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ABSTRACT

Recently, a new optimization method based on the linear minimization oracle
(LMO), called Muon, has been attracting increasing attention since it can train
neural networks faster than existing adaptive optimization methods, such as Adam.
In this paper, we study how Muon can be utilized in federated learning. We first
show that straightforwardly using Muon as the local optimizer of FedAvg does
not converge to the stationary point since the LMO is a biased operator. We then
propose FEDMUON that can mitigate this issue. We also analyze how solving
the LMO approximately affects the convergence rate and find that, surprisingly,
FEDMUON can converge for any number of Newton-Schulz iterations, while it
can converge faster as we solve the LMO more accurately. Through experiments,
we demonstrated that FEDMUON can outperform the state-of-the-art federated
learning methods.

1 INTRODUCTION

Federated learning, which can train neural networks in parallel across many clients, has been attracting
much attention (Kairouz et al.}2021; McMahan et al., 2017; Karimireddy et al., [2020). In federated
learning, each client has its own training datasets and updates its parameters using a local optimizer,
such as SGD. The central server collects the parameters from the clients and aggregates them. Since
clients do not need to share their local training datasets with others, federated learning inherently
preserves data privacy.

For training neural networks efficiently, using an appropriate stepsize is one of the most critical
factors. If the stepsize is too large, the training collapses, whereas if the stepsize is too small, the
training requires a huge number of iterations. To adjust the stepsize on the fly during the training,
using adaptive optimization methods, such as AdaGrad (Duchi et al.| 2011]), Adam (Kingma & Bal
2017), Shampoo (Gupta et al.,|2018), and other methods (Loshchilov & Hutter, [2019; |Vyas et al.}
2025)), have long been regarded as the de facto standard for training neural networks.

Recently, Muon (Liu et al., 2025a) has emerged as a promising alternative, attracting significant
attention. Many papers evaluated the performance of Muon and demonstrated that Muon can train
neural networks faster and achieve higher accuracy than the existing optimization methods, such as
AdamW (Liu et al.l [2025a; [Semenov et al.,[2025)). Roughly speaking, Muon projects the momentum
in the Momentum SGD onto the space of orthogonal matrices. Muon is closely related to various
optimization methods: it can be interpreted as a simplified version of Shampoo (Gupta et al., 2018),
in which a certain momentum accumulation is disabled (Liu et al.| [2025a)), and as an instance of
optimizers with linear minimization oracle (LMO) under a specific norm (Pethick et al.l [2025]).
Kovalev| (2025)) also showed that Muon is a special instance of the trust-region optimization method.

To use Muon for the large-scale training, developing the distributed version of Muon is important.
However, Muon requires us to solve the LMO every iteration, which makes it difficult to straight-
forwardly use Muon in a distributed environment. |Ahn et al.| (2025)) proposed a method to solve
the LMO in a distributed manner, although their method does not support multiple local steps and
incurs a huge communication cost. [Thérien et al.|(2025) proposed MuLoCo, which extends Muon
by allowing clients to update the parameters multiple times by Muon as in Local SGD (Stich,[2019;
Woodworth et al.| 2020). Although Thérien et al.|(2025) demonstrated that MuLoCo performs well
when all clients share the same training dataset, their method is limited to homogeneous settings and
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lacks theoretical guarantees. As we show in Section 3] MuLoCo fails to converge when clients have
different datasets, which is a fundamental characteristic of federated learning.

In this paper, we study the federated learning methods with the LMO and propose FEDMUON. (i)
First, we show that straightforwardly using Muon as the local optimizer in FedAvg failed to converge
to the stationary point since the LMO is a biased operator. We formally analyze the lower bound of
this straightforward method, showing that it does not converge to the stationary point, especially in
the heterogeneous setting. (ii) We then propose FEDMUON, which can mitigate the bias caused by
the LMO and can provably converge to the stationary point. (iii) Furthermore, we derive a novel
analysis and reveal how the inexact LMO affects the convergence behavior of FEDMUON. Since
solving the LMO exactly is computationally expensive, we solve the LMO approximately by running
the Newton-Schulz iteration (Schulz, |1933)) several times in practice. There were many papers that
analyzed the convergence behavior of Muon (Riabinin et al., 2025} [Liu et al., [2025a} |Shen et al.;
2025)), while most of them assumed that the LMO is solved exactly and ignored the effect caused by
the inexact LMO. We analyze the impact of inexact solutions to the LMO on the convergence rate. We
discover that for any number of Newton-Schulz iterations, FEDMUON can converge to the stationary
point and can converge faster by up to a factor proportional to the square root of the dimension of the
parameters as we solve the LMO more accurately. We experimentally demonstrated the effectiveness
of FEDMUON, showing that FEDMUON can achieve higher accuracy than the state-of-the-art adaptive
federated learning optimization methods.

Our contributions are summarized as follows:

* We show that directly plugging Muon into FedAvg as the local optimizer does not converge to the
stationary point since the LMO is a biased operator.

* We propose FEDMUON, which mitigates the above issue by the bias correction mechanism and
can converge to the stationary point.

* We analyze the convergence rate of FEDMUON with the inexact LMO. Then, we show that for any
number of Newton-Schulz iterations, FEDMUON can converge, revealing how the Newton-Schulz
iteration affects the convergence rate.

* Through the experiments, we demonstrated that FEDMUON can outperform the state-of-the-art
federated learning methods.

Notation: We use || - || to denote an arbitrary norm, and its dual norm is denoted by || - ||,.. When
we refer to a specific norm, we explicitly use the notation || - ||, || - |7, || - [lsp> and || - [|irace tO
denote the Schatten p-norm, Frobenius norm, spectral norm, and trace norm, respectively. We denote
[n] ={1,2,...,n} forany n € N.

2 PRELIMINARY

In this section, we briefly introduce federated learning and Muon. The detailed discussion about the
related works is deferred to Appendix

Federated Learning: We consider the following problem where the loss functions are distributed
among n clients:

1 n
i X)=— (X (X)) = E¢,p,[Fi(X;&)],
iy |F0) = S0, A = Beon [F(X36)
where X is the parameter space (e.g., R? or R4 *92) X is the model parameter, D; is the training
that client ¢ holds, and f; : X — R is the loss function of client ¢.

The most fundamental algorithm for federated learning is Federated Averaging (FedAvg) (McMahan
et al.l 2017)). In FedAvg, each client updates the parameter by using its own loss function, and then
the central server aggregates the parameters sent from the clients. The update rule of FedAvg is
described in Appendix [C} The original FedAvg uses SGD as the local optimizer, while, as in the
non-distributed learning, it is important to use adaptive optimization methods for stable and fast
training. Many papers proposed federated learning methods that use more sophisticated optimizers,
such as Momentum SGD (Lin et al.| 2021), Adam (Reddi et al.| 2021)), and the Newton method
(Elgabli et al.,2022). |[Reddi et al.| (2021)) proposed a general framework and analyzed the convergence
rate with various optimizers.
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Optimizer with Linear Minimization Oracle: Recently, optimizers with linear minimization
oracle (LMO) have been attracting a lot of attention (Liu et al.,2025a; Pethick et al.||2025} [Riabinin
et al.,[2025). LMO is defined as follows:

Imo(X; D) := argmin(X,Y),
YeD
where D is the convex set and (X, Y') := }_, ; X;;Y;;. Originally, the LMO has been used to solve
the convex constrained problems in the Frank-Wolfe algorithm (Frank & Wolfe| 1956} Jaggi, |2013).
Recently, Jordan et al.[(2024) proposed Muon, which uses LMO for training neural networks, which
is an unconstrained optimization problem. They showed that Muon can train neural networks faster
than AdamW (Loshchilov & Hutter], 2019) and Shampoo (Gupta et al.,[2018; |Shi et al., 2023)), which
are the most commonly used optimizers these days.

Specifically, the optimizers with LMO choose the unit ball as the constraint set D, measured in

any chosen norm || - ||. With a slight abuse of notation, we use Imo(-) to represent Imo(-; D) with
D={Y e X|||Y] <1},ie,
Imo(X) == argmin  (X,Y).

Ye{yeX||Y|<1}

Then, the update rules are given by:

MY = (1 —a)M™ 4 aVF(XM; M),
X+ = X0 4 plmo(MT+D)),

By varying the norm, we can recover different popular optimizers. Specifically, if parameter space
is a vector when we choose the Euclidean norm and max norm, we can recover Normalized SGD
with momentum (Cutkosky & Mehtal 2020) and Sign SGD with momentum (Sun et al.| [2023)),
respectively. Then, if the parameter space is R% %2 and we use the spectral norm for the LMO, we
can obtain Muon (Jordan et al., 2024). Note that the parameter space needs to be the space of d; x ds
matrices for Muon. Each layer is taken into account separately. For instance, the parameter of the
convolutional layer is out_channel x in_channel x h X w matrix. When we use Muon, we consider
dy = out_channel and ds = in_channel x h x w. The remaining scalar and vector parameters in the
neural network are trained by other optimization methods, such as SGD or Adam.

For the remainder of the paper, we will not take separate layers into account and represent all the
model parameters as a single matrix for simplicity of presentation. We refer to |Riabinin et al.| (2025)
for an explanation of how to take into account every layer separately in the analysis of Muon.

3 LOCALMUON DOES NOT ALWAYS CONVERGE

First, we provide a lower bound showing that straightforwardly using the optimizer with the LMO
as the local optimizer in FedAvg does not always converge. For simplicity, we consider the setting
where all clients participate in every round and perform exactly one local update. Straightforwardly
applying the optimizer with the LMO to FedAvg yields the following update rules:

M = (1 - a)M +aVE(XD, ), (1)
r+1 r r+1
XL( ) = XZ( ) + nlmo <Mi( )) , 2)
I o(r
(r+1) _ L (r+1)
XUt =~ >oximh, (©)
=1

We refer to the above algorithm as LOCALMUON (see Appendix [C|for LOCALMUON with multiple
local steps and partial participation). However, the above straightforward method fails to reach a
stationary point due to the bias introduced by the LMO, and the optimization process stagnates.
Specifically, the LMO is biased, since in general we have

I : I .
- Zlmo (Mi(7+1)) # Imo < ZM;TH)> )
n n

i=1
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The momentum M; is the estimation of the gradient V f;(X), while the quantity of 1 >~ | Imo(M;)
is biased and does not align with the gradient V f(X). This intuitively shows why LOCALMUON
cannot converge to the stationary point, especially when clients have different loss functions. The
following theorem formalizes this failure, with the proof deferred to Appendix [D]

Theorem 1. For simplicity, we consider the initialization M i(o) = 0. There exist convex functions
{fi}Y_; such that for any r > 1 rounds, the output of LOCALMUON (Egs. to ) is the same as
the initial parameter and does not converge to the optimal solution and satisfies the following:

IVAXO)? = (),
where (2 = LS |V £(X*)||* and X* = argmin f(X).

Note that LOCALMUON is a simplified version of MuLoCo (Thérien et al.,[2025)), where the mo-
mentum at the central server is disabled. We formally analyze only LOCALMUON, while Theorem|T]
shows that the parameter stays at the initial parameters and does not converge to the stationary point.
This indicates that MuLoCo also suffers from the same issue, as adding the momentum at the central
server does not prevent the parameter from remaining at its initial value.

4 FEDMUON

In the previous section, we showed that due to the bias caused by the LMO, LOCALMUON does
always converge. In this section, in Algorithm[I]we propose FEDMUON, which mitigates this issue
and provably converges to the stationary point.

Instead of applying the LMO to the momentum alone, we apply the LMO to the bias corrected
version of the momentum (line 8) in Algorithm [} Similarly to SCAFFOLD (Karimireddy et al.,
2020) we introduce control variates C’i(T) and C(") to estimate the directions of the local client
gradients V f;(X (")) and the global gradient V f (X (")), respectively. Given that the local momentum
parameters M i(r’kﬂ) estimate local gradients V f; (X (r:k) ), the corrected update, M i(r’kH) - Ci(r) +
C() is a good estimation of the full gradient V f( X ("-*)), mitigating the issue of local bias. When
we remove the LMO and set « = 1, FEDMUON recovers vanilla SCAFFOLD (Karimireddy et al.,
2020). It is important to note that there are several papers that apply the momentum to SCAFFOLD
(Cheng et al., [2024} [Karimireddy et al., |2021)), however all of them incorporate momentum at the
central server, differing from our proposed FEDMUON.

Algorithm 1 FEDMUON

1: Imput: total number of clients n, number of sampled clients S, and the number of local steps K.
2: forr € {0,1,--- ,R— 1} do (at the server)

3 sample S clients S, C [n].

4 send X (") and C(") to the sampled clients.

5: for i € S, do (at the clients)

6 X" X and M"Y  pHE)

7 fork=0,1,--- K —1do

8 MY (1 - a) MY + aVE(X; V).

0: XY e X0 4 pimo (MY — € 4 €),
10: end for

1 cY o pn

12: send X" and C"*V 1o the central server.

13: end for (end clients, back to the server)
14:  fori € [n]\ S, do
15: c"™ ¢ and M) - MTTHO,
16: end for
. r r 1 (r+1) (r)

r n— r r, K
18 XD o n=Sx ) g Ly o x (O,
19: end for
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5 CONVERGENCE ANALYSIS

5.1 ASSUMPTIONS

We first summarize the assumptions that we use in our theoretical results. As is common in the prior
literature analyzing optimizers with LMO (Pethick et al., [2025; |Riabinin et al.| 2025)), we use the
following smoothness assumption. Note that the norm here is the same as the one used in the LMO.

Assumption 1. There exists L > 0 so that it holds for any X, Y € X
IVfi(X) = Vi(Y)|, <L|X -Y].

Since we consider non-Euclidean norms, we measure gradient differences in the dual norm, while
parameter differences are measured in the primal norm (cf. Nesterov, 2018} | Xie & Li}[2024). However,
as shown in Remark (1} any two norms are equivalent in finite dimensions, and thus the class of
functions satisfying Assumption [I]and the conventional smoothness assumptions (formulated for
Euclidean norms) is the same (see Remark [2)).

Remark 1 ((Conway, 2019, Theorem 3.1)). If X is a finite-dimensional vector space over I, then
for any two norms || - ||, and || - ||q, there exist ¢,C' > 0 such that c|| X ||, < | X||q < for

al X e X
Remark 2. If it holds that |V fi(X) — Vfi(Y)| < CL|X = Y| for any X, Y € X, then
X ]|

fi satisfies Assumption |l|where C' = supxcx I If f; satisfies Assumption |l| it holds that
IV£i(X) = VA(Y)| < £|X = Y| forany X, Y € X where ¢ == supxc x 151~

For the analysis of FEDMUON, we often use the trace norm and Frobenius norm. The following
inequality holds between the Frobenius norm and the trace norm.

Example 1. For any X € R%*% it holds that | X ||p < || X ||iace < +/min{dy,d2}|| X|| .

For the stochastic gradient noise, we use the following assumption, which is quite common in the
optimization literature, e.g., (Bubeckl 2015).

Assumption 2. The stochastic gradient is unbiased, i.e., E[VF;(X; ;)] = V fi(X) forany X € X.
Then, there exists o > 0 so that it holds for any X € X

]Egi Z(X,fz)—vfz( )HF<J

5.2 CONVERGENCE RESULT

We provide the convergence rate of FEDMUON in Theorem |2} For simplicity, we present the results
for the special case S = n, where all clients participate during the training. The general case with
arbitrary S is provided in Lemma|[TT]in Appendix [E] The proof is deferred to Appendix [E]

Theorem 2. Consider Algorlthml We define X (k) = L1 Z?_ X(T ") Note that X"+V) =
XE) Suppose that n = S and Assumptions |1 and@hold C(O) = Mi(o,o) and C©
% Sy Ci(o), there exists 1 and o so that it satisfies

R-1K-1 oy L L 1
Lrog?\1® Lrgo \ 3 Lry\ 2

B|vrxe] < ve) &

RK Z Z VX 0 nRK + RVK + R

r=0 k=0
1 [ 6K \*  [&2K?\®
oo \R Tt (LroRn> * <LrOR2> ’
where 19 = f(X©) — f*p = supyxcx Hg((ll\‘; 5 = po, Gy = poo, and 0f =

Ly EIMOY - V(X))

Discussion: Unlike LOCALMUON, Theorem[2]shows that FEDMUON can mitigate the issue that the
Lros? )i

LMO is a biased operator and can converge to the stationary point. The dominant term is O( 5%
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Algorithm 2 Newton-Schulz iteration

1: Input: matrix G and hyperparameters a, b, ¢ € R.
GO &
Gl r
fort € {0,1,--- ,T — 1} do
GO ¢+ aGO £ H(GOGD )GW + (GOGH T 2GW.
end for
Retern —G(T)

AN A S

which is almost the same as the terms appearing in the rate of FedAvg and SCAFFOLD (Karimireddy
et al., [2020)), and the convergence rate is improved as the number of clients n increases. The only
difference is that the convergence rate of FEDMUON depends on p, while this is because Theorem 2]
analyzes the dual norm of the gradient. For instance, when the norm is the Frobenius norm, the dual
norm is also the Frobenius norm and p = 1. The last three terms arise from the initial error oy, which
diminish faster than the other terms as the number of rounds R increases.

We consider the case where the parameter space is X = R *92 and the spectral norm is used,
as in Muon (Liu et al| 2025a). Since the dual of the spectral norm is the trace norm, we have
IVF(X)|lF < ||V F(X)]irace- Consequently, FEDMUON can converge faster than SCAFFOLD in
certain cases. For instance, if the stochastic noise o is sufficiently small, FEDMUON converges as:

1 R—-1K-1 ’I"()L %
— E|vrxem| <of(™) ),
RK ; k'Z:O Vf( ) trace - O R

and SCAFFOLD converges as follows (see Theorem 3 in (Karimireddy et al.| 2020))):

1 R-1K-1 o) roLp 1
e &, 2w, <o ((252))

where L refers to the smoothness of f; with respect to the Frobenius norm. Thus, when L =
SUP;efn], x,[[U o<1 (U V2fi(X)U) ~ L, i.e., when the Hessians have a few dominant singular
values—equivalently, when they are approximately low-rank, then FEDMUON can converge faster
than SCAFFOLD. More precisely, the terms on the right-hand side are the same, and the only
difference is the choice of the norm. We stress that Theorem [2]does not claim FEDMUON always
converges faster, but it does suggest that in certain cases FEDMUON can outperform. This helps
explain the strong empirical performance of Muon and FEDMUON.

6 FEDMUON WITH INEXACT LMO

In the previous section, we considered the general case with an arbitrary norm and exact LMO. Here,
we focus on the spectral norm, as in Muon (Liu et al., [2025a), and analyze FEDMUON when the
LMO is only approximately solved via the Newton—Schulz iteration. Then, thanks to the special
property of spectral norm and Newton-Schulz iteration, we reveal that FEDMUON can converge to
the stationary point regardless of how accurately we solve the LMO.

With the spectral norm, the LMO takes the following form:

IMOmuon (X)) = arg min (X,Y),
Ye(yern ||y, <1}

Let the singular value decomposition of X be UXV'. Then the LMO output is —U V/, but computing
this exactly is computationally expensive. To address this, |Liu et al.|(2025a) proposed approximating
the LMO via a fixed number of Newton—Schulz iterations (Schulz,|1933))(e.g., 5). The update rule
of the Newton-Schulz iteration is described in Algorithm [2| Since the procedure involves only
matrix multiplications, it can be efficiently executed on a GPU. In the following, we analyze the
convergence of FEDMUON when the LMO is solved approximately using Newton—Schulz iterations
and characterize how inexactness impacts convergence.

Under the same assumption as in Theorem 2] we provide the convergence rate when we run Newton-
Schulz iteration 7" times to solve the LMO approximately and show how T affects convergence. For
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simplicity, we set n = S and we use a = 22,6 = —2 and ¢ = 2 for the Newton-Schulz iteration,

following the hyperparameter setting mentioned in |Amsel et al.| (2025). For the general case of
arbitrary S we refer to Lemma|[I4]in Appendix [F]

Theorem 3. Consider Algorithm|l|with the spectral norm and suppose that the LMO in line 8 is
solved approximately using Algorithm @ with a = 1@5, b= —%, and ¢ = %. We define X (7F) =
% Z?:l Xi(r’k). Note that X "+1) = XK Suppose that n = S and Assumptionsandhold,

Ci(o) = Mi(o,o) and C©) = % Z?zl C’fo). Then, for any number of Newton-Schulz iteration T' > 0,
there exists ) and « so that it satisfies

1 =& Lrog?\ T ( Lrog \¥ | (Lro\?
RK%l;]EHVf(X(nM)HpSO((MgK) +<R\;?) +(RO>
1 52K \? G2K2\ 3
R+<LRn> *(m) )
where 1o = f(X©) — f*p = \/m,é = po, 6o = pog, and o} =
Iy IE||MZ.(O’O) — Vf(X )| 2. Then, p is defined as follows:

log (1 —(1- /@)1'5T)
log K

: Sj,i,r.k
k= min —Z222—— (> 0),
gtk 3., 82
3" 7k

where {sjﬂ-,r’k}j are non-zero singular values ofMi('r’k—H) — C’i(v‘) +C,

+00

p=1+

)

Remark 3. WhenT' = 0, p = 2. As T increase, p monotonically decreases to 1 for any k > 0.

Remark 4. Recall that || - ||,, is the Schatten p-norm. For any 1 < p < g, we have || All; < || A|lp.
Then, || Al|, becomes || A||irace and || A||r when p = 1 and p = 2, respectively.

Discussion: Surprisingly, the above theorem shows that FEDMUON converges to the stationary
point, regardless of how many times we run the Newton-Schulz iteration. The only difference between
the case when we solve the LMO exactly, i.e., Theorem@ and the case when we solve the LMO
approximately, i.e., Theorem [3] is that Theorem [2] establishes the convergence in the trace norm of
the gradient ||V f(X)|lwace (= |V f(X) ||1)E] while Theorem [3| establishes the convergence in the
Schatten p-norm ||V f(X)||,. We recover the convergence rate of Theorem [2| by setting T — oo,
and therefore have p — 1. Since we have ||A||; < [|A[, when 1 < p < ¢, Theorem [3 implies
that FEDMUON can converge faster when we increase the number of Newton-Schulz iterations 7.
More specifically, since it holds that || Alj; < y/min{d;,d2}||Al|2, solving the LMO accurately

can improve the convergence rate by up to a factor of y/min{d;, ds}. In our experiments, we will
demonstrate that FEDMUON can train neural networks even if 7' = 0, while FEDMUON can achieve
higher accuracy as T increases (see Section[7.2)). These observations are consistent with Theorem [3]

The quantity of (1 — /{)1'5T in the definition of p measures how fast the Newton-Schulz iteration
converges. If we consider the worst case, s could be arbitrarily close to zero, and thus a large 7" would
be required to sufficiently decrease p. However, the main implication of Theorem [3]is that increasing
T leads to an improved convergence rate. Indeed, our experiments show that even increasing 7' from
0 to 1 dramatically improves accuracy (see Section[7.2).

Comparison with Existing Analysis with Inexact LMO: There are many papers that analyzed
the convergence rate of Muon, while most of them assumed that the LMO is exactly solved (Pethick
et al.||2025}; |Riabinin et al.|[2025; |Shen et al.,2025)). The only study analyzing the rate with an inexact
LMO is |Refael et al.|(2025). However, they also assumed that we run Newton-Schulz iterations a
certain number of times (see Lemma 3.3 and Remark 3.6 in (Refael et al.|[2025))). Compared with
these prior analyses, our novel analysis provides a stronger claim that FEDMUON can converge to
the stationary point for any number of the Newton-Schulz iterations 7" > 0. Furthermore, it is first
observed by Theorem [3] that the different norms of the gradient are bounded depending on T'.

'When || - || is the spectral norm, its dual norm is the trace norm.
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Figure 1: Training curves of various methods. For all settings, FEDMUON can achieve higher test accuracy than
other methods.

Proof Sketch: In the following, we provide an intuition for why FEDMUON can converge for any
T > 0. If we solve the LMO exactly, we have

<Galmomuon(G)> = _HG”tracea Hlmomuon(G)Hsp <1 “4)
The first equality holds from the definition of the dual norm (see Lemmal[T), and the second inequality
holds since the solution of the LMO satisfies the constraint. Then, the output of the Newton-Schulz
iteration satisfies the following (see Lemma|[T2):

<L &)

—1Glace < (G, =G DY < —||G],, H_Gm .

The above inequality indicates that even if we run the Newton-Schulz iteration only a few times
to solve the LMO approximately, the output of the Newton-Schulz iteration is a proper direction
to minimize the loss function, and FEDMUON can converge to the stationary point. For instance,
when T' = 0, the output of Newton-Schulz iteration is — ﬁ, which corresponds to the normalized
gradient, and it is natural that FEDMUON can converge to the stationary point when 7" = 0. Then, if
we run the Newton-Schulz iteration 7" times, the output of the Newton-Schulz iteration comes close
to the exact solution of LMO and remains a proper direction to minimize the loss function. Thanks
to this property, FEDMUON can converge to the stationary point for any number of Newton-Schulz
iterations 7.

7 EXPERIMENT

7.1 FEDERATED LEARNING TASKS

Setup: We used FashionMNIST (Xiao et al.,|2017) and CIFAR-10 (Krizhevsky, [2009) as training
datasets, and used LeNet (Lecun et al., [1998) for Fashion MNIST and ResNet-18 (He et al., [2016)) for
CIFAR-10. Following the prior paper (Hsieh et al.,[2020), we used Group Normalization (Wu & He,
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Figure 2: Training curves of FEDMUON with various number of Newton-Schulz iterations. We used FashionM-
NIST and LeNet.

2018) instead of Batch Normalization (loffe & Szegedyl |[2015) for ResNet-18. We set the number of
clients n to 16 and sampled S = 8 clients every round. We set the number of local steps K to 5 and
set the number of epochs to 100 and 200 for FashionMNIST and CIFAR-10, respectively. Following
the prior paper (Hsu et al., 2019), we distributed the training dataset to clients by using Dirichlet
distributions with hyperparameter 3. As 3 approaches zero, each clients come to have a different
training dataset. We tuned the stepsize by grid search. See Appendix [G]for details. The experiments
were repeated with two different seed values, and we reported the average.

Comparison Methods: We compared the following methods: (1) FedAvg (McMahan et al., [2017):
We used Momentum SGD as the optimizer. (2) FedAvg (Adam): We used Adam as the optimizer of
FedAvg. (3) SCAFFOLD (Karimireddy et al.,|2020): We used Momentum SGD as the optimizer.
(4) SCAFFOLD (Adam): We used Adam as the optimizer of SCAFFOLD. (5) FEDMUON: Our
proposed method. Following the suggestion of |[Liu et al.|(2025a), we changed the scale of the stepsize
per layer, depending on the dimension.

Results:  We show the results in Fig.[T} The results indicate that FEDMUON can perform the best for
all settings. By comparing FEDMUON with FedAvg (Adam) and SCAFFOLD (Adam), FEDMUON
achieved the highest accuracy, which can demonstrate that Muon is also beneficial in the federated
learning setting. By comparing FEDMUON and LOCALMUON, LOCALMUON performed well in the
homogeneous setting, but did not match the performance of FEDMUON in the heterogeneous setting.
This observation is consistent with the discussion in Section[3] where we show that LOCALMUON
does not converge to the stationary point in the heterogeneous setting. These observations were
consistent with Theorem Il

7.2 EFFECT OF INEXACT LMO

Next, we evaluate how the number of Newton-Schulz iterations 7" affects the performance. Figure 2]
shows the training curves of FEDMUON with different 7". In the homogeneous setting, the highest
accuracy was achieved when 7' = 4, and in the heterogeneous setting, the highest accuracy was
achieved when 7' = 2. Thus, we can observe that solving the LMO accurately can improve the
performance. Notably, FEDMUON already worked with 7" = 0, but increasing 7" from 0 to 1 led to a
significant improvement in accuracy. These observations were consistent with Theorem [3] which
shows that FEDMUON can converge for any 7" and converge faster as T increases.

8 CONCLUSION

In this paper, we study the federated learning methods with the LMO and propose FEDMUON. We
first propose directly plugging the optimization methods with the LMO into FedAvg, which we
referred to as LOCALMUON, and show that LOCALMUON cannot converge to the stationary point
since the LMO is a biased operator. We then propose FEDMUON to solve this issue and show that
FEDMUON can converge to the stationary point. We analyze the convergence rate of FEDMUON
and reveal how the approximate solution of the LMO affects the convergence behavior. Notably, we
show that FEDMUON can converge for any number of Newton-Schulz iterations, and FEDMUON can
converge faster as we solve the LMO more accurately. Throughout the experiments, we demonstrated
the effectiveness of FEDMUON and verified our theoretical discovery.
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A LLM USAGE

We used LLM for proofreading, and it did not contribute to the content of the paper itself.

B RELATED WORK

Federated Learning: The simplest algorithm for federated learning is FedAvg
2017; [Stichl, 2019). The main challenge of federated learning is reducing communication between
the central server and clients Various techniques such as client sampling (Gu et al, 2021}, [Chen
t_aL [2022; [Zhang et all 2023), multiple local steps (Woodworth et al., [2020; [Koloskova et al. 2020

Jiang et al.| 2024a:b), and communlcatlon compression (Alistarh et al, 2017 |Stich et al., 2018}
Karimireddy et al., 2019} [Vogels et al.,[2019} [He et al,[2023; Gao et al.| [2024) have been studied to
reduce the communication costs. However, FedAvg st111 requires a huge amount of communication
when clients have different training datasets. Many papers proposed federated learning methods
that are robust to data heterogeneity (Karimireddy et al., [2020; Jiang et al., 2024aib). The seminal
work is SCAFFOLD (Karimireddy et al.| [2020), which can converge regardless of data heterogeneity.
Besides these methods, asynchronous methods (Koloskova et al.l 2022} [Mishchenko et al., [2022;
Islamov et al} [2024) and decentralized methods (NedicC et al., 2017; Tang et al., 2018bfa; [Koloskoval
et al.,[2020; [Takezawa et al.} [2023) have been widely studied to further improve the efficiency.

Adaptive Optimization Methods: Using adaptive optimization methods is standard for training
neural networks efficiently (Amari, 1998, [Ward et al., 2020; [Duchi et al.l 2011} [Kingma & Ba,

oshchilov & Hutter, 2019; [Zaheer et al., 2018; [Zhuang et al.,[2020; Defazio et al., 2024; Rodomanov|
et al.| 2024)). Over the last decade, Adam (Kingma & Ba}|2017)) and AdamW (Loshchilov & Hutter,
2019) are the most widely used, but recently, Shampoo (Gupta et al.| [2018) won the External Tuning

Task of AlgoPerf (Dahl et all, 2025) and is attracting considerable attention (Shi et al.l, 2023} [Vyas|
let al} 2023} [Tshikawa & Karakidal, 2024). Muon [2025a) can be regarded as the simplified
version of Shampoo, and many papers have demonstrated that Muon can train neural networks faster
than Adam, AdamW, and Shampoo (Liu et al., 2025a}, [Pethick et al.| 2025}, [Amsel et al., 2025}

et al., [2025b; Ma et al.| 2025 [Amsel et al., [2025; |Grishina et al., [2025)). Using Muon in distributed
environments is one of the popular topics (Thérien et al., 2025; |Ahn et al.|[2025)). Specifically,

proposed a method to solve the LMO in a distributed way, and [Thérien et al.| (2025)
proposed MuLoCo, which extends Muon by allowing clients to perform several steps before averaging
the parameters as in LOCALMUON. However, since they consider settings where all clients have the
same dataset, their objective differs from ours. As we explained in Section[3] because the LMO is a
biased operator, bias correction mechanisms used in FEDMUON are necessary in federated learning,
in which clients have different training datasets.
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C PsSeEuDO CODE

Algorithm 3 FedAvg (McMahan et al., 2017)

1: Input: the total number of clients n, the number of sampled clients .S, and the number of local
steps K.
2: fort € {0,1,---,T} do (at the server)
sample S clients S, C [n].
for i € S, do (at the clients)

3
4
5: X0 x™),
6
7
8

fork=0,1,--- , K —1do
Xi(r,k+1) - Xi(r,k:) . UVE(X1(7’k)7§l(7’k))
end for
9: end for (end clients, back to the server)
r n— r r K
10 XD o n=Sx ) Ly o x(,
11: end for

Algorithm 4 LocalMuon

1: Input: the total number of clients n, the number of sampled clients .S, and the number of local
steps K.

2: forr € {0,1,--- , R — 1} do (at the server)

3 sample S clients S, C [n].

4: for i € S, do (at the clients)

5: X" X and M"Y« pHE)

6.

7

8

fork=0,1,--- K —1do
MY (1 )M 1 aVE (X[ 6MY).
Xi(r,kJrl) - Xi(nk) + nlmo (Mi(nkJrl))'
9: end for

10: c Y pn
11: end for
12:  fori € [n]\ S, do
13: MmO
14: end for (end clients, back to the server)
r n— r r K
150 XOH) ¢ n=Sx() g 15 o x 0,
16: end for
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D PROOF OF THEOREM [I]

Proof. We consider the setting where n = 2, d = 1, and the norm is the Euclidean norm. In this case,
we have
T

x|

Then, we consider the case where f1 and f5 are defined as follows:

Imo(zx) =

2

x
fi(z) = 5
(z +a)?
falwy = LA
2
When Mi(o) =0and X© = —%, we have
M=
1 4 )
3aa
MY = ==
2 4 9

Imo(M™M) + Imo(MV) = 0,
where we use a € (0, 1].

Thus, the parameter does not change, i.e., X M) = X () For the next round, we have

MP = -2 (a+a(l-a)),

3a
M = T (ata(l—a).
Then, since it holds the following as in the first round:

lmo(Ml(Q)) + lmo(Mz(Q)) =0.

The parameter does not change. Due to the above discussion, the parameter does not change for any
r. Now, we have

2

XM =2 6
IO = & ©
Then, using £ 37 [|[V£(X*)|? = %, we obtain the desired result. O
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E PROOF OF THEOREM 2]

E.1 NOTATION

In this section, we use the following notation.

Xk =Sy L 3 X0,
n n 1€ES,

Ggr,k+1) _ Mi(r,k+1) - CZ_(T) + C’(T)7
D"FY —mo (G(T’kﬂ)) .

E.2 USEFUL LEMMA

Lemma 1. Forany X € X, we have
(X, Imo(X)) = —[| X[

Proof. From the definition of Imo(-), we have

X, Imo(X)) = i XY
(X, Imo (X)) YE{YEm/,\}mYHSl}( )
<_X’Y>

max
Ye{vex||y|<1}
= =l = Xl
= (X[l

Lemma 2. Foranyk > 0,R > 0 and o € (0, 1], we have

n 1
> k(1 —a)" <~ +k
r=0 a
Proof. We have
R
k
El-—a)fr< ——— .
;( VS TTA o

Then, using (1 — a)F < ek < - +1ak, we obtain the desired result.

Lemma 3. Forany A, B € X, we have
(A4, B) < [A[llB].-

Proof. We have

A
A,B) = ||A||{ —,B ) < ||A|[|B||x-
(4.8) = A { 47,8 < | AllB]

Lemma 4. Suppose that Assumption[I|holds. Then, it holds that for any XY € X,

Fi(X) < L0+ (VA(Y), X —¥)+ ¢ [X - Y.
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Proof. Using the Fundamental Theorem of Calculus, we have
1

f(X)=f() +/t:0 (VY +¢(X -Y)), X -Y)dt

1
= [(Y)+ (VY)Y - X) +/t:O (VIY +HX —-Y)) - Vf(Y), X - Y)dt

<SFY)+ (VY)Y - X) +/t:0 VY +1(X - Y)) = VA(Y)[.[|X - Y] dt

< FY) 1+ (VF(Y).Y - X) + /

Lt|X - Y| dt
0

L
=fY)+(VI(Y).Y = X)+ [ X - Y|,
where we use Lemma 3] and Assumption [I]for the first and second inequalities, respectively. O
E.3 MAIN PROOF
Lemma 5. Suppose that bothr = 1’ and k > k' hold, or r > v’ holds. Then, we have

HX(T*’“) _ xR < %((r — K +k—k)

Proof. From the update rule of X (rk) and X (’""k/), we have
- S 1
x k) T X L= x (k)
n + n Z ¢

1€ES,

k
— x4 (k")
=X+ 2> > D

€S, k''=1
— X("/) + n Z i D§T7k/,) + n Til Z i Dgr”,k’”),
" €S, k=1 " r'=r'i€S,. k''=1
X = x0Ty kz D,
" i€S,s k"'=1

Thus, we have

k r—1 K K
DI EREEED D D O ET DV IR

HXM) _ X(r/,m’ _

€S, k=1 =+ 14€8, k=1 $€8, k=K' +1
S
< ((r K +k— k),
n
where we use ||D§r’k) || = 1 for any r and k. O

Lemma 6. Suppose that both v = v’ and k > k' hold, or r > 1’ holds. Then, we have

HXi(r,k) _ Xi(rl’k,)H < (r—r' +2)Kn.

Proof. We have
HX_(TJC) _ X_(T,ak/)

< HXZ_(r,k) _ Xz'(T’O)H i HXZ_(T,O) B Xi(T/’O)H i HXZ_(W,;C/) _ Xi(T,’O)H

_ “X(T,k) _ x ™0

e xeo] x|
<l + k) + || X0 - x00|

Using Lemma|[5] we obtain the desired result. O
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Lemma 7. Suppose that Assumptionsand hold. Then, when r > 1, we have

2
+2LK<S) 7>

2n (rk+1) (r)
E HM A o
+= E ! !

Ef(X(r,k+l)) < Ef( rk) va (r k))

+2< >n]EHVf (r-LK-1)) _ ()

LS,
*27’1177.

*

2
+2LK <S) n?
* n

2 L/S S
+ Rill) Z HMZ-(O’]CH) — CZ-(O)H + = () n® +2 () pooN.
n ica *x 2 \n n

When r = 0, we have

EF(XOF) <BFXOP) - 2 v 7(xO0)
n

Proof. We have

Er,kf(X(T’kJrl))

—E,f [ X0+ 15 pib)
ch( +nz i

i€Sy

< f(X('r’k: 77E " Z <vf rk) (r k)> Ln rk Z HD(7 k+1)H

€S,

2
i)y M Z (k) a(nk41) k)N |, N Z (rk+1) (kD) LST
S f(X ) + nEr,k = <Vf(X ) Gz aDz’ > + nET;k 5 <G7, ’Di > + m

n k41 il LSn?
+E]E'r‘,kz <G§ )7D1( )>+77

< (rk)y . M H (rk)y _ (rk+1)
< XD+ IE,, Y | VAX ) - el o

€S, €S,

T
where we use Lemmal ||D(T k+1) || < 1, and the Cauchy-Schwarz inequality in the first, second,
and third inequalities, and G; and D) are defined in Appendix [E-I] Using Lemma(l]and the triangle
inequality, we have

- _ HG : X)) — kD

< —HVf(X

*

Then, it holds

LSn?
L Lsw?

Er,kf(X(T’k+1 ) < f(X(r ,k) va Tk)) N o

2n (r,k+1)
e Hv X0y — g
+ Bk f( ) —G;

1€S,

*

T2

When r > 1, we have

To = HVf(X(’"’k)) — MM Lo - e

*

< va(X(r,k)) _ Vf(X(r—l,K—l))H* n va(X(r—l,K—l)) _c™

+ HMi(r,k+1) . CZ(T)
*

<L HX(r,k) _ X(r71,K71)H 4 va(X(rq,Kq)) _cm
LSKn

4 HMi(r,k+1) _ Ci(r)

*

+va X(r 1,K— 1)) C(r)

+ HM’L(Tak"Fl) _ Cl(”)

)
*

where we use Lemma [3]in the last inequality.
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When r = 0, we have

7= [ r0x00) - M0E 00 e

*

< |[vAx©O) - vix -

)|+ |vrx©o)-c

<L HX(OJC) _ X(O,O)H + va(X(O,O)) —c!
LSKn

+ HMi(OJH_l) _ Ci(0>

*

C(O)

+ [vrx©0) ~ c©

*

Then, using the following inequality:

]EHVf(X(O’O))

<P o
2 |[vaxeo) - eV < po
zJ fi(x <
we obtain the desired result. O

Lemma 8. Suppose that Assumptionsandhold, CZ-(O) = MZ—(O’O) and C©) .= % Sy CZ-(O)

1 r— - T

Spcr (1 - Soz) Eozp\/ Ko?2 4+ 6LKn.
n

* n n

Proof. Let ¢;(r — 1) be the number of times that client ¢ has been sampled by round 7. We have

ci(r—1) K—1
Mi(T»O) _ (1 _ a)ci(rfl)KMi(QO) + o Z Z (1 i a)(ci(rfl)fr’)K+kVFi(Xi(T k )75: ke )
r=1 k'=0

To simplify the notation, we denote r;(r’) by the number of rounds that client i is sampled for the
r/-th time. Using this notation, we have

M_(T,O)
ci(r—1)K , ,
— (1 _ a)Ci(T’—l)KM_(O)O) 1 Z (1 _ a)ci(r—l)K—CIVFi(XFT,(r%-l) € 7K|— -l) 5 (" “ Kf%]))
c'=1

= (1= o) (VEX ) - v x(O))

ci(r—1)K

fa Y (1)K (VF(er R KR, (TR D)e Kr;'éw)_vf‘(x_(r'(mén,c’Kr;éﬂ)
c'=1
ci(r—1)K , ,
+(1-a) VX)) o Y (1) E xR D/~ LT5 D)
c'=1
.

Using a(1 — )™ = (1 — a)™ — (1 — a)™*!, we have

T — vfz(X,L(Tl(01(T_1))7K_1))
ci(r—1)K—-1

r o ! 41 a1 41
+ Y (1—a)tvK <va(X< (15 1),¢'~LT %) ) V(xR D K 1>))

r—1

+(1- a)ci(’l‘fl)K (Vfi(Xi(O”O)) _ Vfi(Xi(Ti(l)eO))) )
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Thus, we have
]E”M(r,o) (XKD H
7 fi( 7 ) .

< E(l _ a)ci(r—l)Kpa

ci(r—1)K

FoE| S (1 a)etoEe <VFi(X§T'([?<1)*C'K[“);ggr'“%”’c'f(f?])) _ Vfi(Xi(rl(”‘])’c/K(%)v

c'=1

+E ‘Vfi( X'.(Ti(ci(r—l)),K—l)) — Vi zrl.(r—l,K—l))
ci(r—=1)K—1 , e '_rrel Jorel 41 Tt
+E E (1705)01'(7"71)K7c vfi(Xi(r(f?]),C— [?]))*Vfi( i(r([ ), 1 (T—D)
c’'=1 X )

FEQ - ) 0|04 (X00) - v (x00)

Using Assumption[I] we have
E “M§r70) v x (r—1LK-1) H
0 —whx )|

<E(1l- oz)ci(r_l)Kpa +apV Ko?
T
ci(r—1)K-1
+LE ) (1 a)ulrmhEed

c'=1

g

x (5D ~L15]) _ X_(r/<r“;¢11),c'+1—1<v'$1w>H

Tz
+ LE(l o a)ci(rfl)K "X£0770) _ Xi(T'i(l)ao)H

T3
n LEHXi(ri(ci(r—l)),K—l) B Xi(T_LK_l)H .

T4

The quantity of ¢;(r — 1) is the number of rounds in which client ¢ is sampled, which follows the
binomial distribution.

r—1 ¢ r—1—c
.S S -1
nem o= (5) (-5) (L)
=0

o) (-2 ()

T2 <1 Ci(r;zl:j_l(l —a)(rm DR <n— <[6/; 11) T (@0)
_ nECi(ti_)f_l(l — ) (7“2* <[c’(r - 1)?{- "+ 1]> — ((C/(T - 1)[;(_ c + 1])) :

Ts
The quantity of 75 is the number of rounds from the time cline ¢ was sampled to the next sampling,
which follows a geometric distribution with expectation 5. Thus, we have

Kn
BST"
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Using Lemma[6] we have

* n

T: <E HXi(o,o) _ Xi(mu),o)

. ) Hx(fw) _ x (r(1),0)
*

where we use Lemma in the last inequality. The quantity of r;(1) is the round in which client ¢ is
sampled for the first time, which follows a geometric distribution. Thus, we have

T3 < Kn.

Using Lemma[6] we have
Ta=KnE(@r—1-—ri(c(r—1))+2)).

Since the quantity of 7;(c;(r — 1)) is the rounds in which client 7 is sampled for the last time, we have

S\ < S\"'5 _on
E(r—1—ri(c(r—1)=@r—-1)(1-— "1—-=] =<—.
et =00 (1-7) 2 (1-7) T
Thus, it holds that
4Kn
T < —g
By combining the above inequalities, we obtain the desired result. O

Lemma 9. Suppose that Assumptions|[l|and[2| holds. When r > 1, it holds that

1 , r—1
“EY HM}*””” — | <2a (5> pVEKo? + 9K Ly + <S> poo (1 - SO‘) ,
n ics, * n n

n

X« . n 0 0
where p := supx ¢y % and 0§ = L3, E|V(X?) - )2,

Then, when r = 0, we have

n

1
“EY HM}O”“H) . CZ.(O)H <a (S> pVEKo? + LKy + (S> po.
n 1€So * "

Proof. We have

k
M = (1= a) MY o YT (1 - )MV EX 6.

k=0
Since we have C\") = M we have
k ’ !
E Z "Mi(r,k+1) . Ci(r) ) Z Z(l — )bk <VFi(XZ_(r,k );fz(r,k )) _ Mi(r,0)>
*
i€S, ies, lle=0 x
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When r > 1, we have

E Z HMi(r,kH) iT < ok Z Z —K (VFi(Xi(r,k’); gi(r,k’)) . Vfi(Xi(r’k/))
€S, ies. |1m=o )
+aE Z Z )k (sz(X(Tk ) — vfi(Xi(rfl,Kfl))
€S, =0 .
+ aE Z Z a)k— K (sz(X(r 1,K— 1) Mi(r,o))
i€S, |lk'=0 .
<aE ) Z (VR 0) - v px))
€S, =0 .
+ aE Z Z k K’ (VfZ(X(Tk ) — Vfi(Xi(rfl’Kfl))
€S, =0 .
(r—1,K— 1)) A0
1€S, *

The first term is bounded from above as follows:

k
B (1—a) ¥ (VEX g - vAx )
k'=0 .
k 2
<\[E|| XS -t (VEXT ) - v ()
k'=0 X
k
k’'=0 *
< pVKo?,

where we used Jensen’s inequality in the first inequality. The second term is bounded as follows:

k
S (- (Vfi(Xi(“’“')) _ Vfi(XZ.(T*LK*l))

k’=0 N
k ’
< Y (- VAX) - v
k’=0 *
y (k) _ )
<Ly (Q—a)lt|xr) - x e H
k’=0
3LKn
<=,

where we use Lemma(6]in the last inequality. Then, using Lemma 8] we obtain the desired result
when r > 1.

23



Under review as a conference paper at ICLR 2026

When r = 0, we have

E Z HM(O k1) C(O)H =aE Z Z k K (VF (X(7 &) 75(7‘ K’ )) Mi(r,O))
€50 i€S, k=0 N
k
<aE Y |3 (- o) (VEX: ) - v(x ()
1€So I1k'=0 N
+QEZ Z (1—a)k~ K (vfl(X(()k)) V(X 00)))
i€So |lk/= .
+ oE k K’ Vfl(X(O 0)) o Mi(O,O)
Pl |

< aSpVKo? + LK Sy + SpE HVfi(Xi(O’O)) - Ci(O)HF

where we use Assumptions andand Ci(o) =M i(r,o) in the last inequality. Dividing both sides by
n, we obtain the desired result. O

Lemma 10. Suppose that Assumptionsandhold, Ci(o) = Mi(op) and CO) = L5 | C'Z-(O),

we have
r—1
pS [ac? 4nLn 6LKnn Sa
< P22 1-22) .
VTS Tas T T n

Proof. Let ¢;(r — 1) be the number of times that client ¢ has been sampled by round r. We denote
r; (") by the number of rounds that client 7 is sampled for the 7’-th time. Using this notation, we have

E va(X(r—l,K—l)) _cm

1 - ri(ci(r—1)),K)
C(T) _ M( i(ci( ), .
n 2 M

i=1
Then, we have
ci(r—1) K—1
r—1,K—1 i (r— 0,0 ci(r— r’ k) er' K
MR = (L) EMEY a3 3 (1) )
r'=1 k'=

= (1) (M - Vfl»(X(O’O)))

ci(r—1) K—1

T a Z Z (1 — ) (cr=D=r) K+ (VFi(Xi(r',k/);fir’,k') B vfi(Xi(r',k’))>
=1 k'=0
T1
ci(r—1) K—1 .,
+(1— a)ci(rfl)vai(X(O,O)) +a Z Z (1— a)(cz(rfl)fr')KJrkvfi(Xi(T ok )) )
=1 k'=0
T2
We can rewrite 7; and 75 as follows:
r—1 K ., ., L,
T =« Z Z Lies,, (1 — a)(cz‘(rfl)*r'le)ka’ (VFi(Xi(T ok )§§(T ik )) _ fo,(Xi(T ik ))> '

=0 k'=1
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c;i(r—1)K / | )
To = (1 — ) —DEgf(x00) | 4 Z (1- a)Ci(ril)KfclVfi(Xi(”([%])vc _K(ﬁ))
c'=1
e el )
ci(r—=1)K—1

/ (r o < P (TEELTY '] — KT
fa Y (1)K (Vf( (EDE=KTRD) g g e D 41K D))

c'=1
+ (1= @) VF (7 f(X00) = v f(x (D))
Thus, we have

E HM(rfl,Kfl) o vf(X(rfl,Kfl))

iX XO0:60) — V(X O))

Ts

S E(l _ t:‘7 r— 1)K

*

n r—1

+aE

i=1r'=0k'=1

ZZ Zﬂzesl (1= q)(Er=D=r'+D KK (VF( )0y g g (x k)))

Ta

*

1o (ei(r—1)),K—1
- ]EHV : X_(Tz(cz(T ))s ) _ iX(rfl,Kfl
b v ) VA )

Ts
n ci(r—1)K—1

i=1 /=1

71 o —K 14 Ti 41 o +1-K B
V(X (T e Hﬂ))_vfi(Xi( (I<==1 [“F% W))

*

Te

zn: _ cl(rlKva 0.0y V(X (1)0))

Tz

*

7—3 < E(l _ a)ci(r—l)Kpo_

The quantity of ¢;(r — 1) is the number of rounds in which client ¢ is sampled, which follows the
binomial distribution.

r—1 c r—1—c’
e S r—1
rewy - () (-2) (7))
c S r—1—c’ r—1
<WZ(1-Q o ) ()
n
K

zf]E Z Z Z (ci(r—1)—r'+1)K —k' (VF(X(T k) g(r k)) Vfi(X,»(T/’k/)))

r’'=0k'=11€S,./
*

pS o
S \sa-a-any
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73 E va X (ri(ci(r—1)),K—1) ) _ vfi(X(rfl,Kfl))

*

< LE HXZ-“(“(H))’K’” _ X(r_l,K_DH
< IE | X (00K _ g0 | g | xirtetr-0)0) _ xo-1x-n]

< Lo — 1) + EB(((r 1~ et — 1)) K+ K 1),

Since the quantity of rl(cz(r 1)) is the rounds in which client 4 is sarnpled for the last time, we have

Thus, we have

Ts <2LKn.
ci(r—1)K—1 , , , ,
T<IE Y (1—a) 0K [ (ORI KTRD | g Ol KT ‘
=1
R (ra(e) K41 e (ra(e)K)
_LEZ Z Jeilr=1)—¢ ) K~ k"ch K41 _ x (e &
=1 k'=
ci(r—1)
+LE Z (1— a)(ci(T—l)—C//)K+1 ”X(Ti(c’/_l),o) _ X&i@”),K—l)H
c’'=1 /
ci(r—1) K—2
< +LE Z Z (cl(v" 1)—c"YK—k
c’'=1 k'=
ci(r—1)—1
+ LnE Z a)(E=D=EDEAL (o 1) — () + 2)
c'=1
L?’] ci(r—1)—1
<21 L IhE 1 (ci(r—1)—c")YK+1 ; ") — ; iz 2) .
<demE 3 - (r(e” +1) = ri(") +2)

The quantity 7;(c” + 1) — r;(c"") follows the geometric distribution, which has the expectation of .
Using Lemma[2] we obtain

dnlLn  3nLKn
< .
<5 T3

Te < LE(1 — a)=0 =0 | X 00 = x| < Licy(ri(1) +2),
where we used Lemma|§| in the last inequality. The quantity of r;(1) is the round in which client  is
sampled for the first time, which follows a geometric distribution. Thus, we have

3InLK
T < T 1

O

Lemma 11. Suppose that Assumptlonslandlhold C Mi(o.,o) and C©) = DD Ci(o),
there exists n and « such that we have

R—-1K-1 % 1
e 2 2] <o () +<<S>QZ‘3”»"> o (e ()Y et ()
/)202KS % 2K2
+poo (LT()R’N?) + poo (( LTOR2 )
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Proof. Combining Lemmas|[7}[0]and [0 when » > 1, it holds

ESCXT0) < BAX00) - (2) |orx0n)

*

S\° [ac? 8Ly S
+2pn (n) a%—k 037 + 33LKn* + dapn (n) VKo?

S Sa\"!

EF(XOF) <BFXOD) - 1 v p(x00)

When r» = 0, we have

S S
+5LKn? + 2apn <n> VEKo?+ 4pn (n> 00.

Summing up the above two inequalities, we obtain

1 A (rk) ny ro S ac?  8Lnp /n
M;)kzzoEHVf(X ™) S(g) RK””p(ﬂ) T+7(§)+33LK(

*

Then, using the following hyperparameters
. arg 1 )
= min —
g SLRK K\ 33LR |’

() ot (2 (2

we obtain the desired result.

ol
—
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F PROOF OF THEOREM 3]

Lemma 12. Let G and —G'T) be the input and output ofAlgorithmwith a= %, b= —%, and

c= %. For any number of iterations T, we have

(G, —G'D) < —|Glly.

where p is defined as follows:

log (1 -(1- /{)1'5T>

p=1+ ;
log k
. 54
K = min ———— (> 0),
i 2
J i

and s; is the non-zero singular value of G.

Proof. Let the singular value decomposition of G be UL V. Then, the output —G”) can be written
as follows:

-G = _yuxMvy,

where X(T) is defined as follows:

=0 (o (o (i)

T'times
Since ¢(x) > x, we have
(0 5 it
T Gle

Using the above inequality, we have

G, -Gy = - <U2V, UE(T)V>

_ _;Zii (1 - (1 —EEZT))).

0<1—¢(x)=(1— x)Q(—§x3 - zﬁ + éx 1)< (1—a)'?

Thus, it holds that
1.57

1.57
1—2§?<<1—|3"> i ’
(Zj ij)

for any 1 < p < 2. Using the above inequality and the definition of p and x we get

(G,-GT)) < - (Z Efi)

1

p

Lemma 13. Suppose that Assumptionsand hold. Then, when r > 1, we have
g\ 2
+2LK () n?
P n

2 . A
+ g 3 HMZ'( k) o)
n cs

1€

B(XH) S EFXOH) - 1|9 £ )

+2 (i) nE HVf(X“*LK*U) —c™

trace
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where p is defined as follows:

log (1 -(1- /<;)1'5T>

log k

p=1+

)

. Sj,i,r.k
K= min — gk (>0),
JstsTs 2
Z]’ S5 i,k
and {s; 1. }; are non-zero singular values ofMi(r’kH) - Ci(r) +Ccm

When r = 0, we have

2
BAXOH) < B0 - 22 opx 0] wanr () 7
n p n

L[S\ , S
+ == )" +2( =] poon.
trace 2 n n

(2

2
4 g Z "Mi(o,k-i-l) _c®
no
1€So

Proof. We have
Er,kf(X(r’k+l))

=Eif (XW“) + Z > DY””)

1€ES,

T L T
< XD+ TE,, Y (VAHXTR), DI + 2” Eni ) |D{ren
€S, S,

Sp

T T T T LS 2
< f(X(rk: WE k Z <Vf rk) G'E ,k+1)7DZ( ,k+1)> I QEr,k Z <G§ ,k+1)7DZ( ,k+1)> I n
n

€S, 1€S, 2n
r r r LSn?
< (x4 1g 3 va(X(r,k)) _ G + 1B, <G£ k4D pf ,k+1)> o
n ics, trace n ics. 2n

T

where we use Lemma ||D§T’k+1) llsp < 1,and the Lemmain the first, second, and third inequalities.
Using Lemma([I2] the definition of p, and the triangle inequality, we have

<_ HGl(_r,k+1)
p
< —HVf(X(" ) p+“vf(x(7-,k>)_ggr,k+1> ,,
< —HVf(X< ) p+va(X(nk>>_G§nk+1> .

where we use the fact that p > 1 and || A||, < || A||uace for any A. Then, it holds

2n (rk) (r,k+1)
+ B Z va(X ) - G;

1ESy

LSn?
L LS

trace 2n ’

B FXE0) < £(x09) 2 g x|

P

T2
When r > 1, we have

o= [ SO0 M o

trace

< va(X(r,k)) C V(X LKD)y V(X -LE-Dy _ o)

n ‘ n HM_(r,kH) _c"

trace trace

I HMi(r,kﬂ) - Ci(r)

trace

<L HX(r,k) _ X(r71,K71)
LSKn

+ va(X(rq,Kq)) _cm

trace trace

+HVf x (r—1,K- 1)) c™

+ HMi(r,kJrl) _ CZ(T)

)
trace trace
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where we use Lemma [5]in the last inequality.

When r = 0, we have

e oSO e B g

trace

< [vrx o) - vrx o) e

+||vrxeo) - c©

trace trace trace

<L HX(OJC) _

+ [V r(x©0) -

i HMi(o,kH) _ Ci(o)

trace trace

< P20 |wrxe© 0>) c®

n HMi<o,k+1) —c©

trace trace

Then, using the following inequality:

2

<ty \/E |vrix©n - < po.
i=1

we obtain the desired result. O

Lemma 14. Suppose that Assumpttonslandlhold C Mi(o,o) and C©) = IS CZ»(O),
there exists 1 and « such that we have

R—-1K-1 % 1
RKTZQ,;)EHW x| SO((%) +<(s)2§£@> (LR (s)) + 2 (3)
P20 KS\ * sz
+pog <LT0RH2) + poo (( LT0R2 )

log (1 —(1- K)1'5T)
log k

E va(Xmm) _c©

Then, p is defined as follows:

i

p=1+

K= min ——ddrk (>0),

j ik 2
’ Z]’ SJ/ i,k
where {s; i r 1 }; are non-zero singular values ofMi(T’kH) — CZ-(T) +Cc.
Proof. Even if we solve the LMO approximately, the statements of Lemmas [9]and [T0|hold. Thus,

combining Lemmas [9] [T0] and [I3] and tuning the hyperparameters as in Lemma [TT] we obtain the
desired result. ]
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G HYPERPARAMETER TUNING STRATEGY

In our experiments, the hyperparameters were tuned individually for each combination of method,

dataset, and random seed.

Table 1: Hyperparameter tuning strategy for each method.

FedAvg Stepsize
FedAvg (Adam) Stepsize
SCAFFOLD Stepsize
SCAFFOLD (Adam) Stepsize

Stepsize of Muon
LocalMuon Stepsize of Momentum SGD
FedMuon Stepsize of Muon

Stepsize of Momentum SGD

Grid search over {0.1,0.01,0.001}
Grid search over {0.1,0.01,0.001}
Grid search over {0.1,0.01,0.001}
Grid search over {0.1,0.01,0.001}
Grid search over {0.001, 0.0001}
Grid search over {0.1,0.01}

Grid search over {0.001, 0.0001}
Grid search over {0.1,0.01}

In the following tables, we list the hyperparameters tuned by the grid search. The reported hyper-
parameters correspond to the values selected from two independent trials with different random

seeds.
Table 2: Hyperparameters tuned for FashionMNIST.
8 =10.0 =01
FedAvg {0.1,0.1} {0.1,0.1}
FedAvg (Adam) {0.1,0.1} {0.01,0.01}
SCAFFOLD {0.1,0.1} {0.1,0.1}
SCAFFOLD (Adam) {0.001,0.001} {0.001,0.001}
LocalMuon {(0.001,0.1), (0.001,0.01) } {(0.001,0.1), (0.001,0.1)}
FedMuon {(0.001,0.01), (0.001,0.01)}  {(0.001,0.01),(0.001,0.01)}
Table 3: Hyperparameters tuned for CIFAR-10.
FedAvg {0.1,0.1} {0.1,0.1}
FedAvg (Adam) {0.001,0.001} {0.01,0.001}
SCAFFOLD {0.1,0.1} {0.1,0.1}

SCAFFOLD (Adam) {0.001, 0.001}

LocalMuon {(0.001, 0.01), (0.001, 0.01)
{(0.001,0.01), (0.001, 0.01)

FedMuon

{0.001,0.001}
(0.001,0.01), (0.001, 0.01)}
(0.001,0.01), (0.001, 0.01)}
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