
Under review as a conference paper at ICLR 2024

CHUNKATTENTION: EFFICIENT ATTENTION ON KV
CACHE WITH CHUNKING SHARING AND BATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Self-attention is an essential component of GPT-style models and a significant
cause of LLM inference latency for long sequences. In multi-tenant LLM in-
ference servers, the compute and memory operation cost of self-attention can
be amortized by making use of the probability that sequences from users may
share long prompt prefixes. This paper introduces ChunkAttention, a unique self-
attention kernel built on chunking, sharing the KV cache, and batching the atten-
tion computation. ChunkAttention recognizes matching prompt prefixes across
several sequences and shares their KV cache in memory by chunking the KV
cache and structuring it into the auxiliary prefix tree. To significantly improve the
memory reuse of KV cache and consequently the speed of self-attention for long
shared prompts, we design an efficient computation kernel on this new storage
structure, where two-phase partitioning is implemented to reduce memory opera-
tions on shared KV cache during self-attention. Experiments show that ChunkAt-
tention can speed up self-attention of long shared prompts by 1.6-3x, with lengths
ranging from 1024 to 8192.

1 INTRODUCTION

Over the last few years, Large Language Models (LLMs) have succeeded greatly in many tasks,
especially in natural language processing (Chang et al., 2023). By using massive text corpora and
strong computing power, researchers have made remarkable progress in training LLMs, and the
capabilities of LLMs represented by the GPT, LLaMA, and PaLM series are rapidly improving
(OpenAI, 2023; Touvron et al., 2023; Anil et al., 2023).

As LLM applications become widespread, inference cost is a new area of research interest (Kim
et al., 2023; Sheng et al., 2023; Aminabadi et al., 2022). Emerging inference frameworks and toolk-
its include FastTransformer (NVIDIA, 2021), DeepSpeed (Rasley et al., 2020), vLLM (Kwon et al.,
2023), and the text-generation-inference server (HuggingFace, 2023). Nevertheless, high inference
cost is still the most significant barrier to the commercialization of LLMs. Without aggressive
quantization (Frantar et al., 2022; Dettmers et al., 2022), LLMs inference is memory-bound(See
Appendix A) for GPUs due to intensive memory operations on KV cache (Williams et al., 2009; Jin
et al., 2023). The large KV cache also restricts the batch size. In FP16, KV cache of each token
in GPT-3(175B) takes up 4.5M memory, and 2K tokens use up to 9G memory. The memory of
an inference server with 8*A100 (80G) can only translate to roughly 70000 tokens or 35 requests.
On the other hand, the demand for long sequences is growing fast as LLM applications become
complicated. LLMs adapt to this trend by increasing limits on the number of tokens. Up to 32K
maximum tokens are supported by GPT-4 (OpenAI, 2023). Ongoing work extends the context win-
dow post-training, e.g., position interpolation (Chen et al., 2023). Therefore, reducing the memory
and compute cost of self-attention on KV cache, is important for LLM applications.

Due to the high training and deployment cost, LLMs are typically pre-trained and offered to multiple
applications in a multi-tenant architecture. For most businesses, it is cost-inefficient for each appli-
cation to fine-tune models and deploy private instances(single-tenant). To enable the LLMs to gain
domain knowledge for specific applications, prompt engineering or in-context learning(ICL) is the
key technique for LLM-based applications (Dong et al., 2023; White et al., 2023; Zhou et al., 2023;
Brown et al., 2020; Wei et al., 2022). Various LLM applications have revealed that there may be
significant overlap in prompts that follow multiple user requests. For example, to build chat services

1



Under review as a conference paper at ICLR 2024

like ChatGPT and BingChat, we need to add invisible instructions in the prompt to shape the role
of the bot and restrict its behavior to meet compliance requirements. These instructions apply to all
users equally. User questions are usually much shorter than system prompts. Similarly, LLMs are
used by data scientists to annotate data. In this case, the actual corpus to be annotated may only
take up a small portion of the prompt because we need to give LLM long and tedious annotation
guidelines, which also apply to all requests to LLMs.

Although some work has been done to improve the memory utilization of KV cache (Kwon et al.,
2023), there are still unexplored aspects in multi-tenant deployment scenarios where centralized
LLM services are provisioned for many application developers. First, no out-of-box solution can
automatically discover and remove redundancy in KV cache. Removing redundancy requires service
providers and various application developers to establish protocols and manual deployments, which
introduces scalability and maintainability issues. Second, more research work needs to be done to
fully explore the optimization potential of self-attention algorithms in the case of redundant KV
cache. Attention implementations such as xformers (Lefaudeux et al., 2022), FlashAttention (Dao
et al., 2022), and PagedAttention (Kwon et al., 2023) do not leverage the shared KV cache to provide
extra performance benefits during inference.

To fill the gap, we propose ChunkAttention, a new self-attention kernel built on the KV cache
featuring chunking, sharing, and batching. Since sharing happens in prefixes only, after chunking
large, continuous key/value tensors into smaller and fragmented ones, we introduce the prefix tree(or
forest) as the data structure for chunked KV tensors to discover and remove redundancy at runtime
dynamically. Further, ChunkAttention redesigns a high-performance kernel on top of the prefix tree,
accelerating self-attention computation and improving the throughput beyond chunking and sharing.
This kernel implements two-phase partitioning: chunk-first phase and sequence-first phase. During
self-attention computation, query tensors of sequences with matching prompt prefixes are batched
together to perform attention with key/value tensors.

The main contributions of this paper are as follows:

• We propose using the prefix tree data structure as the memory management solution for KV cache
to remove extra KV cache storage overhead for the scalability and maintainability of multi-tenant
LLM services.

• We implement phased partitioning and enable batching to reduce memory operations(MOPs or
memory bytes accessed) and further speed up self-attention on KV cache.

• We quantitatively analyze the relationship between self-attention performance under prompt shar-
ing and important hyperparameters, such as shared length, batch size, and hardware specifications.

• Our experiments show that ChunkAttention can achieve comparable performance with the SOTA
PagedAttention implementation without prompt sharing and can significantly improve perfor-
mance with long shared prompts. The specific improvement depends on the length of shared
prompts.

2 PRELIMINARIES

2.1 PROMPT ENGINEERING

Prompt engineering is the practice of developing and optimizing prompts as inputs for LLMs to gen-
erate desired outputs. It is widely used in innovative LLM-powered applications, such as question-
answering, text summarization, reasoning, and code generation. A typical prompt consists of three
parts: instructions, examples, and questions. Instructions serve various purposes, such as shaping
roles, providing facts related to the task, and defining policies that LLMs need to follow. Design-
ing good instructions requires domain knowledge and experimentation. Examples are provided as
context for LLMs to understand the task, known as in-context learning(ICL) (Dong et al., 2022).
Examples are optional for specific tasks since LLMs are trained and tuned on a large amount of data
and can perform some tasks in zero-shot settings (Liu et al., 2023). The question is user input data
placed at the end of the prompt.

Instructions and examples are usually designed and injected by LLM application developers. They
are invisible to users and are identical across multiple user requests. Input data is user-specific and
is different.

2



Under review as a conference paper at ICLR 2024

2.2 LLM INFERENCING

The typical inference process of LLMs consists of two stages: prefilling and decoding (Sheng et al.,
2023). After receiving a sequence S = [t1, ..., tnp

], the server starts to perform prefilling. During
prefilling, it feeds all np prompt tokens t1, ..., tnp into LLMs simultaneously, computes the attention
key/value tensors for all tokens, and caches them to speed up subsequent computations. Then,
the server performs decoding. Decoding is auto-regressive, and the input token to LLMs is the
completion token(or output token) generated from the previous decoding iteration. The process
continues until the end-of-sequence token is generated and nc completion tokens are generated.

When the server is decoding b (batch size) sequences S1, ..., Sb simultaneously, although they are
in different iterations, the server can still perform batching at the granularity of iteration and predict
the next tokens for all sequences together, rather than separately, which is known as iteration-based
batching (Gao et al., 2018; Yu et al., 2022; Silfa et al., 2022). Specifically, iteration-based batching
concatenates last input tokens of multiple sequences(one token per sequence) t(1), ..., t(b)(t(i) ∈ Si)
into a single input T , and computes the QKV linear layer before self-attention, the fully connected
layer and the projection layer after self-attention. The self-attention in the middle has no shared
weights and needs to be computed independently for each sequence. During decoding, new se-
quences can join, and completed sequences can leave, significantly increasing the possibility of
forming big batches. The ChunkAttention in this paper assumes that iteration-based batching is
enabled to form batches for its kernel to run efficiently.

2.3 CHUNKING OF KV CACHE

In various self-attention implementations, KV cache is stored in dense tensors of size b× h× n× d
where b is the batch size, h is the number of heads, n is the sequence length and d is the head
dimension size. During decoding, only one token is generated per iteration, and its key/value tensors
need to be concatenated into KV cache of previous tokens to continue decoding. To avoid resizing,
the common practice is pre-allocating a contiguous memory buffer of maximum possible sequence
length nmax. It leads to significant memory waste when the actual token count is much less than
nmax.

The chunking(or paging) technique breaks big KV cache contiguous in memory into a list of smaller
chunks along the sequence length dimension (Kwon et al., 2023). Each chunk stores part of the
key/value tensors of size h × c × d, where the chunk size c is defined by the number of tokens
covered by each chunk. Chunking changes the memory allocation of KV cache from pre-allocation
to on-demand allocation to reduce memory waste. To guarantee equal chunk size, some memory
space for alignment is unused. Given that the sequence length is n, the memory loss is bounded by
(c− 1)/n.

3 IMPLEMENTATION OF CHUNKATTENTION

3.1 CHUNKING AND SHARING OF KV CACHE IN PREFIX TREE

When two or more sequences share a series of common prefix tokens in prompts (usually instruc-
tions and examples for prompt engineering), KV cache of prefix tokens is the same and thus
can be shared in memory. For example, a particular LLM inference server receives sequence
Si = [t1, ..., tns , tns+1, ..., tnp ] first, and then receives sequence Sj = [t1, ..., tns , t

′
ns+1, ..., t

′
np
].

KV cache for t1, ..., tns
can only have one physical copy in memory.

We suggest using this property and organizing chunks of various sequences in a prefix tree(or a
trie) to detect and eliminate the extra memory footprint of KV cache at runtime. Figure 1 shows an
overall structure of the KV cache stored in a prefix tree. Each node of the tree is defined by a chunk
C storing three essential elements: i) context tokens tm+1, ..., tm+c shared by sequences Si, ..., Sj ,
or a hash for big chunk size, to enable prefix tree operations; ii) the key tensor; ii) the value tensor.
Each path of the prefix tree corresponds to a sequence.

During inference, there are three possible scenarios: new sequence joins, completed sequence leaves,
and all sequences decode once at one iteration. Each scenario can be translated into operations on
the prefix tree. When a new sequence joins, the prefix tree is searched and updated to include a new

3



Under review as a conference paper at ICLR 2024

[Instructions]+[Examples]+[Q0]S0

[Instructions]+[Examples]+[Q1]S1

[Instructions]+[Examples]+[Q2]S2

S0

S1 S2

Inst.+E
x.

Q
0/1/2

Unused

Prompt:
...
[Instructions]
You are an AI chatbot. You are having a conversation with a human by following rules:
- You do not have a name.
- You are helpful, creative, clever, and friendly
...
[Examples]
Human: Hello, who are you?
AI: I am an AI chatbot. How can I help you?
...
[Question]
Human: Can you tell me about the second world war?

S0 S3

S1 S2

(1) new S3 joins

S0 S1←3

S1 S0←2

(2) S0, S1 leave

S0

S1 S2 S3

(3) new S2, S3 join
S0

S1 S0←2 S1←3

(4) S0, S1 leave

Figure 1: KV cache in prefix tree. The instructions and examples in prompts of S0, S1, S2 are
common and sharable. Questions are different and not sharable. Some memory is unused due
to alignment. As new sequences join and old sequences leave, sequence indexes are adjusted to
maintain continuity.

path and leaf node to store its unique KV cache. When a completed sequence leaves, the prefix tree
is updated to delete its corresponding KV cache. At each decoding iteration, we check whether the
chunk at the leaf node is full and decide whether to grow new leaf nodes.

Depending on specific sharing scenarios, multiple trees (a forest) may exist in the server simultane-
ously. For instance, different prompts are created by various LLM application developers.

The parent-child relationship defines the subset of sequences that each chunk covers. The root node
covers all sequences, and the leaf nodes cover only one sequence. A key property of the prefix tree
is that sequences covered by each chunk in a prefix tree or forest are contiguous in the sequence
index dimension. Therefore, slicing the query tensor in self-attention is particularly efficient during
kernel computation, which will be discussed in more detail in the next section.

The prefix tree structure is a natural fit for the CPU kernel, but for the GPU kernel, we must syn-
chronize metadata, such as the chunk list and its covered sequence start and end indexes, between
CPU and GPU memory. For example, in Figure 2, we need to pass (C0/C1/C2, 0, 2), (C3, 0, 0),
(C4/C6, 1, 1), and (C5/C7, 2, 2). There is some overhead as a result. However, the prefix tree does
not change at every decoding iteration, and we can cache the metadata in GPU memory and only
synchronize incremental changes when the tree structure changes. The events that trigger synchro-
nization are chunk full, new sequence join, and completed sequence leave. These overheads can be
successfully amortized and masked by multiple rounds of iterations.

Given a fixed chunk size, memory management via a prefix tree is efficient. In ChunkAttention,
the pool-based memory allocator is adopted by default (Trebino, 2016). It keeps track of both a
used and a free chunk list. When a new chunk is requested, the allocator returns a chunk from the
free list or allocates fresh memory from the operating system (OS). Unused chunks are returned to
the allocator once a sequence is completed, but the allocator does not release memory to the OS,
preventing additional memory requests.

The chunk allocator interface can be implemented using a different memory management solution
since it is not coupled to the upper-level self-attention kernel algorithm discussed in the next section.
In contrast to the above on-demand technique, we can, for instance, pre-allocate all chunks during
service start-up (ahead of time) to speed up early chunk allocations or even use a variable chunk
size.

By sharing common prefixes, the number of sequences that can be processed simultaneously is
increased by approximately 1/(1 − r). The sharing ratio r is defined by the percentage of shared
prefix tokens ns/(np + nc). In memory-limited inference scenarios, this helps increase the batch
size and thus improve throughput.

Although we focus on sharing prompt prefixes across user requests in this paper, the proposed solu-
tion is compatible with various scenarios where KV cache can be compressed. For example, Si and

4



Under review as a conference paper at ICLR 2024

Sj are multiple results of a single user request, and they share all prompt tokens. Or Si beats other
candidates and turns into multiple sequences Si and Si+1 during sampling in a particular decoding
iteration. However, sharing prompt prefixes has the most memory-saving potential in practice and
is our focus in this paper.

3.2 EFFICIENT KERNEL WITH PHASED PARTITIONING AND BATCHING

C0

C1

C2

C3

S0

C4 C5

C6

S1

C7

S2

C0

q0

q1

q2

Chunk First

O(C),m(C),n(C)

C1

q0

q1

q2

C2

q0

q1

q2

o0

o1

o2

O(C)

m0

m1

m2

m(C)

n0

n1

n2

n(C)

q0 C3

Sequence First

oi,mi, ni q1 C4 C6

q2 C5 C7

o0

o1

o2

oi/ni

Figure 2: Self-attention kernel of ChunkAttention. The server is decoding sequences S0, S1, and
S2. They share chunks C0, C1 and C2. In the chunk-first phase, queries q0, q1 and q2 are batched
for self-attention with C0, C1 and C2. Partial attention result O(C), m(C) and n(C) are saved into
memory. In the sequence-first phase, oi, mi, and ni for each sequence are restored, and we continue
processing the remaining chunks with respect to qi only.

Algorithm 1 Self Attention: Chunk First (partition chunks)

Require: Q ∈ Rb×d (query), T (prefix tree)
Ensure: O ∈ Rb×d (attention output)

1: function ATTNCHUNKFIRST(Q, T )
2: Get chunks C1, ..., Ck in T that are shared by multiple sequences
3: O,m,n← 0, 0, 0
4: for C ← C1 to Ck do
5: K(C), V (C) ← key, value cache stored in C
6: i, j ← start index, end index of sequences covered by C
7: O(C),m(C),n(C) ← partial_attn(Q, K(C), V (C), i, j)
8: Save partial attention result O(C),m(C),n(C) to memory
9: end for

10: end function

In this section, we dive into the self-attention kernel implementation in ChunkAttention. It is built
on top of the unique data storage that KV cache of each sequence spans multiple non-contiguous
memory chunks in a prefix tree, and some chunks are shared. During prefilling, we can perform
a lookup to avoid re-computation of QKV projections for shared chunks before applying any ex-
isting highly optimized self-attention kernels on prompts, e.g., FlashAttention (Dao, 2023). Then
key/value tensors are chunked and saved into the prefix tree.

During decoding iterations of ChunkAttention, the self-attention computation is divided into chunk-
first and sequence-first phases. The two phases focus on different queries, KV cache chunks, and
parallelization strategies. We adopt the online softmax algorithm to reduce the synchronization
requirement between partitions (Milakov & Gimelshein, 2018; Dao, 2023). The overall process is
shown in Figure 2. Since heads are always partitioned, they are omitted in the following discussion.

Chunk-first Phase. In the chunk-first phase, we only process those chunks shared by multiple se-
quences. Since the number of GPU streaming multiprocessors (108 SMs for A100) is usually much
bigger than the number of heads (32 for Llama-7B), partitioning only by heads can only partially
utilize the hardware resources. The number of query tokens in decoding is always 1, which limits
the possibility of partitioning on queries. We need to perform additional partitioning on keys/values.
Chunking itself provides a convenience for partitioning keys/values.

5



Under review as a conference paper at ICLR 2024

The computation is performed by traversing chunks in the prefix tree and executing the partial at-
tention kernel partial_attn on them and saving the partial attention results into memory, as shown
in Algorithm 1. b and h are the number of sequences (batch size) in the server and the number of
heads. Q ∈ Rb×d is the queries formed by concatenating the last tokens of all b sequences in the
latest decoding iteration.

The operations in partial_attn are given by Equation 1. It computes the partial attention result O(C),
m(C) and n(C) with respect to each chunk C independently, thus it can be parallelized. Qi:j,: is
a slice of Q for sequences ranging from i to j which share the KV cache stored in Chunk C. The
maximum attention weights vector M (C) is the row-wise max over the last dimension of attention
weights W (C). The softmax normalization term n(C) is the row-wise sum over the last dimension
of E(C). M (C) and n(C) are auxiliary variables introduced to further cumulate partial attention
results of multiple chunks.

The partial_attn efficiently accesses shared KV cache memory as self-attentions for multiple se-
quences are batched. It happens at a granularity of dot-product between queries Qi,:, ...,Qj,: of
sequences Si, ..., Sj and shared K(C)/V (C). In addition to reduced memory access, another benefit
of batching is to turn the query from a vector into a matrix, allowing efficient matrix multiplications
with tensor cores.

W (C) = Qi:j,:K
(C) ∈ R(j−i)×c

m(C) = max
(
W (C)

)
∈ R(j−i)

E(C) = exp
(
W (C) −m(C) · 1T

)
∈ R(j−i)×c

n(C) = sum
(
E(C)

)
∈ R(j−i)

O(C) = E(C)V (C) ∈ R(j−i)×d

(1)

Sequence-first Phase. In the sequence-first phase, we load partial attention results of shared chunks
from the chunk-first phase and continue processing those chunks only related to the current se-
quence. We partition sequences. Each q handled by the sequence-first kernel is a vector by slicing
the i-th row of Q, as shown in Algorithm 2.

Algorithm 2 Self Attention: Sequence First (partition sequences)

Require: Q ∈ Rb×d (query), T (prefix tree)
Ensure: O ∈ Rb×d (attention output)

1: function ATTNSEQFIRST(Q, T )
2: for q← q1 to qb do
3: o,m, n← 0, 0, 0
4: Get partial attention results

(
O(C1),m(C1),n(C1)

)
, ...,

(
O(Ck),m(Ck),n(Ck)

)
5: for O(C),m(C),n(C) ←

(
O(C1),m(C1),n(C1)

)
to

(
O(Ck),m(Ck),n(Ck)

)
do

6: Partial attention result of q: o(C),m(C), n(C) ← slicing O(C),m(C),n(C)

7: attn_reduce(o(C), m(C), n(C), o, m, n)
8: end for
9: Get chunks Ck+1, Ck+2..., Cl in T with respect to q only

10: for C ← Ck+1 to Cl do
11: K(C), V (C) ← key, value cache stored in C
12: i← sequence index of q
13: o(C),m(C), n(C) ← partial_attn(q, K(C), V (C), i, i+ 1)
14: attn_reduce(o(C), m(C), n(C), o, m, n)
15: end for
16: end for
17: end function

The attn_reduce repeatly merges partial attention result of one chunk, o(C), m(C), n(C), produced
by the partial_attn into the cumulative attention result o, m, and n by scaling them with x(C) and

6



Under review as a conference paper at ICLR 2024

y(C) respectively. Equation 2 shows the process. Oi,:, mi and ni are slices for sequence of index i.
The final attention output is given by O/n element-wise.

x(C) = exp
(
m(C) −max

(
m(C),mi

))
∈ R

y(C) = exp
(
mi −max

(
m(C),mi

))
∈ R

Oi,: = x(C)o(C) + y(C)Oi,: ∈ Rd

ni = x(C)n(C) + y(C)ni ∈ R

mi = max
(
m(C),mi

)
∈ R

(2)

The sequence-first phase is efficient in terms of concurrency, as partial_attn and attn_reduce are
performed locally, without communication between thread blocks. However, without the partial
attention results from the chunk-first phase, it needs to read shared chunks b times, which adds
significant memory IO overhead. With a large hardware cache(L2 cache of A100 is 80 MB), the
problem can be alleviated, though not eliminated. We achieve the trade-off between them with two-
phase partitioning, and it applies to both the CPU and CPU devices. Appendix B gives the memory
operations analysis of different partition strategies.

The temporary memory allocated to store partial attention results in chunk-first phase can be elim-
inated when atomic operations are not a bottleneck, e.g., on CPU devices. The attn_reduce can be
executed right after partial_attn in chunk-first phase to directly merge partial attention results into
the final result. Since multiple shared chunks with a parent-child relationship in the prefix tree write
into the same slice of O, m, n, reduce needs to be serialized. By default, we avoid the overhead by
writing partial attention results of different shared chunks into their independent temporary memory
(size b × d per chunk), and the reduce function is deferred to the sequence-first phase. In the CPU
kernel, the overhead of serializing reduce is insignificant compared to computation and reduce can
be implemented using spin locks to avoid temporary memory management.

4 RELATED WORK

The most relevant work on reducing the memory footprint of KV cache is PagedAttention in vLLM
(Kwon et al., 2023). It introduced the paging technique in OS to solve the problem of memory
waste caused by dynamic and unknown sequence lengths during LLM decoding. However, sharing
between user requests is not implemented by vLLM releases and must instead be enabled manually
after considerable effort. Our solution, which differs from the paging one, uses the prefix tree to
manage memory and aims to discover redundant KV cache across user requests at runtime auto-
matically. The solution is more practical for multi-tenant deployment scenarios where LLM service
providers centrally host models and have high scalability and maintainability requirements. Accord-
ing to vLLM, the shared KV cache is similar to the dynamic link library shared by multiple processes
in the operating system. As opposed to PagedAttention’s strategy of compiling and publishing it in
advance (AoT), we expect compiling and loading it in real-time (JIT). Additionally, to the best of
our knowledge, no method has been proposed to explore the optimization opportunities brought by
shared KV cache. Based on the metadata captured by the prefix tree, our work further explores this
problem. It proposes two-phase partitioning to improve performance, which is another difference
between our work and the existing work.

Partition strategies in ChunkAttention are built on online softmax (Milakov & Gimelshein, 2018)
and inspired by FlashAttention (Dao et al., 2022; Dao, 2023), which adopted the same algorithm.
FlashAttention thoroughly researched and implemented various tiling techniques, accelerating atten-
tion by 2-4x while cutting memory operations by 10-20x. FlashAttention-2 altered tiling strategies
and additionally doubled the speed. However, FlashAttention is inflexible regarding non-contiguous
memory or variable sequence lengths, making it more suitable for model training or prefilling of
model inference than iterative decoding in multi-tenant servers. Moreover, there is little gain when
the query token count is always one during decoding. ChunkAttention handles variable sequence
lengths during decoding and batches attention operations of several sequences to reduce memory
operations. As a result, our work and FlashAttention are complementary.

7



Under review as a conference paper at ICLR 2024

5 EXPERIMENTS

Hardware. We primarily use the NVIDIA A100(80G) for evaluation. Since inference scenarios are
more diverse than training and require less bandwidth or compute resources, we also run benchmarks
on A100(40G) and RTX 4090, capable of running models of certain sizes.

Baselines. We select four high-performance self-attention implementations as baselines: Naive
PyTorch implementation by the formula softmax(QKT /

√
d)V , the memory-efficient self-attention

implemented in xformers (Lefaudeux et al., 2022), FlashAttention integrated in PyTorch (Dao et al.,
2022), and PagedAttention in vLLM (Kwon et al., 2023). Naive, xformers, and FlashAttention do
not implement sharing. For PagedAttention, sharing cannot be achieved automatically at runtime,
and we manually construct a paging memory area with shared KV cache to simulate sharing enabled.
None of them support batching.

Implementation. We implement and compile the ChunkAttention GPU kernel with CUDA 11.8 on
A100 and CUDA 12.0 on RTX 4090. Iteration-based batching is implemented, and the sequence
lengths can be different.

Workload. Sequences are processed in batch mode. All sequences within the same batch start and
finish simultaneously. Each sequence is prefilled with ns shared prompt tokens, followed by 64 ran-
dom tokens to make them start to diverge. Thus, the total prompt token count is np = ns + 64. The
task is to decode the next nc completion tokens iteratively. We measure the elapsed decoding time
t and the throughput defined by token rate(tokens per second or tps, nc ∗ b/t). For all experiments,
the head dimension d is 128, the number of heads h is 32, and the chunk size is fixed to be 64. All
tensors are in FP16.

Results. We run experiments to observe the performance improvement by KV cache sharing and
batching from three aspects: number of shared tokens, batch size, and different hardware, each with
a group of experiments. The first two groups of experiments run on A100(80G) only.

Figure 3 focuses on shared token count. PagedAttention with sharing is about 2x faster than Naive
PyTorch for a shared token count from 256 to 8192. ChunkAttention performs as well as the SOTA
PagedAttention when the shared token count is lower than 512. When the shared token count is
higher than 1024, ChunkAttention significantly outperforms PagedAttention. When ns reaches
8192, ChunkAttention yields 3x throughput improvement, resulting from the two-phase partitioning
and fine-grained batching. For all configurations, the throughput decreases as the decoding proceeds.
However, when ns reaches 8192, the performance advantage of ChunkAttention is still obvious after
generating 1024 tokens.

Figure 4 focuses on the batch size. For those implementations without sharing implemented, the
token rate is almost agnostic to batch size due to memory-bound(See Appendix A). For ChunkAt-
tention and PagedAttention, the token rate peaks when the batch size is 48 or 64. Batching can only
be effective when sharing is enabled in self-attention kernels, as we do in ChunkAttention.

Figure 5 shows results on different hardware. We remove attention implementations without sharing
implemented and focus on ChunkAttention and PagedAttention. ChunkAttention has more obvious
acceleration on all hardware, especially for long shared prompts. We can see that on both A100(40G)
and A100(80G), ChunkAttention’s performance advantage appears when the shared token count
reaches 512. RTX 4090 performs better than A100(80G), and the obvious batching gain only appears
when the shared token count reaches 2048.

6 CONCLUSION

In this paper, we propose ChunkAttention, a novel self-attention kernel, to accelerate self-attention
for LLM inference. On top of the chunking technique, we introduce the prefix tree to manage the
chunked KV cache. It addresses the challenge of detecting and removing redundant KV cache at
runtime in a multi-tenant environment. We evaluated ChunkAttention in various configurations and
hardware. It showed that ChunkAttention can achieve comparable throughput with SOTA PagedAt-
tention with short shared prompt prefixes and can outperform it by 3x with a long shared prompt
prefix of 8192 tokens on A100(80G) by applying two-phase partitioning and enabling batching. As
hardware evolves, the effect of batching will only appear with longer shared prompt prefixes.

8



Under review as a conference paper at ICLR 2024

(a) ns=256 (b) ns=512 (c) ns=1024

(d) ns=2048 (e) ns=4096 (f) ns=8192

Figure 3: Token rate of decoding nc completion tokens given various shared token counts(A100
80G, FP16). Chunk size c=64, batch size b=32.

(a) ns=1024 (b) ns=4096 (c) ns=8192

Figure 4: Token rate of decoding nc=64 completion tokens at various batch sizes(A100 80G, FP16).
Chunk size c=64.

(a) A100 (40G) (b) A100 (80G) (c) RTX 4090

Figure 5: Latency of decoding the first completion token on different hardware(FP16). Chunk size
c=64, batch size b=32.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, and Yuxiong He. Deepspeed-
inference: Enabling efficient inference of transformer models at unprecedented scale. In SC22:
International Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 1–15, 2022. doi: 10.1109/SC41404.2022.00051.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv e-prints, pp. arXiv–2305, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, and
Xing Xie. A survey on evaluation of large language models, 2023.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey for in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
Lei Li, and Zhifang Sui. A survey on in-context learning, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li. Low latency rnn inference with cellular batch-
ing. In Proceedings of the Thirteenth EuroSys Conference, pp. 1–15, 2018.

HuggingFace. huggingface/text-generation-inference: Large language model text generation infer-
ence. https://github.com/huggingface/text-generation-inference, 2023.

Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon Wei. S3: Increasing gpu utilization during
generative inference for higher throughput. arXiv preprint arXiv:2306.06000, 2023.

Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan Genc,
Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W. Mahoney, Yakun Sophia Shao, and Amir
Gholami. Full stack optimization of transformer inference: a survey, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention, 2023.

Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, and Daniel Haziza.
xformers: A modular and hackable transformer modelling library. https://github.com/
facebookresearch/xformers, 2022.

10

https://github.com/huggingface/text-generation-inference
https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers


Under review as a conference paper at ICLR 2024

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Comput. Surv., 55(9), jan 2023. ISSN 0360-0300. doi: 10.1145/3560815. URL
https://doi.org/10.1145/3560815.

Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax. arXiv preprint
arXiv:1805.02867, 2018.

NVIDIA. Nvidia/fastertransformer: Transformer related optimization, including bert, gpt. https:
//github.com/NVIDIA/FasterTransformer, 2021.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023. URL https://api.
semanticscholar.org/CorpusID:257532815.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 3505–3506, 2020.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y Fu, Zhiqiang
Xie, Beidi Chen, Clark Barrett, Joseph E Gonzalez, et al. High-throughput generative inference
of large language models with a single gpu. arXiv preprint arXiv:2303.06865, 2023.

Franyell Silfa, Jose Maria Arnau, and Antonio González. E-batch: Energy-efficient and high-
throughput rnn batching. ACM Trans. Archit. Code Optim., 19(1), jan 2022. ISSN 1544-3566.
doi: ebatch. URL https://doi.org/ebatch.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

Mariano Trebino. mtrebi/memory-allocators: Custom memory allocators in c++ to im-
prove the performance of dynamic memory allocation. https://github.com/mtrebi/
memory-allocators#pool-allocator, November 2016.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf El-
nashar, Jesse Spencer-Smith, and Douglas C. Schmidt. A prompt pattern catalog to enhance
prompt engineering with chatgpt, 2023.

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual perfor-
mance model for multicore architectures. Commun. ACM, 52(4):65–76, apr 2009. ISSN 0001-
0782. doi: 10.1145/1498765.1498785. URL https://doi.org/10.1145/1498765.
1498785.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
distributed serving system for {Transformer-Based} generative models. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 22), pp. 521–538, 2022.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers, 2023.

11

https://doi.org/10.1145/3560815
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://doi.org/ebatch
https://github.com/mtrebi/memory-allocators#pool-allocator
https://github.com/mtrebi/memory-allocators#pool-allocator
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785


Under review as a conference paper at ICLR 2024

A ARITHMETIC INTENSITY ANALYSIS

Table 1: Arithmetic Intensity at the Prefill Stage for llama2 7B with Batch Size = 1

Prompt Length Roofline QKV Projection softmax
(

QKT

√
dk

)
V MLP Output

Projection

1024
FLOPs(×109) 103.08 17.18 277.03 268.44

IO(×109) 0.13 0.17 0.36 0.34
Intensity 768.00 102.40 762.46 798.75

2048
FLOPs(×109) 206.16 68.72 554.05 536.87

IO(×109) 0.17 0.60 0.46 0.41
Intensity 1228.80 113.78 1214.68 1309.46

3072
FLOPs(×109) 309.24 154.62 831.08 805.31

IO(×109) 0.20 1.31 0.55 0.48
Intensity 1536.00 118.15 1513.99 1664.14

4096
FLOPs(×109) 412.32 274.88 1108.10 1073.74

IO(×109) 0.23 2.28 0.64 0.56
Intensity 1755.43 120.47 1726.75 1924.81

5120
FLOPs(×109) 515.40 429.50 1385.13 1342.18

IO(×109) 0.27 3.52 0.73 0.63
Intensity 1920.00 121.90 1885.74 2124.48

6144
FLOPs(×109) 618.48 618.48 1662.15 1610.61

IO(×109) 0.30 5.03 0.83 0.71
Intensity 2048.00 122.88 2009.06 2282.32

7168
FLOPs(×109) 721.55 841.81 1939.18 1879.05

IO(×109) 0.34 6.81 0.92 0.78
Intensity 2150.40 123.59 2107.51 2410.22

8192
FLOPs(×109) 824.63 1099.51 2216.20 2147.48

IO(×109) 0.37 8.86 1.01 0.85
Intensity 2234.18 124.12 2187.93 2515.97

12



Under review as a conference paper at ICLR 2024

Table 2: Arithmetic Intensity at the Prefill Stage for llama2 7B with Prompt Length = 1024

Batch Size Roofline QKV Projection softmax
(

QKT

√
dk

)
V MLP Output

Projection

1
FLOPs(×109) 103.08 17.18 277.03 268.44

IO(×109) 0.13 0.17 0.36 0.34
Intensity 768.00 102.40 762.46 798.75

4
FLOPs(×109) 412.32 68.72 1108.10 1073.74

IO(×109) 0.23 0.67 0.64 0.56
Intensity 1755.43 102.40 1726.75 1924.81

8
FLOPs(×109) 824.63 137.44 2216.20 2147.48

IO(×109) 0.37 1.34 1.01 0.85
Intensity 2234.18 102.40 2187.93 2515.97

16
FLOPs(×109) 1649.27 274.88 4432.41 4294.97

IO(×109) 0.64 2.68 1.76 1.44
Intensity 2586.95 102.40 2525.13 2972.42

32
FLOPs(×109) 3298.53 549.76 8864.81 8589.93

IO(×109) 1.17 5.37 3.24 2.63
Intensity 2808.69 102.40 2735.97 3268.95

64
FLOPs(×109) 6597.07 1099.51 17729.62 17179.87

IO(×109) 2.25 10.74 6.21 4.99
Intensity 2934.45 102.40 2855.17 3440.57

96
FLOPs(×109) 9895.60 1649.27 26594.44 25769.80

IO(×109) 3.32 16.11 9.18 7.36
Intensity 2978.91 102.40 2897.24 3501.85

128
FLOPs(×109) 13194.14 2199.02 35459.25 34359.74

IO(×109) 4.40 21.47 12.15 9.72
Intensity 3001.65 102.40 2918.74 3533.32

13



Under review as a conference paper at ICLR 2024

Table 3: Arithmetic Intensity at the Decoding Stage for llama2 7B

Batch Size Context Length QKV
Projection

softmax
(

QKT

√
dk

)
V MLP Output

Projection

1

2048 0.99967 0.99177 0.99967 0.99972
4096 0.99967 0.99201 0.99967 0.99972
6144 0.99967 0.99209 0.99967 0.99972
8192 0.99967 0.99213 0.99967 0.99972

4

2048 3.99480 0.99177 3.99465 3.99560
4096 3.99480 0.99201 3.99465 3.99560
6144 3.99480 0.99209 3.99465 3.99560
8192 3.99480 0.99213 3.99465 3.99560

8

2048 7.97922 0.99177 7.97862 7.98241
4096 7.97922 0.99201 7.97862 7.98241
6144 7.97922 0.99209 7.97862 7.98241
8192 7.97922 0.99213 7.97862 7.98241

16

2048 15.91710 0.99177 15.91470 15.92981
4096 15.91710 0.99201 15.91470 15.92981
6144 15.91710 0.99209 15.91470 15.92981
8192 15.91710 0.99213 15.91470 15.92981

32

2048 31.67010 0.99177 31.66061 31.72046
4096 31.67010 0.99201 31.66061 31.72046
6144 31.67010 0.99209 31.66061 31.72046
8192 31.67010 0.99213 31.66061 31.72046

64

2048 62.69388 0.99177 62.65671 62.89154
4096 62.69388 0.99201 62.65671 62.89154
6144 62.69388 0.99209 62.65671 62.89154
8192 62.69388 0.99213 62.65671 62.89154

96

2048 93.09091 0.99177 93.00898 93.52737
4096 93.09091 0.99201 93.00898 93.52737
6144 93.09091 0.99209 93.00898 93.52737
8192 93.09091 0.99213 93.00898 93.52737

128

2048 122.88000 0.99177 122.73728 123.64163
4096 122.88000 0.99201 122.73728 123.64163
6144 122.88000 0.99209 122.73728 123.64163
8192 122.88000 0.99213 122.73728 123.64163

14



Under review as a conference paper at ICLR 2024

B IO ANALYSIS OF CHUNKATTENTION KERNEL

b is the batch size. c is the chunk size. d is the head dimension size. h is the number of heads. n
is the sequence length. r is the ratio of the shared prompt length to the total sequence length. Thus,
the number of shared chunks is given by nr/c.

Memory operations of ChunkAttention kernel:

MOPs = h(2cd+ 2bd)
nr

c
+ 2hb(d+ n(1− r)d+ d)

= bhd

(
2nr(

1

b
+

1

c
) + 2 + 2n(1− r)

) (3)

Memory operations of naive kernel:

MOPs = bh(2d+ 2nd)

= bhd(2 + 2n)
(4)

Typically, the chunk size c is greater than 32. If we have a batch size of n ≥ 2, the following
condition is easy to meet. Then, the ChunkAttention kernel has fewer memory operations than the
naive kernel.

1

b
+

1

c
< 1 (5)

15


	Introduction
	Preliminaries
	Prompt Engineering
	LLM Inferencing
	Chunking of KV Cache

	Implementation of ChunkAttention
	Chunking and Sharing of KV Cache in Prefix Tree
	Efficient Kernel with Phased Partitioning and Batching

	Related Work
	Experiments
	Conclusion
	Arithmetic Intensity Analysis
	IO Analysis of ChunkAttention Kernel

