
RADAR: Reasoning–Ability and Difficulty-Aware
Routing for Reasoning LLMs

Nigel Fernandez∗1, Branislav Kveton2, Ryan A. Rossi2, Andrew S. Lan2, Zichao Wang2
1University of Massachusetts Amherst, 2Adobe Research

{nigel,andrewlan}@cs.umass.edu, {kveton,ryrossi,jackwa}@adobe.com

Abstract

Reasoning language models have demonstrated remarkable performance on many
challenging tasks in math, science, and coding. Choosing the right reasoning model
for practical deployment involves a performance and cost tradeoff at two key levels:
model size and reasoning budget, where larger models and higher reasoning budget
lead to better performance but with increased cost and latency. In this work, we
tackle this tradeoff from the angle of model configuration routing for different
queries, and present RADAR (Reasoning–Ability and Difficulty-Aware Routing), a
lightweight, interpretable, and scalable routing framework. Inspired by psychomet-
rics, RADAR learns an item response model from model responses with different
budgets to different queries, with interpretable parameters including query difficul-
ties and model-budget abilities. RADAR then routes queries with higher difficulty
to model-budget pairs with higher ability, and vice versa. We conduct extensive
experiments on 8 widely used challenging reasoning benchmarks, demonstrating
the superior performance of RADAR compared to state-of-the-art model routing
methods. RADAR also exhibits query generalization capabilities, showing strong
performance on out-of-distribution queries in all benchmarks. RADAR is also
scalable and can efficiently integrate additional models by dynamically selecting a
small set of evaluation queries to estimate their abilities.

1 Introduction

Recent advances in reasoning language models (RLMs), trained with reinforcement learning to
produce chain-of-thought reasoning [42, 53, 12, 35], have achieved strong performance across
math [28], science [38], coding [22], perception [27], and tool use [54]. Model developers release
RLMs in multiple sizes and with configurable reasoning budgets, already numbering in the thousands 2.
Always choosing the largest, most expensive configuration is often wasteful: many queries can be
answered by smaller models or with lower reasoning effort, while more complex queries require
stronger configurations (see Figure 4). Over-thinking can even hurt performance [46, 13, 18, 43, 10]
(see Appendix A for an extended related work). This performance-cost tradeoff presents a challenge
for practitioners: given a diverse pool of (model, reasoning budget) configurations, how can we route
each query to the “right” configuration that balances performance and cost?

We propose RADAR, a lightweight framework for Reasoning-Ability and Difficulty-Aware Rout-
ing. RADAR uses item response theory (IRT) [37, 26, 47, 5] to jointly model query difficulty and
configuration ability, enabling interpretable, low-latency (∼7 ms) routing before model execution.
Our approach treats RLMs as black boxes, requires no fine-tuning, and supports plug-and-play
integration of new configurations via adaptive calibration [48, 17]. By casting configuration selection
as multi-objective optimization (MOO) [30, 8], RADAR chooses performance-cost tradeoffs towards

∗Work done during an internship at Adobe Research.
2Hugging Face lists 2,710 RLMs as of September 17th, 2025.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AI.

https://huggingface.co/models?other=reasoning

Figure 1: Left: RADAR jointly estimates interpretable query difficulties and RLM configuration abilities using
IRT. New RLM configurations can be rapidly added by estimating their ability on a small subset of dynamically
selected queries using adaptive testing. Right: RADAR formulates routing as multi-objective optimization and
routes queries to sufficiently capable configurations, optimizing performance-cost tradeoffs towards the Pareto
frontier.

the Pareto front, achieving superior routing across 8 challenging reasoning benchmarks. For example,
on MATH-500 [16], it matches 90% of OpenAI o4-mini’s high-budget performance at just 1.31% of
its cost, while generalizing well to long-context QA [23], and newly added RLM configurations.

2 Methodology

Routing as Multi-objective Optimization. We discretize each RLM m ∈ M by its available
reasoning budgets u ∈ Um into configurations g = (m,u) ∈ G ⊆ M × Um. We present a
novel view of model routing through the lens of MOO [30, 2, 32, 57]. Given a set of queries
Q = {q1, . . . , qk} and a set of candidate model configurations G = {g1, . . . , gn}, our goal is to
assign each query qi ∈ Q to the optimal configuration gj ∈ G which maximizes performance and
minimizes cost. For each query q, we define a two-dimensional a-priori [2] MOO with two objective
functions, performance pq(g) (probability of correctness) and cost cq(g) (normalized token cost):
g∗ = argmaxg∈G f(pq(g), cq(g)), where f is a scalarization function. This formulation enables
different scalarization techniques to achieve different points on the performance-cost Pareto front.
We explore linear scalarization [32] and Chebyshev scalarization [57]. The linear scalarization
problem of our MOO with weight w1 ∈ [0, 1] is: LSPw1

q = argmaxg∈G w1pq(g)− (1− w1)cq(g),
recovering the formulation presented in existing routing methods [20, 44, 59] but arrived at through
the lens of an MOO. The Chebyshev scalarization problem of our MOO, capturing points on the
non-convex parts of the Pareto front, is: CSPw1

q = argming∈G max{w1|1−pq(g)|, (1−w1)cq(g)}.
In both scalarization techniques, the weight parameter w1 controls the trade-off between performance
and cost: a larger value of w1 indicates a preference for performance over cost, favoring stronger
model configurations more often, while a smaller value of w1 indicates a preference for weaker but
more cost-effective model configurations. Given a user-specified tradeoff profile with weight w1 and
query q, RADAR assigns configuration g = LSPw1

q (or configuration g = CSPw1
q depending on the

chosen scalarization scheme) to maximize performance and minimize cost.

IRT-based Calibration. To parameterize pq(g), we adopt the 2-parameter logistic (2PL) IRT
model [37, 26, 5] from psychometrics research used to model student responses to test items. Each
query q has discrimination a and difficulty b obtained from linear projections of its embedding e,
where a = w⊤

a e and b = w⊤
b e. Each configuration g has a scalar ability θ. The probability of g

correctly answering q, a binary-valued outcome, is given by: p(y = 1 | q, g) = σ (a(θ − b)) , where
σ(·) is the sigmoid function. We train the model by minimizing the binary cross-entropy loss over an
evaluation matrix of responses from all RLM configurations to all training queries.

Cost Prediction. Following prior routing work [20, 44], we adopt a heuristic-based approach to
parameterize the cost prediction function: cq(g) = 1/|Q|

∑
q∈Q(n

rsn
g(q) + ncmp

g(q)) · tg , where tg is the
cost per token of the base RLM, and nrsn

g(q) and ncmp
g(q) are the total number of reasoning tokens and

completion tokens generated, respectively. We min-max normalize all costs to the range [0, 1].

Expanding the Pool of RLM Configurations Through Adaptive Testing. To add a new configura-
tion gi, inspired by psychometric testing [48], we estimate its ability on a small set of training queries
Q∗ by computing: θ̂i = argmaxθ

∏
qj∈Q∗ [σ(aj(θ − bj))]

yij [1− σ(aj(θ − bj))]
1−yij . Inspired

2

Table 1: Routing performance on ID queries across benchmarks reported on the hypervolume metric (higher is
better) and CPT (90%) metric (lower is better). RADAR outperforms baselines, denoting better performance-cost
tradeoffs towards the Pareto frontier. See Table 5 and Table 6 for performance on OOD queries.

Benchmark Random-Pair RouterBench IRT-Router RADAR (ours)

GPQA-Diamond 0.555, 80.4% 0.687, 57.1% 0.694, 54.0% 0.751, 13.2%
MMLU 0.691, 76.3% 0.859, 2.7% 0.860, 2.7% 0.872, 2.7%
MMLU-Redux 0.728, 75.1% 0.905, 2.6% 0.912, 2.8% 0.923, 2.4%
MMLU-Pro 0.559, 83.6% 0.782, 5.2% 0.781, 3.8% 0.800, 3.9%
LSAT 0.691, 80.1% 0.913, 2.0% 0.916, 1.9% 0.919, 1.8%
AIME 0.516, 87.2% 0.768, 65.7% 0.777, 61.2% 0.776, 60.7%
MATH-500 0.743, 76.2% 0.953, 1.3% 0.942, 1.4% 0.945, 1.3%
FRAMES 0.659, 77.9% 0.833, 43.5% 0.850, 31.5% 0.876, 13.1%

by [17], queries are selected adaptively using Fisher information: I(θ, aj , bj) = a2jσ(aj(θ−bj))
(
1−

σ(aj(θ − bj))
)
. Set Q∗ is updated as: Q∗

i (t) = Q∗
i (t− 1) ∪

{
argmaxqj∈Q\Q∗

i (t−1) I(θ, aj , bj)
}
.

3 Experimental Evaluation
Benchmarks and Metrics. We evaluate on eight reasoning benchmarks, including AIME [28],
MATH [16], GPQA [38], LSAT [49, 60], MMLU [15, 14], MMLU Redux [9], MMLU Pro [51],
and FRAMES [23], spanning competition math, PhD-level science, law, and general knowledge
with both multiple-choice and open-ended formats. In particular, FRAMES probes RADAR’s gen-
eralization to long-context queries in a multi-doc QA setting; long-context evaluation is largely
absent in prior routing work. We report hypervolume [8] (higher is better), which, in our setting,
corresponds to the area under the performance-cost trade-off curve across weights w1. We also
use the cost–performance threshold (CPT) metric (lower is better), akin to call-performance thresh-
olds [33]: relative to the best-performing configuration, o4-mini–high, CPT(x%) is the minimum
cost required to reach x% of that performance, normalized by the cost of o4-mini–high. For example,
CPT(90%) = 0.1 means achieving 90% performance at 10% of the cost.

Baselines and Evaluation Setup. We compare RADAR to several recent, state-of-the-art model
routing methods, including RouterBench [20, 4] and IRT-Router [44], and heuristic-based baselines,
including All-Large, All-Small, Oracle, Random-All and Random-Pair. We adapt these methods
for our experimental setting since they do not natively generalize to RLMs (see Appendix B.2).
We conduct both in-distribution (ID) and out-of-distribution (OOD) evaluations. We route over
35 configurations comprising OpenAI o4-mini (budgets: low, medium, high) and Qwen3 models
(0.6B/1.7B/4B/8B) with budgets 0, 256, 512, 1k, 2k, 4k, 8k, 16k [53, 34]. In total, we collected 1.75
million binary responses over 50,139 questions across all eight benchmarks (see Appendix B).

3.1 Results, Analysis and Discussion
RADAR outperforms state-of-the-art model routing methods. Table 1 reports the routing perfor-
mance of all methods across 8 reasoning benchmarks evaluated in the ID setting on the hypervolume
and CPT(90%) metrics, respectively. We see that RADAR outperforms all baselines on most bench-
marks and performs comparably to the best existing baseline on the remaining benchmarks. RADAR
outperforms IRT-Router [44], a concurrent IRT-based routing work, suggesting that our novel for-
mulation of RLM routing as an MOO, as well as the use of solution techniques like Chebyshev
scalarization, enable better recovery of the Pareto performance-cost frontier. On the challenging
GPQA-Diamond benchmark, RADAR demonstrates an 8% performance boost over the second-
best method on hypervolume. On the CPT metric, on MATH-500, RADAR matches 90% of the
performance of o4-mini with a high reasoning budget at 1.31% of its cost.

RADAR exhibits strong query generalization capabilities. Table 5 and Table 6 report routing
performance of all methods across 8 reasoning benchmarks evaluated in the OOD setting on the
hypervolume and CPT (90%) metrics, respectively. We show the Pareto performance-cost tradeoff
curves for all methods on OOD queries from FRAMES [23] in Figure 2. We see that RADAR exhibits
strong generalization to OOD queries, outperforming existing state-of-the-art methods on most
benchmarks. When generalizing to OOD queries with significantly higher difficulty (e.g., AIME)
than those seen during training, RADAR tends to assign a model configuration with a slightly lower
ability than optimal, resulting in a slight decrease in performance. This weakness can potentially be
addressed by including a small number of representative queries during training.

3

0.0 0.5 1.0 1.5
Total Cost ($)

20

40

60

80

100
All-Large

All-SmallAv
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Oracle
All-Large
All-Small
Random-All
RADAR
IRT-Router
RouterBench
Random-Pair

Figure 2: On FRAMES [23] OOD queries,
RADAR can match 90% of the performance
of OpenAI o4-mini with high reasoning effort
at just 10% of its cost, with the next best
method [44] requiring 30% of the cost.

Table 2: Routing performance across benchmarks
reported on the hypervolume metric (higher is
better), before (RADAR) and after (RADAR++)
adding new RLM configurations from Qwen3-14B.
RADAR++ quickly estimates the abilities of new
configurations through adaptive testing for an im-
proved routing performance.

Benchmark ID OOD

RADAR RADAR++ RADAR RADAR++

GPQA-Diamond 0.7513 0.7535 0.7466 0.7463
MMLU 0.8720 0.8731 0.8609 0.8698
MMLU-Redux 0.9230 0.9238 0.9072 0.9091
MMLU-Pro 0.7995 0.8021 0.7858 0.7951
LSAT 0.9188 0.9233 0.9146 0.9255
AIME 0.7760 0.7828 0.7566 0.7566
MATH-500 0.9449 0.9461 0.9368 0.9368
FRAMES 0.8762 0.8830 0.8865 0.8931

1 2 3 4 5

MATH-500 Ground-Truth Question Level (Difficulty)

Q3-0.6B (0) (-0.18)
Q3-0.6B (256) (-0.15)
Q3-0.6B (512) (-0.14)

Q3-0.6B (1k) (-0.12)
Q3-0.6B (2k) (-0.12)

Q3-0.6B (4k) (-0.1)
Q3-0.6B (8k) (-0.1)

Q3-0.6B (16k) (-0.1)
Q3-1.7B (0) (-0.05)

Q3-1.7B (256) (-0.04)
Q3-1.7B (512) (-0.03)

Q3-1.7B (1k) (-0.03)
Q3-1.7B (2k) (0.01)
Q3-1.7B (4k) (0.03)
Q3-1.7B (8k) (0.04)

Q3-1.7B (16k) (0.05)
Q3-4B (0) (0.04)

Q3-4B (256) (0.05)
Q3-4B (512) (0.06)

Q3-4B (1k) (0.08)
Q3-4B (2k) (0.1)

Q3-4B (4k) (0.12)
Q3-4B (8k) (0.13)

Q3-4B (16k) (0.14)
Q3-8B (0) (0.05)

Q3-8B (256) (0.09)
Q3-8B (512) (0.08)

Q3-8B (1k) (0.11)
Q3-8B (2k) (0.13)
Q3-8B (4k) (0.14)
Q3-8B (8k) (0.16)

Q3-8B (16k) (0.18)
o4-mini (low) (0.22)

o4-mini (medium) (0.22)
o4-mini (high) (0.23)

RL
M

 C
on

fig
ur

at
io

n
(A

bi
lit

y
)

0.4

0.5

0.6

0.7

0.8

0.9

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Performance-Cost Tradeoff Weight (w1)

Q3-0.6B (0) (-0.18)
Q3-0.6B (512) (-0.14)

Q3-0.6B (1k) (-0.12)
Q3-0.6B (2k) (-0.12)

Q3-0.6B (4k) (-0.1)
Q3-1.7B (0) (-0.05)

Q3-1.7B (256) (-0.04)
Q3-1.7B (1k) (-0.03)

Q3-1.7B (512) (-0.03)
Q3-1.7B (2k) (0.01)
Q3-4B (256) (0.05)
Q3-4B (512) (0.06)

Q3-4B (1k) (0.08)
Q3-4B (2k) (0.1)

Q3-4B (4k) (0.12)
Q3-4B (8k) (0.13)

Q3-4B (16k) (0.14)
Q3-8B (8k) (0.16)

Q3-8B (16k) (0.18)
o4-mini (low) (0.22)

o4-mini (high) (0.23)

RL
M

 C
on

fig
ur

at
io

n
(A

bi
lit

y
)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: RADAR estimates interpretable query difficulties and RLM configuration abilities. Left: Mean
predicted correctness probability of configurations on queries with 5 different ground-truth difficulty levels
in MATH-500. As difficulties increase, configurations with higher abilities are predicted to perform better.
Right: Fraction of routing calls on MATH-500 queries spread across RLM configurations when varying the
performance-cost tradeoff weight. A lower (higher) weight leverages a higher fraction of Qwen3 (o4-mini)
configurations, prioritizing cost (performance).

Ablation and latency study. Table 3 shows that Chebyshev scalarization outperforms linear scalar-
ization on OOD queries, with linear being marginally better on ID queries. Table 4 shows that RADAR
achieves a similar performance to using the entire training set with just 20% of subsampled training
queries. RADAR works in real-time adding minimal latency with details included in Appendix D.

Model scalability and generalization evaluation. We evaluate the scalability of RADAR to new
RLMs by adding 8 new model configurations from the Qwen3 14B RLM. Table 2 shows the result;
using adaptive testing, RADAR accurately estimates the abilities of these new configurations by
dynamically selecting just 5k training queries (12% of the training set) for evaluation, resulting in
improved routing performance. Figure 5 shows how routing shifts to new RLM configurations.

RADAR estimates interpretable query difficulties and RLM configuration abilities. On ID
queries from MATH-500 [16], annotated with one of five levels of increasing difficulty, the Pearson
correlation coefficient between estimated query difficulties and ground-truth levels is 0.509. In
Figure 3 (left), we see that with an increase in query level, configurations with higher abilities
are predicted to have higher correctness probabilities, leading to a mean correctness prediction
accuracy of 84.42%. Figure 3 (right) shows the fraction of routing calls across configurations as the
performance-cost weight is varied, with cost-effective Qwen3 models (performant o4-mini) preferred
at lower (higher) weights.

4 Conclusion

We introduced RADAR, a reasoning–ability and difficulty-aware routing framework that (1) formal-
izes adaptive reasoning as an MOO, and (2) leverages IRT to adaptively assign queries to RLM
model–budget configurations. RADAR achieves strong cost–performance tradeoffs, generalizes well
to OOD queries, offers interpretability by exposing query difficulty and model abilities, and supports
plug-and-play integration of new RLM configurations through adaptive calibration.

4

Acknowledgements

The authors would like to thank Tong Sun and Jaewook Lee for helpful discussions. We also thank
the anonymous reviewers for their helpful comments.

References
[1] P. Aggarwal and S. Welleck. L1: Controlling how long a reasoning model thinks with reinforce-

ment learning. arXiv preprint arXiv:2503.04697, 2025.

[2] J. Branke, K. Deb, K. Miettinen, and R. Slowinski. Multiobjective Optimization: Interactive
and Evolutionary Approaches. Springer Science & Business Media, 2008.

[3] L. Chen, M. Zaharia, and J. Zou. Frugalgpt: How to use large language models while reducing
cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

[4] Z. Chen, Z. Wei, Y. Bai, X. Xiong, and J. Wu. Tagrouter: Learning route to llms through tags
for open-domain text generation tasks. arXiv preprint arXiv:2506.12473, 2025.

[5] C. DeMars. Item response theory. Oxford University Press, 2010.

[6] D. Ding, A. Mallick, C. Wang, R. Sim, S. Mukherjee, V. Ruhle, L. V. Lakshmanan, and
A. H. Awadallah. Hybrid llm: Cost-efficient and quality-aware query routing. arXiv preprint
arXiv:2404.14618, 2024.

[7] D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and M. Gardner. Drop: A reading
comprehension benchmark requiring discrete reasoning over paragraphs. arXiv preprint
arXiv:1903.00161, 2019.

[8] M. T. Emmerich and A. H. Deutz. A tutorial on multiobjective optimization: fundamentals and
evolutionary methods. Natural computing, 17(3):585–609, 2018.

[9] A. P. Gema, J. O. J. Leang, G. Hong, A. Devoto, A. C. M. Mancino, R. Saxena, X. He, Y. Zhao,
X. Du, M. R. G. Madani, et al. Are we done with mmlu? arXiv preprint arXiv:2406.04127,
2024.

[10] S. S. Ghosal, S. Chakraborty, A. Reddy, Y. Lu, M. Wang, D. Manocha, F. Huang,
M. Ghavamzadeh, and A. S. Bedi. Does thinking more always help? understanding test-
time scaling in reasoning models. arXiv preprint arXiv:2506.04210, 2025.

[11] M. Gor, H. Daumé III, T. Zhou, and J. Boyd-Graber. Do great minds think alike? in-
vestigating human-ai complementarity in question answering with caimira. arXiv preprint
arXiv:2410.06524, 2024.

[12] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, et al.
Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948, 2025.

[13] M. Hassid, G. Synnaeve, Y. Adi, and R. Schwartz. Don’t overthink it. preferring shorter thinking
chains for improved llm reasoning, 2025.

[14] D. Hendrycks, C. Burns, S. Basart, A. Critch, J. Li, D. Song, and J. Steinhardt. Aligning ai with
shared human values. Proceedings of the International Conference on Learning Representations
(ICLR), 2021.

[15] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring
massive multitask language understanding. Proceedings of the International Conference on
Learning Representations (ICLR), 2021.

[16] D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Stein-
hardt. Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874, 2021.

5

[17] V. Hofmann, D. Heineman, I. Magnusson, K. Lo, J. Dodge, M. Sap, P. W. Koh, C. Wang,
H. Hajishirzi, and N. A. Smith. Fluid language model benchmarking. In Second Conference on
Language Modeling, 2025.

[18] J. Hong, T. Zhen, K. Chen, J. Liu, W. Zhu, J. Huo, Y. Gao, D. Wang, H. Wan, X. Yang, B. Wang,
and F. Meng. Reconsidering overthinking: Penalizing internal and external redundancy in cot
reasoning, 2025.

[19] B. Hou, Y. Zhang, J. Ji, Y. Liu, K. Qian, J. Andreas, and S. Chang. Thinkprune: Pruning long
chain-of-thought of llms via reinforcement learning. arXiv preprint arXiv:2504.01296, 2025.

[20] Q. J. Hu, J. Bieker, X. Li, N. Jiang, B. Keigwin, G. Ranganath, K. Keutzer, and S. K. Upadhyay.
Routerbench: A benchmark for multi-llm routing system. arXiv preprint arXiv:2403.12031,
2024.

[21] S. Huang, H. Wang, W. Zhong, Z. Su, J. Feng, B. Cao, and Y. R. Fung. Adactrl: Towards adaptive
and controllable reasoning via difficulty-aware budgeting. arXiv preprint arXiv:2505.18822,
2025.

[22] C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and K. R. Narasimhan. SWE-bench:
Can language models resolve real-world github issues? In The Twelfth International Conference
on Learning Representations, 2024.

[23] S. Krishna, K. Krishna, A. Mohananey, S. Schwarcz, A. Stambler, S. Upadhyay, and M. Faruqui.
Fact, fetch, and reason: A unified evaluation of retrieval-augmented generation. arXiv preprint
arXiv:2409.12941, 2024.

[24] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E. Gonzalez, H. Zhang, and
I. Stoica. Efficient memory management for large language model serving with pagedattention,
2023.

[25] C. Lee, A. M. Rush, and K. Vafa. Critical thinking: Which kinds of complexity govern optimal
reasoning length? arXiv preprint arXiv:2504.01935, 2025.

[26] F. M. Lord. Applications of item response theory to practical testing problems. Routledge,
2012.

[27] P. Lu, H. Bansal, T. Xia, J. Liu, C. Li, H. Hajishirzi, H. Cheng, K.-W. Chang, M. Galley, and
J. Gao. Mathvista: Evaluating mathematical reasoning of foundation models in visual contexts.
In International Conference on Learning Representations (ICLR), 2024.

[28] MAA. MAA Invitational Competitions; Mathematical Association of America — maa.org.
https://maa.org/maa-invitational-competitions/, 2024. [Accessed 03-09-2025].

[29] G. Meng, Q. Zeng, J. P. Lalor, and H. Yu. A psychology-based unified dynamic framework for
curriculum learning, 2024.

[30] K. Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science & Business
Media, 1999.

[31] N. Muennighoff, Z. Yang, W. Shi, X. L. Li, L. Fei-Fei, H. Hajishirzi, L. Zettlemoyer, P. Liang,
E. Candès, and T. Hashimoto. s1: Simple test-time scaling. arXiv preprint arXiv:2501.19393,
2025.

[32] T. Murata and H. Ishibuchi. MOGA: Multi-objective genetic algorithms. In Proceedings of
1995 IEEE International Conference on Evolutionary Computation, pages 289–294, 1995.

[33] I. Ong, A. Almahairi, V. Wu, W.-L. Chiang, T. Wu, J. E. Gonzalez, M. W. Kadous, and I. Stoica.
Routellm: Learning to route llms with preference data. arXiv preprint arXiv:2406.18665, 2024.

[34] OpenAI. Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, Apr. 2025. Accessed: 2025-09-24.

[35] OpenAI and et al. Openai o1 system card, 2024.

6

https://maa.org/maa-invitational-competitions/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/

[36] F. M. Polo, L. Weber, L. Choshen, Y. Sun, G. Xu, and M. Yurochkin. tinybenchmarks: evaluating
llms with fewer examples. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024.

[37] G. Rasch. Studies in mathematical psychology: I. probabilistic models for some intelligence
and attainment tests. 1960.

[38] D. Rein, B. L. Hou, A. C. Stickland, J. Petty, R. Y. Pang, J. Dirani, J. Michael, and S. R.
Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In First Conference on
Language Modeling, 2024.

[39] P. Rodriguez, J. Barrow, A. M. Hoyle, J. P. Lalor, R. Jia, and J. Boyd-Graber. Evaluation
examples are not equally informative: How should that change NLP leaderboards? In C. Zong,
F. Xia, W. Li, and R. Navigli, editors, Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4486–4503, Online, Aug. 2021. Association for
Computational Linguistics.

[40] M. Šakota, M. Peyrard, and R. West. Fly-swat or cannon? cost-effective language model choice
via meta-modeling. In Proceedings of the 17th ACM International Conference on Web Search
and Data Mining, pages 606–615, 2024.

[41] A. Scarlatos, N. Fernandez, C. Ormerod, S. Lottridge, and A. Lan. Smart: Simulated stu-
dents aligned with item response theory for question difficulty prediction. arXiv preprint
arXiv:2507.05129, 2025.

[42] Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. Li, Y. Wu, et al.
Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv
preprint arXiv:2402.03300, 2024.

[43] P. Shojaee, I. Mirzadeh, K. Alizadeh, M. Horton, S. Bengio, and M. Farajtabar. The illusion
of thinking: Understanding the strengths and limitations of reasoning models via the lens of
problem complexity, 2025.

[44] W. Song, Z. Huang, C. Cheng, W. Gao, B. Xu, G. Zhao, F. Wang, and R. Wu. Irt-router: Effective
and interpretable multi-llm routing via item response theory. arXiv preprint arXiv:2506.01048,
2025.

[45] J. Su and C. Cardie. Thinking fast and right: Balancing accuracy and reasoning length with
adaptive rewards. arXiv preprint arXiv:2505.18298, 2025.

[46] J. Su, J. Healey, P. Nakov, and C. Cardie. Between underthinking and overthinking: An
empirical study of reasoning length and correctness in llms. arXiv preprint arXiv:2505.00127,
2025.

[47] W. J. van der Linden and R. K. Hambleton, editors. Handbook of Modern Item Response Theory.
Springer, New York, NY, 1997.

[48] H. Wainer, N. J. Dorans, R. Flaugher, B. F. Green, and R. J. Mislevy. Computerized adaptive
testing: A primer. Routledge, 2000.

[49] S. Wang, Z. Liu, W. Zhong, M. Zhou, Z. Wei, Z. Chen, and N. Duan. From lsat: The progress
and challenges of complex reasoning. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 2022.

[50] X. Wang, Y. Huang, Y. Wang, X. Luo, K. Guo, Y. Zhou, and X. Zhang. Adareasoner: Adaptive
reasoning enables more flexible thinking. arXiv preprint arXiv:2505.17312, 2025.

[51] Y. Wang, X. Ma, G. Zhang, Y. Ni, A. Chandra, S. Guo, W. Ren, A. Arulraj, X. He, Z. Jiang,
et al. Mmlu-pro: A more robust and challenging multi-task language understanding benchmark.
Advances in Neural Information Processing Systems, 37:95266–95290, 2024.

[52] Y. Xu, H. Dong, L. Wang, D. Sahoo, J. Li, and C. Xiong. Scalable chain of thoughts via elastic
reasoning. arXiv preprint arXiv:2505.05315, 2025.

7

[53] A. Yang, A. Li, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Gao, C. Huang, C. Lv, et al.
Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

[54] S. Yao, N. Shinn, P. Razavi, and K. R. Narasimhan. {τ}-bench: A benchmark for
\underline{T}ool-\underline{A}gent-\underline{U}ser interaction in real-world domains. In
The Thirteenth International Conference on Learning Representations, 2025.

[55] Z. Yu, T. Xu, D. Jin, K. A. Sankararaman, Y. He, W. Zhou, Z. Zeng, E. Helenowski, C. Zhu,
S. Wang, et al. Think smarter not harder: Adaptive reasoning with inference aware optimization.
arXiv preprint arXiv:2501.17974, 2025.

[56] L. Yue, Y. Du, Y. Wang, W. Gao, F. Yao, L. Wang, Y. Liu, Z. Xu, Q. Liu, S. Di, et al.
Don’t overthink it: A survey of efficient r1-style large reasoning models. arXiv preprint
arXiv:2508.02120, 2025.

[57] R. Zhang and D. Golovin. Random hypervolume scalarizations for provable multi-objective
black box optimization. In Proceedings of the 37th International Conference on Machine
Learning, 2020.

[58] X. Zhang, Z. Huang, E. O. Taga, C. Joe-Wong, S. Oymak, and J. Chen. Efficient contextual
llm cascades through budget-constrained policy learning. Advances in Neural Information
Processing Systems, 37:91691–91722, 2024.

[59] Y. Zhang, H. Li, J. Chen, H. Zhang, P. Ye, L. Bai, and S. Hu. Beyond gpt-5: Making llms
cheaper and better via performance-efficiency optimized routing, 2025.

[60] W. Zhong, S. Wang, D. Tang, Z. Xu, D. Guo, J. Wang, J. Yin, M. Zhou, and N. Duan. Ar-lsat:
Investigating analytical reasoning of text, 2021.

[61] V. Zouhar, P. Cui, and M. Sachan. How to select datapoints for efficient human evaluation of
nlg models? arXiv preprint arXiv:2501.18251, 2025.

A Extended Related Work

Efficient Reasoning. A rapidly growing literature seeks to make reasoning models themselves
more efficient; see [56] for a broader overview of this direction. Methods such as L1 [1] and S1 [31]
provide length control, enabling reasoning models to trade off accuracy and cost by constraining
chain-of-thought length. Others prune or adapt the reasoning process by dynamically shortening or
extending reasoning [19, 52, 50]; adaptively controlling inference steps [21]; and analyzing when
additional reasoning is beneficial or wasteful [45, 46, 55, 10]. Theoretical perspectives further study
optimal reasoning length [25]. These works aim to make a single model more efficient. They
also require access to model weights, which usually do not apply for closed-source or black-box
settings. Our approach is complementary: RADAR treats any such efficient reasoning model as an
additional candidate in its pool of (model, reasoning effort) configurations. This means advances
in adaptive or efficient reasoning can be seamlessly integrated into our framework, while RADAR
contributes orthogonally by providing per-query routing, interpretability through IRT, and Pareto-
optimal cost–performance control.

Routing for Foundation Models. Recent work studies cost–quality routing across multiple
LLMs [3, 58, 6, 33, 20, 40, 4, 44]. Most methods focus on model selection with black-box pre-
dictors or cascades [3, 6, 33, 40, 4], though TREACLE additionally co-selects prompt types under
budget constraints [58]. We instead study adaptive reasoning and cast this problem as routing over
model–budget configurations, where the budget controls thinking-token effort, making reasoning
cost an explicit decision dimension in addition to the model itself. Routers also differ in when
they commit: cascaded approaches may re-query a model [3, 58], while others choose once per
query [6]. Our router makes a single assignment before generation, avoiding mid-turn switching
(and KV-cache recomputation) or multiple re-querying while still retaining favorable cost–quality
trade-offs. Finally, we emphasize interpretability and control. Unlike opaque regressors [3, 6, 33],
we use an IRT parameterization to expose query difficulty and configuration ability. Compared
to a concurrent work that also utilizes IRT-based model for routing [44], our work (1) generalizes

8

the routing problem from model only to model configurations, which enables broader applicability
e.g. for reasoning models at various budget levels, and (2) generalizes and formalizes the routing
problem as a multi-objective optimization (MOO) problem, which enables a wide range of techniques
for solving it, such as Chebyshev scalarization that we explored in this work which offers a more
favorable tradeoff compared to linear scalarization.

Item Response Theory in Machine Learning. Originally designed for assessment and other edu-
cational applications, Item Response Theory (IRT) has emerged as a versatile tool for understanding
and improving foundation models. It has been applied to evaluation and benchmarking such as jointly
estimating model ability and item difficulty to build adaptive or efficient test suites [39, 61, 17, 36];
to training and curriculum design, where IRT-based difficulty estimates guide data selection for faster
and more effective learning [29, 41]; and to the diagnostics and bias analysis, exposing strengths and
weaknesses of models relative to humans or ideological leanings [11]. Most relevant to our setting,
IRT has recently been explored for multi-model routing, where it parameterizes query difficulty and
model ability to guide cost–performance trade-offs with interpretability [44]. Our work extends this
line by applying IRT not only to model selection, but also to adaptive reasoning configurations (model
× effort), contributing to the continuing exploration of IRT for foundation models.

B Additional Experimental Details

B.1 Hardware

For all open-source models, we use vLLM [24] to host the model. All experiments involving
open-source models are run on NVIDIA A100 80GB GPUs.

B.2 Baselines

For RouterBench [20], we adopt its k-nearest neighbors (kNN) parameterization which performs
best [4]. We adapt a concurrent IRT-based model routing work, IRT-Router [44], by using the same
2PL IRT model parameterization and query embedder as RADAR, thereby improving its embedder
to handle long-context queries for fairness. For both model routing methods, RouterBench and
IRT-Router, we adapt them to RLMs by using all RLMs at their respective fixed maximum budgets,
and use their performance-cost formulation similar to linear scalarization (see Equation 2). In
addition, we include simple heuristic-based baselines: All-Large (o4-mini at high budget) and
All-Small (Qwen3 0.6B at zero budget) as approximate upper and lower bounds on performance
and cost, respectively. The Oracle router, provided with model configuration performance on test
queries, serves as an idealized approximate upper bound of the performance-cost tradeoff by picking
the cheapest best-performing configuration. Random-All serves as a diversity baseline selecting
a configuration at random to answer each query. Random-Pair selects the largest configuration
(o4-mini at high budget) with probability w1, and the smallest configuration (Qwen3 0.6B at zero
budget) with probability 1− w1, where w1 is the user-defined performance-cost tradeoff weight.

B.3 IRT implementation details in RADAR

We employ a two-parameter logistic (2PL) IRT model implemented as a custom PyTorch
model class. Input queries are first processed into fixed embeddings by a frozen-weight
Qwen/Qwen3-Embedding-8B; the dimension dq = 4096 for both the query embedding and and
the learnable weights wa,wb. Training runs for 100 epochs with learning rate 5× 10−4, batch size
32 for both training and evaluation, gradient clipping at norm 1.0, and gradient accumulation of 1
step.

B.4 Metrics

Our formulation of adaptive reasoning as an MOO naturally lends the use of the hypervolume
indicator metric [8], which measures the size of the dominated space recovered by the MOO solution
method, with a higher value indicating performance close to the Pareto front. In our two-dimensional
routing MOO, hypervolume intuitively measures the area under the performance-cost tradeoff curve
recovered by the routing method for various values of tradeoff weights w1. An advantage of

9

0 2500 5000 7500 10000 12500 15000
Reasoning Budget (Num Tokens)

0.5

0.6

0.7

0.8

0.9

Pa
ss

@
1

Qwen3-0.6B
Qwen3-1.7B
Qwen3-4B
Qwen3-8B

Figure 4: Our pilot study on MATH-500 [16] shows a performance differential over (RLM, reasoning
budget) configurations, with the smallest RLM already solving over 50% of the queries with minimal
reasoning.

hypervolume over similar area-based metrics defined in existing routing work (e.g. AIQ in [20])
is its generalizibility to measuring performance performance of a multi-dimensional routing MOO.
In future work, additional dimensions such as latency, bias, and carbon emissions can be added to
the routing MOO. We also formulate a cost-performance threshold (CPT) metric, similar to the
call-performance threshold metrics in [33], a useful metric for real-world applications quantifying the
cost required to reach a specified performance level. Given a performance threshold x%, CPT(x%)
measures the minimum cost required to achieve x% of the performance of the largest configuration
(OpenAI o4-mini with high reasoning budget). We normalize this cost to [0, 1] by dividing by the cost
of running the largest configuration. Therefore, a CPT(90%) of 0.1 implies that the routing method
can match 90% of the performance of o4-mini high at 10% of its cost.

C Additional Results

C.1 Pilot Study

Our pilot study on MATH-500 [16], shown in Figure 4, shows a performance differential over (RLM,
reasoning budget) configurations, with the smallest RLM already solving over 50% of the queries
with minimal reasoning.

C.2 Performance-Cost Pareto Curves

We show Pareto performance-cost tradeoff curves for all methods on ID queries across all benchmarks
in Figure 6, and on OOD queries across all benchmarks in Figure 7.

C.3 Model Scalability and Generalization Evaluation of RADAR

We evaluate the scalability of RADAR to new RLMs by adding 8 new model configurations from
the Qwen3 14B RLM. Using adaptive testing, RADAR accurately estimates the abilities of these
new configuration by dynamically selecting just 5k training queries (12% of training set) for
evaluation, resulting in improved routing performance. Figure 5 shows how routing shifts to new
RLM configurations.

C.4 Ablation Study

See Table 3 for an ablation study which shows Chebyshev scalarization outperforms linear scalariza-
tion on OOD queries due to its ability to explore both convex and concave points on the Pareto front.

10

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

Performance-Cost Tradeoff Weight (w1)

Q3-0.6B (0) (-0.18)

Q3-4B (4k) (0.13)

Q3-4B (16k) (0.14)

Q3-8B (4k) (0.15)

Q3-8B (8k) (0.16)

Q3-8B (16k) (0.19)

o4-mini (low) (0.21)

o4-mini (medium) (0.23)

o4-mini (high) (0.25)

RL
M

 C
on

fig
ur

at
io

n
(A

bi
lit

y
)

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Performance-Cost Tradeoff Weight (w1)

Q3-0.6B (0) (-0.18)

Q3-4B (4k) (0.13)

Q3-4B (16k) (0.14)

Q3-8B (4k) (0.15)

Q3-8B (8k) (0.16)

Q3-8B (16k) (0.19)

Q3-14B (16k) (0.2)

o4-mini (low) (0.21)

o4-mini (medium) (0.23)

o4-mini (high) (0.25)

RL
M

 C
on

fig
ur

at
io

n
(A

bi
lit

y
)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Fraction of routing calls on OOD queries from FRAMES spread across RLM configurations
when varying the performance-cost tradeoff weight before (left) and after (right) adding new RLM
configuration from Qwen3-14B. RADAR rapidly estimates the ability of Qwen3-14B at 16K reasoning
budget to leverage it for improved performance.

Table 3: Ablation study showing Chebyshev scalarization outperforms linear scalarization on OOD
queries due to its ability to explore both convex and concave points on the Pareto front.

Benchmark Hypervolume (higher is better) CPT(90%) (lower is better)

RADAR (LS) RADAR (CS) RADAR (LS) RADAR (CS)

GPQA-Diamond 0.7280 0.7466 29.94% 17.60%
MMLU 0.8580 0.8609 2.50% 2.63%
MMLU-Redux 0.9049 0.9072 2.25% 2.54%
MMLU-Pro 0.7812 0.7858 3.81% 3.54%
LSAT 0.9165 0.9146 2.00% 2.15%
AIME 0.7464 0.7566 56.23% 55.30%
MATH-500 0.9331 0.9368 1.41% 1.55%
FRAMES 0.8656 0.8865 21.56% 9.99%

See Table 4 for an ablation study on the size of the training matrix of RADAR. Using just 20% of
subsampled training queries, RADAR achieves a similar performance to using the entire training set.

C.5 Results on OOD Queries

Table 5 and Table 6 report routing performance of all methods across 8 reasoning benchmarks
evaluated in the OOD setting on the hypervolume and CPT (90%) metrics, respectively. RADAR
exhibits strong query generalization capabilities.

Table 4: Ablation study on the size of the training matrix of RADAR. Using just 20% of subsampled
training queries, RADAR achieves a similar performance to using the entire training set.

Benchmark Hypervolume (higher is better) CPT(90%) (lower is better)

RADAR (20%) RADAR RADAR (20%) RADAR

GPQA-Diamond 0.7526 0.7513 16.29 13.21
MMLU 0.8726 0.8720 2.67 2.69
MMLU-Redux 0.9207 0.9230 2.69 2.42
MMLU-Pro 0.7990 0.7995 3.59 3.89
LSAT 0.9175 0.9188 1.95 1.82
AIME 0.7832 0.7760 57.85 60.69
MATH-500 0.9450 0.9449 1.15 1.31
FRAMES 0.8940 0.8762 10.70 13.11

11

0 5 10
Total Cost ($)

20

40

60

80

100

All-Large

All-SmallAv
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Oracle
All-Large
All-Small
Random-All
RADAR
IRT-Router
RouterBench
Random-Pair

(a) GPQA-Diamond

0 10 20
Total Cost ($)

40

60

80

100

All-Large

All-SmallAv
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Oracle
All-Large
All-Small
Random-All
RADAR
IRT-Router
RouterBench
Random-Pair

(b) MMLU

0 2 4 6
Total Cost ($)

40

60

80

100

All-Large

All-Small

Av
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Oracle
All-Large
All-Small
Random-All
RADAR
IRT-Router
RouterBench
Random-Pair

(c) MMLU-Redux

0 20 40
Total Cost ($)

20

40

60

80

100

All-Large

All-SmallAv
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Oracle
All-Large
All-Small
Random-All
RADAR
IRT-Router
RouterBench
Random-Pair

(d) MMLU-Pro

0 10 20 30
Total Cost ($)

20

40

60

80

100
All-Large

All-Small

Av
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Oracle
All-Large
All-Small
Random-All
RADAR
IRT-Router
RouterBench
Random-Pair

(e) LSAT

0 2 4
Total Cost ($)

20

0

20

40

60

80

100
All-Large

All-Small

Av
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Oracle
All-Large
All-Small
Random-All
RADAR
IRT-Router
RouterBench
Random-Pair

(f) AIME

0 5
Total Cost ($)

40

60

80

100
All-Large

All-Small

Av
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Oracle
All-Large
All-Small
Random-All
RADAR
IRT-Router
RouterBench
Random-Pair

(g) MATH-500

0.0 0.5 1.0 1.5
Total Cost ($)

20

40

60

80

100
All-Large

All-SmallAv
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Oracle
All-Large
All-Small
Random-All
RADAR
IRT-Router
RouterBench
Random-Pair

(h) FRAMES

Figure 6: We show the Pareto performance-cost tradeoff curves for all methods on ID queries across
benchmarks. RADAR outperforms baselines, denoting better performance-cost tradeoffs towards the
Pareto frontier.

12

0 5 10
Total Cost ($)

20

40

60

80

100

All-Large

All-SmallAv
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Oracle
All-Large
All-Small
Random-All
RADAR
IRT-Router
RouterBench
Random-Pair

(a) GPQA-Diamond

0 10 20
Total Cost ($)

40

60

80

100

All-Large

All-SmallAv
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Oracle
All-Large
All-Small
Random-All
RADAR
IRT-Router
RouterBench
Random-Pair

(b) MMLU

0 2 4 6
Total Cost ($)

40

60

80

100

All-Large

All-Small

Av
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Oracle
All-Large
All-Small
Random-All
RADAR
IRT-Router
RouterBench
Random-Pair

(c) MMLU-Redux

0 20 40
Total Cost ($)

20

40

60

80

100

All-Large

All-SmallAv
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Oracle
All-Large
All-Small
Random-All
RADAR
IRT-Router
RouterBench
Random-Pair

(d) MMLU-Pro

0 10 20 30
Total Cost ($)

20

40

60

80

100
All-Large

All-Small

Av
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Oracle
All-Large
All-Small
Random-All
RADAR
IRT-Router
RouterBench
Random-Pair

(e) LSAT

0 2 4
Total Cost ($)

20

0

20

40

60

80

100
All-Large

All-Small

Av
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Oracle
All-Large
All-Small
Random-All
RADAR
IRT-Router
RouterBench
Random-Pair

(f) AIME

0 5
Total Cost ($)

40

60

80

100
All-Large

All-Small

Av
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Oracle
All-Large
All-Small
Random-All
RADAR
IRT-Router
RouterBench
Random-Pair

(g) MATH-500

0.0 0.5 1.0 1.5
Total Cost ($)

20

40

60

80

100
All-Large

All-SmallAv
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Oracle
All-Large
All-Small
Random-All
RADAR
IRT-Router
RouterBench
Random-Pair

(h) FRAMES

Figure 7: We show the Pareto performance-cost tradeoff curves for all methods on OOD queries
across benchmarks. RADAR outperforms baselines, denoting better performance-cost tradeoffs
towards the Pareto frontier.

13

Table 5: Routing performance on OOD queries across benchmarks reported on the hypervolume
metric (higher is better). RADAR outperforms baselines denoting better performance-cost tradeoffs
towards the Pareto frontier.

Benchmark Random-Pair RouterBench IRT-Router RADAR (ours)

GPQA-Diamond 0.5369 0.7047 0.6938 0.7466
MMLU 0.6934 0.8398 0.8550 0.8609
MMLU-Redux 0.7298 0.8948 0.9050 0.9072
MMLU-Pro 0.5686 0.7703 0.7800 0.7858
LSAT 0.6887 0.9046 0.9175 0.9146
AIME 0.5283 0.6890 0.7915 0.7566
MATH-500 0.7493 0.9326 0.9385 0.9368
FRAMES 0.6624 0.8230 0.8548 0.8865

Table 6: Routing performance on OOD queries across benchmarks reported on the CPT (90%) metric
(lower is better). CPT (90%) denotes the fraction of cost of running OpenAI o4-mini with high
reasoning effort to match 90% of its performance.

Benchmark Random-Pair RouterBench IRT-Router RADAR (ours)

GPQA-Diamond 82.54% 44.18% 54.19% 17.6%
MMLU 74.53% 2.94% 2.61% 2.63%
MMLU-Redux 74.61% 2.90% 2.71% 2.54%
MMLU-Pro 82.65% 7.67% 4.02% 3.54%
LSAT 80.07% 2.27% 1.96% 2.15%
AIME 84.88% − 55.19% 55.30
MATH-500 74.94% 1.4% 1.29% 1.55%
FRAMES 78.61% 48.52% 29.49% 9.99%

D Latency Analysis of RADAR

We measure the latency of RADAR and compare it to the latency of the smallest RLM configuration
(Qwen3-0.6B with 0 reasoning budget) used to generate answers to queries. The average per query
routing latency overhead of RADAR over three runs of 500 queries from MATH-500 [16] is 6.89±0.53
milliseconds. Compared to the time taken for the smallest RLM configuration to answer the query,
which is 869.56± 1.1 milliseconds, RADAR adds negligible overhead.

E Dataset Description

The 9 benchmarks are: 1) AIME [28]: A benchmark of competition math problems from American
Invitational Mathematics Examination (AIME), which determines qualification for the United States
Mathematical Olympiad, 2) MATH [16]: A benchmark of math problems drawn from various math
competitions, 3) GPQA [38]: A benchmark of PhD-level science multiple-choice questions (MCQs)
written by domain experts, 4) LSAT [49, 60]: A benchmark of MCQs from the three tasks of the
Law School Admission Test (LSAT), including analytical reasoning, logical reasoning and reading
comprehension, 5) MMLU [15, 14]: A benchmark of MCQs from various branches of knowledge
covering diverse domains, 6) MMLU Redux [9]: A subset of MMLU with manually corrected MCQs
to remove errors from the original benchmark, 7) MMLU Pro [51]: An enhanced MMLU benchmark
with a focus on reasoning questions with increased answer options from 4 to 10, 8) DROP [7]: A
benchmark of reading comprehension questions requiring discrete reasoning over the question’s
associated paragraph, and 9) FRAMES [23]: A benchmark of long-context reasoning-based questions
associated with multiple wikipedia articles. Table 7 shows the statistics of each dataset.

E.1 Preprocessing details

Across datasets, we standardize formatting; compute prompt token counts with the
Qwen/Qwen3-0.6B tokenizer (no padding, truncation, or added special tokens); and discard items
exceeding a configured token budget. To prevent leakage, we compute a content-based item key
and apply deduplication when specified for a given dataset, with some datasets deferring duplicate

14

Table 7: Dataset statistics of prompt tokens across reasoning benchmarks used.
Dataset Samples Mean Tokens Min Tokens Max Tokens
AIME 1,035 143.00 30 3,312
MATH 8,000 86.16 24 806
GPQA 448 250.27 82 2,812
LSAT 2,025 263.63 174 570
MMLU 13,937 150.50 66 1,040
MMLU Redux 5,298 135.50 68 1,000
MMLU Pro 12,032 237.51 70 1,700
FRAMES 561 16,272.19 690 31,954

handling to later analysis. Where applicable, we normalize available metadata and extract missing
numeric answers. All datasets are mapped into a unified prompt–response format; detailed prompt
templates are provided in Appendix E.2.

AIME. We preprocess AIME by standardizing sources and prompts, then filtering and deduplicating.
Training data span years 1983–2023,3 while test data consist of the union of unique items from AIME
20244 and 20255 to reduce evaluation variance. Evaluating on AIME 2024 and AIME 2025 separately
resulted in high evaluation variance even after averaging over multiple runs. Examples with prompt
length exceeding the maximum token budget are discarded. For AIME 2025, only the problem text
and numeric answer are retained; missing fields such as solution or difficulty are set to “NA.”

MATH. We construct the training split by combining the seven subject configurations of the MATH
dataset6 (7,500 problems total) and use the fixed 500-problem test set.7 Examples exceeding the
maximum prompt length are removed. When an explicit numeric answer is missing, it is extracted
from the provided solution. Metadata such as subject/type and level are normalized, and any available
unique_id is preserved. We shuffle the data with a fixed seed.

GPQA. We preprocess GPQA8 by combining the main and diamond subsets and verifying that
diamond IDs are contained within the main set. Each example is reformatted into a multiple-
choice format with options A–D, and the correct answer is recorded as a letter. Answer options are
randomly permuted with a fixed seed. Items exceeding the maximum prompt length are filtered out.
Deduplication is performed using a content-based key, and evaluation is conducted with the diamond
subset as the test set.

LSAT. We preprocess LSAT by standardizing items from the official AR-LSAT release,9 spanning
reading comprehension, logical reasoning, and analytical reasoning. Each example is reformatted
into a multiple-choice prompt with options A–E. Items exceeding the token budget are discarded. We
preserve the original section and split labels, and record the gold answer both as an index and as a
letter. Data are shuffled deterministically with a fixed seed.

MMLU. We use only the official test split of MMLU.10 Each example is converted into a standard-
ized multiple-choice prompt (options A–D), retaining both the textual correct answer and its letter
index. Items exceeding the token threshold are discarded. Subject metadata are preserved, and the
dataset is shuffled with a fixed seed.

3https://github.com/rllm-org/rllm/blob/deepscaler/deepscaler/data/train/aime.json
4https://github.com/rllm-org/rllm/blob/deepscaler/deepscaler/data/test/aime.json
5https://huggingface.co/datasets/yentinglin/aime_2025
6https://huggingface.co/datasets/HuggingFaceH4/MATH/viewer
7https://huggingface.co/datasets/HuggingFaceH4/MATH-500
8https://huggingface.co/datasets/Idavidrein/gpqa
9https://github.com/zhongwanjun/AR-LSAT/tree/main/complete_lsat_data

10https://huggingface.co/datasets/cais/mmlu

15

https://github.com/rllm-org/rllm/blob/deepscaler/deepscaler/data/train/aime.json
https://github.com/rllm-org/rllm/blob/deepscaler/deepscaler/data/test/aime.json
https://huggingface.co/datasets/yentinglin/aime_2025
https://huggingface.co/datasets/HuggingFaceH4/MATH/viewer
https://huggingface.co/datasets/HuggingFaceH4/MATH-500
https://huggingface.co/datasets/Idavidrein/gpqa
https://github.com/zhongwanjun/AR-LSAT/tree/main/complete_lsat_data
https://huggingface.co/datasets/cais/mmlu

MMLU Pro. We use the public test split of MMLU Pro.11 Each example is constructed into a
multiple-choice prompt with options A–J, and the gold answer is stored as a letter. Prompts exceeding
a 32k token budget are discarded. The dataset is shuffled deterministically with a fixed seed.

MMLU Redux. We preprocess MMLU Redux12 by aggregating all subject configurations and dis-
carding items flagged with metadata error_type ̸= ok. Each example is normalized and converted
into a multiple-choice prompt (options A–D), with both the correct answer letter and text recorded.
Items longer than the token budget are removed, and the dataset is shuffled deterministically with a
fixed seed.

FRAMES. We preprocess FRAMES13 by retrieving and cleaning the corresponding Wikipedia
pages for each example. Cleaning removes site chrome, images, hyperlinks, citation markers, and
irrelevant sections, while preserving tables and converting text to Markdown. Examples are then
converted into a document QA style format. Items exceeding the token budget are filtered out, and
unique article texts are cached to avoid re-downloading.

E.2 QA Prompts

The prompts below are applied to all RLM configurations.

For AIME and MATH, we use the following prompt:

{question}
Please reason step by step, and put your final answer within \boxed{}.

For GPQA, LSAT, MMLU, and MMLU Redux, we use the following prompt:

Answer the following multiple choice question.

{question}

A) {option_A}
B) {option_B}
C) {option_C}
D) {option_D}

Please reason step by step, and put your final answer option within \boxed{}.
Only put the letter in the box, e.g. \boxed{A}. There is only one correct
answer.

For MMLU Pro, we use the following prompt:

Answer the following multiple choice question.

{question}

{options}

Please reason step by step, and put your final answer option within \boxed{}.
Only put the letter in the box, e.g. \boxed{A}. There is only one correct
answer.

For FRAMES, we assemble the prompt programmatically that includes the context of all documents
relevant to the question:

1 prompt = f"""You are asked to read {len(docs)} Wikipedia article extracts
2 and answer a question. Please reason step by step, and put your final
3 answer within \\boxed{}."""

11https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro
12https://huggingface.co/datasets/edinburgh-dawg/mmlu-redux-2.0
13https://huggingface.co/datasets/google/frames-benchmark

16

https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro
https://huggingface.co/datasets/edinburgh-dawg/mmlu-redux-2.0
https://huggingface.co/datasets/google/frames-benchmark

4 for i, doc in enumerate(docs):
5 prompt += f"\n\n# Wikipedia article {i+1}:\n{doc}"
6 prompt += f"\n\n# Question: {question}"
7 prompt += """\n\nPlease reason step by step, and put your final answer within

↪→ \\boxed{}."""

F Future Work

Several promising avenues for future work exist. First, we would like to extend RADAR beyond
text to multi-modal reasoning settings. Second, incorporating additional configurations beyond the
reasoning budget, such as retrieval, tool usage, and decoding algorithms, may yield fine-grained
routing decisions for a wider range of applications, such as ultra-long context QA and deep research.
Third, exploring RADAR in other constraint scenarios, such as when there is a total budget constraint
on a batch of queries. Together, these directions highlight the broader potential of RADAR as a
principled, interpretable foundation for adaptive reasoning in an ever-evolving RLM ecosystem.

17

	Introduction
	Methodology
	Experimental Evaluation
	Results, Analysis and Discussion

	Conclusion
	Extended Related Work
	Additional Experimental Details
	Hardware
	Baselines
	IRT implementation details in Radar
	Metrics

	Additional Results
	Pilot Study
	Performance-Cost Pareto Curves
	Model Scalability and Generalization Evaluation of Radar
	Ablation Study
	Results on OOD Queries

	Latency Analysis of Radar
	Dataset Description
	Preprocessing details
	QA Prompts

	Future Work

