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Abstract

We propose a framework for learning maps between probability distributions that
broadly generalizes the time dynamics of flow and diffusion models. To enable
this, we generalize stochastic interpolants by replacing the scalar time variable with
vectors, matrices, or linear operators, allowing us to bridge probability distributions
across multiple dimensional spaces. This approach enables the construction of
versatile generative models capable of fulfilling multiple tasks without task-specific
training. Our operator-based interpolants not only provide a unifying theoreti-
cal perspective for existing generative models but also extend their capabilities.
Through numerical experiments, we demonstrate the zero-shot efficacy of our
method on conditional generation and inpainting, fine-tuning and posterior sam-
pling, and multiscale modeling, suggesting its potential as a generic task-agnostic
alternative to specialized models.

1 Introduction

Recent years have witnessed remarkable advances in generative modeling, with transport-based
approaches such as normalizing flows (Lipman et al., 2022; |Albergo and Vanden-Eijnden, 2022
Liu et al., [2022) and diffusion models (Ho et al.,|2020; |Song and Ermon, [2020; De Bortoli et al.,
2021; |[Albergo et al.l [2023a) emerging as state-of-the-art techniques across various application
domains (Rombach et al., 2022 | Mazé and Ahmed, 2023 |Alverson et al., 2024)). These methods
have revolutionized our ability to generate high-quality images, text, and other complex data types by
viewing these data as samples from an unknown target distribution and learning to transform simple
(e.g., noise) distributions into this target. This transformation is effectively achieved via transport of
the samples by a flow or diffusion process with a drift (or score) parameterized by neural networks
and estimated via simulation-free quadratic regression, enabling highly efficient training.

Despite their impressive performance, these generative frameworks face a fundamental limitation:
they are typically designed and trained for specific, predetermined tasks, with the generative objective
specified before training. For example, a diffusion model trained to generate images cannot easily be
repurposed to perform inpainting or other editing tasks without substantial modification or retraining.
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While some flexibility can be achieved through conditioning variables or prompting, these approaches
remain constrained within narrowly defined operational boundaries established beforehand. Recent
attempts at multitask generation using approximated guidance strategies (Chung et al.,|2023; Song
et al., 2022 'Wang et al.,[2024) have shown promise, but rely on uncontrolled approximations that
limit their theoretical guarantees and can lead to unpredictable results. These methods typically
operate within a predefined space of capabilities and lack the flexibility to adapt to novel tasks
without retraining, often requiring domain-specific architectural modifications or specialized training
procedures that further limit their versatility.

In this paper, we introduce a novel framework for training truly multi-task generative models based
on a generalized formulation of stochastic interpolants. Our key insight is to replace the scalar time
variable traditionally used in transport-based models with a linear operator. These operator-based
interpolants enable interpolation between random variables across multiple dimensional planes or
setups, providing a unified mathematical formulation that treats various generative tasks as different
ways of traversing the same underlying space, rather than as separate problems requiring distinct
models. This dramatically expands the space of possible tasks that a single model can perform.

Our main contributions include theoretical advances that establish a framework for multiple genera-
tive applications:

* We extend traditional scalar interpolation in dynamical generative models to higher-dimensional
structures, developing a unified mathematical formulation of operator-based interpolants that
treats various generative tasks as different ways of traversing the same underlying space. This
opens up fundamentally new ways of seeing how generative models can be structured to handle
multiple objectives simultaneously.

¢ We show how this framework enables generative models with continual self-supervision over a
wide purview of generative tasks, making possible: universal inpainting models that work with
arbitrary masks, multichannel data denoisers with operators in the Fourier domain, posterior
sampling with quadratic rewards, and test-time dynamical optimization with rewards and
interactive user feedback, all with one pretrained model.

* We demonstrate these various tools on image-infilling, data de-corruption, statistical physics
simulation, and dynamical robotic planning tasks across a number of datasets, showing that our
method matches or surpasses existing approaches without being specifically tied to any single
generative objective.

All common augmentations like text-conditioning and guidance can still be used just as before in
our setup. While our approach increases the complexity of the initial learning problem, we provide
arguments that this additional complexity can be addressed through scale. In essence, the “pretraining’
phase becomes more challenging, but the resulting model gains substantial flexibility and versatility
that compensates for the pretraining costs. That is, our approach can be seen as a way of amortizing
learning over a variety of tasks. This points toward a more general paradigm of universal generative
models that can be trained once and then applied to a variety of objectives, potentially reducing
computational and environmental costs associated with training separate models for each task.

i

1.1 Related works

Flow matching and diffusion models. Our approach extends the theoretical groundwork estab-
lished in flow matching with stochastic interpolant and rectified flows (Lipman et al., 2022} |Albergo
and Vanden-Eijnden| 2022} |Albergo et al.| [2023a; [Liu et al.,|2022) as well as the probability flow
formulations in diffusion models (Ho et al.,|2020; |Song et al.| 2020). which established techniques
for handling multiple target distributions simultaneously. Unlike data-dependent coupling approaches
(Albergo et al.l |2023b) that require constructing specific couplings for tasks like inpainting, our
method learns a general operator space that naturally accommodates such tasks without additional cou-
pling design. By introducing operator-valued interpolants, we enable a richer space of transformations
between distributions, unlocking a flexible framework for multiple generative tasks.

Inverse problems and inpainting Our framework offers a unified approach to inverse problems,
contrasting with traditional methods that require problem-specific variational optimization procedures
Pereyra et al.[(2015). Recent diffusion-based approaches |Chung et al.| (2023); [Song et al.| (2022);
Kawar et al.| (2022); Martin et al.| (2025) typically need guided sampling trajectories tailored to



each task. Similarly, methods using MCMC/SMC sampling (Coeurdoux et al.| (2024); [Sun et al.
(2024)), variational approximations Mardani et al.|(2023); |Alkan et al.[|(2023)), or optimization-driven
techniques [Wang et al.| (2024); [Daras et al.| (2022)) remain fundamentally task-specific. Our approach
encodes solution paths within the interpolant operator structure itself, enabling multiple inverse
problems to be addressed through appropriate operator path selection during inference—without
additional training. Our work can also be seen as a way to formalize methods that seek to clean data
corrupted in various ways Bansal et al.|(2022)

Multiscale and any-order generation Recent approaches to generative modeling have explored
hierarchical strategies through progressive refinement. Visual Autoregressive Modeling (Tian et al.,
2024) employs next-scale prediction, while Fractal Generative Models (Li et al., [2025) utilize self-
similar structures for multiscale representations. These methods typically constrain generation to
fixed paths established during training. In contrast, our framework decouples the training process
from generation trajectories, allowing flexible path selection at inference time. This is conceptually
related to optimizing generation order in discrete diffusion (Shi et al., |2025)) and token ordering
studies (Kim et al.;2025)), but provides greater flexibility by enabling post-training optimization and
dynamic, self-guided generation strategies that adapt based on intermediate results.

2 Theoretical framework

Imagine we want to create a single generative model capable of multiple tasks - sampling new
data, inpainting, denoising, and more. To achieve this, we need to expand beyond the traditional
“single path" between noise and data. In this section, we develop the theoretical foundations of
operator-based interpolants, which allow flexible navigation through a richer multidimensional space
and will enable multitask generative capabilities discussed in Section 3]

2.1 Operator-based interpolants

Suppose that we are given a couple of random variables (¢, 21) both taking values in a Hilbert space
H (for example R%) and drawn from a joint distribution y(dxg, d;). Our aim is to design a transport
between a broad class of distributions supported on H involving mixtures of xo and ;. We will do
so by generalizing the framework of stochastic interpolant.

Definition 2.1 (Operator-based interpolants). Let B(H) be a connected set of bounded linear
operators on H and let S C B(H) x B(H), also connected. Given any pair of linear operators
(, B) € S, the operator-based interpolant I (v, 3) is the stochastic process given by

I(a,ﬁ):axo—i—ﬂxl, (Q,B)GS, (l)
where (xo, 1) ~ p. We will denote by (i, g the probability distribution of I(«, 3).

If we picked e.g. & = (1 —¢t) Id and 3 = ¢ Id with ¢ € [0, 1], respectively, we would go back to a
standard stochastic interpolant, but we stress that the operator-based interpolants from Definition [2.1]
are much more general objects. For example, if % = R?, we could take B(H) to be a set of d x d
matrices with real entries — choices of «, [ tailored to several multitask generation will be discussed
in Section 3] The main objective of this paper is to show how to exploit this flexibility of design.
Specifically we will show that we can learn a model that can be used to transport samples of I(«, 3)
along any paths of («, 8) in S without having to choose any such path during training. This will
mean that transport problems in a broad class associated to a variety of tasks, including inpainting
and block generation of any order, fine-tuning, etc. will be pretrained into this model.

2.2 Multipurpose drifts and score

To proceed, we introduce two drifts, which are functions of S x H taking value in H:
Definition 2.2 (Multipurpose drift). The drifts 19,71 : S X H — H are given by
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where E[ - |I(a, B) = x] denotes expectation over the coupling (zo,x1) ~ 1 conditioned on the
event I(a, B) = .

Using the L? characterization of the conditional expectation, these drifts can be estimated via solution
of a tractable optimization problem with an objective function involving an expectation:

Lemma 2.3 (Drift objective). Let v(da, d) be a probability distribution whose support is S. Then

the drifts no 1 (., 8, ) in Deﬁnitioncan be characterized globally for all («, 8) € S and all
x € supp(lia,g) via solution of the optimization problems

o = argminIEl (a0, B)~v [HﬁO(aa 53 I(Oé, B)) - mOHZ:Ia (3)
7o (zo,z1)~p
= argAminE (e,B)~v I:H’fh (Oé, ﬁa I(O{, ﬁ)) — 1 HZ] ) (4)
n (zo,21)~p
where || - || denotes the norm in H.

This lemma is proven in Appendix|A] Below we will use (3) and (@) to learn 7)g,; over a rich parametric
class made of deep neural networks. Note that the drifts 7y and 7; are not linearly independent since
the definition of I(«, 8) in (9) together with the equality x = E[I(«, 8)|I(a, §) = x] imply that
x:ano(avﬂvx)+ﬁnl(a7ﬁv'r)' (5)
Therefore we can obtain 7 from 7 if « is invertible and 7; from 7 if 3 is invertible. Note also

that, when x is Gaussian and x¢ L x1, 79 is related to the score of the distribution of the stochastic
interpolant:

Lemma 2.4 (Score). Assume that H = R? and that the probability distribution ta,p Of the
stochastic interpolant I («, 8) is absolutely continuous with respect to the Lebesgue measure with
density pe.p(z). Assume also that v ~ N(0,1d) and xy L x1. Then the score s, g(x) =
V log pa,p(x) is related to the drift no(c, 8, x) via

no(e, B, ) = —asa,p(). (©)

This lemma is proven in Appendix [A]

2.3 Transport with flows and diffusions

We can now state the main theoretical results of this paper: if we are able to sample the stochastic
interpolant I («ay, 5p) at a specific value («g, o) € S, then we can produce sample of I(ay, ;) along
any curve (oy, 3t) € S by solving either a probability flow ODE or an SDE, assuming we have
estimated the drifts 79 1 («, 5, ) from Deﬁnition along this curve:

Proposition 2.5 (Probability flow). Let (cv, B¢)icjo,1) be any one-parameter family of operators

(o, By) € S. Assume that o, By are differentiable for all t € [0, 1]. Then, for all t € [0, 1], the law
of I(a, Bt) is the same as the law of the solution X; to

X; = cunolas, Be, X¢) + Bem (o, Br, X, X, 2 I(ov, Bo)- (7

This proposition is proven in Appendix [A] Similarly, for generation with an SDE, we have:

Proposition 2.6 (Diffusion). Assume that H = R? and the probability distribution ta,s Of the
stochastic interpolant I(«, ) is absolutely continuous with respect to the Lebesgue measure.
Assume also that, in I(«, ), xo is Gaussian and xo L 1. Then, under the same conditions as in
Proposition[2.5] if o is invertible, for all t € [0,1] and any e; > 0, the law of I(c, B;) is the same

as the law of the solution X; to
€ . — € 2 € e d
dX§ = (& —eray ) no(ow, Be, X5 )dt + Bem (o, Be, X5 )dt ++/2e,dWy,  X§ = I(w, Bo)- (8)
where W, is a Wiener process in R?.

This proposition is also proven in Appendix [A] Note that the SDE (8) reduces to the ODE (7) if we
set ¢, = 0. Note that if oy is positive-definite we can use & = e;a; ! as new diffusion coefficient,

which set the noise term in (8] to v/ 26tat1 / ®dW,; this allows to extend this SDE to paths along which
we can have a; = 0.



Figure 1: Multi-task, self-supervised sampling:
Schematic representation of various sub-tasks that are
captured by the minimizer of our learning objective
using the Hadamard-product interpolant in (@). A
generative task is chosen in a zero-shot manner by
specifying « as a function of time after training. This
o serves as a continual self-supervision of what has
been unmasked vs. what remains. Top: a; is chosen
to generate pixels in an autoregressive fashion. Mid-
dle: «; is chosen to sample along a fractal morton
order. Bottom: a; can be chosen to do zero-shot in-
painting.

3 Multitask generation

In this section we discuss how to use the theoretical framework introduced in Section [2]to perform
multiple generative tasks without having to doing any retraining.

3.1 Self-supervised generation and inpainting

Inpainting—the task of filling in missing parts of an image—traditionally requires specialized training
for each possible mask configuration. Our operator-based framework enables a fundamentally
different approach: a single model that can perform inpainting with any arbitrary mask, chosen
at inference time, or can generate samples from scratch in an arbitrary ordering of the generation.
This includes standard generation of all dimensions at once, autoregressive generation dimension
by dimension, blockwise fractal generation, and so forth. In particular, we may want to construct a
generative model that fills in missing entries from a sample z; € R? drawn from a data distribution
1. We would like this model to be universal, in the sense that it can be used regardless of which
entries are missing; their number and position can be arbitrary and changed post-training, allowing
for flexible inpainting and editing (see Figure ] for an illustration). This approach creates a natural
self-supervision mechanism, as the model continuously tracks which parts have been generated and
which remain to be filled.

To perform this task, assume that z; is drawn from the data distribution y; of interest and g drawn
independently from IV (0, 1d), so that u = N (0,1d) X w1, set 3 = 1 — « in the operator interpolant (T),
and assume that « is a diagonal matrix. With a slight abuse of notations we can then identify the
diagonal elements of the matrix o with a vector v € R? and write (T)) as

IHa)=a®xo+ (1 —a) ©x, )
where © denotes the Hadamard (i.e. entrywise) product. The drift to learn in this case is
n(e,z) =E[zg —21|la®zo + (1 — a) © 21 = 2] (10)

for o € [0,1]%, and this learning can be done via solution of

mﬁin Eev0,11% (7, I(a®zo + (1 —a) ®21) + 21 — 20)||7], (11)
zo~N(0,Id)
T~V
Denoting z1 = (2}, 22, ..., z¢), suppose that we observe z¢ for the entries withi € o C {1,...,d}
and would like to infer the missing entries with i € 0¢ = {1,...,d} \ 0. To perform this inpainting

we can use the probability flow ODE (7)) with a path o such that o = 0ifi € o and o = 1 — ¢ if
1 € o°. Note that this can be done for any choice of o without retraining.

3.2 Multichannel denoising

Suppose that By, Bs, ... B, are deterministic corruption operators that can be applied to the data.
For example B; could be a high-pass filter, B> a motion blur, etc. and they could be defined primarily
in the Fourier representation of the data. Similarly, if zo ~ N(0,1d), let Ay, As, ... A,, be operators



Figure 2: Multichannel denoising: Possible in-
terpolations fulfilled by various choices of opera-
tors in (T2). We present two such examples in the
form of Gaussian and motion blurring, realized

that give some structure to this noise (e.g. some spatial correlation over the domain of the data). Set

Ay = By = Id and take
a=) adi,  B=) bib; (12)
=0 =0

where a;, b; are nonegative scalars each taking values in some range that includes 0 and by = 1. With
this choice we can find path (av, B¢)¢co,1) that bridges data z; ~ y corrupted in any possible channel
as Y v a; Az + Y i b B;xy for some choice of (a1, as, ..., b1, b, . ..) back to the clean data
via a path that bridges this choice of parameters to by = 1l and ag = a; ... = by = ... = 0. See
Figure 2] for an illustration of two possible corruption schemes.

3.3 Fine-tuning and posterior sampling

Suppose that we are given data from a distribution 4 (dx), and that we would like to generate samples
from i} (dx) = Z~'e"®) yy (dx) where 7 : H — R is a reward function and Z = I @)y (dz) is
a normalization function, which is unknown to us but we assume finite — in the context of Bayesian
inference, p; plays the role of prior distribution, 7 is the likelihood, and p7 is the posterior distribution.
We will assume that the reward 7 is a quadratic function, i.e.

r(x) = 3(x, Az) + (b, x) (13)

where A is a definite negative bilinear operator on H, b € H, and (-, -) denotes the inner product on
. For simplicity we also assume that 7 = R?: the general case can be treated similarly.

In this context, assume that we have learned the drifts 79 ; associated with the interpolant
I(a, B) = azg + Py, 29~ N(0,Id), z1 ~p1, zLla (14)

so that we can generate samples from the prior distribution. Our next result shows that this gives us
access to the drifts 7 ; associated with the interpolant

I.(a, B) = axg + Bafi, xo ~ N(0,1d), af ~puf, xoLlaf (15)

involving data «' from the posterior distribution.
Proposition 3.1. Let

770(04’67x>:E[x0|‘[(aa6):x]a 771(04,5,53):E[xlu(a,ﬁ):x]y (16)
be the drifts associated with the interpolant (14) and
776(@7/6,1’) :E[$0|I7‘(au6) :x]a 77{(%@@ :]EI:.T?NIT(OZ,ﬁ) :.T], (17)
be the drifts associated with the interpolant (13). If a and (3 are invertible, then
o(a, B,x) = o' BB tarno(ar, Br, xr) + o (x — BB, M ar) (13)
n;<a7ﬁ7l‘) = 771<ar7/6r,$r) (19)
as long as we can find a pair (o, B, that satisfies
BrozTar'pr=pTaTa™f— A (20)



and x, is given by
= arazﬁ;T (BTa_Ta_lx + b) . 21

This proposition is proven in Appendix[A]as a corollary of Proposition[A.T]that relates the probability
distribution of I, to that of I. Proposition [3.T|offers a way to sample the posterior distribution without
retraining, by using the drifts (I8) and (I9) in the ODE (7) or the SDE (8).

3.4 Inference adaption

Suppose that we have learned the drifts 79, in Definition 2.2]and wish to transport samples along
a path (o, 8;) with fixed end points. We can leverage the flexibility of our formulation to perform
inference adaptation, that is, optimize the path («, 8;) used during generation to achieve specific
objectives, such as minimizing computational cost, maximizing sample quality, or satisfying user
constraints. This can be done in two ways: (1) offline optimization, where we pre-compute optimal
paths for different scenarios using objectives like Wasserstein length minimization, and (2) online
adaptation, where paths are dynamically adjusted during generation based on intermediate results or
user feedback.

In the case of offline optimization, we could for example optimize the Wasserstein length of the path.
That is, if we want to bridge the distributions fiq, g, of I(ao, Bo) and piq, g, of I(aq, f1) via e, 8,
with (v, B¢) € S for all ¢ € [0, 1] then the path that minimizes the Wasserstein length of the bridge
distribution (i3, solves

1
(m}an) / E[llceenooe, Be, I(ove, Be)) + Bem (o, Be, I(aw, By))|1*] dt (22)
at,Pt)t JO

where the minimization is performed over paths (av, 3:): = (v, Bt)¢ejo,1) such that (ay, B¢) € S for
all t € [0, 1] with their end points (av, o) and (a1, B1) prescribed and fixed.

Algorithm 1: Multitask learner

input: Samples (zo, x1) ~ p; choice of distribution v(da, d) and associated sampler.
repeat
Draw batch (z}), x}, o, Bi) M, ~ pu x v.
Compute I; = a;zl + Bizt.
Compute L = 5 3711, [lto(s, B, Ti) = b 1> + [l (x5, 1) = |
Take a gradient step on Lto update 7o and 7); .
until converged,
output: Drifts 7y and 7.

Algorithm 2: Multitask generator

input: Drifts 7jo, 7)1 ; choice of path (ay 6t)te[0,1] tailored to the generation task; data
I(cv, fo) = g + Boxy; diffusion coefficient €; > 0; time step h = 1/K with K € N.
initialize: X5 = I(v, fo);
fork=0,..., K —1do
set 7§ = Ao (Qn, Brns Xin)s AF = (ks Bons Xfp), and 25 ~ N(0,1d)
update Xli—&-lk‘ = Xl:h + h(dkk — Ekha];kl)ﬁg + hﬂkhﬁlf + V2€rnh zg,
end

output: X¢ 4 I(aq, B1) (approximately)

4 Algorithmic aspects

The algorithmic aspects of our framework can be summarized in a few key steps. First, we define a
connected set S of («, /3) such that the ensemble of different tasks we will want to perform correspond



to getting samples of I(«, 3) at some value of (v, Bp) € S and generating from them new data at
another value of (aq, 81) € S. Second, we specify a measure v on S for the learning of the drifts
1o and 1y defined in (2). Third, we learn these drifts via minimization of the objectives in (3) and
(@), using the procedure outlined in Algorithm[I] Note that we can possibly simplify this algorithm,
learning only one of the two drifts and obtaining the other through the relation (3)). Finally, given
any pairs (ao, o), (a1, £1) € S, we use a path (v, B¢)¢ef0,1] With ay, By € S forall ¢ € [0,1] and
integrate the SDE (8)) (or possibly the ODE (7)) if we set ¢; = 0) to perform the generation, as outlined
in Algorithm 2] Note that this path could also be adapted on-the-fly during inference, using some
feedback about the solution of the SDE.

S Numerical experiments

Below we provide numerical realization of some of the various objectives that can be fulfilled with
the multitask objective. Details of the experimental setup can be found in Appendix

5.1 Multitask inpainting and sequential generation

We evaluate our method on three datasets: MNIST, with images of size 28 x 28, CelebA, resized to
128 x 128, and of Animal FacesHQ focused on cat class, with images resized to 256 x 256. Details
of the experimental setup are standard and can be found in Appendix [B] In these experiments, we use
the Hadamard interpolant (9).

MNIST. We demonstrate the versatility of our operator-based interpolant framework through in-
painting and sequential generation tasks on MNIST. The results are shown Figure [3] where all the
generated images come from the same model without any retraining.

For inpainting (left panels), we replace masked regions with Gaussian noise (shown as pink for
clarity), then generate only these regions while preserving unmasked pixels. This is achieved by
setting the entries of o to 1 — ¢ for masked pixels and 0 for unmasked ones. To preserve unmasked
pixels, we apply a secondary mask setting 7(«, x) to zero at these positions.

Sequential generation (right panels) reformulates image creation as progressive inpainting. Starting
with pure Gaussian noise, we generate the image block-by-block by successively updating the operator
masks. Unlike single-pass inpainting, this requires multiple forward passes—one per block. For each
pass, we apply a = 1 — ¢ only to pixels in the current generation block, maintaining appropriate
values for previously generated and remaining noise regions.

CelebA and AFHQ-Cat. We present benchmark results for all methods across various image
restoration tasks, evaluating the average peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) on 100 test images from each dataset: AFHQ-Cat (256 x 256) and CelebA (128 x 128).
To assess the performance of our methodology, we employed two types of masking: square masks
of sizes 40 x 40 and 80 x 80 with added Gaussian noise of standard deviation 0.05, and random
masks covering 70% of image pixels with Gaussian noise of standard deviation 0.01. We benchmark
our method against four state-of-the-art interpolant-based restoration methods: PnP-Flow |Martin
et al.| (2025)), Flow-Priors Zhang et al.|(2024), D-Flow |Ben-Hamu et al.|(2024), OT-ODE |[Pokle et al.
(2024).

As shown in Table [1} our method consistently ranks either first or second in both reconstruction
metrics across all tasks and datasets (with all values except the last row taken from Martin et al.
(2025)). Regarding visual quality (Fig. ), our method generates realistic, artifact-free images, albeit
with slight over-smoothing at times.

5.2 Posterior sampling in the ¢*-model

We apply our approach in the context of the ¢* model in d = 2 spacetime dimensions, a statistical
lattice field theory where field configurations ¢ € RL*L represent the lattice state (L denotes
spatiotemporal extent)—for details see Appendix[B.2} This model poses sampling challenges due
to its phase transition from disorder to full order, during which neighboring sites develop strong
correlations in sign and magnitude |Vierhaus| (2010); |Albergo et al.|(2019).



Table 1: PSNR and SSIM metrics for image inpainting methods on CelebA and AFHQ-Cat datasets.

CelebA AFHQ-Cat
Method
Random Block Random Block
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
_ Degraded 11.82 0.197 22.12 0.742 13.35 0.234 21.50 0.744

Original  Corrupted Generated Generation sequence

“HOMA © EER
HBEE | EEH

Figure 3: Left: In-painting on MNIST using various corruptions. Right: Image generation in arbitrary orders,
starting from the same initial noise, with examples showing autoregressive, block-wise, and column-wise.

The ¢* model is specified by the following probability distribution

plde) = 2~ e Pdg (23)
where Z = fR 1x1 € F(@dg is a normalization constant and F(¢) is an energy function defined as
1 1 1
B(6) = 3x Y 16(a) — o) + 55 Y 6la)® + 17D lo(@)l, 24
a~b a a
where a,b € [0,. .., L — 1]? denote the discrete positions on a 2-dimensional lattice of size L x L,

a ~ b denotes neighboring sites on the lattice, and we assume periodic boundary conditions; x > 0
, k& € Rand v > 0 are parameters. We perform MCMC simulations to generate configuration in a
parameter range close to the phase transition. We use these data to learn a stochastic interpolant of
the form () which allows us to perform unconditional generation of new field configurations as well
arbitrary inpainting (conditional generation given partially observed configurations), as reported in
Appendix [B.2] It also allows us to test the formalism of Section [3.3]and perform sampling of the
posterior distribution defined by adding a applied field i € R to the energy, i.e. using

E.(¢) = E(¢) —=h Y _ d(a). (25)

Original Corrupted Generated

Original Corrupted Generated

Block imp

AFHQ-Cat CelebA

Figure 4: Inpainting using various masks left panels: AFHQ-Cat (256 x 256). Right panels: CelebA
(128 x 128). Fixing block and random corruptions are scored against related works in Table [I] showing
competitive or superior performance in all metrics.



True (MCMC) Generated (interpolant)

Histogram of magnetization
M(@) = (1IN) ., p(a)

True data
Gen data

True posterior
Gen posterior

Figure 5: Simulating a lattice ¢* theory. Top left: L = 32 x L = 32 lattice configurations at the phase
transition. Bottom left: lattice examples with drift parameter h = 0.02. Top middle: Generated lattice examples
at phase transition. Bottom middle: generated lattice examples with field A = 0.02. Right: magnetization of
2000 lattice configurations.

The additional term plays the role of a reward. The results of the generation based on Proposition 3.1]
are shown on Figure[5] which indicate that our approach permits to valid sample configurations (as
verified by their magnetization) of the posterior without retraining.

5.3 Planning and decision making in a maze

This section applies our framework to shortest path planning in maze environments, drawing from
ner et al| (2022) and [Chen et al| (2024). Using the Hadamard product interpolant (9), we can impose
that the paths pass through arbitrary locations in the maze (by setting o; = 0 at these locations),
reformulating planning as a zero-shot inpainting problem. Unlike traditional reinforcement learning
approaches that generate paths sequentially through Markov decision processes, our method therefore
produces entire trajectories simultaneously. It also avoid additional guiding terms like Monte Carlo

guidance used in Diffusion Forcing (2024).

For training, we use paths of length 300 randomly extracted from the trajectory of length 2,000,000
from [Chen et al.| (2024). For simplicity, we subsample these paths every six points, creating sparse
paths of length 50, from which we can recover paths of length 300 through linear interpolation
between consecutive points. At inference, we perform zero-shot generation between any two points in
the maze by enforcing that the trajectory passes through these points: the length of the path between
these locations can be varied by pinning the first point by setting o; = 0, and the second point
by setting o; = 0 with a value of ¢ € [2,50] that can be adjusted (see Appendix for details).
Typical results are shown in Fig.[6] In terms of quality assessment, we check that the generated
trajectories remain within allowed maze regions: all the 10,000 paths we generated between randomly
chosen point pairs avoided the forbidden areas, demonstrating robust performance. More numerical
experiments in Appendix [B.3]demonstrate that with a similar strategy, one can impose the pathway to
take detour at will, even if it implies generating a longer path.

I B I'n
e o e
‘N n n

Figure 6: One-shot generation of pathways between two arbitrary points in the maze. The path length is
automatically tuned via a simple heuristic, see discussion in Appendix

end

start
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A Proofs

Definition 2.2 (Multipurpose drift). The drifts ng,n1 : S x H — H are given by
ﬁo(@,ﬂ,.f):E[Io‘[(a,ﬂ):I], 771(04»5717):]E[xlu(avﬂ):l"]» (2)

where E| - |I(a, B) = x] denotes expectation over the coupling (xq,x1) ~ p conditioned on the
event I(a, 8) = .

Lemma 2.3 (Drift objective). Let v(da, df3) be a probability distribution whose support is S. Then
the drifts no1(c, 8, x) in Definition can be characterized globally for all (o, 3) € S and all
x € supp(pa,s) via solution of the optimization problems

No = argminIE (a0, B)~v [HﬁO(aa 5; I(OZ, B)) - mOHZ]a 3)
Mo (xo,z1)~p
m = argAminE (e,B)~v I:H,fh (Oé, 6) I(O{, ﬁ)) — 1 HQ] ) (4)
n (zo,1)~p
where || - || denotes the norm in H.

Proof. The lemma is a simple consequence of the L? characterization of the conditional expectation
as least-squares-best predictor, see e.g. Section 9.3 in|Williams| (1991). O

Lemma 2.4 (Score). Assume that H = R? and that the probability distribution la,g Of the stochastic
interpolant I(«, 3) is absolutely continuous with respect to the Lebesgue measure with density
Pa. (). Assume also that xo ~ N(0,1d) and xo L 1. Then the score sq g(x) = Vlog pa p(x) is
related to the drift no(a, 8, x) via

7]0(0575733) = —OLS(X”[;(I). (6)

Proof. The lemma follows from Stein’s lemma (aka Gaussian integration by parts formula) that
asserts that
ElzolI(a, B, z) = 2] = —asq,p(x) (26)

as well as the definition of 7 («, 8, x) in (16). O

Proposition 2.5 (Probability flow). Let (a, Bt)ic(o,1) be any one-parameter family of operators
(o, Bt) € S. Assume that «y, By are differentiable for all t € [0,1]. Then, for all t € [0, 1], the law
of I(ay, By) is the same as the law of the solution X to

. . : d
Xy = duno(ou, Be, Xi) + Bem (o, Be, Xi), Xo = I(0, Bo)- 7
Proof. From the framework of standard stochastic interpolants|Albergo and Vanden-Eijnden| (2022);
Albergo et al|(2023a), we know that the law of I; = I (o, B;) is the same for all ¢ € [0, 1] as the law
of X4, i.e. the solution to the probability flow ODE

. d
Xe=b(Xe),  Xemo < Lo, @7
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where ]

By the chain rule ft = a9 + thl so that
be(z) = &Blzo| It = 2] + &E[w1|I; = 2] = cuno(aw, Be, x) + Bem (aw, Br, ). (29)

where 7)1 are the drifts defined in (T6). This means that (27) is (7). O
Proposition 2.6 (Diffusion). Assume that H = R? and the probability distribution ta,p Of the
stochastic interpolant I (v, B) is absolutely continuous with respect to the Lebesgue measure. Assume
also that, in I(«, 8), xq is Gaussian and xog L x1. Then, under the same conditions as in Proposi-

lion if ay is invertible, for all t € [0, 1] and any €; > 0, the law of I(ay, B¢) is the same as the
law of the solution X{ to

dX; = (é — Gta;l)no(ataﬁta X§)dt + By (o, By, XE)dt + V2e,dWy, X = I(c, Bo). (8)

where Wy is a Wiener process in RY.

Proof. From the framework of standard stochastic interpolants|Albergo and Vanden-Eijnden| (2022);
Albergo et al.[(2023a)), we know that the law of the solution X to the probability flow ODE (]7_7[) is
the same for all ¢ € [0, 1] as the law of X solution to to SDE

AXE = by(X,)dt + ep50(XE)dt + v 2edW,,  Xo, 2 Iho, (30)

where s;(z) is the score of the probability density function of I; = I(ay, ). Since si(z) =
Say.p, (x), from Lemma 2.4} we have

si(w) = —oy Mno(au, B, @) 31)
If we insert this expression in (30) and use ([29), we see that this SDE reduces to (8). O
Proposition 3.1. Let
no(a, B, x) zE[on(a,ﬁ) zx], m(a, B, x) zE[x1|I(a,ﬁ) zx}, (16)
be the drifts associated with the interpolant (14) and
(e, B,2) = Blwo| I, ) = 2], ni(e, B,2) = E[2i| [ (e, B) = 2], a7
be the drifts associated with the interpolant (13). If o and 3 are invertible, then
(e, B,x) = o™ BB o (o, Bry 20) + 0 (w — BB ) (18)
m(a, B,x) = m(ew, Br, xr) (19)
as long as we can find a pair (o, B,.) that satisfies
BraTa g, =pTaTalp-A (20)
and x, is given by
z, = ayal BT (ﬁTochflx + b) . 2D

We will prove this proposition as a corollary of:

Proposition A.1 (Posterior distributions). Let pq, 3 and py, 5 be the probability distributions of the

stochastic interpolants defined in (14) and (13), respectively. Assume that o and 3 are invertible,
that the equations @0) for «,, 3, in Proposition[3.1|have a solution, and that x, is given by (Z1).
Then these distributions are related, up to a constant independent of x and x,, as

g 5(dz) = |ow|a| TPy g (day), (32)
where

R(a, B,3) = 3oy ae > — Lo 2. (33)
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Proof. By definition of the probability distribution u7, 5(dx) of I,.(a, (), given any integrable and
bounded test function ¢ : R — R we have

| oo () = Bo(7, (. )

(34)
- / d(axo + ﬂxl)(2ﬂ)*d/2e*%‘zo‘zdzoer(zl)ul(dazl)
Rd xRd

If instead of z(y we use as new integration variable * = ax + [x1, this becomes
/ (@)l () = o] ! / d(a)(2m) P30T I gy (dy). (35)
R ' Rd xRd

Similarly, for the probability distribution p1o g(dx) of I(c, 8), we have
— - —Lla7 (z—Bz1)|?
/Rd O(@)pta(dr) = o] ! /R _ Ha)em T temsle i e (dey) - (6)
ax

If in this equation we replace a by «., 8 by S, = by z,., and ¢(x) by ¢(z)e(*5*)  and multiply
both side by |a..|/| | it becomes:

arlla] ™ [ ola)e™ 5 s )
: (37)
1 —1 2
= |a|71/ P(x)ef B2 (o) =23l @=Bra) " gy 11 (day).
R4 xR4

We can now require that the right hand side of (37) be the same as at the right hand-side of (33) (so
that, p17, 5(dz) = |ov| la|~tefi@B@) . 5 (da,.)), we arrive at the requirement that

1
*<$1,A$1>—|—<b,1‘1>, (38)

1 1
— 5l @ = Bren)? + o, B,2) = — 5o~ = A + 5

where we used r(z) = 1(x, Az) + (b, z). Since (38) must hold for all z;, we can expand both sides
of this equation, and equate the coefficient of order 2, 1 and 0 in z;. They are completely equivalent
to (20), 1), and (33), respectively. So as long as we can find solutions to 20), (32) holds. [

Proof of Proposition[3.1] By definition of the conditional expectation, we have

Jia 3316_%‘ail(m_’gml)ﬁﬂl(dxl)
Jaa €710 @By (day)
Jpa wrem 30T @B er@n) yy (day )
Joa e B0 @B er(en) g (dary)

nl(aaﬁa )

39)

ni(a, B x) = (40)

If in the first equality we replace « by ., 8 by S, and x by z,., and assume that «,., 3,., and
satisfy (38), by construction we obtain that (I9) holds. To get (I8), use (I9) as well as relation (3]
twice to deduce

ng(a7ﬁa$):a 1(x—ﬁ77{x aaﬁ))
— o1 _
=« 1(3j 6771 x’raa’r‘)ﬁ’l‘)) (41)
=« (-I - 66 ( - aT’rIO(l‘Ty Qr, Br))
= a_lﬁﬁ arUO(ajrv Qr, 6r> +a ( - Bﬁr_lxr)
O

B Experimental details

Details for the experiments in Section [5]are provided here.
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Figure 7: ¢*-model: Inpainting of three different configurations.

B.1 Multitask inpainting and sequential generation

For all image generation experiments, the U-Net architecture originally proposed in (2020)
is used. The specification of architecture hyperparameters as well as training hyperparameters are
given in Table[2] Training was done for 200 epochs on batches comprised of 30 draws from the target,
and 50 time slices. The objectives given in[3]and @] were optimized using the Adam optimizer. The
learning rate was set to .0001 and was dropped by a factor of 2 every 1500 iterations of training. To
integrate the ODE/SDE when drawing samples, we used a simple Euler integrator.

In order to progressively explore the space of the hypercube of « and /3, we first learn a model in the
diagonal of the hypercube, i.e where all entries of « are all the same value. We then fine-tune the first
model for matrices v uniformly distributed in [0, 1]¢. We also fine-tune the first model for matrices
«; decomposed by blocks of 4 x 4 where entries of each blocks contains the same values in [0, 1]%.

MNIST o CelebA  AFHQ-Cat
Dimension 28%x28  32x32  128x128  256x256
# Training point 60,000 100,000 190,000 5,000
Batch Size 50 100 128 64
Training Steps 4x10°5  2x10° 4 x10° 4 x 10°
Attention Resolution 64 64 64 64
Learning Rate (LR) 0.0002 0.0002 0.0001 0.0001
LR decay (1k epochs)  0.995 0.995 0.995 0.995
U-Net dim mult [1,2,2,2] [1,2,2,2] [1,2,4,8] [1,2,4,8]
Learned t embedding Yes Yes Yes Yes
# GPUs 1 1 4 4

Table 2: Hyperparameters and architecture for MNIST, ¢* and maze datasets.
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B.2 Details about the ¢* Model

We define the discrete Fourier transform as

(]B(k/’) — L—d/2 Ze2iﬂ'k~a/L¢(a) PN ¢(G) — L—d/2 Z6—21'71-147~a/L<l7)(k)7 (42)

3
where a,k € [0, ..., L — 1]¢, we can write the energy as E(¢) = Eo(¢) + U(¢) with

Eo(¢) = Eo(¢) = %Z M) (k)P M(k) =2a (d — > cos(2mk - é/L)) + By, (43)
_ :

€

where é denotes the d basis vectors on the lattice and Sy > 0 is an adjustable parameter; and

U(6) = 55— o) 3 6@ + 173 lo@)*
a a 4 (44)

— ()= 25— r0) L 1B+ 17
k a

L—d/2 Z e—2i7rk‘a/Lq§(k)
k

where ¢ and ¢ are Fourier transform pairs as defined in ([@2)): the last term can be implemented via

3=, (ifft()* (a).

Sampling using the Langevin SDE: To obtain the ground-truth samples from the ¢* model, one
option is to use the SDE

dy(k) = —M (k) de(k)dt — (r — ro)de (k)dt — v} (k)dt + V2dW; (). (45)
where we denote

3
@(k) _ [—d/2 Z p2imh-a/L <Ld/2 Z ezmk.a/Ld;t(k)> (46)

k

which can be implemented via fft((ifft(¢;))?). This SDE may be quite stiff, however, a problem that
can be alleviated by changing the mobility and using instead

dy(k) = —o(k)dt — (n—ro) NI~ (k) Gy (k) dt —y N = (k) 53 (K)dt +v/2N1 /2 (k) d Wi (k). (47)
The discretized version of this equation reads
Ot (B) = Gu, () = Aty (G0, (B) + (5 = w0) NI (k) (k) + A0~ ()65, ()
+ V2408, M7V (ki (),

where 7, is the Fourier transform of #,, ~ N(0,1d).

(48)

Computing the generator of the posterior distribution As illustrated with (23], one would like
to sample a slightly different ¢* model with energy function, noted E,.. E and E,. define respectively
the prior and posterior distribution, via the Boltzmann’s law (23). In this work, only relations of the
form E, = E — (¢, Ap) — (h, ©) are studied, combining a linear and quadratic term. A is assumed
to be definite negative.

Lemma B.1. Assume that 3 = 1 — « and let
n(a, x) = Elrg — z1]azo + (1 — @)z = 2] = no(a, 1 — o, ) — i, 1 — ay ) (49)

Then
no(a,1 —a,2) =2+ (1 — a)n(a,x), (50)
nl(aal_aax):x_an<a7x)' (51)
Proof of lemma[B.1] Solving (5) and @9) in (1o, n1) gives (50) and (SI). O

The idea is to use the drift of the prior to sample from the posterior. The following proposition makes
it possible.
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Proposition B.2 (Posterior drift). Assume § = 1 — « with « diagonal and invertible, and let
n" (o, ) = E[zg — z1]|azg + (1 — a)z] =z] = nj(a, 1 —a,z) —nj(e, 1 —a,z)  (52)

where the drifts nfy, and )} are defined in (18) and (19), respectively. Assume also that A is diagonal,
non-positive definite, and invertible. Then, 3, = 1 — o, and " can be expressed as:

" (o, z) = a tapn(ar, z,) + oz — 27, (53)
where 1)(c, x) is the drift of the prior defined in @9), and c,. and x,. are given by

V1-2a+a2(1-A)—a
=«

o 1—-2a—a24 ’ 4
2 1— 2
_ ar( Ol) 873 b, (55)

TRl -a)  1-a)

Proof of the Proposition Using (30), in and (T9), one obtains:
(e B,2) = @™ BB an(1 = aw (o, Br, r) + @) + 0 (& = BB ar),
77{(047 B, SC) = Ty — Oér?7(04r7 Br, xr)'
Then, take the difference, and regrouping terms together eventually yields:
(e, B,x) =i (a, B,x) = (' B, + ) nlay, Br,2r) + @~ BB, ey = Dy —2p + a7l
—_———
=ala, =—a~ 18z,

= a_larn(ar, Bryxr) + ofl(m — ).

O

The linear case Assume for now that A = 0 and b = h. Note that one recovers the same case that
in (23), that is, one applies a uniform magnetic field of magnitude h over the whole lattice. What
follows is simply a corollary of [B.2}

Proposition B.3. Assume E,. = E — (¢, h). Then, o, = o, B, = 3, and
¢r = ¢+aa’B7Th. (56)
Also, the posterior drift n™ writes:

n"(a,B,¢0) = nle, B, ¢,) —a” B~ Th. (57)

Proof of Proposition[B.3] Since A = 0, (20) directly implies o, = « and 3, = . Consequently,
(36) follow from (ZI)) and (57) from G3). O

In summary, a simple shift proportional to h appears in the posterior field ¢,.. It clearly tends to favor
the alignment with the magnetic field, which obeys common sense.

The quadratic case
» Assume that b = 0 and A = —k?Id.

In a similar fashion to the linear case, one derives analytical expressions for the quantities of interest.
Proposition B.4. Assume E, = E — (¢,A¢) = E+k*Y. ¢(a)%, Br =1 -, and B =1 — a.

Then
 —at/1-2a+a*(1+k?)
o= 1 -2+ a?k? ’ (58)
—a++/1-2a+a2(1+k2))(1 -«
by = ( Vv ( )( )d)’ (59)

V1 =20+ 2(1+ k2)(1 — 20 + a?k?)
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and

—a++/1—2a+a%(1+ k2)

T)T(OQ@ ¢) = 1— 2a+ a2k? ﬁ(ar,,@m ¢r) (60)
RO (—a+\/1—2a+a2(1+k2))(1—a))
T ¢<1 V1I—2a+a2(1 +k2)(1 - 2a +a2k?) ) (1

Proof of the Proposition Given the assumptions, (20) yields:
(Id — o) o Ta ' (1d - a,) = (Id — a)Ta " Ta ! (Id — «) — k?Id.

T T
Observing that o and A are diagonals, «,. is also diagonal. Furthermore, assuming that «,. is
proportional to the identity, the above reduces to the scalar equation (keeping the same notation for
conciseness):
1—a,)? 1—a)?
( ‘ ) . )
a? @

After a few elementary manipulations, one arrives at:
(1—a,)%a® =a?(1 —a)? + k2a2a?
This is a quadratic equation that admits two solutions. Only one is positive, and writes as:
—a? 4+ ay/1—2a + a2(1 + k2?) —a+/1-2a+a2(1 + k2)

= - . 62
@ 1—2a 4+ a2k? @ 1—2a+ a2k2 62)

It is quite easy to check that the discriminant is always positive, so it does not pose any problem.
Also, if £ > 0 and « € [0, 1], then «. € [0, 1]. This property is necessary, since « — 7(-, ) has
been trained in the hypercube [0, 1]¢.

After elementary simplifications and recalling that 5, = 1 — «,- and (21)), one has:

by = a2l—a [(—a+/1-20+a?(1+k?) 1-a
N 1— 20+ a2k? 1—a,
. 1-2a+ak?+a—ay/1-2 2(1+k2 1—2a+a?(1+k%)—ay/1-2a+a2(1+k2) . .
Since 1 — o, = aTa +1a_2aa+a2k2 ata?( ) _ ato’( 1_)2a(1a2k2 ata?(+ ), it yields:
5 _ (—a+ /T —2a+a?(1+k?))? 1 -« 63)
r 1 —2a+ a2k? 1— 20+ a2(1+k2) —ay/1—2a+ a2(1 + k2)’
then factorizing by \/1 — 2a + a2(1 + k2) eventually gives (59).
Eventually, after replacing (62)) and (39) into (33)), (60) holds. O

» Assume that b = 0 and A = k21d.

In this case, the quadratic equation is:
(1-a) _ (1-a)?
a? @

or otherwise stated:
(1—a,)%a® — (1 —a)?a? +a?a’k* = 0.

The discriminant of this polynomial is A = a?(1 — k?) — 2« + 1. Assuming it strictly positive,
among the two solutions, only one is positive:
V1-2a+a2(1-k?) —«

1—2a— (ak)?
The polynomial inside the square root is positive if and only if « ¢ [1%@7 1]. To see that, see
there exists always two real roots, since the discriminants is 4k? > 0. Those roots are 14%1@ < 1 and
L > 1. Since o, € [0, 1] must be respected for all o € [0, 1], only k < 1 can be considered with

our method. Consequently, sampling using stochastic interpolants from o« = 1 to o = 0 appears
impossible with this method.

a, =«
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B.3 Details about the maze experiment

We use the Hadamard interpolant () and estimate the drift 7(c, ) defined in (I0) by approximating
it with a U-Net neural network Ho et al.| (2020), trained with an Adam optimizer |Kingma and
Bal (2017). The U-Net comprises 4 stages with 48, 80, 160, and 256 channels respectively for the
encoding flow. The decoder has the same architecture as the encoder but in reverse order, with added
residual connections Ronneberger et al.| (2015). Each stage consists of 2 residual blocks, with the
first concatenated with a self-attention block. The input vector has shape d x 2, where row ¢ contains
the = and y coordinates of the ¢-th point in the trajectory.

In contrast to conventional U-Net architectures, we perform interpolation and max pooling operations
independently on each coordinate column to increase and reduce dimensions only along the trajectory
length axis. The convolution kernel size is 5 x 2, processing each point’s coordinates together with
those of its two temporal predecessors and successors in the sequence. We add the necessary padding
to maintain identical input and output dimensions, which amounts to padding by two rows at the top
and bottom of the input vector.

Given a pair of randomly chosen points in the maze, we must determine where to constrain these
points along the generated trajectory. If the constraint points are placed too far apart in the sequence
(large index difference), the resulting path will likely not be the shortest route; conversely, if placed
too close together (small index difference), the generated path has an increased chance of cutting
through forbidden regions, making it inadmissible. To address this trade-off, we adopt the following
heuristic. We fix the starting point at the beginning of the path (index ¢ = 1) and employ a progressive
search for the target point placement using the candidate indices [5, 10, 20, 30, 40, 45, 50]. We first
generate a path with the target point constrained at index 5 (creating a short trajectory). If this path
intersects forbidden regions, we increase the target index to 10 (allowing a longer path), and continue
this process until we generate a valid path that successfully avoids all obstacles.

On Figure[§] we impose paths to go by the bottom-right corner, the constraint is visible as a small
white dot. The path length adapts accordingly.

Ia Ha
20 e

- N

I Ba
- = -
I.- |

Figure 8: Two generated pathways, one per row. Left: No constraint is imposed on the path, other than joining
the two endpoints. Right: An additional constraint is imposed: the path must pass through the bottom-right
corner, represented by a white dot.

start

end

start

C Additional experimental results

Here we provide additional infilling image results, given in Figure [0}
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Figure 9: Additional images demonstrating the inpainting task: Block inpainting is shown in the top panels,
while random inpainting is displayed in the bottom panels. The left panels depict images from the AFHQ dataset,
and the right panels show images from the CelebA dataset.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [ Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract claims that the formalism of stochastic interpolants have been
adapted for zero-shot conditional generation, in-painting, and posterior sampling. The
corresponding numerical experiments are explicitly displayed in their associated sections.
Posterior sampling has been theoretically explored and numerically investigated in the ¢*
model with stochastic interpolants. We show that our model can learn to generate images at
multiple scales: pixel-wise, blockwise, and in all dimensions simultaneously.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: A discussion on this matter is present in the conclusion.

Guidelines:

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All proofs, with their set of assumptions, are provided in the Appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: The details of all the numerical experiments are discussed either in the main text
of the paper or in the Appendix, especially concerning the one-shot conditional generation
and inpainting.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the code and data used for the numerical experiments will be exposed in a
Github repository. A set of instructions to fully reproduce the results will be provided in a
README file.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All test details are provided in Appendix (e.g. Table2).
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The full distribution of the average magnetization has been studied for our ¢*
model in Figure[5

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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9.

10.

Answer: [Yes]
Justification: A Table containing all relevant information will be provided in the Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our paper presents theoretical and mathematical foundations for multitask
generative modeling using operator-based interpolants. The research primarily consists
of mathematical formulations and theoretical derivations. Our experiments are limited to
publicly available benchmark datasets (MNIST digits) and physical simulation data, neither
of which contain sensitive information or raise ethical concerns. We do not collect or use
personal data, conduct experimentation on humans or animals, or develop technologies
with potential for harm or misuse. All sources and prior work are properly cited, and our
mathematical derivations, proofs, and experimental procedures are presented transparently.
The research was conducted with scientific integrity, honesty, and transparency throughout
the process, fully adhering to all aspects of the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper presents a theoretical framework for operator-based interpolants
in generative modeling, which primarily advances fundamental research in this area. The
work is largely theoretical and mathematical in nature, focusing on developing a universal
approach to multitask learning rather than specific applications with direct societal implica-
tions. While we discuss potential technical benefits in the paper’s conclusion, the theoretical
nature and early stage of this research makes specific societal impacts, whether positive or
negative, difficult to assess meaningfully at this time.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This question is not applicable to our paper as we do not release any models or
datasets that present a high risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in

the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In our paper, we properly credit the creators and original owners of all assets
used, including the MNIST dataset and any referenced algorithms or methodologies. For
the MNIST dataset, which is in the public domain, we acknowledge its source and cite the
original publication. All assets are used in accordance with their intended research purposes

and we have carefully respected all applicable terms of use and licensing requirements
throughout our research process.

Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our paper introduces new theoretical formulations and algorithms for operator-
based interpolants, which are thoroughly documented within the paper itself. The mathemati-
cal framework, definitions, lemmas, and propositions are rigorously presented with complete
derivations and proofs (in the appendix). For our experimental implementations, we provide
detailed descriptions of the model architectures, training procedures, and inference methods
in the paper and will release accompanying code with comprehensive documentation that ex-
plains the implementation of our operator-based interpolant framework. This documentation
includes clear instructions for reproducing our experiments, explanations of key parameters,
and examples demonstrating how to apply our methods to various tasks. All assets are
carefully documented to ensure transparency and reproducibility of our research.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This question is not applicable to our research as our paper does not involve
any human subjects or study participants. Our experiments are conducted exclusively
on standard benchmark datasets (MNIST) and physics simulation data, with no human
participation involved at any stage. Since no human subjects were part of this research, no
IRB approvals or equivalent reviews were necessary, and there were no study-related risks
to disclose or manage.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer:

Justification: No LLM or any kind of transformer architecture is involved in the numerical
experiments displayed.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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