
Under review as a conference paper at ICLR 2024

EQUIAV: SINGLE-MODAL EQUIVARIANCE PROMOTES
AUDIO-VISUAL CONTRASTIVE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Advancements in audio-visual representation learning have showcased its effec-
tiveness in acquiring rich and comprehensive representations by leveraging both
auditory and visual modalities. Recent works have attempted to improve perfor-
mance using contrastive learning or masked modeling techniques. However, the
effort to maximize the impact of data augmentations for learning semantically
rich representation has remained relatively narrow. Without a proper strategy for
utilizing data augmentation, the model can be adversely affected or fail to achieve
sufficient performance gains. To address this limitation, we present EquiAV, a
novel framework that integrates single-modal equivariant contrastive learning with
audio-visual contrastive learning. In the proposed framework, audio-visual corre-
spondence and rich modality-specific representations are learned in separate latent
spaces. In particular, augmentation-related and modality-specific information is
learned in the intra-modal latent space by making the representations equivariant
to data augmentation. Extensive ablation studies verify that our framework is
the most suitable architecture for maximizing the benefits of the augmentation
while ensuring model robustness to strong augmentation. EquiAV outperforms the
existing audio-visual self-supervised pre-training methods on audio-visual event
classification and zero-shot audio-visual retrieval tasks.

1 INTRODUCTION

Audio and visual modalities play an important role in how humans perceive their surroundings.
Despite the differences in their properties, there exists a natural correspondence between the two
modalities. Learning such audio-visual correspondence from large-scale unlabeled video data in a
self-supervised manner has recently become a major focus in the deep-learning research community.
Among numerous approaches for audio-visual self-supervised learning, Audio-Visual Contrastive
Learning has been popular due to its simplicity and effectiveness (Gong et al., 2022b; Ma et al.,
2021a;b; Morgado et al., 2021a;b; Patrick et al., 2021; Recasens et al., 2021; Wang et al., 2021). This
approach primarily learns coordinated representations by encoding separate representations from
audio and visual modalities, and then imposing the constraint that the representations of audio-visual
pairs from the same video should be closer than those of mismatched samples.

A crucial challenge in audio-visual contrastive learning lies in effectively enhancing representation
capability and diversity while preserving the correspondence between two different modalities.
The simplest way to enrich representation is to utilize data augmentation. However, employing
augmentations in multi-modal contrastive learning requires careful consideration, as augmentations
can severely distort the inter-modal correspondence. Recent works propose the methods (Afouras
et al., 2022; Chen et al., 2021; Gong et al., 2022b; Ma et al., 2021a;b; Mercea et al., 2022; Mittal
et al., 2022; Monfort et al., 2021; Shi et al., 2022; Zhang et al., 2021) to utilize auxiliary tasks to
enable the learning of meaningful representation for audio-visual contrastive learning, including
masked data modeling and single-modal contrastive learning with self-supervision. Nevertheless,
they can adversely affect learning or make the training process unstable when the augmentations
are intensely applied. This adverse effect is demonstrated in Figure 1 by the performance of InvAV,
which indicates training with single-modal invariant contrastive learning. On the other hand, the
model cannot benefit sufficiently from auxiliary tasks by applying weak augmentations.
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Figure 1: Performance of EquiAV compared to uti-
lizing single-modal invariant contrastive learning
as the previous method. A higher augmentation
level denotes increasing the variety of augmenta-
tions applied. For detailed augmentation settings,
refer to Table 4.

Meanwhile, numerous single-modal self-
supervised learning methods (Bardes et al.,
2021; Chen et al., 2020b; Chen & He, 2021;
Grill et al., 2020; He et al., 2020; Zbontar et al.,
2021) have demonstrated their effectiveness
across a wide range of downstream tasks. Many
of these methods focus on learning represen-
tations that are invariant to augmentations.
However, there have been recent advancements
in learning equivariant representations (Dan-
govski et al., 2022; Devillers & Lefort, 2023;
Park et al., 2022; Shakerinava et al., 2022),
which enable the utilization of powerful
augmentations. Equivariant latent space learns
to capture augmentation-related information,
thereby enhancing the representation capacity.

In this paper, we propose EquiAV, a framework that integrates single-modal equivariant contrastive
learning with conventional audio-visual contrastive learning. The proposed framework leverages
separate latent spaces: inter-modal latent space and intra-modal latent space. The model learns
coordinated representations that capture audio-visual correspondence in the inter-modal latent space.
Modality-unique representations as well as augmentation-related information are learned in the
intra-modal latent space using equivariant contrastive loss. EquiAV ensures the full benefit of diverse
augmentations applied to both audio and visual modalities. It also demonstrates robustness to
distortion of audio-visual correspondence caused by overly strong augmentations as Figure 1.

To the best of our knowledge, we are the first to introduce equivariant contrastive learning to audio-
visual self-supervised learning. We investigate the optimal framework for adopting equivariance to
the audio-visual scenarios through extensive ablation studies. EquiAV outperforms the existing state-
of-the-art audio-visual self-supervised pre-training methods in diverse downstream tasks, including
audio-visual event classification and zero-shot audio-visual retrieval tasks. Extensive experimental
results validate the effectiveness of EquiAV in learning audio-visual correspondence and enhancing
representation capability through the utilization of single-modal equivariant learning. The contribution
of our paper is summarised as follows:

• We demonstrate that making the intra-modal representations equivariant to the augmentations
shows the most effective method of utilizing data augmentations for audio-visual self-
supervised learning.

• We propose EquiAV, an optimal framework that extends the single-modal equivariant repre-
sentation learning to audio-visual representation learning. It is verified through extensive
ablation studies.

• EquiAV outperforms the existing audio-visual self-supervised learning methods in audio-
visual event classification and zero-shot audio-visual retrieval tasks. This verifies that
EquiAV is an effective framework for learning audio-visual correspondence and semantically
rich representation in a self-supervised manner.

2 APPROACH

One prominent approach in audio-visual representation learning is to minimize the distance of paired
data in the feature space as Figure 2a. This approach ensures that the learned representations align
across modalities, facilitating effective multi-modal fusion and enabling tasks such as cross-modal
retrieval and audio-visual classification. Given an input pair (xa,xv) and the encoders for each
modality denoted as fa and fv respectively, the formulation can be expressed as

min
fa,fv

L(fa(xa), fv(xv)), (1)

where the function L(·, ·) measures the dissimlarity between two inputs. To enhance the generalization
capabilities of audio-visual representation learning, various augmentation techniques are employed.
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Figure 2: Illustration of the four variants of audio-visual representation learning: (a) conventional
audio-visual contrastive learning, (b) audio-visual contrastive learning with augmented inputs only,
(c) audio-visual inter-modal contrastive learning with invariant intra-modal self-supervision, and (d)
audio-visual inter-modal contrastive learning with equivariant intra-modality self-supervision. Linter

and Lintra are the terms calculating the similarity of inter- and intra-modality respectively.

2.1 AUGMENTATION IN AUDIO-VISUAL REPRESENTATION LEARNING

One approach to incorporate augmentation is to apply it directly to the input pairs as Figure 2b. Then
the model captures and encodes the augmented variations, resulting in enhanced representation ability.
Given the augmentation distributions Ta and Tv applicable to each modality, the objective function
can be described as

∀ta ∈ Ta,∀tv ∈ Tv min
fa,fv

L(fa(ta(xa)), fv(tv(xv))). (2)

However, selecting suitable augmentation distributions poses a challenge as it might break correspon-
dence between the input pairs. Achieving the right balance between augmentation techniques that
enhance diversity without distorting the underlying semantic information is a complex and non-trivial
task in training with multi-modal inputs.

2.2 INTRA-MODAL SELF-SUPERVISION: INVARIANCE VS EQUIVARIANCE

In this subsection, we will discuss how to apply intra-modal self-supervision to inter-modal represen-
tation learning. By solely applying augmentation within the intra-modal learning process and not
extending it to inter-modal matching, we can mitigate the misalignment problem while still reaping
the benefits of augmentation.

InvAV. One effective approach for providing intra-modal supervision is to utilize the concept of
invariance(Figure 2c). It targets to align the representations of the original input x and its augmented
counterpart t(x) in the feature space. A number of studies have combined these approaches into
audio-visual contrastive learning. We configure this setting as our baseline, named InvAV, which can
be described as

∀ta ∈ Ta,∀tv ∈ Tv min
fa,fv

L(fa(xa), fv(xv)) +
∑
a,v

L(f(x), f(t(x))). (3)

EquiAV. On the other hand, some recent works (Dangovski et al., 2022; Devillers & Lefort, 2023)
have suggested that considering the discrepancy of intra-modal pairs in the feature space can lead to
better representation learning. This concept, known as equivariance (Figure 2d), aims to capture the
variations between the original input and its augmented version in a way that preserves the underlying
structure. Through this approach, the model can learn to encode not only the invariant features but also
the specific transformations applied to each modality. To implement equivariance, an augmentation
predictor u along with augmentation parameter t are employed to match the intra-modal pair in the
feature space. Here, t consists of parameters used to generate the transformation operation t. We
present the approach, which combines single-modal equivariant contrastive learning with audio-visual
contrastive learning, EquiAV, and it can be represented as follows:

∀ta ∈ Ta,∀tv ∈ Tv min
u,fa,fv

L(fa(xa), fv(xv)) +
∑
a,v

L(u(t, f(x)), f(t(x))). (4)
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Figure 3: Overview of the proposed EquiAV framework. Audio-visual correspondence and modality-
specific representations including augmentation-related information are learned in separate latent
spaces using different projection heads.

3 METHODS

The proposed framework (Figure 3) consists of (1) an audio encoder fa and a visual encoder fv,
which encode audio-visual inputs and their augmented versions into audio and visual representations,
(2) two pairs of heads for each modality that project the audio-visual representations into intra-modal
latent space (ga;equ, gv;equ) and inter-modal latent space (ga, gv), and (3) augmentation predictors
uta and utv that predict the displacement within the intra-modal latent spaces caused by the data
augmentations. The model is trained with a combination of intra-modal and inter-modal contrastive
losses. Each component of our method is explained in detail in the following sections.

3.1 EQUIAV

Data Augmentations and Their Parameterization. In our framework, typical visual-based aug-
mentations such as random resized crop, color jitter, and horizontal flip are employed for visual inputs.
However, unlike the abundant augmentations available for an image or video, the options for the
audio modality are relatively limited. To address this, we extend the range of audio augmentation by
applying various visual-based augmentations to audio spectrograms. As audio-visual correspondence
and augmentation-related information are learned in separate latent spaces, diverse augmentations
can be applied without disturbing the inter-modal correspondence. The augmentation information
is encoded into real vectors, denoted as ta and tv. These vectors parameterize how much each
augmentation is applied to the input data. They are then concatenated with the audio and visual
embeddings before being fed to the augmentation predictors (i.e. uta , utv ) for intra-modal equivariant
representation learning. A detailed explanation of data augmentation parameterization is provided in
Appendix B.

Architecture. Given the audio-visual inputs and their augmented counterparts, (xa, xv) and (x′
a,

x′
v), the audio encoder fa and visual encoder fv encode the inputs into audio and visual representa-

tions. Then the inter-modal heads project the audio and visual representations of original inputs into
inter-modal latent space to get the embeddings,

za = ga(fa(xa)), zv = gv(fv(xv)). (5)
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Similarly, the intra-modal heads project the representations obtained from the original inputs and
their augmented counterparts into intra-modal latent spaces for each modality as follows,

za,equ = ga;equ(fa(xa)), z′a = ga;equ(fa(x
′
a)) (6)

zv,equ = gv;equ(fv(xv)), z′v = gv;equ(fv(x
′
v)). (7)

To model the displacement in the latent space caused by data augmentations, augmentation predictors
take as input the concatenation of the original input embeddings and the augmentation vectors, and
output equivariant embeddings,

ẑa = uta(ta, za,equ), ẑv = utv (tv, zv,equ). (8)

3.2 LOSS FUNCTIONS

In the training phase for EquiAV, we perform representation learning by maximizing the similarity
between the specified positive pairs in both intra-modal and inter-modal settings. To avoid the collapse
of all representations towards a constant value, we employ contrastive learning by designating negative
pairs. The contrastive loss is handled within each subspace by calculating the similarity between
audio-audio, visual-visual, and audio-visual pairs. Additionally, cosine similarity is used to measure
the similarity between the pair.

Intra-modal Representation Learning. Equivariant contrastive learning is used for training intra-
domain pairs. The batch consists of N equivariant embeddings {z′i}i∈{1,...,N} of the augmented
inputs, as well as N embeddings {ẑi}i∈{1,...,N} obtained by incorporating the augmentation informa-
tion and original input. The pair (z′i, ẑi) generated from the same image forms a positive pair, while
the remaining 2(N−1) embeddings within the batch serve as negative pairs. The NT-Xent loss (Chen
et al., 2020b) is employed to calculate the contrastive loss. The loss for equivariant embeddings of
the augmented input can be expressed as

ℓintra(ẑ, z
′) = − 1

N

N∑
i=1

log
exp(sim(ẑi, z

′
i)/τ)∑N

j=1 exp(sim(ẑi, z′j)/τ) +
∑N

j=1 1[j ̸=i] exp(sim(ẑi, ẑj)/τ)
, (9)

where τ > 0 is temperature, and 1 is an indicator function that assigns a value of 1 or 0 to an element
based on whether it satisfies a given condition. Then, the intra-modal loss is described by combining
the losses of adopting the original and augmented inputs as anchors respectively,

Lintra =
1

2
(ℓintra(ẑ, z

′) + ℓintra(z
′, ẑ)). (10)

Note that the equivariance loss term in our framework differs slightly from the single-modal equiv-
ariant self-supervised learning (Devillers & Lefort, 2023). The key distinction lies in whether the
similarity of the positive pair is included in the denominator of the loss term or not. Detailed
explanations are described in the Appendix A.

Inter-modal Representation Learning. On the other hand, we apply invariant contrastive learning
for training inter-domain pairs. The batch consists of N paired embeddings {(zai , zvi )}i∈{1,...,N},
which are extracted without applying any augmentation to preserve the correspondence between
input pairs. In the process of calculating contrastive loss, each anchor utilizes embeddings from other
domains, excluding its domain. For example, considering an anchor zai from the audio domain, the
positive pair will be (zai , z

v
i ), while the remaining visual embeddings within the batch would serve as

negative pairs. Accordingly, the loss for the audio domain and visual domain can be expressed as

ℓinter(z
a, zv) = − 1

N

N∑
i=1

log
exp(sim(zai , z

v
i )/τ)∑N

j=1 exp(sim(zai , z
v
j )/τ)

, (11)

where τ > 0 is temperature. Then, the inter-modal loss is represented by combining the losses of
adopting the audio and visual embeddings as anchors respectively,

Linter =
1

2
(ℓinter(z

a, zv) + ℓinter(z
v, za)). (12)
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Table 1: Audio-visual event classification performance on AudioSet and VGGSound. A: Audio-only,
V: Visual-only, A-V: Audio-visual. IN SL: ImageNet supervised learning, SSL: Self-supervised
learning, † Non-standard train/test split. We de-emphasize concurrent work.

Pretrain AudioSet-20K (mAP) AudioSet-2M (mAP) VGGSound (Acc)

Method A V A-V A V A-V A V A-V

Audio-Based Models
PANNs (Kong et al., 2020) - 27.8 - - 43.9 - - - - -
AST (Gong et al., 2021) IN SL 34.7 - - 45.9 - - - - -
HTS-AT (Chen et al., 2022) IN SL - - - 47.1 - - - - -
PaSST (Koutini et al., 2021) IN SL - - - 47.1 - - - - -
SSAST (Gong et al., 2022a) SSL 31.0 - - - - -
MAE-AST (Baade et al., 2022) SSL 30.6 - - - - -
Audio-MAE (Huang et al., 2022b) SSL 37.1 - - 47.3 - - - - -
AudioSlowFast (Kazakos et al., 2021) - - - - - - - 52.5 - -

Audio-Visual Based Models
GBlend (Wang et al., 2020) - 29.1 22.1 37.8 32.4 18.8 41.8 - - -
Perceiver (Jaegle et al., 2021) - - - - 38.4 25.8 44.2 - - -
Attn AV (Fayek & Kumar, 2020) IN SL - - - 38.4 25.7 46.2 - - -
MBT† (Nagrani et al., 2021) IN21K SL 31.3 27.7 43.9 41.5 31.3 49.6 52.3 51.2 64.1
CAV-MAE (Gong et al., 2022b) SSL 37.7 19.8 42.0 46.6 26.2 51.2 59.5 47.0 65.5
AudiovisualMAE† (Georgescu et al., 2022) SSL - - - 46.6 31.1 51.8 57.2 50.3 65.0
MAViL (Huang et al., 2022a) SSL 41.8 24.8 44.9 48.7 30.3 53.3 60.8 50.9 67.1
EquiAV (ours) SSL 42.3 24.9 44.9 47.5 30.1 52.6 60.0 48.1 66.4

Finally, the loss function of EquiAV can be expressed by incorporating weighting factors to the
intra-modal losses of audio and visual modalities, as well as the audio-visual inter-modal loss. It can
be formulated as follows:

LEquiAV = λinter · Linter + λa;intra · La;intra + λv;intra · Lv;intra (13)

Through these methods, EquiAV can maximize the benefits of intra-domain supervision while
avoiding any detrimental impact on the learning of inter-modal pairs. In the next section, we will
provide experimental evidence supporting our design choices along with benchmark performance.

4 EXPERIMENTS

Firstly, the model is pre-trained on the AudioSet-2M in a self-supervised fashion, without the use of
labels. We evaluate our model through audio-visual event classification in both single-modal and
multi-modal manner, as well as zero-shot audio-visual retrieval task. During these tasks, we remove
the intra-modal head gequ and utilize the feature obtained by passing through the backbone encoder
f and inter-modal head g.

4.1 MAIN RESULTS

Implementation Details. The audio encoder fa and visual encoder fv are initialized with the
self-supervised pre-trained ViT-B/16 model of MAE (He et al., 2022). We employ linear layers for
inter-modal heads while using a 3-layer MLP with layer normalization for intra-modal heads and
augmentation predictors. More detailed experimental settings are explained in the Appendix B.

Audio-Visual Event Classification. The model is fine-tuned using the AudioSet-20K and VG-
GSound datasets, and evaluated on audio-visual event classification to indicate its representation
capability. Fine-tuning is performed by adding a linear layer to the representations; for single-modal
fine-tuning, the feature of each modality is utilized as the single-modal representation, whereas
for multi-modal fine-tuning, the features from both modalities are concatenated to form the joint
representation. Table 1 provides a comparison of the single-modal and multi-modal fine-tuning
performance. EquiAV surpasses the performance of previous methods by solely relying on contrastive
learning. Note that the performance of MBT (Nagrani et al., 2021) and MAViL (Huang et al., 2022a)
is the most recently reported performance.
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Table 2: Zero-shot audio-visual retrieval results on the AudioSet and VGGSound with models
pre-trained on AudioSet-2M. † Results reproduced on our environment.1

Video-to-Audio Audio-to-Video

Method R@1 R@5 R@10 R@1 R@5 R@10

AudioSet
CAV-MAE-Base† 10.2 26.8 35.6 7.0 18.0 26.0
CAV-MAE-Scale+† 14.2 32.4 41.3 10.9 26.2 34.8
CAV-MAE-Scale++† 16.6 37.0 45.9 14.3 32.0 40.7
CAV-MAE (Gong et al., 2022b) 18.8 39.5 50.1 15.1 34.0 43.0
EquiAV (ours) 27.7 51.2 60.0 25.9 50.2 56.6
VGGSound
CAV-MAE-Base† 11.8 27.0 36.8 8.5 22.5 30.9
CAV-MAE-Scale+† 13.1 31.0 41.4 12.0 29.6 37.9
CAV-MAE-Scale++† 15.5 35.3 45.1 16.4 35.0 44.7
CAV-MAE (Gong et al., 2022b) 14.8 34.2 44.0 12.8 30.4 40.3
EquiAV (ours) 24.4 47.3 56.0 23.7 46.6 57.1

Zero-Shot Audio-Visual Retrieval. We evaluate the generalizability of the model through the
zero-shot audio-visual retrieval task. The retrieval task was performed based on the similarity between
the features of each modality. Table 2 presents the results of a zero-shot retrieval task on the subset of
the evaluation samples from AudioSet and VGGSound. The sample list used for the experiments
is identical to the one used in CAV-MAE (Gong et al., 2022b). Additionally, to demonstrate the
robustness of our model across different datasets, we perform further zero-shot retrieval experiments
on MSR-VTT (Xu et al., 2016) in Appendix C.1.

Our evaluation results have demonstrated the enhanced representation capability and generalizability
of our proposed method, as shown by the superior performance on the audio-visual event classification
and zero-shot retrieval tasks.

4.2 ABLATION STUDIES

In this section, a series of experiments are conducted to identify the optimal framework for leveraging
equivariance in the context of audio-visual representation learning. First, we determine that EquiAV,
which utilizes intra-modal equivariance, is the most suitable framework for learning audio-visual
correspondence and joint representations. The findings further show that EquiAV maximizes the
benefits of data augmentations applied to multi-modal inputs while showing the robustness to
excessive augmentations which may impair audio-visual correspondence. Lastly, we demonstrate the
effectiveness of the employed loss function for intra-modal equivariant contrastive learning.

Table 3: Zero-shot retrieval results on AudioSet and audio-visual event classification performance on
AudioSet-20K with the variants of pre-training methods, including those introduced in Figure 2. V2A:
Video-to-audio zero shot retrieval R@1, A2V: Audio-to-video zero shot retrieval R@1, Inv: Invariant
contrastive learning, Equi: Equivariant contrastive learning, Aug: Data augmentation applied.

Zero-shot Retrieval Fine-Tuning

Method Intra-modal Inter-modal V2A A2V A V A-V

- - Inv 22.0 20.2 32.0 18.4 37.0
- - Inv (w/ Aug) 13.4 12.6 32.1 18.7 38.8

InvAV Inv Inv 25.2 24.3 40.1 22.9 42.3
- Inv Equi 14.3 13.1 37.2 20.4 41.9

EquiAV Equi Inv 27.7 25.9 42.3 24.9 44.9

Audio-Visual Representation Learning Frameworks. We implement a variety of distinct pre-
training strategies to demonstrate which framework most effectively extracts comprehensive informa-
tion from multi-modal inputs. As presented in Table 3, focusing solely on inter-modal representation
without augmentations (illustrated in Figure 2a) results in the lowest fine-tuning task scores. This

1Weights from https://github.com/YuanGongND/cav-mae
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Table 4: Zero-shot retrieval results on AudioSet and audio-visual event classification performance on
AudioSet-20K with varying augmentations.

Zero-shot Retrieval Fine-Tuning

Method Visual Augmentation Audio Augmentation V2A A2V A V A-V

EquiAV RRC+CJ+GB SA+TS 25.0 24.6 39.9 22.4 42.4
RRC+CJ+GB+HF+GS SA+TS 26.5 24.9 40.4 24.5 42.8
RRC+CJ+GB+HF+GS SA+TS+RRC+CJ 26.3 25.4 41.6 24.0 43.7
RRC+CJ+GB+HF+GS SA+TS+RRC+CJ+GB+HF 27.7 25.9 42.3 24.9 44.9
RRC+CJ+GB+HF+GS+FR+VF SA+TS+RRC+CJ+GB+HF 27.0 25.1 42.0 24.3 44.7

InvAV RRC+CJ+GB SA+TS 24.7 23.7 39.8 22.1 42.2
RRC+CJ+GB+HF+GS SA+TS 24.6 24.0 39.4 22.7 41.9
RRC+CJ+GB+HF+GS SA+TS+RRC+CJ 25.2 24.3 40.1 22.9 42.3
RRC+CJ+GB+HF+GS SA+TS+RRC+CJ+GB+HF 22.9 22.2 38.3 22.6 40.7
RRC+CJ+GB+HF+GS+FR+VF SA+TS+RRC+CJ+GB+HF 22.7 21.9 38.0 19.8 39.6

Table 5: Zero-shot retrieval results on AudioSet and audio-visual event classification performance on
AudioSet-20K with different loss functions.

Zero-shot Retrieval Fine-Tuning

Intra-modal Loss V2A A2V A V A-V

without pos (Eq. A) 18.7 17.4 41.0 22.8 43.4
with pos (Eq. 9) 27.7 25.9 42.3 24.4 44.9

suggests that only using original audio and visual inputs is inadequate for acquiring sufficient represen-
tation capabilities. In the case of using augmented inputs (illustrated in Figure 2b), the performance
of zero-shot retrieval is significantly degraded. This decline in performance is attributed to aug-
mentations that distort the semantic context of the data, thereby adversely affecting the inter-modal
correspondence. Additionally, we investigated the effectiveness of incorporating equivariance into
audio-visual contrastive learning, specifically analyzing whether its application is more impactful
within intra-modal or inter-modal contexts. The results (fourth row in Table 3) show that apply-
ing equivariance to inter-modal latent space is not beneficial and may even hinder the learning of
audio-visual correspondences and joint representations. Since audio-visual correspondence is the
strongest when the semantic context of audio-visual inputs remains unchanged, it can be inferred that
the augmentation-related information and audio-visual correspondence should be learned in separate
latent spaces. Our results indicate that intra-modal equivariant learning is the most effective strategy
for learning inter-modal correspondence and for capturing semantically richer information across
different modalities in the context of audio-visual contrastive learning.

Data Augmentations. We explore a variety of augmentations applied to visual and audio modalities
in the pre-training stage. For the visual modality, the typical visual-based augmentations are used;
Random Resized Crop (RRC), Color Jitter (CJ), Gaussian Blur (GB), Horizontal Flip (HF), and
Gray Scale (GS). In the case of audio modality, both audio- and visual-based augmentations are
applied to the audio spectrogram. Specifically, SpecAugment (SA) (Park et al., 2019) and Time
Shifting (TS) are utilized as audio-based augmentations. Meanwhile, the same augmentations pool
used for the visual modality excluding GS is applied to audio spectrograms, as the spectrogram has
only one channel. As shown in Table 4, EquiAV fully benefits from increasing the variety of the
data augmentations. Moreover, EquiAV exhibits higher robustness to excessive augmentations (e.g.
Four-fold Rotation (FR) and Vertical Flip (VF)) compared to InvAV. The results imply that by utilizing
equivariant intra-modal representation learning, our model is able to capture augmentation-related
information within each modality. Consequently, EquiAV aids in learning more robust audio-visual
correspondence and joint representations, thus showing promise for handling a wide range of data
augmentations.

Equivariant Loss Functions. Table 5 shows the results of using different equivariant loss functions
for intra-modal pairs. The first row excludes the positive pair in the denominator according to
Equation A, while the second row includes it as in Equation 9. When Equation 9 is adopted as the
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intra-modal contrastive loss, the weight updates due to hard positives are relatively larger than those
due to easy positives. In the context of equivariant contrastive learning, learning from hard positive
utilizing the augmentation predictor proves to be more effective, leading to better representation
quality. The experimental results support our hypothesis. For further analytical insights, refer to
Appendix A.

5 RELATED WORKS

Audio-Visual Representation Learning. Audio-visual contrastive learning has been one of the
most popular approaches for learning the natural correspondence between audio and visual modalities
from video, due to its simple intuition and effectiveness (Owens & Efros, 2018; Recasens et al., 2021;
Georgescu et al., 2022; Sarkar & Etemad, 2023). One common approach of contrastive learning
is to learn the context of the synchronous relationship between audio and visual inputs (Korbar
et al., 2016; Alwassel et al., 2020; Morgado et al., 2021b; Sarkar & Etemad, 2023). Other research
improves the impact of contrast learning by applying additional data augmentation (Patrick et al.,
2021; Wang et al., 2021) or mining harder negatives (Ma et al., 2021a; Morgado et al., 2021a).
On the other hand, several works (Georgescu et al., 2022; Haliassos et al., 2022) adopt masked
modeling techniques that are designed to reconstruct the masked raw inputs or predict the masked
context features. Recently, CAV-MAE (Gong et al., 2022b) and our concurrent work MAViL (Huang
et al., 2022a) have similar goals to our work, combining contrastive learning and masked data
modeling techniques to learn complementary representations. Our approach instead incorporates
single-modal equivariant representation learning with audio-visual contrastive learning, which enables
learning of modality-specific representation and augmentation-related information while preserving
the audio-visual correspondence. This leads to improved performance in various downstream tasks.

Single-modal Self-supervised Learning. Self-supervised learning that leverages large-scale
datasets has shown promising performance in various fields. Early research in this domain was
characterized by the creation of various handcrafted pretext tasks (Doersch et al., 2015; Gidaris
et al., 2018; Noroozi & Favaro, 2016; Pathak et al., 2016; Zhang et al., 2016). More recently, the
field has seen a surge in popularity with the advent of techniques such as contrastive learning (Chen
et al., 2020b; He et al., 2020; Oord et al., 2018), masked modeling (He et al., 2022; Tong et al.,
2022; Huang et al., 2022b), and non-contrastive methods (Caron et al., 2021; Chen & He, 2021;
Grill et al., 2020). Contrastive learning is designed to learn invariant semantics by employing an
appropriate augmentation pool and treating the augmented data as positive pairs. However, recent
studies (Dangovski et al., 2022; Devillers & Lefort, 2023) have indicated that performance can be
enhanced by incorporating the principle of equivariance, which allows for displacement in the feature
space in response to data augmentations. One such approach is predicting augmentations on the
input data (Dangovski et al., 2022). Another strategy involves integrating augmentation information
directly into the learning process (Devillers & Lefort, 2023; Lee et al., 2021).

6 CONCLUSION

We propose EquiAV that incorporates single-modal equivariant contrastive learning within an audio-
visual contrastive learning framework. Making intra-modal representations equivariant to data
augmentations has been proven to be an effective approach in exploiting single-modal self-supervision
for audio-visual self-supervised learning. However, simply replacing the single-modal invariant
representation learning with the equivariant counterpart does not guarantee performance improvement
on downstream tasks. By extensive ablation studies for searching the optimal framework, we
finally enable the model to learn inter-modal correspondence while enriching modality-specific
representation at the same time. Single-modal equivariant learning successfully circumvents the
typical constraints on data augmentation strategies and maximizes their benefits in audio-visual
self-supervised learning. This can be demonstrated by the improved performance driven by applying
stronger augmentations to both modalities. Furthermore, additional benchmark experimental results
and various ablation studies can be found in Appendix C. EquiAV outperforms the existing state-of-
the-art audio-visual self-supervised learning methods on audio-visual event classification tasks and
zero-shot audio-visual retrieval tasks.
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A APPENDIX

A ANALYSIS ON EQUIVARIANT LOSS FUNCTIONS

As mentioned in Section 3.2, our equivariant loss function differs from the equivariant contrastive
loss function used in EquiMod (Devillers & Lefort, 2023), regarding whether a positive pair similarity
is included in the denominator. The equivariant loss of EquiMod is the same as applying an indicator
function to both summation terms in the denominators of Equation 9, which can be represented as
follows:

ℓEquiMod(ẑ, z
′) = − 1

N

N∑
i=1

log
exp(sim(ẑi, z

′
i)/τ)∑N

j=1 1[j ̸=i] [exp(sim(ẑi, z′j)/τ) + exp(sim(ẑi, ẑj)/τ)]
, (A)

LEquiMod =
1

2
(ℓEquiMod(ẑ, z

′) + ℓEquiMod(z
′, ẑ)). (B)

Consider intra-modal training batch embeddings as {zi} = {ẑi} ∪ {z′i}. For each i-th embedding,
let’s denote the positive sample as pi and the set of negative samples as Ni. Then, the equivariant
loss terms of EquiMod and EquiAV can be simply rewritten as

LEquiMod
i;equ = − log

si,pi∑
n∈Ni

si,n
, (C)

LEquiAV
i;equ = − log

si,pi

si,pi
+
∑

n∈Ni
si,n

, (D)

where si,j = exp(sim(zi, zj)/τ). Differentiating the above equations with respect to si,pi
yields the

following expressions:

∂LEquiMod
i;equ

∂si,pi

= − 1

si,pi

, (E)

∂LEquiAV
i;equ

∂si,pi

= −
∑

n∈Ni
si,n

si,pi

(
si,pi +

∑
n∈Ni

si,n
)

=
∂LEquiMod

i;equ

∂si,pi

·
∑

n∈Ni
si,n(

si,pi
+

∑
n∈Ni

si,n
) (F)

When we compare the EquiAV loss to the EquiMod loss through Equ.F and Equ. E, the EquiAV loss
puts relatively more weight on hard positive compared to easy positive. This becomes particularly
advantageous when stronger augmentations lead to an increased frequency of hard positives. Training
with more hard positives, alongside the application of equivariance, substantially enhances the
model’s capability to comprehend detailed features in single-modal contexts. The intra-modal
representation quality plays a pivotal role in understanding and integrating different modalities.
Consequently, the semantically rich intra-modal representation promotes effective learning of audio-
visual correspondence and audio-visual joint representations. Experimental results in Table 5 support
our hypothesis.

B IMPLEMENTATION DETAILS

Datasets We utilize two prominent audio-visual datasets for our experiments: AudioSet (Gemmeke
et al., 2017) and VGGSound (Chen et al., 2020a). AudioSet comprises 2 million 10-second YouTube
clips, designed to classify events into 527 distinct classes, with each data having multiple labels. We
download 1,893,278 clips for the AudioSet-2M, 21,074 clips for the AudioSet-20K, and 19,446 clips
for evaluation. Particularly, AudioSet-20K is a subset of AudioSet-2M. VGGSound includes 200,000
10-second YouTube clips, encompassing 309 classes. The training and test splits of VGGSound
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consist of 183,730 and 15,446 downloaded clips, respectively. Unlike AudioSet, it has only one label
for each clip. For the zero-shot retrieval evaluation, we collect 1,722 and 1,545 clips from AudioSet
and VGGSound’s evaluation set respectively.

Input Pre-processing. We follow AST (Gong et al., 2021) and ViT (Dosovitskiy et al., 2021) for
pre-processing of audio and visual inputs, respectively. For audio, each 10-second audio waveform
is transformed into a sequence of 128-dimensional log Mel filterbank features by using a 25-ms
Hanning window and a 10-ms hop size, resulting in a 1024(time) × 128(frequency) spectrogram.
For visual inputs, 10 frames are uniformly extracted from each 10-second video, and one frame is
randomly selected as the input. Then the audio spectrogram and the video frame are tokenized to 16
× 16 patches and fed to the audio and visual encoders.

Augmentation Parameterization. Audio and visual augmentations as well as their parameteriza-
tion used in this work are listed as follows:

• Random resized crop (4 elements for both audio & visual): x and y coordinates of the top-left
point as well as the width and height of the crop (<0, 0, 0, 0> is used as a default encoding).

• Color jitter (8 elements for visual & 4 elements for audio): the jitter factors for brightness,
contrast, saturation, and hue of video frames, as well as the order of the application of
transformation. We use the following mapping to encode the order of transformation: {0:
brightness, 1: contrast, 2: saturation, 3: hue}. For instance, an encoding <2, 1, 3, 0>
indicates that the saturation jitter is first applied, and then contrast, hue, and brightness (<0,
1, 2, 3> is used as default). On the other hand, we only use brightness and contrast jitters for
audio spectrograms, as the audio spectrograms are originally grayscale. Then, we use the
following mapping to encode the order of jitter transformation: 0: brightness, 1: contrast
(<0, 1> is used as default).

• Gaussian blur (1 element for both audio & visual): the value of σ for Gaussian blurring
kernel (0 as default).

• Horizontal flip (1 element for both audio & visual): 1 if an image or an audio spectrogram
is horizontally flipped and 0 otherwise.

• Grayscale (1 element, for visual only): 1 if an image is converted to grayscale and 0
otherwise.

• Random time shifting (1 element, for audio only): the value of temporal shift of the audio
spectrogram.

• SpecAug (Park et al., 2019) (4 elements, for audio only): starting and end points of the
masking along the time and frequency axis of the audio spectrogram.

All augmentations except random resized crop (which is always applied) are applied with pre-
defined probability. Therefore for each augmentation, we add an element, whose value is 1 when
the augmentation is actually applied and 0 otherwise, to a parameterized vector. Consequently,
the audio and visual augmentations are encoded into 24-dimensional and 18-dimensional vectors
respectively. They are then concatenated with the audio and visual representations and projected into
a 256-dimensional latent space by the augmentation predictor, which is a 3-layer MLP. The whole
model including the augmentation predictor is learned jointly.

C ADDITIONAL EXPERIMENTS

C.1 MAIN RESULTS

Zero-Shot Audio-Visual Retrieval Experiments. We also perform a zero-shot retrieval evaluation
on the MSR-VTT (Xu et al., 2016) using the model pre-trained on AudioSet-2M. As shown in
Table A, our model consistently outperforms existing methods pre-trained on AudioSet and achieves
comparable results to models pre-trained on much larger datasets. Note that we use a subset of 1,000
out of the total 2,635 test data for retrieval following previous work when conducting experiments on
the test set.
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Table A: Zero-shot retrieval on the test and evaluation splits of MSR-VTT. † Results reproduced on
our environment using the model weights reported in previous work.

Video-to-Audio Audio-to-Video

Method Pre-train Dataset R@1 R@5 R@10 R@1 R@5 R@10

Test set:
Boggust (Boggust et al., 2019) HowTo100M 9.3 20.7 28.8 7.6 21.1 28.3
Aranjelovic (Arandjelovic & Zisserman, 2018) HowTo100M 11.9 25.9 34.7 12.6 26.3 33.7
AVLnet (Rouditchenko et al., 2021) HowTo100M 17.2 26.6 46.6 17.8 35.5 43.6
CAV-MAE (Gong et al., 2022b) AudioSet-2M 13.3 29.0 40.5 7.6 19.8 30.2
EquiAV (Ours) AudioSet-2M 13.6 31.4 40.7 13.5 32.6 42.0

Eval set:
CAV-MAE-Base† AudioSet-2M 9.8 27.0 36.5 6.7 22.8 32.6
CAV-MAE-Scale+† AudioSet-2M 11.1 31.7 41.5 10.7 30.1 38.8
CAV-MAE-Scale++† AudioSet-2M 13.7 35.4 45.2 11.8 31.9 43.3
EquiAV (Ours) AudioSet-2M 18.7 36.1 46.3 16.3 37.3 49.8

Single-modal Downstream Tasks. We conduct experiments to demonstrate the effectiveness of our
method in single-modal downstream tasks. For the video-only task, we utilize the UCF101 (Soomro
et al., 2012) and HMDB51 (Kuehne et al., 2011), and for the audio-only task, the ESC-50 (Piczak,
2015). According to the results reported in Table B, our method shows superior performance in the
video-only task compared to previous methods and yielded comparable outcomes in the audio-only
task.

Table B: Action recognition (video-only) results on UCF101 and HMDB51, and environmental sound
classification (audio-only task) results on ESC-50. IN: ImageNet, AS: AudioSet-2M, SL: Supervised
learning, SSL: Self-supervised learning. †Results reproduced on our environment using the model
weights reported in previous work.

Video-only (Acc) Audio-only (Acc)

Method Pretrain UCF101 HMDB51 ESC-50

Audio-Based Models
PANNs (Kong et al., 2020) AS-SL - - 94.7
AST (Gong et al., 2021) IN-SL - - 88.7
AST (Gong et al., 2021) IN-SL, AS-SL - - 95.6
HTS-AT (Chen et al., 2022) IN-SL - - 97.0
PaSST (Koutini et al., 2021) IN-SL - - 96.8
SSAST (Gong et al., 2022a) AS-SSL - - 88.8
MAE-AST (Baade et al., 2022) AS-SSL - - 90.0
Audio-MAE (Huang et al., 2022b) AS-SSL - - 94.1

Audio-Visual Based Models
CAV-MAE-Scale+† (Gong et al., 2022b) IN-SSL, AS-SSL 75.9 43.5 84.0
MAViL (Huang et al., 2022a) AS-SSL - - 94.4
MAViL (Huang et al., 2022a) IN-SSL, AS-SSL - - 94.4
EquiAV (ours) IN-SSL, AS-SSL 87.0 65.5 96.0

C.2 ABLATION STUDIES

Pre-training Architecture Search. In these experiments, we incorporate an extra augmentation
encoder during the pre-training stage. The role of the augmentation encoder is to encode the
augmentation parameter tm ({a, v} ∈ m) into 128-dim feature t̃m before feeding it as input to
the augmentation predictor utm . Figure Aa and Figure Ab illustrate the case without and with the
augmentation encoder, respectively. According to Table C, the event classification performance
without the augmentation encoder outperforms the scores achieved with the augmentation encoder.
Moreover, we observe that fine-tuning using the representations from the inter-modal head yields
the best performance. This indicates the representations derived from the inter-modal head exhibit
superior capabilities for representation learning.
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crop(1)
blur(0)
...

(a) Without augmentation encoder

crop(1)
blur(0)
...

3-layer
MLP

(b) With augmentation encoder

Figure A: Illustration of using augmentation encoder.

Table C: Event classification performance on AudioSet-20K based on the presence of augmentation
encoder and varying head types.

Aug Encoder Head A V A-V

✓ inter-head(g) 40.4 22.0 43.3
✗ inter-head(g) 42.3 24.9 44.9
✗ intra-head(gequ) 34.1 17.8 37.8
✗ no head(fm(xm)) 32.0 6.7 35.0

Batch Size. For a fair comparison with the previous methods in terms of batch size, we conduct
additional experiments with the same total batch size. As shown in Table D, our method outperforms
the previous method, which supports that our method is sufficiently helpful in learning audio-visual
representations, without using a larger batch size.

Table D: Zero-shot retrieval results on AudioSet and audio-visual event classification performance on
AudioSet-20K with different batch sizes. ∗ Results reported in previous work. † Results reproduced
on our environment.2

Video-to-Audio Audio-to-Video Fine-tuning

Method Batch Size R@1 R@5 R@10 R@1 R@5 R@10 A V A-V

CAV-MAE (Gong et al., 2022b) 108 18.8 39.5 50.1 15.1 34.0 43.0 37.7 19.8 42.0
CAV-MAE-Scale++† 256 16.6 37.0 45.9 14.3 32.0 40.7 - 20.0∗ -
EquiAV 256 23.6 46.9 56.5 23.6 44.6 54.8 40.6 22.7 43.1
EquiAV 512 27.7 51.2 60.0 25.9 50.2 56.6 42.3 24.9 44.9

Weight Scales of Loss Function. We study the effects of varying weight scales, namely λinter,
λa;intra, and λv;intra within the loss function during the pre-training phase of EquiAV. Table E shows
that the highest performance is achieved when all weights are equal. We can also observe some
insights from this ablation study: first of all, the performance of single-modal fine-tuning is enhanced
when the weights of intra-modal loss increase. Conversely, as the proportion of inter-modal loss
diminishes, the ability to learn the correspondence across modalities declines, leading to a reduction
in retrieval results. Furthermore, when the weight of the intra-modal loss is reduced or applied to only
one modality, the performance is degraded. This implies that the single-modal equivariant contrastive
learning for both modalities equally contributes to enhancing the generalizability and representation
capability of the model.

2Weights from https://github.com/YuanGongND/cav-mae
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Table E: Zero-shot retrieval results on AudioSet and audio-visual event classification performance on
AudioSet-20K with varying weights scales of loss function.

Zero-shot Retrieval Fine-Tuning

λinter λa;intra λv;intra V2A A2V A V A-V

1 1 1 27.7 25.9 42.3 24.9 44.9
1 2 2 23.5 22.4 42.4 25.2 44.7
1 0.5 0.5 26.9 24.7 39.4 21.6 41.9
1 1 0 22.9 22.5 38.9 19.2 40.5
1 0 1 22.6 22.7 34.6 21.5 37.0

Effect of Backbone Encoder Initialization. We conduct the additional experiment without Ima-
geNet self-supervised initialization. We utilize self-supervised MAE (He et al., 2022) weights for the
audio and visual encoders, following previous work. As shown in Table F, our model still outperforms
the previous method without the initialization.

Table F: Zero-shot retrieval results on AudioSet and audio-visual event classification performance on
AudioSet-20K with and without backbone encoder initialization.

Zero-shot Retrieval Fine-Tuning

Method ImageNet init. V2A A2V A-V

CAV-MAE No - - 37.3
CAV-MAE SSL 18.8 15.1 42.0
EquiAV No 21.4 21.2 40.5
EquiAV SSL 27.7 25.9 44.9
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D QUALITATIVE RESULTS

To investigate the capability of EquiAV to capture augmentation-related information, we perform a
sound source localization task. We measure the cosine similarity between the mean pooled represen-
tation of audio tokens and visual representations of visual patches. We visualize the heatmaps of the
original audio-visual input and the two differently augmented versions for comparison. As shown in
Figure B, the results demonstrate that EquiAV consistently maintains audio-visual correspondence
and accurately identifies the sound source, even in scenarios involving augmented audio-visual inputs.
This highlights the strength of our method in not only capturing augmentation-related information
within each modality but also in preserving audio-visual correspondence.

Orig. Aug 1 Aug 2

(a) male speech

Orig. Aug 1 Aug 2

(b) warbler chirping

Orig. Aug 1 Aug 2

(c) male singing

Orig. Aug 1 Aug 2

(d) playing bass guitar

Orig. Aug 1 Aug 2

(e) fox barking

Orig. Aug 1 Aug 2

(f) singing bowl

Figure B: Results of visual sound source localization for raw and augmented images. Even for
augmented inputs, EquiAV robustly localizes the sound to the visual content.
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E HYPERPARAMETER DETAILS

The hyperparameter settings used in this paper are listed in Table E.

Table G: Hyperparameters used in pre-training and fine-tuning phase.

Stage Pre-training Fine-Tuning

Dataset AudioSet-2M AudioSet-20K AudioSet-2M VGGSound

Optimizer AdamW
Optimizer momentum β1=0.9, β2=0.95
Weight decay 1e-5 1e-5 1e-5 1e-5
Learning rate scheduler half-cycle cosine annealing (Loshchilov & Hutter, 2016)
Initial learning rate 1e-6 1e-6 1e-6 1e-6
Peak learning rate 1e-4 1e-4 1e-4 1e-4
Warm-up epochs 2 1 1 1
Epochs 20 50 50 50
Batch size 64 64 64 64
Class Balancing Weight No No Yes Yes
Mixup No Yes Yes Yes
Loss Function EquiAV Loss (Eq. 13) BCE BCE CE
Temperature (τ ) 0.07 - - -
Input Norm Mean -4.346 -4.346 -4.346 -4.956
Input Norm STD 4.332 4.332 4.332 4.486
GPUs 8 A6000 8 A5000 8 A6000 8 A5000
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F ALGORITHM

Algorithm A summarizes EquiAV.

Algorithm A EquiAV

Input: audio encoder fa, visual encoder fv ,
audio intra-modal head ga;equ, visual intra-modal head gv;equ,
audio augmentation predictor uta , visual augmentation predictor utv ,
batch size N , temperature τ
audio augmentation distribution pa, visual augmentation distribution pv

1: for sampled mini-batch {(xa
k, x

v
k)}Nk=1 do

2: for all k ∈ {1, . . . , N} do
3: sample augmentation instructions ta ∼ pa, tv ∼ pv

#draw audio features
4: z2k−1 = ga(fa(x

a
k))

5: za2k−1 = uta(ga;equ(fa(x
a
k)), ta)

6: za2k = ga;equ(fa(ta(x
a
k)))

#draw video features
7: z2k = gv(fv(x

v
k))

8: zv2k−1 = utv (gv;equ(fv(x
v
k)), tv)

9: zv2k = gv;equ(fv(tv(x
v
k)))

10: end for
11: for all i ∈ {1, . . . , 2N} and j ∈ {1, . . . , 2N} do
12: sinteri,j = exp

(
1
τ · z⊤

i zj
∥zi∥∥zj∥

)
13: sa;intrai,j = exp

(
1
τ · za

i
⊤za

j

∥za
i ∥∥za

j ∥

)
14: sv;intrai,j = exp

(
1
τ · zv

i
⊤zv

j

∥zv
i ∥∥zv

j ∥

)
15: end for
16: define ℓ(i, j) as ℓ(i, j) = − log

(
si,j∑2N

k=1 1[k ̸=i]si,k

)
17: Linter = 1

2N

∑N
k=1

[
ℓinter(2k − 1, 2k) + ℓinter(2k, 2k − 1)

]
18: La;intra = 1

2N

∑N
k=1

[
ℓa;intra(2k − 1, 2k) + ℓa;intra(2k, 2k − 1)

]
19: Lv;intra = 1

2N

∑N
k=1

[
ℓv;intra(2k − 1, 2k) + ℓv;intra(2k, 2k − 1)

]
20: L = λinterLinter + λa;intraLa;intra + λv;intraLv;intra

21: update encoders, heads, augmentation predictors to minimize L
22: end for

22


