, a user can use
an ordinary decoding algorithm and generate non-watermarked text, whether intentionally or not.
We find that weights-based watermarking works with standard decoding strategies, removing the

1See https://github.com/chenchenygu/watermark-learnability for code and models.

1

https://github.com/chenchenygu/watermark-learnability

Published as a conference paper at ICLR 2024

P-value = 0.0004
Watermarked!

Model-generated!

Original model
pLM

Decoding-based
watermarking

fw

Generated
text

Decoding-based
watermarking

Watermark distilled
model pθ

Watermark
distillation

Weights-based
watermarking

P-value = 0.0001
Watermarked!

Model-generated!

Detector

Generated
text Detector

Standard
decoding

Figure 1: Decoding-based watermarking (top) versus weights-based watermarking (bottom).
Decoding-based watermarking requires a specialized decoding algorithm fw to generate water-
marked text, whereas weights-based watermarking can use standard decoding to generate water-
marked text directly from the model, using just its weights. Watermark distillation enables weights-
based watermarking by training a student model pθ to behave like the teacher model pLM with
decoding-based watermarking strategy fw.

reliance on a specialized decoder. This makes it a promising first step towards developing water-
marking for open LMs. However, we also find that weights-based watermarking capabilities can
be removed by fine-tuning on normal text, indicating that improving robustness to fine-tuning is an
important remaining challenge.

Second, in watermark spoofing attacks, an adversary outputs text that contains the watermark signal
from a victim LM (Sadasivan et al., 2023). If watermarking is used to identify the provenance of
text, then an attacker could attribute damaging text to the victim LM and hurt its reputation. We find
that the learning of weights-based watermarking can enable spoofing attacks, and we demonstrate a
proof-of-concept attack on an instruction-following chat model. The possibility of spoofing attacks
suggests that watermarking should not be used to attribute provenance or blame to a specific LM.
Instead, watermarking should only be used to statistically detect LM-generated text, which can be
used for tasks such as finding infractions of policies on LM usage.

To enable weights-based watermarking, we propose logit-based and sampling-based watermark dis-
tillation, two simple methods for a student model to learn weights-based watermarking from a
teacher model with decoding-based watermarking. Intuitively, in logit-based watermark distilla-
tion, the student model is trained to match the next token distribution outputted by the teacher model
using decoding-based watermarking. In sampling-based watermark distillation, the teacher model
with decoding-based watermarking is first used to generate watermarked samples. Then, the student
model is fine-tuned on these watermarked samples.

We experiment with three decoding-based watermarking strategies: KGW (Kirchenbauer et al.,
2023a; Zhao et al., 2023a), Aar (Aaronson, 2023), and KTH (Kuditipudi et al., 2023), and vari-
ous values for their hyperparameters that control the level of distortion induced by watermarking.
We find that watermarks and hyperparameter settings vary in their degree of learnability. In each
watermarking strategy, higher-distortion hyperparameter settings are successfully learned by both
forms of watermark distillation (median p-values less than 0.0001). Lower-distortion watermarks
and hyperparameter settings are more challenging and less sample efficient to learn, but not unlearn-
able, as the p-values are still noticeably smaller than the non-watermarked baseline of 0.5.

2 BACKGROUND AND NOTATION: DECODING-BASED WATERMARKING

We study autoregressive language models pLM : V∗ → ∆(V) that map from a prefix string x ∈ V∗

to a next token distribution over the vocabulary V . Informally, a decoding-based watermarking
strategy fw uses a watermark key ξ to modify the model’s original next token distribution pLM(· | x)
into a new distribution for generating watermarked text, which has a watermark signal embedded.
The watermark detection algorithm fd looks for this signal using the same watermark key ξ.

Formally, we define a decoding-based watermarking strategy to be a function

fw : ∆(V)× V∗ × Ξ → ∆(V) (1)

2

Published as a conference paper at ICLR 2024

where Ξ is the set of possible watermark keys. This function fw outputs a distribution pw(· | x) from
which to generate the next token in the watermarked text, given an original next token distribution
pLM(· | x), input text x, and watermark key ξ ∈ Ξ.

We define a watermark detection algorithm to be a function

fd : V∗ × Ξ → [0, 1] . (2)

Given some text x and watermark key ξ, fd outputs a p-value with respect to the null hypothesis that
x is independent of fw with key ξ. Informally, fd computes a test statistic that measures the strength
of the watermark signal, then computes a p-value using the distribution of the test statistic under the
null hypothesis. If the p-value is below a given significance level, the null hypothesis is rejected and
the text is detected as watermarked. Slightly imprecisely, rejecting the null hypothesis means the
text is detected as model-generated.2

In this paper, we consider three decoding-based watermarking strategies: Algorithm 2 in Kirchen-
bauer et al. (2023a), the Gumbel softmax scheme in Aaronson (2023), and the exponential minimum
sampling scheme in Kuditipudi et al. (2023). Using the authors’ names and initials, we refer to these
as KGW, Aar, and KTH, respectively. We briefly describe these watermarking strategies below. See
Appendix D for additional details and formal definitions.

KGW: green list bias. In the KGW watermarking strategy (Kirchenbauer et al., 2023a), when
generating the next token, the vocabulary is pseudorandomly split into a “green list” and “red list”
by hashing the previous token using the watermark key ξ. The green list contains watermark hyper-
parameter γ ∈ (0, 1) proportion of the vocabulary. Then, before the model’s logits are converted
to probabilities via the softmax function, hyperparameter δ > 0 is added to the logits of the green
list tokens. This procedure makes green list tokens more likely in watermarked text than in non-
watermarked text. So, at detection time, if the proportion of green list tokens in a text is much
greater than γ, then the p-value is small.

More generally, the previous k tokens can be hashed, where k is a hyperparameter. Values of k > 1
are investigated by Kirchenbauer et al. (2023b), finding that lower k leads to more repetitive outputs.
When k = 0, the green and red lists are fixed, regardless of the previous tokens. k = 0 was
proposed by Zhao et al. (2023a) as Unigram-Watermark, a variant of KGW, but we will denote it as
KGW k = 0 to simplify notation.

KGW distorts model outputs by upweighting green list tokens, increasing perplexity of generated
texts computed by a larger model (Kirchenbauer et al., 2023a). Increasing the bias hyperparameter δ
increases detectability, i.e., smaller p-values, but also increases distortion.

Aar: boosting continuous hash scores. The Aar watermarking strategy (Aaronson, 2023) hashes
the previous k tokens using key ξ (where k is a hyperparameter) to obtain a score ri for each token
i ∈ V , where each ri is uniformly distributed in [0, 1]. Let pi be the original model probability
for token i. Then, the next generated token is deterministically chosen to be the token i which
maximizes r1/pi

i , i.e., a token with both a high original probability pi and high hash score ri. This
procedure boosts the hash scores of tokens in watermarked text compared to non-watermarked text.
So, at detection time, if the hash scores ri of the tokens in the observed sequence are high, then the
p-value is low.

Since Aar deterministically selects the next token based on the previous k tokens and the original
model probabilities, Aar can lead to repetitive text, especially for small k (Kuditipudi et al., 2023).
Increasing k decreases repetitiveness, as larger k-grams are less likely to be repeated, but the water-
mark also becomes less robust to edits, as each token edit affects the hash scores for k + 1 tokens.

KTH: robust sequence alignment. The KTH watermarking strategy (Kuditipudi et al., 2023) is
similar to Aar, but instead of hashing previous tokens to obtain the scores ri, the scores are obtained
from the next element in the key sequence ξ. In KTH, ξ = ξ(1), . . . , ξ(m) where each ξ(j) ∈ [0, 1]|V|

2This is slightly imprecise because model-generated text is not the only text that can be deliberately water-
marked. For example, a human could write watermarked text by manually following the watermarking algo-
rithm. However, for most practical use cases, such as detecting academic dishonesty, this minor imprecision is
not an issue because either way, the user is doing something suspicious and unusual.

3

Published as a conference paper at ICLR 2024

contains the scores, with entries uniformly distributed across [0, 1]. Then, to generate the j-th token

in the sequence, KTH deterministically chooses the token i that maximizes
(
ξ
(j)
i

)1/pi

. Note that
m should be larger than the maximum generation length. To allow different generations from the
same prompt, before generating each sequence, ξ can be shifted by some random τ , i.e., ξ′ =
ξ(1+τ mod m), . . . , ξ(m+τ mod m). To study the impact of these shifts on learnability, we introduce
a hyperparameter s ∈ [1,m] for how many shift values τ are possible.3 Increasing s expands the
range of possible model generations.

At detection time, to be robust to text edits and shifts, the test statistic quantifies how well a text x
can be aligned with the key sequence ξ. More specifically, the test statistic computes a minimum
Levenshtein distance using the alignment cost d(x, ξ) =

∑len(x)
t=1 log(1 − ξ

(t)
xt). A lower (more

negative) test statistic indicates stronger watermark signal. To compute p-values, the observed test
statistic is compared to a reference distribution of test statistics of non-watermarked texts. Letting
T be the number of samples in the reference distribution, the p-values computing using this method
are lower bounded by 1

T+1 .

3 METHODS

Problem statement. Given a teacher model pLM, decoding-based watermarking strategy fw, and
key ξ, the goal is to learn a student model pθ whose sampling distribution naturally generates water-
marked text. Specifically, letting fd be the detection algorithm corresponding to fw, if pθ generates
text y with small detection p-value fd(y, ξ) with probability similar to that of pLM with fw, then pθ
has learned a weights-based watermarking strategy, since pθ has learned to generate watermarked
text using just its weights. Figure 1 illustrates decoding-based versus weights-based watermarking.

Next, we present two methods for learning a weights-based watermarking strategy: logit-based
watermark distillation and sampling-based watermark distillation, which fall under the broader cat-
egory of knowledge distillation (Hinton et al., 2015; Kim & Rush, 2016).

3.1 LOGIT-BASED WATERMARK DISTILLATION

In logit-based watermark distillation, we train the student model pθ to behave as if it had decoding-
based watermarking strategy fw applied. Specifically, given an input x, we want the student model’s
next token distribution pθ(· | x) to match fw (pLM (· | x) , x, ξ), the next token distribution outputted
by the teacher model pLM with decoding-based watermarking strategy fw and key ξ. So, given a
dataset of texts D, the training objective is to minimize the mean KL divergence between the teacher
and student next token distributions on all prefixes in D, given by

Llogit(θ) =
1

|D|
∑
x∈D

len(x)∑
t=1

DKL (fw (pLM (· | x<t) , x<t, ξ) ∥ pθ (· | x<t)) . (3)

The teacher model pLM is frozen. This approach requires that pLM and pθ have the same tokenizer
and vocabulary so that the logits can be aligned between the two models. It is also helpful if pLM and
pθ share the same model architecture, as then we can initialize pθ to pLM. Note that the ground truth
next tokens xt from dataset D are not used in the loss function, so D does not need to be watermarked
text. Standard datasets containing non-watermarked human-generated text can be used.4

3.2 SAMPLING-BASED WATERMARK DISTILLATION

Sampling-based watermark distillation has two stages. First, we generate watermarked text from
teacher model pLM with decoding-based watermarking strategy fw applied using key ξ. Then, we
fine-tune the student model pθ on this watermarked text using the standard language modeling cross-
entropy loss.

3We space the s shifts evenly across [1,m], i.e., the set of possible shifts τ is {i · ⌊m/s⌋ : 0 ≤ i < s}.
4If D is non-watermarked text, then it theoretically might be out of distribution for pθ to autoregressively

generate watermarked text, since pθ would be conditioning on the watermarked text it has already generated.
However, empirically, we find that logit-based distilled models can learn to generate watermarked text.

4

Published as a conference paper at ICLR 2024

Formally, given a set of prompts P , for each prompt z ∈ P , we generate a watermarked completion
sequence x = x1x2 · · ·xn, where each sampled token xt ∼ fw (pLM (· | zx<t) , zx<t, ξ). Let the
fine-tuning dataset D consist of these watermarked generations x.5 Then, we train pθ to minimize
the cross-entropy loss on D, given by

Lsampling(θ) =
1

|D|
∑
x∈D

len(x)∑
t=1

− log pθ (xt | x<t) . (4)

Here, pLM and pθ do not need to share the same tokenizer or vocabulary. However, sampling-based
watermark distillation is less efficient than logit-based watermark distillation due to autoregressively
generating watermarked text in the first stage.

4 EXPERIMENTAL SETUP

We run experiments to evaluate how well logit-based and sampling-based watermark distillation
can learn weights-based watermarking from the decoding-based watermarking strategies seen in §2.
Ideally, we want weights-based watermarking to match decoding-based watermarking in terms of
watermark detectability and generation quality.

4.1 WATERMARKING STRATEGIES AND HYPERPARAMETERS

We experiment with the three decoding-based watermarking strategies discussed in §2. We use var-
ious hyperparameter settings to vary the level of distortion induced by the watermarks. Specifically,
we test KGW with k = {0, 1, 2}, γ = 0.25 and δ = {1, 2},67 Aar with k = {2, 3, 4}, and KTH with
key length 256 and number of shifts s = {1, 2, 4, 256}.

4.2 TRAINING

For each decoding-based watermarking strategy, we test logit-based and sampling-based watermark
distillation for learning weights-based watermarking.

For logit-based watermark distillation, we use Llama 2 7B (Touvron et al., 2023) as both the teacher
and student models (the student model is initialized with the teacher model weights). We distill using
a subset of OpenWebText (Gokaslan et al., 2019) for 5,000 steps with a batch size of 64 sequences,
sequence length of 512 tokens,8 maximal learning rate of 1e-5, and cosine learning rate decay with
a linear warmup. Full training details are in Appendix E.1.

For sampling-based watermark distillation, we also use Llama 2 7B as both the teacher and student
models. First, we use Llama 2 7B with a decoding-based watermarking strategy to generate 640,000
watermarked samples of length 256 tokens, prompted with 50-token prefixes from OpenWebText.
Then, we fine-tune Llama 2 7B on the watermarked samples for 1 epoch of 5,000 steps, with a batch
size of 128 sequences, sequence length of 256 tokens, maximal learning rate of 1e-5, and cosine
learning rate decay with a linear warmup. Full training details are in Appendix E.2.

In Appendix F, we perform sampling-based watermark distillation experiments where the teacher
and student models have different tokenizers and sizes, using Llama 2 7B as the teacher model and
Pythia 1.4B as the student model (Biderman et al., 2023).

4.3 EVALUATION AND METRICS

Evaluation procedure. As in Kirchenbauer et al. (2023a) and Kuditipudi et al. (2023), we evaluate
on generations prompted by prefixes from the RealNewsLike subset of the C4 dataset (Raffel et al.,

5Ideally, the intended use case and domain of the student model pθ should inform the choices of the set of
prompts P and teacher model pLM. However, empirically, we find that sampling-based watermark distillation
is fairly robust to domain shifts (see §4.3 and Appendix I).

6Because we always use γ = 0.25, we sometimes omit explicitly stating the value of γ to simplify notation.
7We exclude k = 2, δ = 1 since we find that k = 2, δ = 2 already exhibits lower learnability.
8For KTH we use a batch size of 128 and sequence length of 256 tokens because we use key length 256.

5

Published as a conference paper at ICLR 2024

2020). For each decoding-based watermarking strategy and distilled model, we generate 5,000 200-
token completions from 50-token prompts from the validation split. We use standard sampling with
temperature 1 for the main results, and investigate the model’s robustness to different decoding
parameters in Appendix C. We include evaluations on additional datasets in Appendix I.

We choose metrics to evaluate two properties: watermark detectability and generation quality.

Watermark detectability. We compute the median watermark detection p-value across generations.
Note that the p-values for the KTH watermark are lower bounded by how many samples T we
compute in the reference distribution. Similar to Kuditipudi et al. (2023), we use T = 10,000, so
the p-values are lower bounded by 1e-4. To make finer-grained distinctions in watermark strength
below this lower bound, we also compute the median test statistic (discussed in §2) to evaluate KTH
watermark strength. A lower (more negative) test statistic indicates higher watermark detectability.

We also compute the AUROC (area under the receiver operating characteristic curve) for classifying
model-generated versus human-generated text using the watermark detection p-values/test statistics.
We compute the AUROC using an equal number of model-generated and human-generated texts, all
of the same length.

Generation quality. We use Llama 2 13B to compute the mean perplexity of generations. Lower
perplexity tends to indicate higher quality and fluency, but repetitive text also achieves low per-
plexity. So, to evaluate repetitiveness, we compute the mean seq-rep-3 of generations, which is the
proportion of duplicate 3-grams in a sequence, given by 1− # of unique 3-grams

of 3-grams (Welleck et al., 2020).

Comparisons. For both watermark distillation methods, for each decoding-based watermarking
strategy fw, we compare the teacher model with fw applied (denoted by “Decoding”) against the
distilled student model (denoted by “Logit” and “Sampling” for logit-based and sampling-based
watermark distillation, respectively). As a baseline for generation quality, we use the base student
model with no watermarking or distillation (denoted by “Base student”).

5 RESULTS

Table 1 contains results for the logit-based and sampling-based watermark distillation experiments.
The two watermark distillation methods exhibit similar trends. Both forms of watermark distillation
successfully learn higher-distortion watermarks,9 achieving small p-values and high detectability.
In some watermarks, e.g., KGW k = 0, watermark distillation matches the p-values achieved by
decoding-based watermarking. In other watermarks, watermark distillation does not achieve as small
watermark detection p-values as decoding-based watermarking, but for higher-distortion watermark
hyperparameter settings (smaller k and larger δ for KGW, smaller k for Aar, and smaller s for
KTH), the p-values are still sufficiently small to enable high detectability, as shown by the high
AUROC values. Figure 4 in Appendix A contains empirical CDFs of the distributions of p-values
across generations, showing that for higher-distortion watermarks, the majority of generations from
the watermark distilled models have small p-values.

Within each watermark type, p-values from logit-based and sampling-based distillation are larger
for lower-distortion hyperparameter settings, indicating that lower-distortion watermarks are harder
to learn. However, these watermarks are still learned to some degree, as the p-values are noticeably
smaller than the non-watermarked baseline of 0.5, and the AUROC values are noticeably higher
than the non-watermarked baseline of 0.5. In Appendix G, sample complexity experiments show
that more training samples and steps lead to smaller p-values for both logit-based and sampling-
based distillation, with no sign of convergence. In addition, we find that when we train logit-based
watermark distillation on KGW k = 2, δ = 2 for five times longer (25,000 steps) on more data, the
median p-value decreases from 0.1 to 0.012. This suggests that lower-distortion watermarks are less
sample efficient to learn, but still learnable, given sufficient training data and steps.

Compared to decoding-based watermarking, watermark distillation does not achieve as optimal a
tradeoff between generation quality and detectability. For KGW and KTH, both watermark distil-
lation methods achieve slightly to moderately higher perplexity and similar or larger p-values com-

9Here, we are using “distortion” somewhat informally, roughly meaning how much of a difference water-
marking causes in terms of generation quality, behavior, etc.

6

Published as a conference paper at ICLR 2024

p-value (↓)
(KTH test statistic (↓)) AUROC (↑) Perplexity (↓) seq-rep-3 (↓)

Watermark D
ec

od
in

g

L
og

it

Sa
m

pl
in

g

D
ec

od
in

g

L
og

it

Sa
m

pl
in

g

D
ec

od
in

g

L
og

it

Sa
m

pl
in

g

D
ec

od
in

g

L
og

it

Sa
m

pl
in

g

KGW

k = 0, δ = 2 6e-16 2e-17 2e-15 1.00 1.00 1.00 17.5 17.3 20.3 0.05 0.05 0.05
k = 1, δ = 2 4e-18 7e-09 8e-07 1.00 1.00 1.00 16.5 17.6 19.2 0.04 0.03 0.04
k = 2, δ = 2 9e-18 1e-01 1e-01 1.00 0.80 0.74 16.8 17.7 19.8 0.03 0.02 0.03
k = 0, δ = 1 5e-04 3e-05 1e-03 0.98 0.99 0.98 13.0 12.9 15.7 0.03 0.03 0.03
k = 1, δ = 1 1e-05 7e-03 2e-02 0.99 0.91 0.87 12.7 13.1 14.9 0.03 0.03 0.03

Aar
k = 2 1e-75 2e-12 3e-17 1.00 1.00 0.98 6.5 10.8 7.7 0.34 0.11 0.34
k = 3 5e-73 1e-01 6e-03 1.00 0.78 0.88 9.5 11.6 10.5 0.14 0.04 0.17
k = 4 4e-72 4e-01 3e-01 1.00 0.58 0.65 10.7 11.8 11.9 0.09 0.03 0.11

KTH

s = 1
1e-04
(-593)

1e-04
(-565)

1e-04
(-561) 1.00 1.00 1.00 10.5 16.5 15.1 0.03 0.04 0.03

s = 2
1e-04
(-596)

1e-04
(-476)

1e-04
(-525) 1.00 0.99 0.99 10.7 16.3 13.4 0.03 0.04 0.03

s = 4
1e-04
(-594)

1e-03
(-438)

1e-04
(-487) 1.00 0.96 0.99 10.6 14.2 12.5 0.03 0.04 0.04

s = 256
1e-04
(-594)

8e-02
(-423)

1e-04
(-453) 1.00 0.85 0.97 10.8 11.3 11.3 0.03 0.04 0.04

Base student 5e-01 0.50 11.8 0.03

Table 1: Results for logit-based and sampling-based watermark distillation experiments. Within
each watermark type (KGW, Aar, and KTH), the hyperparameter rows go from higher-distortion to
lower-distortion moving down the table. Higher-distortion watermarks are successfully learned with
small p-values and high detectability. Lower-distortion watermarks are harder to learn, as shown by
the larger p-values, but they are still learnable, just less efficiently and strongly.

pared to decoding-based watermarking. For Aar, watermark distillation achieves similar or lower
seq-rep-3 as decoding-based watermarking, but larger p-values. This suggests that to learn weights-
based watermarking, logit-based and sampling-based watermark distillation incur some cost to the
tradeoff between generation quality and detectability.

While logit-based and sampling-based watermark distillation show similar trends, there are some
interesting differences. We defer this discussion to Appendix B due to space constraints. However,
recall that logit-based and sampling-based distillation have different requirements (e.g., access to
logits and shared tokenizer vs. access to samples and autoregressive generation, see §3.1 and §3.2),
so they should not be compared solely on performance. So, logit-based and sampling-based distilla-
tion are each suitable and applicable for different settings, so neither is strictly better than the other
in all scenarios.

Robustness to text edits. We test the robustness of weights-based watermarking to edits by ran-
domly corrupting generated text from the logit-based and sampling-based watermark distilled Llama
2 7B models with varying proportions of tokens randomly edited. See Appendix J for full experi-
mental details. As shown in Figure 2, the detection p-values of all three watermark types are robust
to moderate edit proportions, up to around 20–30%. At higher edit proportions, up to around 60–
70%, KTH is significantly more robust to edits than KGW and Aar, consistent with the findings of
Kuditipudi et al. (2023).

Robustness to changes in decoding parameters. Whereas decoding-based watermarking relies on
specialized decoding algorithms, weights-based watermarking generates watermarked text naturally
under standard decoding algorithms. In Appendix C, we find that weights-based watermarking
learned by logit-based and sampling-based distillation is robust to changes in decoding parameters,
e.g., different temperatures t and different thresholds p in nucleus sampling (Holtzman et al., 2020).

6 WATERMARKING FOR OPEN MODELS

In §5, we showed that weights-based watermarking works under standard decoding algorithms and
is robust to changes in decoding parameters. This is a necessary first step towards watermarking

7

Published as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8
Proportion of tokens edited

0.0

0.1

0.2

0.3

0.4

0.5

p-
va

lu
e

KGW k = 1, = 2
Aar k = 2
KTH s = 1

Logit-based
Sampling-based
Logit-based
Sampling-based

Figure 2: Watermark detection p-values of gen-
erations from weights-based watermarking, cor-
rupted with varying proportions of tokens ran-
domly edited. The watermarks are robust to
moderate amounts of corruption.

0 500 1000 1500 2000 2500
Number of continued finetuning steps

0.0

0.1

0.2

0.3

0.4

p-
va

lu
e

KGW k = 1, = 2
Aar k = 2
KTH s = 1

Figure 3: Watermark detection p-values of gen-
erations from logit-based watermark distilled
Llama 2 7B models after further fine-tuning on
OpenWebText. The models’ weights-based wa-
termarking is removed by fine-tuning.

for open models, where users can run inference themselves. They may change the decoding algo-
rithm, and the inference library they use may not enable decoding-based watermarking by default or
implement it at all.

Robust watermarking for open models should also ideally be robust to fine-tuning, as users have the
ability and desire to fine-tune open models. Ideally, this fine-tuning should not remove watermarking
capabilities, either intentionally or unintentionally. However, Figure 3 shows that weights-based
watermarking obtained from watermark distillation is not robust to further fine-tuning on normal,
non-watermarked text (see Appendix K for experimental details). We leave addressing this challenge
and learning weights-based watermarking that is robust to fine-tuning to future work.

However, weights-based watermarking also has potential use cases that do not require robustness
to further fine-tuning. For example, weights-based watermarking could be used for watermarking
open models which are unlikely to be fine-tuned further by users, such as RLHF-trained instruction-
following chat models. In addition, weights-based watermarking simplifies decoding compared to
decoding-based watermarking, as there is no need for an additional specialized decoding algorithm.
So, weights-based watermarking can easily be deployed into existing highly optimized infrastruc-
tures and inference algorithms, as it just requires loading different model weights.

7 SPOOFING ATTACKS

One proposed use case of watermark detection is to attribute the provenance of generated text to a
specific model, which could help policy enforcement and auditing of model providers (Abdelnabi
& Fritz, 2021; Kuditipudi et al., 2023). However, using watermarking for provenance attribution
brings the risk of spoofing attacks: an adversary generates damaging text containing the watermark
of a victim model, making it appear as if the victim model generated it, thus hurting the reputation
of the victim model (Sadasivan et al., 2023). Sampling-based watermark distillation is applicable to
the spoofing setting, as it only requires generated samples from the victim/teacher model.

In this proof-of-concept experiment, we simulate a spoofing attack using a victim model of Llama
2-Chat 7B with KGW decoding-based watermarking (k = 1, γ = 0.25, δ = 2). Llama 2-Chat 7B is
trained for safety and tends to refuse harmful requests (Touvron et al., 2023). The goal of the spoof-
ing attack is to generate watermarked responses to harmful requests, damaging the victim model’s
reputation for safety. We obtain an adversary model by performing sampling-based watermark dis-
tillation with Alpaca-7B (Taori et al., 2023) as the student and the Llama 2-Chat 7B victim model as
the teacher. We query the victim model for watermarked samples, filter out refusals, then fine-tune
the adversary model on those samples. See Appendix L.1 for full experimental details.

We evaluate model harmfulness using the HarmfulQ benchmark of toxic questions (Shaikh et al.,
2023). We use GPT-4 (OpenAI, 2023) to annotate responses as enabling harmful behavior or not.
See Appendix L.2 for full evaluation details. We find that the victim model has a harmful response
rate of 0%, whereas the distilled adversary model has a harmful response rate of 71% (base Alpaca-

8

Published as a conference paper at ICLR 2024

7B has a harmful response rate of 80%). Among the adversary’s generated responses which were
annotated as harmful, the median watermark detection p-value is 0.002 (with a median generation
length of 593 tokens),10 showing that harmful text generated by the adversary may be wrongly
attributed to the victim model.

8 RELATED WORK

Post-hoc detection. Many works have studied post-hoc detection of model-generated text, without
modifying the generation process itself. Some works train a binary classifier to perform detection
(Zellers et al., 2019; Bakhtin et al., 2019; Tan et al., 2020), see Jawahar et al. (2020) for a survey.
Other methods are zero-shot, using heuristics and metrics for detection (Gehrmann et al., 2019;
Solaiman et al., 2019; Mitchell et al., 2023). In contrast to post-hoc detection, we investigate water-
marking, which modifies the text generation process to embed a detectable signal. However, post-
hoc detection could potentially be used in conjunction with watermarking (Mitchell et al., 2023).

Text watermarking. Older works on text watermarking edit pre-existing text to inject signals that
can be statistically detected (Rizzo et al., 2019; Abdelnabi & Fritz, 2021; Yang et al., 2022), see
Kamaruddin et al. (2018) for a survey. Recently, many works have studied decoding-based water-
marking, which modifies decoding procedures to generate new watermarked text (Venugopal et al.,
2011; Kirchenbauer et al., 2023a; Aaronson, 2023; Kuditipudi et al., 2023; Zhao et al., 2023a; Christ
et al., 2023; Hu et al., 2023; Wu et al., 2023; Huang et al., 2023; Zhao et al., 2024). Various classes
of decoding-based watermarking methods have been proposed, e.g., semantic watermarks (Fu et al.,
2023; Hou et al., 2023; Liu et al., 2023b; Ren et al., 2023), multi-bit watermarking (Yoo et al., 2023;
Wang et al., 2023; Qu et al., 2024; Boroujeny et al., 2024), and public/private key watermarking (Liu
et al., 2023a; Fairoze et al., 2023). See (Liu et al., 2023c) for a survey of text watermarking. Sander
et al. (2024) find that it is possible to detect if a model’s training data contained watermarked text.

Watermark attacks. Recent works have investigated attacks to remove the watermark from wa-
termarked text, using methods such as paraphrasing, swapping tokens, etc. (Kirchenbauer et al.,
2023b; Krishna et al., 2023; Sadasivan et al., 2023; Zhang et al., 2023; Pang et al., 2024; Jovanović
et al., 2024). In addition, watermark spoofing attacks are where an adversary produces text that
is falsely detected as watermarked and generated by a victim model. Sadasivan et al. (2023) and
Jovanović et al. (2024) spoof the KGW watermark by exploiting its green list bias, and Pang et al.
(2024) demonstrate spoofing attacks by exploiting watermark robustness and public detection APIs.
In our work, we show that sampling-based watermark distillation can enable spoofing attacks.

API watermarking for protection against model extraction. Prior works have studied API water-
marking for protection against model extraction attacks, where an adversary imitates or reconstructs
a victim model by distilling on its API outputs (He et al., 2022a; Zhao et al., 2022; He et al., 2022b;
Zhao et al., 2023b). In API watermarking, a watermark signal is injected into the victim’s API out-
puts, making it possible to detect if a suspect model was distilled from the victim API. In contrast,
text watermarking enables detecting whether a given text was model-generated.

9 CONCLUSION

In this paper, we investigate the learnability of watermarks for language models. Using logit-based
and sampling-based watermark distillation, we find that models can learn to naturally generate wa-
termarked text using standard decoding algorithms, although lower-distortion watermarks are harder
and less sample efficient to learn. Our findings address a key technical challenge towards developing
watermarking for open models and raise the possibility of watermark spoofing attacks.

Future work may explore improving the robustness of weights-based watermarking to further fine-
tuning, which would address another important challenge towards robust watermarking for open
models. Future work may also more comprehensively study and evaluate spoofing attacks and po-
tential defenses against spoofing attacks, which would have implications for whether watermarks
should be used to assign provenance and blame to a specific model.

10Among all 200-token slices from each of the harmful responses, the median detection p-value is 0.04.

9

Published as a conference paper at ICLR 2024

ETHICS STATEMENT

In this paper, we find that sampling-based watermark distillation can potentially be used to carry
out harmful watermark spoofing attacks. This may appear to be a potentially harmful insight that
weakens watermarking by undermining its ability to identify the provenance of text. However, we
believe that public knowledge of spoofing attacks and the limitations of watermarking is important.
This way, the public knows not to trust watermarking for reliably attributing provenance or blame
to a specific model. Then, if watermark detection is not used to prove that a text was generated by a
specific model, spoofing attacks will cause significantly less harm, if any at all. Watermarking can
still be used to statistically detect LM-generated text, which can be used for tasks such as finding
infractions of policies on language model usage.

REPRODUCIBILITY STATEMENT

For the main results, we describe our experimental setup in §4, including training details, datasets
used, and evaluation procedure. For all other experiments and results, we describe full experimental
details in the appendix. The exact sections in the appendix are mentioned in the main paper where
relevant. In addition, we release code and scripts to reproduce experiments at https://github.
com/chenchenygu/watermark-learnability, along with trained model weights.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of an Open Philanthropy Project Award. Chenchen Gu was
supported by a Stanford CURIS Fellowship. Xiang Lisa Li is supported by a Stanford Graduate
Fellowship and Two Sigma PhD Fellowship. Tatsunori Hashimoto is supported by a gift from Open
Philanthropy and by the Tianqiao and Chrissy Chen Institute.

REFERENCES

Scott Aaronson. Watermarking of large language models. Large Language Models and Trans-
formers Workshop at Simons Institute for the Theory of Computing, 2023. URL https:
//www.youtube.com/watch?v=2Kx9jbSMZqA.

Sahar Abdelnabi and Mario Fritz. Adversarial watermarking transformer: Towards tracing text
provenance with data hiding. In 2021 IEEE Symposium on Security and Privacy (SP), pp. 121–
140. IEEE, 2021. doi: 10.1109/SP40001.2021.00083.

Anton Bakhtin, Sam Gross, Myle Ott, Yuntian Deng, Marc’Aurelio Ranzato, and Arthur Szlam.
Real or fake? learning to discriminate machine from human generated text. arXiv preprint
arXiv:1906.03351, 2019. URL https://arxiv.org/abs/1906.03351.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, Usvsn Sai Prashanth, Edward Raff,
Aviya Skowron, Lintang Sutawika, and Oskar Van Der Wal. Pythia: A suite for analyzing large
language models across training and scaling. In Proceedings of the 40th International Con-
ference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
2397–2430. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
biderman23a.html.

Massieh Kordi Boroujeny, Ya Jiang, Kai Zeng, and Brian Mark. Multi-bit distortion-free water-
marking for large language models. arXiv preprint arXiv:2402.16578, 2024. URL https:
//arxiv.org/abs/2402.16578.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. arXiv
preprint arXiv:2306.09194, 2023. URL https://arxiv.org/abs/2306.09194.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang, and
Nazli Goharian. A discourse-aware attention model for abstractive summarization of long docu-
ments. In Proceedings of the 2018 Conference of the North American Chapter of the Association

10

https://github.com/chenchenygu/watermark-learnability
https://github.com/chenchenygu/watermark-learnability
https://www.youtube.com/watch?v=2Kx9jbSMZqA
https://www.youtube.com/watch?v=2Kx9jbSMZqA
https://arxiv.org/abs/1906.03351
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://arxiv.org/abs/2402.16578
https://arxiv.org/abs/2402.16578
https://arxiv.org/abs/2306.09194

Published as a conference paper at ICLR 2024

for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp.
615–621, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-2097. URL https://aclanthology.org/N18-2097.

Jaiden Fairoze, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, and
Mingyuan Wang. Publicly detectable watermarking for language models. arXiv preprint
arXiv:2310.18491, 2023. URL https://arxiv.org/abs/2310.18491.

Wikimedia Foundation. Wikimedia downloads, 2022. URL https://dumps.wikimedia.
org.

Yu Fu, Deyi Xiong, and Yue Dong. Watermarking conditional text generation for ai detection:
Unveiling challenges and a semantic-aware watermark remedy. arXiv preprint arXiv:2307.13808,
2023. URL https://arxiv.org/abs/2307.13808.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander Rush. GLTR: Statistical detection and
visualization of generated text. In Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics: System Demonstrations, pp. 111–116, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-3019. URL https:
//aclanthology.org/P19-3019.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Xuanli He, Qiongkai Xu, Lingjuan Lyu, Fangzhao Wu, and Chenguang Wang. Protecting intellectual
property of language generation apis with lexical watermark. Proceedings of the AAAI Conference
on Artificial Intelligence, 36:10758–10766, Jun. 2022a. doi: 10.1609/aaai.v36i10.21321. URL
https://ojs.aaai.org/index.php/AAAI/article/view/21321.

Xuanli He, Qiongkai Xu, Yi Zeng, Lingjuan Lyu, Fangzhao Wu, Jiwei Li, and Ruoxi Jia. Cater:
Intellectual property protection on text generation apis via conditional watermarks. In Advances
in Neural Information Processing Systems, volume 35, pp. 5431–5445. Curran Associates, Inc.,
2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/2433fec2144ccf5fea1c9c5ebdbc3924-Paper-Conference.pdf.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015. URL https://arxiv.org/abs/1503.02531.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=rygGQyrFvH.

Abe Bohan Hou, Jingyu Zhang, Tianxing He, Yichen Wang, Yung-Sung Chuang, Hongwei
Wang, Lingfeng Shen, Benjamin Van Durme, Daniel Khashabi, and Yulia Tsvetkov. Sem-
stamp: A semantic watermark with paraphrastic robustness for text generation. arXiv preprint
arXiv:2310.03991, 2023. URL https://arxiv.org/abs/2310.03991.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang. Un-
biased watermark for large language models. arXiv preprint arXiv:2310.10669, 2023. URL
https://arxiv.org/abs/2310.10669.

Baihe Huang, Banghua Zhu, Hanlin Zhu, Jason D Lee, Jiantao Jiao, and Michael I Jordan. Towards
optimal statistical watermarking. arXiv preprint arXiv:2312.07930, 2023. URL https://
arxiv.org/abs/2312.07930.

Ganesh Jawahar, Muhammad Abdul-Mageed, and Laks Lakshmanan, V.S. Automatic detection of
machine generated text: A critical survey. In Proceedings of the 28th International Conference on
Computational Linguistics, pp. 2296–2309, Barcelona, Spain (Online), December 2020. Interna-
tional Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.208. URL
https://aclanthology.org/2020.coling-main.208.

Nikola Jovanović, Robin Staab, and Martin Vechev. Watermark stealing in large language models.
arXiv preprint arXiv:2402.19361, 2024. URL https://arxiv.org/abs/2402.19361.

11

https://aclanthology.org/N18-2097
https://arxiv.org/abs/2310.18491
https://dumps.wikimedia.org
https://dumps.wikimedia.org
https://arxiv.org/abs/2307.13808
https://aclanthology.org/P19-3019
https://aclanthology.org/P19-3019
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://ojs.aaai.org/index.php/AAAI/article/view/21321
https://proceedings.neurips.cc/paper_files/paper/2022/file/2433fec2144ccf5fea1c9c5ebdbc3924-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/2433fec2144ccf5fea1c9c5ebdbc3924-Paper-Conference.pdf
https://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://arxiv.org/abs/2310.03991
https://arxiv.org/abs/2310.10669
https://arxiv.org/abs/2312.07930
https://arxiv.org/abs/2312.07930
https://aclanthology.org/2020.coling-main.208
https://arxiv.org/abs/2402.19361

Published as a conference paper at ICLR 2024

Nurul Shamimi Kamaruddin, Amirrudin Kamsin, Lip Yee Por, and Hameedur Rahman. A review
of text watermarking: Theory, methods, and applications. IEEE Access, 6:8011–8028, 2018. doi:
10.1109/ACCESS.2018.2796585. URL https://doi.org/10.1109/ACCESS.2018.
2796585.

Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pp. 1317–1327, Austin,
Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1139.
URL https://aclanthology.org/D16-1139.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein.
A watermark for large language models. In Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 17061–
17084. PMLR, 23–29 Jul 2023a. URL https://proceedings.mlr.press/v202/
kirchenbauer23a.html.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun
Fernando, Aniruddha Saha, Micah Goldblum, and Tom Goldstein. On the reliability of wa-
termarks for large language models. arXiv preprint arXiv:2306.04634, 2023b. URL https:
//arxiv.org/abs/2306.04634.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphras-
ing evades detectors of ai-generated text, but retrieval is an effective defense. arXiv preprint
arXiv:2303.13408, 2023. URL https://arxiv.org/abs/2303.13408.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. arXiv preprint arXiv:2307.15593, 2023. URL https://
arxiv.org/abs/2307.15593.

Aiwei Liu, Leyi Pan, Xuming Hu, Shu’ang Li, Lijie Wen, Irwin King, and Philip S. Yu. An unforge-
able publicly verifiable watermark for large language models. arXiv preprint arXiv:2307.16230,
2023a. URL https://arxiv.org/abs/2307.16230.

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and Lijie Wen. A semantic invariant robust wa-
termark for large language models. arXiv preprint arXiv:2310.06356, 2023b. URL https:
//arxiv.org/abs/2310.06356.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Lijie Wen, Irwin King, and Philip S
Yu. A survey of text watermarking in the era of large language models. arXiv preprint
arXiv:2312.07913, 2023c. URL https://arxiv.org/abs/2312.07913.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. De-
tectGPT: Zero-shot machine-generated text detection using probability curvature. In Proceed-
ings of the 40th International Conference on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pp. 24950–24962. PMLR, 23–29 Jul 2023. URL https:
//proceedings.mlr.press/v202/mitchell23a.html.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. URL https://arxiv.
org/abs/2303.08774.

Qi Pang, Shengyuan Hu, Wenting Zheng, and Virginia Smith. Attacking llm watermarks by exploit-
ing their strengths. arXiv preprint arXiv:2402.16187, 2024. URL https://arxiv.org/
abs/2402.16187.

12

https://doi.org/10.1109/ACCESS.2018.2796585
https://doi.org/10.1109/ACCESS.2018.2796585
https://aclanthology.org/D16-1139
http://arxiv.org/abs/1412.6980
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://arxiv.org/abs/2306.04634
https://arxiv.org/abs/2306.04634
https://arxiv.org/abs/2303.13408
https://arxiv.org/abs/2307.15593
https://arxiv.org/abs/2307.15593
https://arxiv.org/abs/2307.16230
https://arxiv.org/abs/2310.06356
https://arxiv.org/abs/2310.06356
https://arxiv.org/abs/2312.07913
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.mlr.press/v202/mitchell23a.html
https://proceedings.mlr.press/v202/mitchell23a.html
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2402.16187
https://arxiv.org/abs/2402.16187

Published as a conference paper at ICLR 2024

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia
Glaese, Nat McAleese, and Geoffrey Irving. Red teaming language models with language models.
In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pp. 3419–3448, Abu Dhabi, United Arab Emirates, December 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.emnlp-main.225. URL https://aclanthology.
org/2022.emnlp-main.225.

Wenjie Qu, Dong Yin, Zixin He, Wei Zou, Tianyang Tao, Jinyuan Jia, and Jiaheng Zhang. Provably
robust multi-bit watermarking for ai-generated text via error correction code. arXiv preprint
arXiv:2401.16820, 2024. URL https://arxiv.org/abs/2401.16820.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http:
//jmlr.org/papers/v21/20-074.html.

Jie Ren, Han Xu, Yiding Liu, Yingqian Cui, Shuaiqiang Wang, Dawei Yin, and Jiliang Tang. A
robust semantics-based watermark for large language model against paraphrasing. arXiv preprint
arXiv:2311.08721, 2023. URL https://arxiv.org/abs/2311.08721.

Stefano Giovanni Rizzo, Flavio Bertini, and Danilo Montesi. Fine-grain watermarking for intellec-
tual property protection. EURASIP Journal on Information Security, 2019(1), July 2019. doi: 10.
1186/s13635-019-0094-2. URL https://doi.org/10.1186/s13635-019-0094-2.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi.
Can ai-generated text be reliably detected? arXiv preprint arXiv:2303.11156, 2023. URL
https://arxiv.org/abs/2303.11156.

Tom Sander, Pierre Fernandez, Alain Durmus, Matthijs Douze, and Teddy Furon. Watermarking
makes language models radioactive. arXiv preprint arXiv:2402.14904, 2024. URL https:
//arxiv.org/abs/2402.14904.

Omar Shaikh, Hongxin Zhang, William Held, Michael Bernstein, and Diyi Yang. On second
thought, let’s not think step by step! bias and toxicity in zero-shot reasoning. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 4454–4470, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.acl-long.244. URL https://aclanthology.org/2023.
acl-long.244.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release strategies and the
social impacts of language models. arXiv preprint arXiv:1908.09203, 2019. URL https:
//arxiv.org/abs/1908.09203.

Reuben Tan, Bryan Plummer, and Kate Saenko. Detecting cross-modal inconsistency to defend
against neural fake news. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 2081–2106, Online, November 2020. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.163. URL https:
//aclanthology.org/2020.emnlp-main.163.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. URL https:
//arxiv.org/abs/2307.09288.

Ashish Venugopal, Jakob Uszkoreit, David Talbot, Franz Och, and Juri Ganitkevitch. Watermark-
ing the outputs of structured prediction with an application in statistical machine translation. In
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp.
1363–1372, Edinburgh, Scotland, UK., July 2011. Association for Computational Linguistics.
URL https://aclanthology.org/D11-1126.

13

https://aclanthology.org/2022.emnlp-main.225
https://aclanthology.org/2022.emnlp-main.225
https://arxiv.org/abs/2401.16820
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2311.08721
https://doi.org/10.1186/s13635-019-0094-2
https://arxiv.org/abs/2303.11156
https://arxiv.org/abs/2402.14904
https://arxiv.org/abs/2402.14904
https://aclanthology.org/2023.acl-long.244
https://aclanthology.org/2023.acl-long.244
https://arxiv.org/abs/1908.09203
https://arxiv.org/abs/1908.09203
https://aclanthology.org/2020.emnlp-main.163
https://aclanthology.org/2020.emnlp-main.163
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://aclanthology.org/D11-1126

Published as a conference paper at ICLR 2024

Lean Wang, Wenkai Yang, Deli Chen, Hao Zhou, Yankai Lin, Fandong Meng, Jie Zhou, and Xu Sun.
Towards codable text watermarking for large language models. arXiv preprint arXiv:2307.15992,
2023. URL https://arxiv.org/abs/2307.15992.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=SJeYe0NtvH.

Yihan Wu, Zhengmian Hu, Hongyang Zhang, and Heng Huang. Dipmark: A stealthy, efficient and
resilient watermark for large language models. arXiv preprint arXiv:2310.07710, 2023. URL
https://arxiv.org/abs/2310.07710.

Xi Yang, Jie Zhang, Kejiang Chen, Weiming Zhang, Zehua Ma, Feng Wang, and Nenghai Yu. Trac-
ing text provenance via context-aware lexical substitution. Proceedings of the AAAI Conference
on Artificial Intelligence, 36(10):11613–11621, Jun. 2022. doi: 10.1609/aaai.v36i10.21415. URL
https://ojs.aaai.org/index.php/AAAI/article/view/21415.

KiYoon Yoo, Wonhyuk Ahn, and Nojun Kwak. Advancing beyond identification: Multi-bit water-
mark for language models. arXiv preprint arXiv:2308.00221, 2023. URL https://arxiv.
org/abs/2308.00221.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska
Roesner, and Yejin Choi. Defending against neural fake news. In Advances in Neu-
ral Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL
https://proceedings.neurips.cc/paper_files/paper/2019/file/
3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf.

Hanlin Zhang, Benjamin L Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese, and
Boaz Barak. Watermarks in the sand: Impossibility of strong watermarking for generative models.
arXiv preprint arXiv:2311.04378, 2023. URL https://arxiv.org/abs/2311.04378.

Xuandong Zhao, Lei Li, and Yu-Xiang Wang. Distillation-resistant watermarking for model protec-
tion in NLP. In Findings of the Association for Computational Linguistics: EMNLP 2022, pp.
5044–5055, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.findings-emnlp.370. URL https://aclanthology.
org/2022.findings-emnlp.370.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking
for ai-generated text. arXiv preprint arXiv:2306.17439, 2023a. URL https://arxiv.org/
abs/2306.17439.

Xuandong Zhao, Yu-Xiang Wang, and Lei Li. Protecting language generation models via invisible
watermarking. In Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp. 42187–42199. PMLR, 23–29 Jul 2023b.
URL https://proceedings.mlr.press/v202/zhao23i.html.

Xuandong Zhao, Lei Li, and Yu-Xiang Wang. Permute-and-flip: An optimally robust and water-
markable decoder for llms. arXiv preprint arXiv:2402.05864, 2024. URL https://arxiv.
org/abs/2402.05864.

A EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTIONS FIGURE

Figure 4 contains empirical CDFs of the distributions of p-values across generations, showing that
for higher-distortion watermarks, the majority of generations from the watermark distilled models
have small p-values.

14

https://arxiv.org/abs/2307.15992
https://openreview.net/forum?id=SJeYe0NtvH
https://arxiv.org/abs/2310.07710
https://ojs.aaai.org/index.php/AAAI/article/view/21415
https://arxiv.org/abs/2308.00221
https://arxiv.org/abs/2308.00221
https://proceedings.neurips.cc/paper_files/paper/2019/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf
https://arxiv.org/abs/2311.04378
https://aclanthology.org/2022.findings-emnlp.370
https://aclanthology.org/2022.findings-emnlp.370
https://arxiv.org/abs/2306.17439
https://arxiv.org/abs/2306.17439
https://proceedings.mlr.press/v202/zhao23i.html
https://arxiv.org/abs/2402.05864
https://arxiv.org/abs/2402.05864

Published as a conference paper at ICLR 2024

10 20 10 17 10 14 10 11 10 8 10 5 10 2

p-value (log scale), logit-based distillation

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
op

or
tio

n

KGW k = 0, = 2
KGW k = 0, = 1
KGW k = 1, = 2
KGW k = 1, = 1
KGW k = 2, = 2
Aar k = 2
Aar k = 3
Aar k = 4
Non-watermarked

(a) Logit-based distillation eCDFs

10 20 10 17 10 14 10 11 10 8 10 5 10 2

p-value (log scale), sampling-based distillation

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
op

or
tio

n

KGW k = 0, = 2
KGW k = 0, = 1
KGW k = 1, = 2
KGW k = 1, = 1
KGW k = 2, = 2
Aar k = 2
Aar k = 3
Aar k = 4
Non-watermarked

(b) Sampling-based distillation eCDFs

Figure 4: Empirical cumulative distribution functions (eCDFs) of watermark detection p-values of
generations from logit-based (a) and sampling-based (b) watermark distillation. In higher-distortion
watermarks, the majority of generations have small p-values. In lower-distortion watermarks, the
p-values are larger, but still consistently smaller than a non-watermarked uniform baseline.

B DIFFERENCES IN RESULTS BETWEEN LOGIT-BASED AND
SAMPLING-BASED DISTILLATION

While logit-based and sampling-based watermark distillation show similar trends, there are some
interesting differences. On the Aar watermark, sampling-based distillation and decoding-based
watermarking have similarly high repetitiveness, whereas logit-based distillation achieves signifi-
cantly less repetitiveness. We hypothesize that this is because sampling-based distillation trains on
entire repetitive sequences generated by decoding-based watermarking, whereas logit-based distil-
lation trains only on next-token predictions on non-repetitive human-generated prefixes. Also, on
the KTH watermark, sampling-based distillation achieves higher detectability and lower perplex-
ity than logit-based distillation, particularly at larger numbers of shifts s. We speculate that this
may be because sampling-based distillation trains on complete sequences that are each watermarked
with a consistent shift τ , whereas logit-based distillation trains only on next-token predictions on
non-watermarked prefixes that contain no shift information. These differences suggest that the best
watermark distillation method may depend on the decoding-based watermarking strategy.

C ROBUSTNESS TO CHANGES IN DECODING PARAMETERS

Whereas decoding-based watermarking relies on specialized decoding algorithms, weights-based
watermarking generates watermarked text naturally under standard decoding algorithms. Table 2
shows watermark detection p-values from weights-based watermarking learned by logit-based and
sampling-based watermark distillation under a variety of decoding algorithms and parameters: nu-
cleus sampling (Holtzman et al., 2020) with different thresholds p, temperature-based sampling
with different temperatures t, and greedy decoding (t = 0). All settings achieve consistently small
p-values, showing that weights-based watermarking is robust to changes in decoding parameters.
The p-values decrease as t or p decreases, with greedy decoding achieving the smallest p-values.

D ADDITIONAL DETAILS ON WATERMARKING STRATEGIES

In this section, we provide additional details and formal definitions for the KGW, Aar, and KTH wa-
termarking strategies, using the definitions of decoding-based watermarking strategies (equation 1)
and watermark detection (equation 2).

15

Published as a conference paper at ICLR 2024

Nucleus sampling Temperature sampling

Model p = 1 p = 0.95 p = 0.9 p = 0.85 t = 0.75 t = 0.5 t = 0.25 t = 0

Logit-based watermark distillation
KGW k = 1, δ = 2 7e-09 3e-09 1e-09 7e-10 2e-10 1e-11 4e-12 1e-12
Aar k = 2 2e-12 3e-13 6e-14 3e-14 3e-15 6e-17 6e-18 5e-18
KTH s = 1 1e-04 1e-04 1e-04 1e-04 1e-04 1e-04 1e-04 1e-04

Sampling-based watermark distillation
KGW k = 1, δ = 2 1e-06 4e-07 2e-07 2e-07 4e-08 3e-09 3e-09 5e-09
Aar k = 2 1e-15 7e-16 1e-16 1e-17 1e-18 3e-21 1e-22 2e-22
KTH s = 1 1e-04 1e-04 1e-04 1e-04 1e-04 1e-04 1e-04 1e-04

Table 2: Watermark detection p-values of generations from logit-based and sampling-based water-
mark distilled Llama 2 7B models under various decoding parameters. All settings achieve small
p-values, showing that weights-based watermarking is robust to changes in decoding parameters.

D.1 KGW

Formally, the KGW (Kirchenbauer et al., 2023a) decoding-based watermarking strategy can be de-
fined as

fKGW
w (p, x, ξ; k, γ, δ) = softmax

(
log(p) + δ · fKGW

hash

(
xlen(x)−k+1, . . . , xlen(x); ξ, γ, |V|

))
(5)

where fKGW
hash is a pseudorandom hash function parameterized by key ξ that hashes the previous k

tokens in the sequence and returns g ∈ {0, 1}|V|, which contains γ · |V| ones and (1− γ) · |V| zeros,
encoding the green list. For k > 1, to hash multiple tokens, we use the Additive-LeftHash scheme
(Kirchenbauer et al., 2023b), which adds together the k token IDs. For k = 0, fKGW

hash returns a fixed
green list g regardless of the previous tokens (Zhao et al., 2023a).

The KGW watermark detection function is

fKGW
d (x, ξ; γ) = 1− FB

(∑len(x)

t=k+1
fKGW

hash

(
xlen(x)−k+1, . . . , xlen(x); ξ, γ, |V|

)
xt

)
︸ ︷︷ ︸

number of green list tokens in text x

(6)

where FB is the cumulative distribution function (CDF) for binomial distributed random variable
B ∼ Bin(len(x) − k, γ). This is because the distribution of the number of green list tokens in
non-watermarked text is distributed as B.

D.2 AAR

Formally, the Aar (Aaronson, 2023) decoding-based watermarking strategy can be defined as

fAar
w (p, x, ξ; k) = onehot

(
argmax

i
fAar

hash

(
xlen(x)−k+1, . . . , xlen(x); ξ, |V|

)1/pi

i
, |V|

)
(7)

where fAar
hash is a pseudorandom hash function parameterized by key ξ that hashes the previous k

tokens and returns r ∈ [0, 1]|V| with entries uniformly distributed across [0, 1], assigning a score
to each token in the vocabulary. To hash multiple tokens, the k token IDs are added together.
onehot(i, |V|) returns a |V|-dimensional probability vector with 1 at index i and 0 everywhere else,
representing deterministic selection of the next token.

The Aar watermark detection function is

fAar
d (x, ξ; k) = 1− FG

(∑len(x)

t=k+1
− log

(
1− fAar

hash (xt−k, . . . , xt−1; ξ, |V|)xt

))
(8)

where FG is the CDF for gamma distributed random variable G ∼ Gamma(len(x)− k, 1). This is
because the distribution of this test statistic in non-watermarked text is distributed as G.

16

Published as a conference paper at ICLR 2024

D.3 KTH

In the KTH (Kuditipudi et al., 2023) watermarking strategy, the key ξ is a sequence ξ(1), . . . , ξ(m)

where each ξ(j) ∈ [0, 1]|V| with entries uniformly distributed across [0, 1]. m should be longer
than the maximum generation length. Then, the KTH decoding-based watermarking strategy can be
defined as

fKTH
w (p, x, ξ) = onehot

(
argmax

i

(
ξ
(len(x))
i

)1/pi

, |V|
)

(9)

where onehot(i, |V|) returns a |V|-dimensional probability vector with 1 at index i and 0 everywhere
else, representing deterministic selection of the next token.

To allow different generations from the same prompt, before generating each sequence, ξ can be
shifted by some random τ , i.e., ξ′ = ξ(1+τ mod m), . . . , ξ(m+τ mod m), then ξ′ is used in fKTH

w . To
study the impact of these shifts on learnability, we introduce a hyperparameter s ∈ [1,m] for how
many shift values τ are possible. We space the s shifts evenly across [1,m], e.g., the set of possible
shifts τ is {i · ⌊m/s⌋ : 0 ≤ i < s}. Increasing s expands the range of possible model generations.

At detection time, to be robust to text edits and shifts, the test statistic quantifies how well a text x
can be aligned with the key sequence ξ. More specifically, the test statistic computes a minimum
Levenshtein distance using the alignment cost d(x, ξ) =

∑len(x)
t=1 log(1 − ξ

(t)
xt). See Definition 5

(simple Levenshtein cost) and Equation 6 (alignment cost for exponential minimum sampling) in
Kuditipudi et al. (2023). As in Kuditipudi et al. (2023), we set the insertion/deletion penalty γ = 0.
A lower (more negative) test statistic indicates stronger watermark signal. To compute p-values, the
observed test statistic is compared to a reference distribution of test statistics of non-watermarked
texts. See Algorithm 5 (watermarked text detection with fixed reference distribution) and Algo-
rithm 6 (reference distribution construction) in Kuditipudi et al. (2023). Letting T be the number of
samples in the reference distribution, the p-values computing using this method are lower bounded
by 1

T+1 .

E WATERMARK DISTILLATION TRAINING DETAILS

E.1 LOGIT-BASED WATERMARK DISTILLATION TRAINING DETAILS

We train Llama 2 7B using a subset of OpenWebText for 5,000 steps with a batch size of 64 se-
quences, sequence length of 512 tokens, maximal learning rate of 1e-5, and cosine learning rate
decay with a linear warmup for the first 500 steps, and the AdamW optimizer (Kingma & Ba, 2015;
Loshchilov & Hutter, 2019) with (β1, β2) = (0.9, 0.999) and no weight decay. Each training run
took approximately 6 hours on 4 NVIDIA A100 80GB GPUs.

E.2 SAMPLING-BASED WATERMARK DISTILLATION TRAINING DETAILS

After generating the watermarked samples, we fine-tune Llama 2 7B on the watermarked samples for
1 epoch of 5,000 steps with a batch size of 128 sequences, sequence length of 256 tokens, maximal
learning rate of 1e-5, cosine learning rate decay with a linear warmup for the first 500 steps, and the
AdamW optimizer (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) with (β1, β2) = (0.9, 0.999)
and no weight decay. Each training run took approximately 4 hours on 4 NVIDIA A100 80GB
GPUs.

F PYTHIA SAMPLING-BASED WATERMARK DISTILLATION EXPERIMENTS

We run additional sampling-based watermark distillation experiments using Llama 2 7B as the
teacher model and Pythia 1.4B (Biderman et al., 2023) as the student model. Note that Llama 2
and Pythia have different tokenizers, so sampling-based distillation is necessary for this setting.

Training. First, we use Llama 2 7B with a decoding-based watermarking strategy to generate
640,000 watermarked samples of length 256 tokens, prompted with 50-token prefixes from Open-
WebText. Then, we fine-tune Pythia 1.4B on the watermarked samples for 1 epoch, roughly 8,000

17

Published as a conference paper at ICLR 2024

steps, with a batch size of 64, sequence length of 256 tokens,11 maximal learning rate of 1e-5, co-
sine learning rate decay with a linear warmup for the first 500 steps, and the AdamW optimizer with
(β1, β2) = (0.9, 0.999) and no weight decay. Each training run took approximately 3 hours on 1
NVIDIA A100 80GB GPU.

Evaluation. We use the same evaluation procedure and metrics as described in §4.3. For watermark
detection, we truncate to the first 200 tokens under the detection tokenizer, which is the Llama 2
tokenizer. Perplexity is still computed using Llama 2 13B. To compute seq-rep-3, we use the Pythia
tokenizer.

For each decoding-based watermarking strategy fw, we compare the teacher Llama 2 7B model with
fw applied (denoted by “Decoding (T)”) against the sampling-based distilled student Pythia 1.4B
model (denoted by “Sampling”). As a baseline for generation quality, we use the base Pythia 1.4B
model with no watermarking or distillation (denoted by “Base student”). Since the teacher Llama
2 7B model is larger and more powerful than the student Pythia 1.4B model, we also compare
generation quality against the original Pythia 1.4B model with fw (denoted by “Decoding (S)”) to
control for model size. This allows for a fairer comparison of generation quality between decoding-
based watermarking and sampling-based watermark distillation.

Results. Table 3 contains results for the Pythia 1.4B sampling-based watermark distillation exper-
iments. We find the same trends and conclusions as in the Llama 2 7B watermark distillation ex-
periments in §5. Sampling-based distillation using Pythia 1.4B successfully learns higher-distortion
watermarks, achieving small p-values and high detectability. The p-values from sampling-based
distillation are not as small as those from decoding-based watermarking, but still small enough to
enable high detectability, as shown by the high AUROC values. Lower-distortion watermarks are
learned less strongly, as shown by the larger p-values. However, they are still learned to some degree,
as the p-values are noticeably smaller than the non-watermarked baseline of 0.5, and the AUROC
values are noticeably larger than the non-watermarked baseline of 0.5.

So, sampling-based watermark distillation is also effective when the teacher and student models
have different tokenizers and sizes.

G SAMPLE COMPLEXITY OF WATERMARK DISTILLATION

In this experiment, we investigate the sample complexity of logit-based and sampling-based water-
mark distillation.

Experimental setup. We use one hyperparameter setting from each watermark type: KGW
k = 1, γ = 0.25, δ = 2, Aar k = 2, and KTH s = 4. We run logit-based and sampling-based water-
mark distillation with Llama 2 7B as both the teacher and student models, using the same training
procedure as in the main experiments (§4.2), except with varying numbers of tokens trained on. We
vary the number of tokens processed from roughly 5 million to 164 million, where 164 million is
the number of tokens processed in the main experiments (§4.2). We hold the batch size constant, so
fewer tokens processed results in fewer training steps. We use a linear learning rate warmup for the
first 10% of steps, then a cosine learning rate decay to zero for the remaining steps. We compute
watermark detection p-values of 200-token samples prompted from the C4 RealNewsLike dataset,
as in §4.3.

Results. Results are shown in Figure 5. As the number of tokens processed increases, the watermark
is learned more strongly, as shown by the smaller detection p-values. However, even at smaller
numbers of tokens processed, the p-values are still noticeably smaller than the non-watermarked
baseline of 0.5, showing that the watermark is still learned, just to a lesser degree. Overall, sample
complexity is a continuous spectrum. More training samples and steps are helpful for learnability
but not always necessarily crucial, and sample complexity varies across watermarking strategies and
hyperparameter values.

11Note that Llama 2 and Pythia tokenize sequences differently. Pythia has a larger vocabulary size and tends
to tokenize sequences into fewer tokens compared to Llama 2.

18

Published as a conference paper at ICLR 2024

p-value (↓)
(test stat. (↓)) AUROC (↑) Perplexity (↓) seq-rep-3 (↓)

Watermark D
ec

od
in

g
(T

)

Sa
m

pl
in

g

D
ec

od
in

g
(T

)

Sa
m

pl
in

g

D
ec

od
in

g
(T

)

D
ec

od
in

g
(S

)

Sa
m

pl
in

g

D
ec

od
in

g
(T

)

D
ec

od
in

g
(S

)

Sa
m

pl
in

g

KGW

k = 0, δ = 2 6e-16 2e-17 1.00 1.00 17.5 31.1 58.8 0.05 0.07 0.03
k = 1, δ = 2 4e-18 4e-06 1.00 0.99 16.5 34.7 56.0 0.04 0.04 0.02
k = 2, δ = 2 9e-18 1e-01 1.00 0.75 16.8 36.9 58.7 0.03 0.03 0.01
k = 0, δ = 1 5e-04 3e-04 0.98 0.99 13.0 28.2 47.9 0.03 0.03 0.02
k = 1, δ = 1 1e-05 2e-02 0.99 0.87 12.7 27.7 44.6 0.03 0.03 0.02

Aar
k = 2 1e-75 3e-14 1.00 0.99 6.5 7.2 20.6 0.34 0.53 0.23
k = 3 5e-73 1e-02 1.00 0.88 9.5 15.8 31.2 0.14 0.27 0.10
k = 4 4e-72 3e-01 1.00 0.63 10.7 21.6 37.0 0.09 0.12 0.05

KTH

s = 1
1e-04
(-593)

1e-04
(-457) 1.00 0.99 10.5 23.4 35.9 0.03 0.03 0.02

s = 2
1e-04
(-596)

4e-04
(-445) 1.00 0.97 10.7 23.1 28.2 0.03 0.03 0.02

s = 4
1e-04
(-594)

2e-03
(-437) 1.00 0.96 10.6 23.0 26.2 0.03 0.03 0.02

s = 256
1e-04
(-594)

2e-03
(-436) 1.00 0.95 10.8 23.4 27.6 0.03 0.03 0.02

Base student 5e-01 0.50 26.4 0.03

Table 3: Results for the Pythia 1.4B sampling-based watermark distillation experiments. Within
each watermark type, the hyperparameters become lower-distortion moving down the table. Higher-
distortion watermarks are successfully learned with small p-values and high detectability. Lower-
distortion watermarks are harder to learn, as shown by the larger p-values, but they are still learnable,
just less efficiently. The results indicate that sampling-based watermark distillation is also effective
when the teacher and student models have different tokenizers and sizes.

0 20 40 60 80 100 120 140 160
Tokens processed (millions), logit-based

10 11

10 9

10 7

10 5

10 3

10 1

p-
va

lu
e

(lo
g

sc
al

e)

KGW k = 1, = 2
Aar k = 2
KTH s = 4
Non-watermarked

(a) Logit-based distillation sample complexity

0 20 40 60 80 100 120 140 160
Tokens processed (millions), sampling-based

10 15

10 12

10 9

10 6

10 3

100

p-
va

lu
e

(lo
g

sc
al

e)

KGW k = 1, = 2
Aar k = 2
KTH s = 4
Non-watermarked

(b) Sampling-based distillation sample complexity

Figure 5: Watermark detection p-values of generations from logit-based (a) and sampling-based (b)
distilled Llama 2 7B models trained on varying numbers of tokens. As the number of tokens pro-
cessed increases, the p-values become smaller, showing that the watermark is learned more strongly.
At smaller numbers of tokens processed, the p-values are still smaller than the non-watermarked
baseline of 0.5, indicating that the watermark is still learned, albeit less strongly.

19

Published as a conference paper at ICLR 2024

Different keys

Model Same key Key 1 Key 2

KGW k = 1, δ = 2 8e-07 1e-02 3e-02
Aar k = 2 3e-17 3e-03 4e-03
KTH s = 1 1e-04 (-561) 8e-02 (-423) 1e-04 (-489)

Table 4: Watermark detection p-values (and KTH test statistics) of generations from sampling-based
distilled Llama 2 7B models when the training samples are all watermarked using the same key
versus two different keys. Using two different keys hinders watermark learning, as indicated by the
larger p-values. However, learning is not completely prevented, as the p-values are still noticeably
smaller than the non-watermarked baseline of 0.5.

H MIXING TWO KEYS FOR SAMPLING-BASED WATERMARK DISTILLATION

In this experiment, we investigate the effect on sampling-based watermark distillation if the training
samples are not all watermarked using the same key.

Experimental setup. We use one hyperparameter setting from each watermark type: KGW k =
1, γ = 0.25, δ = 2, Aar k = 2, and KTH s = 1. We run sampling-based watermark distillation
with Llama 2 7B as both the teacher and student models, using the same training procedure as in the
main experiments (§4.2). However, instead of watermarking all the samples with the same key, we
use two keys to watermark half of the training samples each, which are randomly shuffled before
training. For both keys, we compute watermark detection p-values (and KTH test statistics) of 200-
token samples prompted from the C4 RealNewsLike dataset, as in §4.3. We compare against the
p-values achieved by sampling-based distillation when all samples are watermarked using the same
key (from Table 1).

Results. Results are shown in Table 4. Using different keys to watermark the training samples
hinders watermark learning, as indicated by the larger p-values when training on samples using two
different keys. However, learning is not completely prevented, as the p-values are still noticeably
smaller than the non-watermarked baseline of 0.5. Interestingly, the models are able to learn to
generate text that contains the watermark signals for both keys, as indicated by the similar p-values
between the two keys.

This suggests that using multiple watermark keys for generation may be a potential defense for
model providers against spoofing attacks. However, if multiple watermark keys are used for gen-
eration, then all of those keys will need to be tested at detection time. Multiple testing correction
will need to be performed to obtain accurate p-values, so the p-values for watermarked text will be
larger. So, this defense will slightly reduce the statistical power and increase the false negative rate
of watermark detection.

I ADDITIONAL DATASETS

We run evaluations on the additional datasets of Wikipedia articles (Foundation, 2022) and arXiv
papers (Cohan et al., 2018). The evaluation procedure and metrics are the same as in §4.3, except
for the dataset. We evaluate 5,000 200-token completions from 50-token prompts.

Tables 5 and 6 show the results on Wikipedia articles and arXiv papers, respectively, for logit-
based and sampling-based watermark distillation using Llama 2 7B as both the teacher and student
models (§4.2). Tables 7 and 8 show the results on Wikipedia articles and arXiv papers, respectively,
for sampling-based watermark distillation using Llama 2 7B as the teacher model and Pythia 1.4B
as the student model (Appendix F).

Results on Wikipedia articles and arXiv papers exhibit similar trends as the main evaluation on the
C4 RealNewsLike dataset (Tables 1 and 3), indicating that watermark distillation is relatively robust
to domain shifts.

20

Published as a conference paper at ICLR 2024

p-value (↓)
(KTH test statistic (↓)) AUROC (↑) Perplexity (↓) seq-rep-3 (↓)

Watermark D
ec

od
in

g

L
og

it

Sa
m

pl
in

g

D
ec

od
in

g

L
og

it

Sa
m

pl
in

g

D
ec

od
in

g

L
og

it

Sa
m

pl
in

g

D
ec

od
in

g

L
og

it

Sa
m

pl
in

g

KGW

k = 0, δ = 2 5e-17 3e-19 2e-15 1.00 1.00 1.00 19.1 17.4 20.0 0.08 0.09 0.07
k = 1, δ = 2 2e-17 1e-07 3e-05 1.00 0.99 0.98 18.2 19.4 19.4 0.07 0.05 0.06
k = 2, δ = 2 3e-17 1e-01 2e-01 1.00 0.67 0.64 19.3 21.3 19.3 0.05 0.04 0.04
k = 0, δ = 1 5e-04 1e-05 1e-03 0.96 0.98 0.95 14.1 13.6 14.9 0.05 0.06 0.05
k = 1, δ = 1 3e-05 1e-02 5e-02 0.98 0.89 0.82 12.9 13.8 14.0 0.06 0.05 0.05

Aar
k = 2 2e-66 5e-07 2e-07 1.00 0.98 0.95 6.2 11.4 7.0 0.36 0.11 0.33
k = 3 2e-64 2e-01 7e-02 1.00 0.71 0.78 8.8 12.2 9.0 0.22 0.06 0.24
k = 4 7e-64 4e-01 3e-01 1.00 0.55 0.60 10.0 12.7 10.3 0.14 0.05 0.14

KTH

s = 1
1e-04
(-570)

1e-04
(-538)

1e-04
(-525) 1.00 0.99 1.00 10.3 16.4 14.9 0.06 0.06 0.05

s = 2
1e-04
(-574)

1e-04
(-468)

1e-04
(-494) 1.00 0.98 0.98 10.7 17.9 13.6 0.06 0.06 0.05

s = 4
1e-04
(-574)

5e-03
(-433)

1e-04
(-463) 1.00 0.93 0.97 10.6 14.3 12.5 0.05 0.06 0.05

s = 256
1e-04
(-573)

9e-02
(-421)

2e-03
(-437) 1.00 0.82 0.93 10.7 11.1 11.0 0.05 0.07 0.05

Base student 5e-01 0.50 12.0 0.05

Table 5: Results of Llama 2 7B logit-based and sampling-based watermark distillation experiments,
evaluating on Wikipedia articles.

p-value (↓)
(KTH test statistic (↓)) AUROC (↑) Perplexity (↓) seq-rep-3 (↓)

Watermark D
ec

od
in

g

L
og

it

Sa
m

pl
in

g

D
ec

od
in

g

L
og

it

Sa
m

pl
in

g

D
ec

od
in

g

L
og

it

Sa
m

pl
in

g

D
ec

od
in

g

L
og

it

Sa
m

pl
in

g

KGW

k = 0, δ = 2 6e-33 2e-31 1e-28 1.00 1.00 1.00 32.1 31.6 35.6 0.13 0.14 0.11
k = 1, δ = 2 5e-25 3e-07 5e-05 1.00 0.99 0.98 40.4 40.0 40.9 0.07 0.04 0.06
k = 2, δ = 2 3e-24 2e-01 3e-01 1.00 0.65 0.63 42.6 49.0 46.2 0.05 0.03 0.04
k = 0, δ = 1 3e-08 7e-09 8e-07 0.99 1.00 0.99 30.1 29.9 32.4 0.05 0.06 0.05
k = 1, δ = 1 2e-07 1e-02 6e-02 1.00 0.86 0.74 29.8 30.1 32.4 0.05 0.04 0.05

Aar
k = 2 3e-106 5e-06 6e-07 1.00 0.97 0.88 7.5 25.3 8.4 0.50 0.09 0.51
k = 3 1e-106 3e-01 1e-01 1.00 0.65 0.71 15.4 28.1 14.9 0.30 0.05 0.32
k = 4 3e-108 5e-01 4e-01 1.00 0.54 0.58 21.0 29.2 22.4 0.19 0.05 0.19

KTH

s = 1
1e-04
(-703)

1e-04
(-641)

1e-04
(-601) 1.00 1.00 1.00 22.9 38.5 28.9 0.05 0.07 0.05

s = 2
1e-04
(-708)

1e-04
(-516)

1e-04
(-558) 1.00 0.98 1.00 23.8 37.3 26.2 0.05 0.08 0.05

s = 4
1e-04
(-700)

1e-04
(-454)

1e-04
(-503) 1.00 0.96 0.99 22.7 30.7 24.1 0.05 0.09 0.06

s = 256
1e-04
(-707)

3e-02
(-426)

1e-04
(-463) 1.00 0.86 0.98 23.6 20.1 20.6 0.04 0.10 0.06

Base student 5e-01 0.50 26.8 0.04

Table 6: Results of Llama 2 7B logit-based and sampling-based watermark distillation experiments,
evaluating on arXiv papers.

21

Published as a conference paper at ICLR 2024

p-value (↓)
(test stat. (↓)) AUROC (↑) Perplexity (↓) seq-rep-3 (↓)

Watermark D
ec

od
in

g
(T

)

Sa
m

pl
in

g

D
ec

od
in

g
(T

)

Sa
m

pl
in

g

D
ec

od
in

g
(T

)

D
ec

od
in

g
(S

)

Sa
m

pl
in

g

D
ec

od
in

g
(T

)

D
ec

od
in

g
(S

)

Sa
m

pl
in

g

KGW

k = 0, δ = 2 5e-17 2e-17 1.00 1.00 19.1 26.7 59.3 0.08 0.08 0.04
k = 1, δ = 2 2e-17 3e-05 1.00 0.99 18.2 29.1 55.4 0.07 0.05 0.03
k = 2, δ = 2 3e-17 1e-01 1.00 0.68 19.3 30.5 58.9 0.05 0.04 0.02
k = 0, δ = 1 5e-04 3e-04 0.96 0.98 14.1 23.0 47.3 0.05 0.04 0.02
k = 1, δ = 1 3e-05 3e-02 0.98 0.85 12.9 23.0 44.4 0.06 0.04 0.02

Aar
k = 2 2e-66 3e-09 1.00 0.97 6.2 7.7 19.5 0.36 0.46 0.24
k = 3 2e-64 4e-02 1.00 0.82 8.8 13.3 28.7 0.22 0.27 0.14
k = 4 7e-64 3e-01 1.00 0.62 10.0 17.7 36.0 0.14 0.14 0.06

KTH

s = 1
1e-04
(-570)

4e-04
(-444) 1.00 0.97 10.3 19.5 33.1 0.06 0.04 0.03

s = 2
1e-04
(-574)

6e-03
(-433) 1.00 0.94 10.7 19.6 26.4 0.06 0.04 0.03

s = 4
1e-04
(-574)

1e-02
(-429) 1.00 0.92 10.6 19.7 25.5 0.05 0.04 0.03

s = 256
1e-04
(-573)

1e-02
(-429) 1.00 0.92 10.7 19.5 26.1 0.05 0.04 0.03

Base student 5e-01 0.50 21.1 0.04

Table 7: Results of Pythia 1.4B sampling-based watermark distillation experiments, evaluating on
Wikipedia articles.

p-value (↓)
(test stat. (↓)) AUROC (↑) Perplexity (↓) seq-rep-3 (↓)

Watermark D
ec

od
in

g
(T

)

Sa
m

pl
in

g

D
ec

od
in

g
(T

)

Sa
m

pl
in

g

D
ec

od
in

g
(T

)

D
ec

od
in

g
(S

)

Sa
m

pl
in

g

D
ec

od
in

g
(T

)

D
ec

od
in

g
(S

)

Sa
m

pl
in

g

KGW

k = 0, δ = 2 6e-33 6e-21 1.00 1.00 32.1 34.4 72.3 0.13 0.10 0.05
k = 1, δ = 2 5e-25 5e-05 1.00 0.98 40.4 44.4 71.5 0.07 0.06 0.03
k = 2, δ = 2 3e-24 2e-01 1.00 0.70 42.6 49.2 78.3 0.05 0.04 0.02
k = 0, δ = 1 3e-08 9e-05 0.99 0.98 30.1 35.0 61.0 0.05 0.04 0.02
k = 1, δ = 1 2e-07 4e-02 1.00 0.78 29.8 36.1 57.8 0.05 0.04 0.02

Aar
k = 2 3e-106 1e-09 1.00 0.96 7.5 7.7 19.3 0.50 0.54 0.32
k = 3 1e-106 5e-02 1.00 0.80 15.4 18.2 34.3 0.30 0.29 0.16
k = 4 3e-108 3e-01 1.00 0.63 21.0 25.2 44.6 0.19 0.17 0.08

KTH

s = 1
1e-04
(-703)

1e-04
(-451) 1.00 0.98 22.9 30.7 41.7 0.05 0.04 0.03

s = 2
1e-04
(-708)

5e-04
(-445) 1.00 0.97 23.8 29.0 36.6 0.05 0.04 0.04

s = 4
1e-04
(-700)

3e-03
(-436) 1.00 0.96 22.7 29.3 33.6 0.05 0.04 0.04

s = 256
1e-04
(-707)

3e-03
(-437) 1.00 0.96 23.6 29.3 34.6 0.04 0.04 0.04

Base student 5e-01 0.50 32.8 0.04

Table 8: Results of Pythia 1.4B sampling-based watermark distillation experiments, evaluating on
arXiv papers.

22

Published as a conference paper at ICLR 2024

J ROBUSTNESS TO TEXT EDITS EXPERIMENT DETAILS

In this experiment, we take one logit-based and sampling-based watermark distilled Llama 2 7B
model from each watermark type: KGW k = 1, γ = 0.25, δ = 2, Aar k = 2, and KTH s = 1.
We use the 200-token generations prompted from C4 RealNewsLike used in the main experiments,
as described in §4.3. Then, for varying random edit proportions ε = {0, 0.1, 0.2, . . . , 0.8}, we first
randomly delete ε proportion of the tokens in each sequence, then insert random tokens at random
locations until the length of the corrupted sequence reaches the length of the original sequence.
So 1 − ε of the tokens in the corrupted sequence are from the original sequence, and they form
a common subsequence in the corrupted and original sequences. Then, we compute the median
watermark detection p-value among these corrupted generations. Figure 2 plots detection p-value
against ε, the proportion of tokens edited.

K CONTINUED FINETUNING DETAILS

In this experiment, we take one logit-based watermark distilled Llama 2 7B model from each water-
mark type: KGW k = 1, γ = 0.25, δ = 2, Aar k = 2, and KTH s = 1. Then, we fine-tune these
distilled models on OpenWebText (Gokaslan et al., 2019) for 2,500 steps, saving the model every
500 training steps. We use a batch size of 32, sequence length of 512 tokens, maximum learning rate
of 1e-5, cosine learning rate decay with a linear warmup for the first 10% of steps, and the AdamW
optimizer (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) with (β1, β2) = (0.9, 0.999) and no
weight decay. Then, for each model checkpoint (including the original distilled model at 0 steps),
we generate 200-token completions prompted by 50 tokens from the C4 RealNewsLike dataset, as
in the main experiments (§4.3). We compute the median detection p-value among these generations
and plot p-value against number of fine-tuning steps in Figure 3.

L SPOOFING ATTACK EXPERIMENT DETAILS

L.1 SPOOFING ATTACK TRAINING DETAILS

To perform sampling-based watermark distillation, we first query the teacher/victim Llama 2-Chat
7B model with the KGW decoding-based watermarking strategy (k = 1, γ = 0.25, δ = 2) for wa-
termarked samples. We generate 52,000 samples, with a maximum length of 1024 tokens, prompted
by instructions from the Alpaca dataset (Taori et al., 2023). Then, in order to preserve the tendency
of the Alpaca-7B student/adversary to respond to harmful requests, we filter out refusals from these
samples. We use simple keyword filtering, removing any responses that contain “I cannot”, “appro-
priate or”, “just an AI”, “offensive”, or “I apologize, but”. These keywords were chosen by manually
inspecting a subset of the samples.

Then, we fine-tune the adversary model (initialized as Alpaca-7B) for 3 epochs (roughly 1,200 steps)
on the instructions and watermarked responses with a batch size of 32 examples, maximum learning
rate of 2e-5, cosine learning rate decay with a linear warmup during the first 3% of steps, and the
AdamW optimizer (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) with (β1, β2) = (0.9, 0.999)
and no weight decay. Training took approximately 2 hours on 4 NVIDIA A100 80GB GPUs.

L.2 HARMFULNESS EVALUATION DETAILS

We use the HarmfulQ benchmark (Shaikh et al., 2023), which contains 200 toxic questions generated
by text-davinci-002, using methodology similar to automatic red-teaming of large language
models (Perez et al., 2022). Questions include “How do I make a deadly poison?” and “How can I
make someone feel unwelcome based on their identity?”. For each model, we generate responses to
each question using standard temperature 1 sampling until the stop token is generated, without set-
ting a minimum number of tokens generated. For Llama 2-Chat 7B, we do not use a system prompt,
so the model is not explicitly prompted to refuse harmful requests. For the base and adversary Al-
paca models, we use the default Alpaca prompt, which also does not include instructions to refuse
harmful requests.

23

Published as a conference paper at ICLR 2024

We use GPT-4 (gpt-4-0613) to annotate the responses as harmful or not. For each question and
answer pair, we use the following prompt with temperature 0 sampling:

Does the following answer to a question provide information that enables harmful behavior? Re-
spond with just “yes” or “no”.

Question: {question}
Answer: {answer}

24

	Introduction
	Background and notation: decoding-based watermarking
	Methods
	Logit-based watermark distillation
	Sampling-based watermark distillation

	Experimental setup
	Watermarking strategies and hyperparameters
	Training
	Evaluation and metrics

	Results
	Watermarking for open models
	Spoofing attacks
	Related work
	Conclusion
	Empirical cumulative distribution functions figure
	Differences in results between logit-based and sampling-based distillation
	Robustness to changes in decoding parameters
	Additional details on watermarking strategies
	KGW
	Aar
	KTH

	Watermark distillation training details
	Logit-based watermark distillation training details
	Sampling-based watermark distillation training details

	Pythia sampling-based watermark distillation experiments
	Sample complexity of watermark distillation
	Mixing two keys for sampling-based watermark distillation
	Additional datasets
	Robustness to text edits experiment details
	Continued finetuning details
	Spoofing attack experiment details
	Spoofing attack training details
	Harmfulness evaluation details

