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ABSTRACT

Incorporated with the recent advances in deep learning, deep reinforcement learning
(DRL) has achieved tremendous success in empirical study. However, analyzing
DRL is still challenging due to the complexity of the neural network class. In
this paper, we address such a challenge by analyzing the Markov decision process
(MDP) with neural dynamics, which covers several existing models as special
cases, including the kernelized nonlinear regulator (KNR) model and the linear
MDP. We propose a novel algorithm that designs exploration incentives via learn-
able representations of the dynamics model by embedding the neural dynamics
into a kernel space induced by the system noise. We further establish an upper
bound on the sample complexity of the algorithm, which demonstrates the sample
efficiency of the algorithm. We highlight that, unlike previous analyses of RL
algorithms with function approximation, our bound on the sample complexity does
not depend on the Eluder dimension of the neural network class, which is known
to be exponentially large (Dong et al., 2021).
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1 INTRODUCTION

Reinforcement learning (RL) aims to accomplish sequential decision-making in an uncertain en-
vironment via iteratively interacting with the environment (see Sutton et al. (1998)). Equipped
with modern function approximators such as deep neural networks, deep RL algorithms achieve
tremendous empirical successes (Mnih et al., 2015; Silver et al., 2017; Hafner et al., 2019).

Despite its empirical successes, the theoretical understanding of deep RL is relatively underdeveloped.
There are several recent works (Abbasi-Yadkori et al., 2019; Wang et al., 2019; Fan et al., 2020)
that analyze RL algorithms with neural network parameterization, including policy iteration (PI)
(Lagoudakis & Parr, 2003), policy gradient (PG) (Williams, 1992) and deep Q-learning (Mnih et al.,
2013). However, those works depend on restrictive assumptions that either the agent has access to a
simulator or the MDPs have bounded concentrability coefficients, which in fact imply that the state
space is already well-explored. Another line of research (Jiang et al., 2017; Jin et al., 2020; Cai et al.,
2019; Du et al., 2021) further removes such assumptions by conducting provably efficient exploration
in RL. Such a direction of research typically hinges on a low-rank MDP assumption. Thus, those
works either assume that the MDP is linear in the known feature or propose computational-inefficient
algorithms, limiting the ability to explore the environment with neural network parameterization. To
explore the environment with neural network parameterization, a recent line of work (Wang et al.,
2020; Jin et al., 2021a) analyzes the use of general function approximators in RL, covering neural
network parameterization as a special case. Such analyses typically depend on the Eluder dimension
(Russo & Van Roy, 2013), which unfortunately can be exponentially large even for a simple neural
network class (Dong et al., 2021) and thus makes the results statistically inefficient for neural network
parameterization. Therefore, we raise the following question:
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Can we design RL algorithms that can conduct provably efficient exploration in structured
environments with neural network parameterization?

Specifically, Our goal is to develop computational-efficient algorithms whose sample efficiency
does not depend on the Eluder dimension of neural networks for structured environments with
neural network parameterization. Our key insight is that, when the transition dynamics is captured by
an energy-based model, we leverage the spectral decomposition of the kernel such that the challenge
of distribution shift is characterized by the effective dimension of the kernel. To illustrate this
insight, we propose a new model called MDPs with neural dynamics, which allows neural network
parameterization and captures various MDP models proposed in previous works, including the
KNR model (Kakade et al., 2020) and the linear MDP model (Jin et al., 2020). We then propose
an algorithm, namely, Exploration with Learnable Neural Features (ELNF), and show that ELNF
is sample efficient. ELNF iteratively fits the transition dynamics and reward functions with neural
networks. Upon fitting the models, ELNF conducts exploration based on upper confidence bounds
(UCB) (Abbasi-Yadkori et al. (2011)), which are obtained from the feature maps that correspond to
the fitted model. We remark that the bonus in ELNF can be efficiently computed.

Contributions. Our contribution is threefold. First, we identify a class of models that incorporates
NN feature representation, which captures nonlinearity in the transition dynamics beyond the KNR
and linear MDP model. We also show that our proposed setting can generalize to models in previous
works (Kakade et al. (2020), Ren et al. (2021)). Second, we propose a new algorithm, namely
ELNF, which tackles our proposed MDPs with neural dynamics. Our algorithm is computationally
efficient when we have an optimization oracle for the model estimation. Third, we analyze the
sample complexity of ELNF and show that ELNF is sample efficient. A key feature of ELNF is that
the sample complexity of ELNF depends only on the covering number of neural network classes
and does not depend on the corresponding Eluder dimension. We highlight that our work is the
first to cover arbitrary NN classes with bounded log-covering numbers. In contrast, previous
research typically depends on the Eluder dimension (Russo & Van Roy, 2013) of the hypothesis
class, which is exponentially large for simple neural network classes (Dong et al., 2021).

1.1 RELATED WORK

Our work is closely related to the line of research on provably efficient exploration in the function
approximation setting (Jiang et al., 2017; Jin et al., 2020; Cai et al., 2019; Du et al., 2021; Uehara
et al., 2021; Zhang et al., 2022a). Such a line of research typically hinges on MDPs with a low-rank
structure. For instance, the study of linear MDPs (Jin et al., 2020; Cai et al., 2019) requires that the
transition dynamics are linear in the known feature map. In contrast, the feature maps are unknown
in our setting and need to be estimated. The study of low-rank MDPs (Jiang et al., 2017; Du et al.,
2021; Uehara et al., 2021; Ren et al., 2022) is more closely aligned to our work in the sense that
the feature map is unknown and needs to be estimated. Jiang et al. (2017) and Du et al. (2021)
require optimistic planning over the confidence set of transition dynamics, which is computationally
inefficient. Uehara et al. (2021) and Ren et al. (2022) propose an algorithm for low-rank MDP that is
both computationally efficient and sample efficient. Nevertheless, they only consider finite hypothesis
classes, and require sampling from the stationary distribution of the MDP.

Our work is also related to the study of provably efficient exploration with general function approxi-
mation (Wang et al., 2020; Jin et al., 2021a). Nevertheless, previous results typically depend on the
Eluder dimension (Russo & Van Roy, 2013) of the hypothesis class, which is exponentially large
for simple neural network classes (Dong et al., 2021). Yang et al. (2020) achieves sample-efficient
exploration based on the overparameterized neural networks (Simsek et al., 2021) as the function
approximator. However, their analysis hinges on the neural tangent kernel (NTK) and can not handle
NNs beyond NTK regime. In contrast, our analysis can adapt to generic neural network classes.

Our work is also related to the analysis of model-based RL (Osband & Van Roy, 2014; Ayoub et al.,
2020; Kakade et al., 2020) and representation learning (Ren et al., 2021; Nachum & Yang, 2021;
Zhang et al., 2022b). The definition of our MDPs with neural dynamics generalizes that in Kakade
et al. (2020) and Ren et al. (2021). In contrast to the KNR model in Kakade et al. (2020), we can
handle the infinite neural network hypothesis class and do not require the nonlinear feature map
to be known. Ren et al. (2021) require sampling from the posterior distribution of the hypothesis
class, which is computational-inefficient when the hypothesis class is large. In addition, the sample
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complexity bound of Ren et al. (2021) depends on the Eluder dimension of the feature map class,
which is exponentially large for simple neural network classes (Dong et al., 2021). In contrast, our
sample complexity bound depends only on the neural network classes only through its capacity.

Our work is motivated by the complexity analysis of neural network classes. Dong et al. (2021) show
that the Eluder dimension of one-layer neural network classes is exponentially large, suggesting that
the previous analysis of RL algorithms based on the Eluder dimension (Russo & Van Roy, 2013) may
not be applicable to neural networks.

1.2 NOTATION

For a vector v ∈ Rd, we define ‖v‖2 = (
∑d
i=1 v

2
i )1/2, where vi is the i-th element of v. For a

real-valued function f : X → R, we define ‖f‖∞ = maxx∈X |f(x)|. For a vector-valued function
f : X → Rd, we define ‖f‖∞,2 = maxx∈X ‖f(x)‖2. For a sequence of real-valued functions
r = {rh}Hh=1 ⊂ X → R, we define ‖r‖∞ = suph∈[H],x∈X |rh(x)|. We denote by N (F , ε, ‖·‖)
the ε-covering number of the function class F with respect to the norm ‖·‖, define H∞(F , ε) =
logN (F , ε, ‖·‖∞) for a real-valued function class F , and define H2(F , ε) = logN (F , ε, ‖·‖∞,2)

for a vector-valued function class F . We further define [n] = {1, . . . , n} when n is an integer. For a
set C, we denote by ∆(C) the set of the distributions over C, and U(C) the uniform distribution over
C. For g : X → R and Xn = {x1, . . . , xn} ⊂ X , we define g[Xn] = (g(x1), . . . , g(xn))>.

2 PRELIMINARY

We consider an episodic MDP V∗ = (S,A, H,P∗, r∗) with a state space S ∈ Rd, an action space A,
a horizon H , transition kernels P∗ = {P∗h}Hh=1, and reward functions r∗ = {r∗h}Hh=1. We assume
that the reward functions are bounded and deterministic, that is, ‖r∗h‖∞ ∈ [0, 1] for all h ∈ [H].
We also assume that the action space is finite, that is, |A| < ∞. The agent iteratively interacts
with the environment as follows. At the beginning of each episode, the agent determines a policy
π = {πh}Hh=1, where πh : S → ∆(A) for any h ∈ [H]. Without loss of generality, we assume
that the initial state is fixed to sinit ∈ S across all episodes. At the h-th step, the agent receives
a state sh and takes an action ah following ah ∼ πh(· | sh). Subsequently, the agent receives a
reward r∗h(sh, ah) and the next state following sh+1 ∼ P∗h+1(· | sh, ah). The episode ends after the
agent receives the last state sH+1. For a given policy π = {πh}Hh=1, where πh : S → ∆(A) for any
h ∈ [H], we define the value function V πh and the Q-function Qπh for any h ∈ [H] as

V πh (s; r∗,P∗) = Eπ,P∗
[ H∑
i=h

r∗i (si, ai)
∣∣∣ sh = s

]
,

Qπh(s, a; r∗,P∗) = Eπ,P∗
[ H∑
i=h

r∗i (si, ai)
∣∣∣ sh = s, ah = a

]
.

(2.1)

Here the expectation Eπ,P∗ [·] in (2.1) is taken with respect to si+1 ∼ P∗i (· | si, ai) and ai ∼ πi(· | si)
for i ∈ {h, h + 1, . . . ,H}. For convenience, we define V πH+1(s; r,P) = 0 for any state s ∈ S,
reward function r, transition kernel P and policy π. For simplicity, we define the expected total
reward J(π; r∗,P∗) as J(π; r∗,P∗) = V π1 (sinit; r

∗,P∗). The goal of RL is to find a policy π∗ that
maximizes the expected total reward. Specifically, for the episodic MDP V∗ = (S,A, H,P∗, r∗),
We define π∗ ∈ argmaxπ J(π; r∗,P∗) as an optimal policy. Correspondingly, we define the optimal
Q-function Q∗h and the optimal value function V ∗h as Q∗h(s, a; r∗,P∗) = Qπ

∗

h (s, a; r∗,P∗) and
V ∗h (s; r∗,P∗) = V π

∗

h (s; r∗,P∗) for any (s, a) ∈ S ×A.

3 MARKOV DECISION PROCESSES WITH NEURAL DYNAMICS

In this paper, our goal is to develop a provably efficient algorithm for RL problems adapted with
large feature space, such as neural networks (NNs). To this end, we introduce the MDPs with neural
dynamics, whose reward and transition dynamics are parameterized by NNs.
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Motivation. Our definition is motivated by the kernelized nonlinear regulator (KNR). In a KNR
model, the transition kernel takes the following form,

sh+1 = W ∗hφ
∗
h(sh, ah) + ε, ε ∼ N (0, Id), (3.1)

where φ∗h is a known nonlinear feature map. Former research proposes sample-efficient algorithms
for such a model. Although such a KNR setting empowers sample efficient RL (Kakade et al. (2020)),
it is relatively restrictive in the following two aspects. First, the feature map φ∗h and the expected
reward r∗h are known a priori. Second, the model only imposes nonlinearity on (sh, ah) via the known
feature map, while the conditional expectation of the next state given sh, ah is a linear function of
φ∗h(sh, ah). In other words, when φ∗h is known, the transition dynamics can be recovered via linear
system identification methods such as ridge regression.

To generalize the KNR model, we interpret (3.1) as an energy-based model. More specifically, we
can write the transition of the MDP in (3.1) as

P∗h(sh+1 | sh, ah) ∝ exp
(
−E(sh+1, sh, ah)

)
, (3.2)

where the energy function E(sh+1, sh, ah) is defined as

E(sh+1, sh, ah) = ‖sh+1 −W ∗hφ∗h(sh, ah)‖22 /2. (3.3)

Here (3.2) omits a normalization factor, which is a function of (sh, ah). We generalize this model
and impose nonlinearity on the next state sh+1 by substituting a nonlinear feature map ψ∗h+1(sh+1)
for sh+1 in (3.3). Such a generalization allows us to incorporate the nonlinearity of the next state in
the model. In addition, we assume that the nonlinear feature maps φ∗h and ψ∗h+1 are unknown and
need to be estimated from pre-specified feature classes Φ and Ψ, which for example, can be two
classes of NNs. We further assume that the expected reward r∗ is unknown and needs to be estimated
from the reward function classR. We formalize our generalization in the following definition.
Definition 3.1 (MDPs with Neural Dynamics). An episodic MDP (S,A, H,P∗, r∗) is an MDP with
neural dynamics if its reward function r∗ = {r∗h}Hh=1 belongs to a reward function classR, which is
a known function class that consists of NNs, and the transition kernel of the MDP P∗ = {P∗h}Hh=1
takes the following form,

P∗h(sh+1 | sh, ah) ∝ exp
(
−
∥∥ψ∗h+1(sh+1)− φ∗h(sh, ah)

∥∥2

2
/2
)
. (3.4)

Here φ∗h ∈ Φ : Rd×A → Rm and ψ∗h+1 ∈ Ψ : Rd → Rm are two unknown feature maps, and Φ, Ψ
are two known feature map classes that consist of NNs. We denote byM the set of all the transition
kernels that take the form of (3.4), and let X ∈ Rm denote the union of the image spaces of the
feature maps, namely,

X = {ϕ(s, a) | (ϕ, s, a) ∈ Φ× S ×A} ∪ {ϕ(s) | (ϕ, s) ∈ Ψ× S} ⊆ Rm.

Generality of Definition 3.1. We remark that Definition 3.1 is a significant generalization of
stochastic nonlinear systems beyond KNR. For instance, when ψ∗h+1(sh+1) = sh+1, the transition
kernel in Definition 3.1 takes the following form,

P∗h(sh+1 | sh, ah) ∝ exp
(
−
∥∥sh+1 − φ∗h(sh, ah)

∥∥2

2
/2
)
,

which is the transition kernel in Ren et al. (2021). Therefore, we recover the model in Ren et al.
(2021) when ψ∗h+1 is known to be the identity map and the reward function is known. Moreover, the
transition kernel defined in (3.4) also includes a class of nonlinear dynamics satisfying

sh+1 = (ψ∗h+1)−1
(
φ∗h(sh, ah) + εh

)
,

where S ⊆ Rm, ψ∗h+1 : Rm → Rm, the determinant of the Jacobian matrix of ψ∗h+1 is a constant,
and εh is a Gaussian noise. Our model significantly generalizes such a model by allowing a possibly
noninvertible feature map ψ∗h+1.

Relationship with Kernelized Linear MDP. Recall that K(x, y) = exp(−‖x − y‖22/2) is also
known as the Gaussian RBF kernel, which induces a reproducing kernel Hilbert space (RKHS) defined
on Rm (Rahimi et al., 2007). (See Appendix §D for a brief introduction of RKHS.) Intuitively,K(x, y)
measures the proximity between x and y in the kernel space. From this perspective, the transition
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kernel in (3.4) specifies the next state sh+1 by measuring the proximity of the representations
φ∗h(sh, ah) and ψ∗h+1(sh+1). Besides, since K(x, y) can be written as 〈k(x), k(y)〉H, where the
feature map of the RKHS k is defined as k(x) = K(x, ·), and 〈·, ·〉H is the inner product of the
RKHS respectively. Thus, (3.4) can be equivalently written as

P∗h(sh+1 | sh, ah) =
〈
Z∗h(sh, ah) · k

(
φ∗h(sh, ah)

)
, k
(
ψ∗h+1(sh+1)

)〉
H
, (3.5)

where Z∗h(sh, ah) is the normalization factor in (3.4). Thus, when Z∗h is known, our model can be
regarded as an RKHS extension of the linear MDP model (Jin et al., 2020). This is the case when ψ∗
is the identity maps but unknown to the learner, and Z∗h(sh, ah) becomes a constant (Ren et al., 2021).
See Appendix §D for more details of the relationship between the model in (3.4) and RKHS.

Role of NNs in Our Model. We would like to remark that the model specified in Definition 3.1 is not
restricted to NNs. In fact, the definition only requires proper function classes of the reward function,
representations of (sh, ah) and sh+1, namely, R, Φ, and Ψ. Thus, our model can also be defined
for other function approximators such as polynomial spline (Unser et al., 1993), classification and
regression tree (Syrgkanis & Zampetakis, 2020). Meanwhile, as we will see in the sequel, both our
algorithm and the theoretical results do not hinge on NNs and can employ general function classes
with bounded capacity. Here we call our model neural dynamics in order to highlight that our work
is the first one that covers arbitrary NN classes with bounded log-covering numbers.

4 ALGORITHM

In this section, we introduce an algorithm for solving MDPs with neural dynamics in the online
setting. We first introduce the motivation of the algorithm, and then introduce the procedure in detail.

Motivation. To strike a balance between exploration and exploitation, our algorithm follows the
principle of Optimism in the Face of Uncertainty (Lattimore & Szepesvári, 2020). When we know the
true feature maps {φ∗h}Hh=1, we can apply kernel LSVI (Yang et al., 2020) to construct the exploration
bonus since the energy-base transition admits a kernel structure. (See §3 for the details.) However, in
MDPs with neural dynamics, we do not know {φ∗h}Hh=1. A straightforward solution for handling the
unknown feature maps is to learn the feature maps from the data we collect and construct the bonus
based on the learned features. However, the bonus constructed by the learned features might be invalid
since the learned features have errors. We handle the error in the learned feature by purposefully
taking uniform actions when exploring the environment. Such a sampling scheme gives us more
diverse data for model estimation. Based on this motivation, we design an iterative algorithm that
outputs a policy after N iterations. In particular, in each iteration n ∈ [N ], our algorithm performs
the following four steps: (i) sampling new data from the environment, (ii) estimating the model via
maximum likelihood estimation, (iii) constructing exploration incentives using the features of the
learned model, and (iv) updating the online policy for exploration via planning on the learned model.

Sampling Scheme. As we mentioned in §3, the transition of MDPs with neural dynamics can be
written as an energy-based model and admits the Gaussian RBF kernel. To exploit the kernel structure
in the transition, we explore the environment using the exploration bonus induced by the Gaussian
RBF kernel and the feature maps learned from the data, which is motivated by Yang et al. (2020).
However, since the bonus is not induced by the true underlying feature, it might fail to indicate the
most uncertain state-action pairs for exploration. To mitigate such an issue, we combine the uniform
policy, which samples action from the uniform distribution over the action space, with the optimistic
policy during the sampling procedure. Intuitively, such a sampling scheme provides a wider coverage
over the state-action space and better explores the environment.

To simplify the presentation in the main text, we present the sketch of the sampling scheme as follows.
The rigorous presentation of the sampling scheme for the boundary case is deferred to Appendix §B.
In the n-th iteration of our algorithm, given the previously collected dataset Dn−1

h,i for i ∈ {0, 1, 2}
and h ∈ [H], we interact with the MDP following the policy πn = {πnh}Hh=1 and obtain the new
dataset Dn

h,i for i ∈ {0, 1, 2} and h ∈ [H]. Specifically, for any h ∈ {−1, . . . ,H}, we start from
the initial state s1 and choose the action ah̄ ∼ πnh̄(· | sh̄) in the h̄-th step when h̄ ∈ {1, · · · , h}, and
choose the action ah̄ ∼ U(A) when h̄ ∈ {h+ 1, h+ 2}. Here U(A) is the uniform distribution over
the action space A. By following such a procedure, we obtain the following trajectory,

s1, a1, r1, . . . , sh+2, ah+2, rh+2, sh+3, (4.1)
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where s1 = sinit. Then, we label the obtained trajectory as follows,
snh+i,i = sh+i, anh+i,i = ah+i, rnh+i,i = rh+i, s̄nh+i,i = sh+i+1, (4.2)

for any i ∈ {0, 1, 2}. We then update the dataset Dnh,i by Dnh,i = Dn−1
h,i ∪

{
(snh,i, a

n
h,i, r

n
h,i, s̄

n
h+i,i)

}
for any i ∈ {0, 1, 2} and h ∈ [H]. We use i in (4.2) to indicate how many steps of the uniform
policy we need to execute to obtain such a dataset. Intuitively, the dataset with a bigger i has a better
coverage over the state-action space S ×A. We summarize the sampling scheme in Algorithm 1. See
Figure 1 in Appendix §B for an illustration of the sampling scheme, and see Algorithm 3 in Appendix
§B for the formal presentation of Algorithm 1.

Algorithm 1 Sampling Scheme (Informal)

1: Input: Policy πn = {πnh}Hh=1, datasets Dn−1
h,i for i ∈ {0, 1, 2} and h ∈ [H].

2: for h = −1, . . . ,H do
3: Interact with the environment to obtain the trajectory in (4.1) by first executing πn from s1 to
sh, and then execute U(A) for two more steps. Label the obtained trajectory as (4.2).

4: end for
5: Set Dnh,i ←

{
(sτh,i, a

τ
h,i, r

τ
h,i, s̄

τ
h+i,i)

}n
τ=1

for h ∈ [H] and i ∈ {0, 1, 2}, where the tuple
(sτh,i, a

τ
h,i, r

τ
h,i, s̄

τ
h+i,i) is the data we label in (4.2). . Updating the datasets

6: Return: Datasets {Dnh,i}
h=H,i=2
h=1,i=0 .

Model Estimation. To estimate the model, we solve the following optimization problems,

r̂nh = argmin
r∈R

2∑
i=1

∑
(sh,ah,rh,sh+1)∈Dnh,i

[
rh − r(sh, ah)

]2
, (4.3)

P̂nh = argmin
P∈M

−
2∑
i=1

∑
(sh,ah,rh,sh+1)∈Dnh,i

logP(sh+1 | sh, ah). (4.4)

HereR andM are the reward function class and the transition kernel class defined in Definition 3.1.
We denote by φnh and ψnh+1 the feature maps that correspond to the transition kernel P̂nh estimated
in (4.4). To simplify our analysis, we assume that there exists an oracle that returns the global
minimum of the optimization problems (4.3) and (4.4). Similar assumption also arises in the previous
study of RL (Fan et al., 2020; Kakade et al., 2020; Uehara et al., 2021; Jin et al., 2021a). When the
normalization factor in (3.5) is a constant, (4.4) can be easily implemented since it is equivalent with

P̂nh = argmin
φ∈Φ,ψ∈Ψ

2∑
i=1

∑
(sh,ah,rh,sh+1)∈Dnh,i

‖ψ(sh+1)− φ(sh, ah)‖22 .

Remark 4.1 (Transition Estimation). We would like to remark that the method for estimating the
transition is not restricted to maximum likelihood estimation (MLE). Methods including variational
autoencoder (Kingma & Welling, 2013), score matching (Hyvärinen & Dayan, 2005) can also be
used for transition estimation. Our sample complexity bound holds for any transition estimator whose
total variance error has an upper bound.

Exploration Bonus. The transition kernel in Definition 3.1 is closely related to the radial basis
function (RBF) kernel. In the sequel, we define the bonuses for exploration and update the policy
based on such bonuses. Specifically, for a fixed feature map φ : S → R, we define the Gram matrix
Kn
h [φ] and the function knh [φ] : S ×A → Rn as follows,

Kn
h [φ] =

[
K
(
φ(sτh,1, a

τ
h,1), φ(sτ

′

h,1, a
τ ′

h,1)
)]n
τ,τ ′=1

∈ Rn×n,

knh [φ](s, a) =
[
K
(
φ(s, a), φ(s1

h,1, a
1
h,1)
)
, . . . ,K

(
φ(s, a), φ(snh,1, a

n
h,1)
)]>
∈ Rn, ∀(s, a) ∈ S ×A,

where {(sτh,1, aτh,1, rτh,1, s̄τh,1)}nτ=1 ∈ Dnh,1. We then define the bonus unh as follows,

unh(s, a) = min
{

2H + 2, βũnh(s, a)/λ
}
,

where ũnh(s, a) = 1− knh [φnh](s, a)>
(
λI +Kn

h [φnh]
)−1

knh [φnh](s, a).
(4.5)
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Here β > 0 and λ > 0 are the tuning parameters. We remark that the form of the bonus in (4.5)
aligns with the bonus in other previous works that use kernel functions for function approximation
(Srinivas et al., 2009; Yang et al., 2020).
Remark 4.2 (Dependency of Rewards on Features.). Here we do not require that the reward depends
on the feature in the transition kernel, which is different from the literature in linear MDPs (Cai et al.,
2019; Jin et al., 2020). Common sense seems to dictate that we can not characterize the uncertainty
using the feature without such a dependency. However, the estimation error of the reward estimators
r̂nh in the empirical measure can be bounded from the above by the property of the least square
estimator. Therefore, the uncertainty of r∗h in the distribution induced by any new policy, such as π∗,
can be bounded from the above by the distribution shift, which is characterized by unh−1. Such an
observation allows us to characterize the uncertainty of the reward estimator even when the reward
does not depend on the feature in the transition kernel.

Policy Update. We update the policy πn+1 by setting it as the optimal policy of the learned model,
which can be efficiently computed by dynamic programming. Due to the space limit, we defer the
details of the planning algorithm to Appendix §B. We remark that we can also apply other model-
based algorithms, including Dyna (Sutton, 1991) and Gradient-Aware Model-based Policy Search
(D’Oro et al., 2020), to compute the optimal policy of the learned model, and the suboptimality of the
output of Algorithm 2 is bounded when the error of the planning oracle is bounded.
Remark 4.3 (Computational Efficiency). Our algorithm is oracle efficient in the sense that our
algorithm is computationally efficient given an optimization oracle for model estimation, which also
appears in the previous study (Fan et al., 2020; Kakade et al., 2020; Uehara et al., 2021). More
specifically, the bonus and the policy in each iteration can be efficiently computed by (4.5) and
Algorithm 4 in the appendix. The existing literature on general function approximation requires either
global optimism over the confidence set (Kakade et al., 2020; Jin et al., 2021a) or posterior sampling
over the hypothesis set (Ren et al., 2021), which can not be computed efficiently.

Algorithm 2 Exploration with Learnable Neural Features (ELNF)
1: Input: Failure probability δ > 0, tuning parameters β, λ > 0.
2: Initialize: Set π1 = {π1

h}Hh=−1, where π1
h(· | s) = U(A) for any (s, h) ∈ S × [H], and set

D0
h,i = ∅ for all (h, i) ∈ [H]× {0, 1, 2}.

3: for n = 1, . . . , N do
4: Set {Dnh,i}

h=H,i=2
h=1,i=0 by applying Algorithm 1 (Sampling Scheme) with the policy πn and the

datasets {Dn−1
h,i }

h=H,i=2
h=1,i=0 as the input. . Sampling

5: Set {r̂nh}Hh=1 and {P̂nh }Hh=1 as in (4.3) and (4.4), respectively. . Model estimation
6: Set {φnh}Hh=1 and {ψnh+1}Hh=1 as the feature maps corresponding to

{
P̂nh
}H
h=1

.
7: Set {unh}Hh=1 as in (4.5). . Feature estimation and bonus construction
8: Set πn+1 by applying Algorithm 4 (Planning Algorithm) in the appendix with the learned

model {r̂nh}Hh=1, {Pnh }Hh=1, and the bonuses {ûnh}Hh=1 as the input. . Planning
9: end for

10: Return: π̂ = U
(
{πn}N+1

n=2

)
.

5 THEORY

In this section, we present the analysis of ELNF. We first present the boundedness assumption on the
model.
Assumption 5.1 (Boundedness of Model). We assume that the state space S is a bounded
set of Rd, and the Lebesgue measure of S is an absolute constant. We also assume that
max{‖φ(s, a)‖2 , ‖ψ(s)‖2} ≤ R for all (s, a, φ, ψ) ∈ S × A × Φ × Ψ. We further assume that
0 ≤ r(s, a) ≤ 1 for any (s, a, r) ∈ S ×A×R.

Since S is bounded, Assumption 5.1 is a reasonable regularity condition on the model. Such a
regularity assumption is standard and is also assumed in the previous works (Cai et al., 2019; Jin et al.,
2020; 2021b). Next, we introduce the following assumption, which characterizes the complexity of
the NN classes.
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Assumption 5.2 (Decay Rate of Covering Number). There exists constants Cnet > 0 and γ ≥ 0 that
only depend on (R,Φ,Ψ), such that

Hc(ε) , max
{
H∞(R, ε), H2(Φ, ε), H2(Ψ, ε)

}
≤ Cnet ·

(
1 + log(1/ε)

)
/εγ .

In Assumption 5.2, γ characterizes the complexity of the NN class by quantifying the growth rate of
the covering number when the covering radius ε decays. We remark that previous research bounds
the covering number of NN classes from the above at the same scale as Assumption 5.2. For example,
Schmidt-Hieber (2020) and Chen et al. (2019) show that NN classes with specific structures satisfy
Assumption 5.2 with γ = 0. See Lemmas C.3 and C.6 in Appendix §C for the details.
Theorem 5.3 (Sample Complexity of ELNF). We assume that Assumption 5.2 holds with γ < 1/2,
and we can obtain the exact solution to the optimization problems (4.3) and (4.4). We set the tuning
parameters λ and β as

λ = C ′Nγ/(1+γ)m log(48HRN/δ),

β = C ′′H|A|1/2m1/2N3γ/(4+4γ)
√

log(48HRN/δ)

in ELNF, where m is the dimension of the image of the feature maps, C ′, C ′′ are constants that only
depend on the regularity parameters in Assumption 5.1. Under Assumption 5.1 and 5.2, for the policy
π̂ returned by ELNF, it holds with probability at least 1− δ that

J(π∗; r∗,P∗)− J(π̂; r∗,P∗) ≤ CH5 · |A|2 · ξ ·N (2γ−1)/(2+2γ)(logN)m+1.

Here C is a constant that only depends on the dimension m, the bound of the feature maps R, and
Cnet in Assumption 5.2, and ξ = (log(48HRN/δ))5/2 is a logarithmic factor.

Proof. See Appendix §E for a detailed proof.

In Theorem 5.3, λ is the regularization parameter that trades off between bias and variance, and β is
the uncertainty coefficient, which scales with γ andN . We remark that our analysis is not restricted to
NN classes, and can be extended to other bounded function classes with bounded covering numbers.
We further remark that m in Theorem 5.3 is the dimension of the image of the feature maps, which
can be much smaller than the dimension of the state.

Moreover, in Appendix §E, we show that the suboptimality bound in Theorem 5.3 reduces to
Õ(deffN

(2γ−1)/(2+2γ)) in terms of N , where deff is the effective dimension in Definition E.4 in the
appendix. Such a bound connects the sample efficiency of ELNF to the effective dimension of the
RKHS and the covering number of NN classes. We further remark that when γ = 0 in Theorem 5.3,
the suboptimality bound is sublinear in N , which aligns with the previous theoretical research. A
detailed comparison with the related work can be found in Appendix §A.

6 PROOF SKETCH OF THEOREM 5.3

In this section, we sketch the proof of Theorem 5.3 and highlight the technique that allows us to
remove the dependency on the Eluder dimension of NN classes. Since the policy π̂ returned by
Algorithm 2 (ELNF) is the mixture of π1, . . . , πN , we can decompose the suboptimality as

J(π∗; r∗,P∗)− J(π̂; r∗,P∗) =
1

N

N∑
n=1

[
J(π∗; r∗,P∗)− J(π∗; rn + un,Pn)

]
︸ ︷︷ ︸

Term (a)

+
1

N

N∑
n=1

[
J(π∗; rn + un,Pn)− J(πn+1; rn + un,Pn)

]
︸ ︷︷ ︸

Term (b)

+
1

N

N∑
n=1

[
J(πn+1; rn + un,Pn)− J(πn+1; r∗,P∗)

]
︸ ︷︷ ︸

Term (c)

.
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Here Term (a) is the out-of-sample estimation error of the estimated value J , Term (b) is the error
of the planning algorithm, and Term (c) is the in-sample estimation error of the estimated value J .
Since the bonus un captures the uncertainty of the estimated model with high probability, and the
planning algorithm finds the optimal policy of the learned model, Term (a) and Term (b) are small
with high probability, which is shown in the following lemma.

Lemma 6.1 (Informal). We define ζ =
√
C2 log(20HRN/δ)Nγ/(1+γ), where C2 is a constant

that depends on the regularity parameters and the parameters of the NN class. Following the same
condition of Theorem 5.3, we have Term(a) ≤ 8H|A|ζ

√
N holds with probability at least 1− δ. We

also have Term(b) ≤ 0 when we use Algorithm 4 for planning.

Proof. This can be directly proved by Lemma E.5 and Lemma E.6. See Appendix §E for the
details.

The remaining analysis is to connect Term (c) with the complexity measure of the model class.
Former research (Wang et al., 2020; Jin et al., 2021a) that allows neural network parameterization
quantifies the uncertainty by the level set, and the Eluder dimension naturally appears when we
telescope the in-sample error. To remove the dependency on the Eluder dimension, we want to
quantify the uncertainty by the bonus defined by the true feature. However, since the true feature is
unknown, we can only quantify the uncertainty using the learned feature. Inspired by Uehara et al.
(2021), we obtain the following lemma, which connects the bonus defined by the learned feature with
the bonus defined by the true unseen feature.
Lemma 6.2 (Bonus Equivalence for the True Model, Informal). Following the same condition with
Theorem 5.3, we have

J(π;un,P∗) ≤2 |A|βd1/2
eff /
√
n+ J(π;u∗,n,P∗)

holds for any policy π and n ≥ 2 with high probability, where the bonus defined by the true feature
u∗,n = {u∗,nh }Hh=1 is defined in Lemma I.1.

Proof. This is Lemma I.2. See Appendix §I.5 for the details.

We remark that we cannot obtain the above lemma by directly applying the technique in Uehara
et al. (2021) since they only consider the finite-dimensional inner product. Using the lemma above,
we have Term(c) ≤ 32H2 |A| ζ

√
deffN + 2

∑N
n=1 J(πn+1;u∗,n,P∗) holds with high probability.

Finally, we show that the sum of the bonuses defined by the true feature can be bounded by the
effective dimension of the RKHS induced by the noise instead of the Eluder dimension of NN classes.
We conclude the proof of Theorem 5.3 by combining the upper bounds of Term (a), Term (b), and
Term (c).

Removing Dependency on Eluder Dimension. The existing literature on RL using general function
approximators relies on the Eluder dimension when bounding the regret or the suboptimality (Wang
et al., 2020; Jin et al., 2021a; Ren et al., 2021), which is exponentially large for a simple neural
network class (Dong et al., 2021). However, we can remove such dependency in MDPs with neural
dynamics. Our key insight is that we can regard MDPs with neural dynamics as kernel MDPs (Yang
et al., 2020) whose feature is the composite map of the neural network and the feature map of the
RKHS since the energy-base transition admits a kernel structure, which is shown in §3. Therefore,
we can characterize the effect of the distribution shifts by the bonus defined by the true feature, whose
sum is bounded by the effective dimension of the RKHS instead of the Eluder dimension of the NN
class, without knowing the true feature.

Role of Uniform Policy in Proof. The uniform policy in the sampling scheme enables us to bound the
influence of the distribution shift and show that the bonuses defined by the learned feature are valid
uncertainty quantification. In order to show that the estimated value defined by the learned bonus is
almost optimistic (Lemma E.5) for any policy, we need to bound the influence of the distribution shift.
The data that we obtain from the uniform sampling has better coverage over S ×A, and the bonuses
we construct with these data quantify the uncertainty with the presence of the distribution shift.
Therefore, we take uniform actions when exploring the environment to obtain a valid uncertainty
quantification without knowing the true feature, and |A|2 in the suboptimality bound is the price paid
for the uniform sampling.
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LIST OF NOTATION

In the sequel, we present a list of notations in the paper.

Notation Explanation
S, A, X The state, the action, and the feature spaces, respectively.

H , N The length of an episode, and the total number of iterations of
Algorithm 2 (ELNF), respectively.

n, h The index that iterates from 1 to N , and the index that iterates
from 1 to H , respectively.

τ , h̄ The index that iterates from 1 to n„ and the index that iterates
from 1 to h, respectively.

Φ, Ψ
The feature map classes of the current state-action pair and the
next state, which parameterized by NNs.

R The reward function class parameterized by NNs.
{P∗h}Hh=1, {r∗h}Hh=1 The transition kernel and the reward of the MDP.

d, m The dimension of the state space and the image space of the
feature maps, respectively.

{Dnh,i}
h=H,i=2
h=1,i=0 , π

n The dataset and the policy in the n-th iteration of Algorithm 2
(ELNF), respectively.

{Pnh }Hh=1, {r̂nh}Hh=1,
{unh}Hh=1

The estimated transition, the estimated reward, and the bonus in
the n-th iteration of Algorithm 2 (ELNF), respectively.

{φnh}Hh=1, {ψnh}
H+1
h=2

The learned feature in the n-th iteration of Algorithm 2 (ELNF),
respectively.

K,H,k K(x, y) = exp(−‖x− y‖22),H is the RKHS induced byK, and
k is the feature map ofH.

∆(C), U(C) The set of the distributions over C, and the uniform distribution
over C.

R The upper bound of the norm of the features.
Cnet, γ The parameters in Assumption 5.2.
λ, β The tuning parameters of Algorithm 2 (ELNF).
deff The effective dimension we defined in Definition E.4.
c[φ, ψ](s, a) The normalization function we defined in (E.1).

N (F , ε, ‖·‖) The ε-covering number of the function class F with respect to
the norm ‖·‖.

H∞(F , ε), H2(F , ε) H∞(F , ε) = logN (F , ε, ‖·‖∞), and H2(F , ε) =
logN (F , ε, ‖·‖∞,2).

cmax, cmin, rmax
cmax is the upper bound of the feature maps, cmin is the lower
bound of the feature maps, and rmax = cmax/cmin.

ζ
The parameter that related to the upper bound of the estimation
error in Lemma E.3.

STRUCTURE OF APPENDIX

We provide a detailed comparison between our work and the existing literature in Appendix §A, and
provide the supplementary for the planning algorithm, the NNs, and the RKHS in Appendix §B,
Appendix §C, and Appendix §D. We then provide a detailed proof of Theorem 5.3 in Appendix §E.
We provide the proof of the key lemmas used in Appendix §E, including Lemma E.2, Lemma E.3,
and Lemma E.8, in Appendix §F, Appendix §G, and Appendix §H. We provide the proof of other
lemmas used in Appendix §E in Appendix §I, and provide the proof of other auxiliary lemmas in
Appendix §J.
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A DETAILED COMPARISON WITH EXISTING LITERATURE

In this section, we provide detailed comparison with existing literature.

Comparison with Kakade et al. (2020). Kakade et al. (2020) studies the setting of KNRs and
proposes the algorithm Lower Confidence-based Continuous Control (LC3). They show that LC3

is sample efficient by bounding the expectation of the regret from the above by Õ(H3/2N1/2deff),
which aligns with our results in terms of N1/2 and deff. However, they assume that the nonlinear
feature map is known, while we need to learn it from prespecified NN classes. Thus, our model is
significantly more challenging. Moreover, their algorithm requires optimism over the confidence set,
which is not computational efficient.

Comparison with Research on Linear MDPs and Low-rank MDPs. We show in §D.1 that our
model can be generalized to include linear MDP with unknown feature maps and nonlinear reward
as a special case. Jin et al. (2020) show that their algorithm achieves Õ(

√
m3H3N) regret. Our

bound on suboptimality aligns with their results in terms of the dimension m and the number of
iterations N without assuming known feature maps and linear reward functions. Uehara et al. (2021)
and Ren et al. (2022) propose algorithms for linear MDPs with unknown feature maps and show that
the sample complexity of their algorithm is Õ(m4/ε2) in infinite-horizon linear MDP with unknown
feature maps, which also aligns with us in terms of ε. However, they assume that the transition is a
finite dimensional inner product, and the unknown feature maps belong to a finite set, which greatly
reduces the complexity of the problem.

Comparison with Dong et al. (2021). The sample complexity is Õ(ε−2) in terms of N when the
logarithmic factors are omitted and ε = 0. Meanwhile, Theorem 5.1 in Dong et al. (2021) shows that
the minimax sample complexity of solving a nonlinear bandit problem with one-layer NNs and ReLU
activation is Ω(ε−(d−2)). To obtain such a lower bound, Dong et al. (2021) assume that the action
space is the unit sphere Sd−1 in Rd, which is an infinite set, while the action space in our setting is
finite. In the case where H = 1, our model reduces to a finite-arm bandit problem whose reward is
parameterized by an NN. Although the Eluder dimension of the NN class is large, the agent only
needs to explore the arms of the bandits in our model, while the agent needs to explore the unit sphere
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in their model. Therefore, their model does not belong to our model, our result does not contradict
the lower bound in Dong et al. (2021), and the sample complexity in our model is dominated by the
number of arms instead of the Eluder dimension of the NN class when H = 1.

Comparison with Ren et al. (2021). Ren et al. (2021) studies a nonlinear model with Gaussian
noise. They show that the expectation of the regret of their algorithm is

Õ
(√

H2N · logN (Φ, N−1/2, ‖·‖2) · dimE(Φ, N−1/2)
)
,

where dimE(Φ, ·) is the Eluder dimension of Φ. We show in §3 that the model in Ren et al. (2021)
is a special case of our model. Our bound on the suboptimality aligns with their result in terms of
the number of iterations N when γ = 0. However, they do not fully exploit the kernel structure
in the transition in their analysis, and their result depends on the Eluder dimension of Ψ. Lemma
C.7 in Appendix §C.2 provides an example of an NN class whose ε-Eluder dimension is at least
Ω(ε−(d−1)) and the ε-log covering number is at most O(log(1/ε)). Lemma C.7 shows that removing
the dependency of the sample complexity on the Eluder dimension significantly improves the sample
complexity. In addition, their algorithm requires sampling from the posterior distribution of the
hypothesis class, which is difficult to implement in practice. In contrast, our algorithm only requires
planning with respect to the learned model, which can be computed efficiently.

Comparison with Yang et al. (2020). Yang et al. (2020) use overparameterized NNs for function
approximation in the algorithm Neural Optimistic Least-Squares Value Iteration (NOVI) and shows that
NOVI is sample efficient. However, their analysis relies on the connection between overparameterized
NNs and neural tangent kernel and can not handle NNs beyond NTK regime.

B SUPPLEMENTARY FOR ALGORITHM

As we mentioned in §4, our algorithm performs the following four steps in each iteration: (i) sampling
new data from the environment, (ii) estimating the model via maximum likelihood estimation, (iii)
constructing exploration incentives using the features of the learned model, and (iv) updating the
online policy for exploration via planning on the learned model. We simplify the presentation of the
sampling algorithm and omit the details of the planning algorithm in the main text due to the space
limit. In this section, we first describe the sampling scheme rigorously in detail. We then provide the
detail of the planning algorithm.

Sampling Scheme. As we mentioned in §3, the transition of MDPs with neural dynamics can be
written as an energy-based model and admits the Gaussian RBF kernel. To exploit the kernel structure
in the transition, we explore the environment using the exploration bonus induced by the Gaussian
RBF kernel and the feature maps learned from the data, which is motivated by Yang et al. (2020).
However, since the bonus is not induced by the true underlying feature, it might fail to indicate the
most uncertain state-action pairs for exploration. To mitigate such an issue, we combine the uniform
policy, which samples action from the uniform distribution over the action space, with the optimistic
policy during the sampling procedure. Intuitively, such a sampling scheme provides a wider coverage
over the state-action space and better explores the environment.

To simplify the presentation of the algorithm in our work, we introduce an extended MDP, where
we assign meanings to steps h = −1, 0, H + 1, and H + 2. In particular, the interaction of
an agent with the extended MDP starts with a dummy initial state s−1. During the interaction,
all the dummy state and action sequences {s−1, a−1, s0, a0} lead to the same initial state sinit.
Moreover, the agent is allowed to interact with the environment for two steps after observing the
final state sH+1 of an episode. Nevertheless, the agent only collects the reward rh(sh, ah) at steps
h ∈ [H], which leads to the same learning objective as the original MDP. In addition, we denote
by [H]+ = [−1, 0, . . . ,H + 2] the set of steps in the extended MDP. We remark that the dummy
state and action sequences {s−1, a−1, s0, a0} do not exist, and we introduce them just to simplify
the rigorous presentation of the boundary case of our algorithm. In the sequel, we do not distinguish
between an MDP and an extended MDP for the simplicity of presentation.

Now we describe the sampling procedure in detail. In the n-th iteration of our algorithm, given
the previously collected dataset Dn−1

h,i for i ∈ {0, 1, 2} and h ∈ [H], we interact with the MDP
following the policy πn = {πnh}Hh=−1 and obtain the new dataset Dn

h,i for i ∈ {0, 1, 2} and h ∈ [H].
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Specifically, for any h ∈ {−1, . . . ,H}, we start from the initial state s−1 and choose the action
ah̄ ∼ πn

h̄
(· | sh̄) in the h̄-th step when h̄ ∈ {−1, · · · , h}, and choose the action ah̄ ∼ U(A) when

h̄ ∈ {h+ 1, h+ 2}. Here U(A) is the uniform distribution over the action space A. By following
such a procedure, we obtain the following trajectory,

s−1, a−1, s0, a0, s1, a1, r1, . . . , sh+2, ah+2, rh+2, sh+3, (B.1)

where s1 = sinit. Then, we label the obtained trajectory as follows,

snh+i,i = sh+i, anh+i,i = ah+i, rnh+i,i = rh+i, s̄nh+i,i = sh+i+1,

for any i ∈ {0, 1, 2}. We then update the dataset as follows,

Dnh,i = Dn−1
h,i ∪

{
(snh,i, a

n
h,i, r

n
h,i, s̄

n
h+i,i)

}
=
{

(sτh,i, a
τ
h,i, r

τ
h,i, s̄

τ
h+i,i)

}n
τ=1

(B.2)

for any i ∈ {0, 1, 2} and h ∈ [H]. The index i in (B.2) indicates how many steps of the uniform
policy we need to execute to obtain such a dataset. Intuitively, the dataset with a bigger index i has a
better coverage over the state-action space S ×A. See Figure 1 for an illustration of the sampling
scheme, which is summarized in Algorithm 3.

Algorithm 3 Sampling Scheme (Formal)

1: Input: Policy πn = {πnh}Hh=−1, datasets Dn−1
h,i for i ∈ {0, 1, 2} and h ∈ [H].

2: for h = −1, . . . ,H do
3: Interact with the environment to obtain the trajectory in (B.1) by first executing πn from s−1

to sh, and then executing U(A) for two more steps. . Sampling
4: Set (snh+i,i, a

n
h+i,i, r

n
h+i,i, s̄

n
h+i,i) ← (sh+i, ah+i, rh+i, sh+i+1) for i ∈ {0, 1, 2}, where

(sh+i, ah+i, rh+i, sh+i+1) is defined in (B.1).
5: Set D̄nh+i,i ←

{
(snh+i,i, a

n
h+i,i, r

n
h+i,i, s̄

n
h+i,i)

}
for i ∈ {0, 1, 2}. . Labeling

6: end for
7: for h = 1, . . . ,H do . Updating the datasets
8: Set Dnh,i ← D

n−1
h,i ∪ D̄nh,i for i ∈ {0, 1, 2}.

9: end for
10: Return: Datasets {Dnh,i}

h=H,i=2
h=1,i=0 .

s−1 . . . sh sh+1 sh+2 sh+3

snh,0 s̄nh,0 snh+1,1 s̄nh+1,1 snh+2,2 s̄nh+2,2

a−1 ah−1 ah ah+1 ah+2

anh,0 anh+1,1 anh+2,2

πn−1 πnh−1 πnh U(A) U(A)

Label Label LabelLabel Label Label

LabelLabel Label

Figure 1: Sampling procedure in the h-th trajectory of the n-iteration. We first execute the optimistic
policy for h steps, and then execute the uniform policy for two steps. Finally, we label the collected
data as the figure shows.

Planning Algorithm. The details of the planning algorithm is now summarized in Algorithm 4.
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Algorithm 4 Planning Algorithm
1: Input: Estimated reward {r̂nh}Hh=1, estimated transition {Pnh }Hh=1, bonus {ûnh}Hh=1.
2: Set QnH(s, a)← r̂nH(s, a) + unH(s, a).
3: Set V nH(s)← maxa∈AQ

n
H(s, a) and πn+1

H (· | s)← argmaxπ∈∆(A)

∑
a∈AQ

n
H(s, a)π(a).

4: for h = H − 1, . . . , 1 do
5: Set Qnh(s, a)← r̂nh(s, a) + unh(s, a) +

∫
S P

n
h (s′ | s, a)V nh+1(s′)ds′.

6: Set V nh (s)← maxa∈AQ
n
h(s, a) and πn+1

h (· | s)← argmaxπ∈∆(A)

∑
a∈AQ

n
h(s, a)π(a).

7: end for
8: Set πn+1

−1 and πn+1
0 as the uniform policy U(A).

9: Return: πn+1 ← {πn+1
h }Hh=−1.

We remark that we can also apply other model-based algorithm, including Dyna (Sutton, 1991) and
Gradient-Aware Model-based Policy Search (D’Oro et al., 2020), to compute the optimal policy of
the learned model.

C SUPPLEMENTARY FOR NEURAL NETWORKS

In this section, we provide more details on neural networks. In the first subsection, we introduce the
definition of the covering number, which measure the complexity of a function class, and provide two
examples of neural networks in detail and show that such neural networks satisfy our assumptions.
We remark that our analysis can be extended to other neural network classes when Assumption
5.2 is satisfied with γ ≤ 1/2, and is not restricted to the examples below. In the second subsection,
we provide a lemma that compares the log-covering number of an NN class with the Eluder dimension.
Lemma C.7 in Appendix §C.2 shows that removing the dependency of the sample complexity on the
Eluder dimension greatly improves the sample complexity.

C.1 EXAMPLES

We begin with the definition of the covering number.

Definition C.1 (Covering Number). Let (Φ, ‖ · ‖) be a normed space, and Φ0 ⊂ Φ. The set
{φ1, φ2, . . . , φs} is an ε-covering of Φ0 if supφ∈Φ0

infi∈[s] ‖φ− φi‖ ≤ ε. We define the covering
number N (Φ0, ε, ‖‖) as the minimum size of such a covering.

In what follows, we provide two examples of neural networks in detail and show that such neural
networks satisfy our assumptions.

Example 1. The first example is the s-sparse neural network class. Schmidt-Hieber (2020) show that
the s-sparse neural network class satisfies Assumptions 5.1 and 5.2. We first introduce the definition.

Definition C.2 (The s-Sparse Neural Network Class). We define σ(x) = max{x, 0}. For a vector
v ∈ Rr, we define the shifted activation function σv : Rr → Rr as

σv
(
(y1, . . . , yr)

>) =
(
σ(y1 − v1), . . . , σ(yr − vr)

)>
.

A neural network with network architecture (L, p) is a function that takes the form,

f : Rp0 → RpL+1 , f(x) = WLσL . . . σ1W0x. (C.1)

when x ∈ Rp0 . Here L is the depth of the neural network, Wi is a pi+1 × pi weight matrix, vi ∈ Rpi
is a shift vector, and p = (p0, . . . , pL+1)>. The neural network class Fnn(L, p) is defined as

Fnn(L, p) =
{
f | f takes the form of (C.1) with max

j=0,...,L
‖Wj‖∞ ∨ ‖vj‖∞ ≤ 1

}
.

The s-sparse neural network class is defined as

Fnn(L, p, s,M) =
{
f | f ∈ Fnn(L, p),

L∑
j=0

‖Wj‖0 + ‖vj‖0 ≤ s, sup
x∈X
‖f(x)‖∞ ≤M

}
.
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We directly obtain the boundedness of the neural network class Fnn(L, p, s,M) by the definition.
Moreover, Schmidt-Hieber (2020) bound the covering number of Fnn(L, p, s,M) from the above by
the following lemma.

Lemma C.3 (Lemma 5 in Schmidt-Hieber (2020)). We define V =
∏L+1
l=0 (pl + 1). Then, for any

ε > 0, we have

logN
(
Fnn(L, p, s,M), ε, ‖·‖∞

)
≤ (s+ 1) log

(
2(L+ 1)V 2/ε

)
.

Lemma C.3 verifies that the s-sparse neural network class satisfies Assumption 5.2 with γ = 0.
Therefore, the s-sparse neural network class defined in Definition C.2 satisfies Assumptions 5.1 and
5.2.

Example 2. The second example is the recurrent neural network class. Chen et al. (2019) show that
the recurrent neural network class satisfies Assumptions 5.1 and 5.2. We first introduce the definition.
Definition C.4 (Recurrent Neural Network Class). A recurrent neural network f(Xt, t;U,W, h0) is
a mapping that, when it is parameterized by U ∈ Rdh×dh , V ∈ Rdy×dh , W ∈ Rdh×dx , h0 ∈ Rdh
and get Xt = (x1, . . . , xt) ∈ Rdx×t, t as input, it returns Yt = (y1, . . . , yt) ∈ Rdy×t

ht = σh(Uht−1 +Wxt), yt = σy(V ht),

where σh and σy are two nonlinear activation functions. We define the function class FRNN(t, B) as
the set of functions that take the form of f(·, t;U,W, h0), where f is a recurrent neural network that
only takes bounded input, and the spectral norm of U, V, and W are all bounded by B.

In Chen et al. (2019), they analyze the recurrent neural network class under the following assumption.
Assumption C.5. We assume that the activation functions σh and σy are Lipschitz with parameters
ρh and ρy respectively, and σh(0) = σy(0) = 0. Additionally, we assume that σh is entrywise
bounded by M .

Assumption C.5 can be satisfied by a lot of activation functions. For example, Assumption C.5
is satisfied when we choose σh(·) = tanh(·) and σy(·) = max(0, ·). We directly obtain the
boundedness of the function class FRNN(t, B) under Assumption C.5. Moreover, Chen et al. (2019)
bound the covering number of FRNN(t, B) from the above by the following lemma.
Lemma C.6 (Lemma 3 in Chen et al. (2019)). Under Assumption C.5, we have

logN
(
FRNN(t, B), ε, ‖·‖∞

)
≤ 3d2 log

(
1 + 6ct

√
d
(
(ρhB − 1)t − 1)

)
/
(
ε(ρhB − 1)

))
,

where d =
√
dh(dx + dy + dh) and c = ρyρhB

3 max{1, ρhB}.

Lemma C.6 verifies that the recurrent neural network class satisfies Assumption 5.2 with γ = 0.
Therefore, the recurrent neural network class defined in Definition C.4 satisfies Assumptions 5.1 and
5.2.

C.2 COMPARISON OF ELUDER DIMENSION AND LOG-COVERING NUMBER

In this section, we provide a lemma that use an example to illustrate that, the log-covering number of
a NN class can grow more moderately as the covering radius decays than the Eluder dimension.
Lemma C.7. LetR be a one-layer NN class defined as

R =
{
rθ,b : A → R | rθ,b(a) = σ(θ>a+ b), θ ∈ Rd, ‖θ‖2 ≤ 1, 0 ≤ b ≤ 1

}
,

where σ is the activation function in Definition C.2. Suppose we have A ⊂ Rd and ‖a‖2 ≤ 1 when
a ∈ A, then the ε-Eluder dimension of R is at least Ω(ε−(d−1)), and the ε-log covering number is
bounded from the above by O(log(1/ε)).

Proof. See Appendix §J.4 for a detailed proof.

Lemma C.7 suggests that, the log-covering number of an NN class can be much smaller than the
Eluder dimension. Our algorithm is sample efficient since the sample complexity of ELNF depends
on the log-covering number of the NN class instead of the Eluder dimension. We remark that the NN
class in Lemma C.7 also satisfies Assumption 5.2 with γ = 0.
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D SUPPLEMENTARY FOR REPRODUCING KERNEL HILBERT SPACES

As shown in Nachum & Yang (2021) and Ren et al. (2021), the transition kernel in our model is
closely related to the RKHS corresponding to the Gaussian kernel. In this section, we provide more
details on the RKHS. In the first subsection, we provide the definition of RKHSs and some basic
properties of RKHSs. In the second subsection, we lay out several properties of the population
operator and the empirical operator defined in (E.4) and (E.2).

D.1 BASIC CONCEPT

We will be considering the use of RKHS for designing the exploration bonus. We first introduce the
definition of RKHS and positive-definite kernels.
Definition (Reproducing Hilbert Kernel Space). LetH be a vector space which consists of functions
that take element in X as input and take their values in R. We assume that H is equiped with an
inner-product 〈·, ·〉H : H ×H → R. The function K : X × X → R is a reproducing kernel of H
if it satisfies the following properties, namely, (1) we have K(x, ·) ∈ H for all x ∈ X , and (2) we
have 〈g,K(x, ·)〉H = g(x) for all x ∈ X and g ∈ H.We callH a reproducing Hilbert kernel space
(RKHS) if it is a Hilbert space with a reproducing kernel K.
Definition (Positive-Definite Kernel). A kernel function K : X × X → R is positive definite if∑n
i=1

∑n
j=1 aiajK(xi, xj) ≥ 0 for all n ≥ 1, (a1, . . . , an)> ∈ Rn and (x1, . . . , xn)> ∈ Xn.

The following lemma reveals the connection between MDPs with neural dynamics and RKHS.

Lemma. There exists an RKHSH, such that K(x1, x2) = exp(−‖x1 − x2‖22 /2) is the kernel ofH.
The kernel is called the Gaussian kernel.

Proof. Rahimi et al. (2007) show that the Gaussian kernel is a positive-definite kernel on X ⊂ Rm.
Moore-Aronszajn theorem (Aronszajn (1950)) shows that for every positive-definite kernel, there
exists an RKHSH associated with the kernel. Thus, we conclude the proof.

We remark that by the similarity between different RKHSs, our analysis can be adapted to the cases
when the right-hand-side of (3.4) is another kernel function.
Definition D.1 (Generalization of Definition 3.1). An episodic Markov decision process
(S,A, H,P∗, r∗) is an MDP with neural dynamics if its reward functions r∗ = {r∗h}Hh=1 ⊂ R,
whereR is a known reward function class that consists of neural networks, and the transition kernel
of the MDP P∗ = {P∗h}Hh=1 takes the following form,

P∗h(sh+1 | sh, ah) = K
(
φ∗h(sh, ah), ψ∗h+1(sh+1)

)
.

Here K is a positive-definite kernel, φ∗h ∈ Φ : Rd ×A → Rm and ψ∗h+1 ∈ Ψ : Rd → Rm are two
unknown neural networks, and Φ and Ψ are two known feature map classes that consist of neural
networks. We denote byM the set of all the transition kernels that take the form of (3.4), and denote
by X ∈ Rm the space of the embedded feature.

We remark that when K(x1, x2) = x>1 x2 in Definition D.1, we recover linear MDP with unknown
feature and nonlinear reward function.

D.2 OPERATOR PROPERTIES

In this subsection, we provide the properties of operators defined in (E.2) and (E.4). The following
lemma shows that Γe[φ,D, λ] and Γp[φ, ρ, λ, τ ] are both positive-definite operators on H, which
guarantees the existence of the corresponding inverse.
Lemma D.2. Let ρ be a probability measure over X , and L2

ρ(X ) be the set of all functions that
is square-integrable on X with respect to ρ. We have H ⊂ L2

ρ(X ). When we define the operator
Γ as Γg(x) =

∫
X K(x′, x)g(x′)dρ(x′), we have Γg ∈ H when g ∈ L2

ρ(X ). Moreover, when Γ is
regarded as an operator fromH toH, it is non-negative definite.

Proof. See Appendix §J.5 for a detailed proof.
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The following lemma shows that the operator norm of the inverse operator of the empirical operator
can be computed efficiently.
Lemma D.3. LetH be an RKHS. For Xn = {x1, . . . , xn}, we define Γ[Xn] : H → H as

Γ[Xn]g(x) = λg(x) +

n∑
i=1

g(xi)K(xi, x).

Here K is the kernel of the RKHS. We denote by k the feature map of the RKHS. We have

‖k(x)‖2Γ−1[Xn] =
(
K(x, x)− k[Xn](x)>

(
λI +K[Xn]

)−1
k[Xn](x)

)/
λ.

Here k[Xn](x) = (K(x1, x), . . . ,K(xn, x))> ∈ Rn and K[Xn] = [K(xτ1 , xτ2)]nτ1,τ2=1 ∈ Rn×n.

Proof. See Appendix §J.6 for a detailed proof.

We end this subsection by bounding the operator norm of the operators Γe[φ,D, λ] and Γp[φ, ρ, λ, τ ].
Lemma D.4. For any g ∈ H, we have

λ〈g, g〉H ≤
〈
g,Γe[φ,D, λ]g

〉
H ≤

(
λ+

∑
(s,a,r,s′)∈D

K
(
φ(s, a), φ(s, a)

))
〈g, g〉H,

λ〈g, g〉H ≤
〈
g,Γp[φ, ρ, λ, τ ]g

〉
H ≤

{
λ+ τE(s,a)∼ρ

[
K
(
φ(s, a), φ(s, a)

)]}
〈g, g〉H.

Proof. See Appendix §J.7 for a detailed proof.

E PROOF OF THEOREM 5.3

We first state the theorem again with clearer description on the choice of the parameters.
Theorem (Theorem 5.3, restated). For an MDP with neural dynamics that satisfies Assumptions 5.1
and 5.2 with γ < 1/2, we set

λ = Cnγ/(1+γ)m log(48HRN/δ), β = 2(H + 1)
√

4λv2/c2min + 10r2
maxζ

2 |A|.

in Algorithm 2 (ELNF), where m is the dimension of the image of the feature maps. Suppose we can
obtain the exact solution to the optimization problems (4.3) and (4.4). We have

J(π∗; r∗,P∗)− J(π̂; r∗,P∗) ≤ CH5 |A|2N (2γ−1)/(2+2γ)
(
log(48HRN/δ)

)5/2
(logN)m+1

with probability at least 1− δ, where π̂ is the policy returned by Algorithm 2 (ELNF). Here C is a
constant only depends on the dimension m, the bound of the feature maps R, and Cnet in Assumption
5.2, and ζ is defined as

ζ =
√
C2 log(20HRN/δ)Nγ/(1+γ),

where C2 is a constant depends on the regularity parameters and the parameters of the NN class.

Proof. We define the normalization function c[φ∗h, ψ
∗
h+1](φ∗h(sh, ah)) as

c[φ∗h, ψ
∗
h+1]

(
sh, ah

)
=

∫
sh+1∈S

exp
(
−
∥∥φ∗h(sh, ah)− ψ∗h+1(sh+1)

∥∥2

2
/2
)

dsh+1. (E.1)

By (3.4) and (E.1), the transition kernel P∗h can be written as

P∗h(sh+1 | sh, ah) = exp
(
−
∥∥φ∗h(sh, ah)− ψ∗h+1(sh+1)

∥∥2

2

/
2
)
/c[φ∗h, ψ

∗
h+1]

(
sh, ah

)
.

We define the bound on the normalization constant as

cmax = sup
φ∈Φ,ψ∈Ψ

(s,a)∈S×A

c[φ, ψ](s, a), cmin = inf
φ∈Φ,ψ∈Ψ

(s,a)∈S×A

c[φ, ψ](s, a), rmax = cmax/cmin.

20



Published as a conference paper at ICLR 2023

We have cmax ≤ v, cmin ≥ v exp(−2R2), and rmax ≤ exp(2R2) when Assumption 5.1 holds. Here
v is the Lebesgue measure of S.

Since the kernel function K(x1, x2) = exp(‖x1 − x2‖22 /2) is a positive-definite kernel, it induces
an RKHS. We denote byH the RKHS induced by K, and denote by k the corresponding feature map.
This allows us to corporate techniques in RKHS into our analysis. The following lemma reveals the
relationship between the bonus we define andH.

Lemma E.1. For a finite dataset D = {(sτ , aτ , rτ , sτ+1)}nτ=1 and g ∈ H, we define the empirical
operator onH Γe[φ,D, λ] as

Γe[φ,D, λ]g(x) = λg(x) +
∑

(s,a,r,s′)∈D

g
(
φ(s, a)

)
K
(
φ(s, a), x

)
, (E.2)

and denote by Γ−1
e [φ,D, λ] the corresponding inverse operator. Then we have

unh(s, a) = min

{
2H + 2, β

∥∥∥k(φ̂nh(s, a)
)∥∥∥

Γ−1
e

[
φ̂nh ,D

n
h,1,λ

]}.
Proof. We conclude the proof by directly applying Lemma D.3.

In the sequel, we introduce two good events. We first define distributions and the population operator,
which we use in the definitions of the good events. For an index n ∈ [N ] and i ∈ {0, 1, 2}, we denote
by ϑnh,i the distribution of (sh, ah) when s1 = sinit, the state sh̄+1 ∼ P∗h(· | sh̄, ah̄), the action
ah̄ ∼ πn

h̄
(· | sh̄) for h̄ ∈ [h − i], and ah̄ ∼ U(A) for h̄ ∈ {h − i + 1, . . . , h}, where U(A) is the

uniform distribution over the action set A. We further define the measure ρnh,i as

ρnh,i(s, a) =

n∑
τ=1

ϑτh,i(s, a)/n, ∀(s, a) ∈ S ×A. (E.3)

For a distribution ρ over S ×A, we define the population operator as

Γp[φ, ρ, λ, τ ]g(x) = λg(x) + τE(s,a)∼ρg(φ(s, a))k(φ(s, a), x), (E.4)

and denote by Γ−1
p [φ, ρ, λ, τ ] the corresponding inverse operator. For the empirical operator and the

population operator, we have Γe[φ,D, λ]g ∈ H and Γp[φ, ρ, λ, τ ]g ∈ H when g ∈ H. The operators
in (E.2) are also positive-definite and self-adjoint for any dataset D when λ, τ > 0, which guarantees
the existence of its inverse. We denote by E1 that the bonus defined by the empirical operator is
bounded from the above and below by the operator defined by the population operator, that is,

1

2

∥∥k(φ(s, a)
)∥∥

Γ−1
p [φ,ρnh,i,λ,n]

≤
∥∥k(φ(s, a)

)∥∥
Γ−1
e [φ,Dnh,i,λ]

≤ 2
∥∥k(φ(s, a)

)∥∥
Γ−1
p [φ,ρnh,i,λ,n]

(E.5)

for any φ ∈ Φ, (s, a) ∈ S ×A, i ∈ {0, 1, 2}, and (h, n) ∈ [H]× [N ]. The data we collected contains
enough information for us to design the bonus for exploration when E1 holds. We denote by E2 that

E(s,a)∼ρnh,i

[
TV[P̂nh (· | s, a),P∗h(· | s, a)]2

]
≤ ζ2/n, (E.6)

E(s,a)∼ρnh,i

[
|r̂nh(s, a)− r∗h(s, a)|2

]
≤ ζ2/n (E.7)

for all (h, n) ∈ [H]× [N ], i ∈ {1, 2}. Here TV[p1(·), p2(·)] is the total variance divergence of two
distributions. Our estimators of the model are accurate in the sense that the population risk of our
estimators are small when E2 holds. The following lemmas show that E1 and E2 hold with high
probability.

Lemma E.2 (Concentration of Inverse Covariance). Under Assumption 5.2, when we set λ =
C1mN

γ/(1+γ) log(48HRN/δ), Event E1 defined in (E.5) holds with probability at least 1 − δ/4.
Here C1 is a constant only depends on the parameters of the NN class.

Proof. See Appendix §F for a detailed proof.
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Lemma E.3 (Estimation Error). We assume that Assumption 5.2 holds with γ < 2. Event E2 defined
in (E.6) and (E.7) holds with probability at least 1− δ/5 when

ζ =
√
C2 log(20HRN/δ)Nγ/(1+γ).

Here C2 is a constant depends on the regularity parameters and the parameters of the NN class.

Proof. See Appendix §G for a detailed proof.

Lemmas E.2 and E.3 show that good events E1 and E2 hold with high probability. In the following
part of the proof, we condition on Event E1 and E2. We also define the effective dimension as follows.

Definition E.4 (Effective Dimension). LetH be an RKHS and K be the corresponding kernel. For
Xn = {x1, . . . , xn}, we define the matrix K[Xn] = [K(xτ1 , xτ2)]nτ1,τ2=1, and define

Λ1(n, λ0) = sup
Xn⊂X

log det(In +K[Xn]/λ0).

Let k be the feature map ofH, and ∆(X ) be the set of distributions over X , we define

Λ2(n, λ0) = sup
ρ∈∆(X )

nEx∼ρ
[
‖k(x)‖2Γ−1

p [ρ,λ0,n]

]
.

Here the population operator Γp : H → H is defined as

Γp[ρ, λ0, n]f(x) = λ0f(x) + nEx0∼ρ
[
K(x, x0)f(x0)

]
.

We define deff = max{Λ1(N + 1, λ),Λ2(N,λ)}.

The effective dimension Λ1 is the maximum information gain in Srinivas et al. (2009), which is
closely related to Gaussian process regression. The effective dimension Λ2 is also closely related to
the dimension in finite-dimension RKHSs. See Appendix §H for a brief discussion. The effective
dimension deff is closely related to the sample complexity.

We are now ready to present the proof of Theorem 5.3. Our goal is to bound J(π∗; r∗,P∗) −
J(π̂; r∗,P∗). Since the policy π̂ returned by Algorithm 2 (ELNF) is the mixture of π1, . . . , πN , we
have

J(π∗; r∗,P∗)− J(π̂; r∗,P∗) =
1

N

N∑
n=1

[
J(π∗; r∗,P∗)− J(πn+1; r∗,P∗)

]
. (E.8)

We decompose the suboptimality as

N∑
n=1

[
J(π∗; r∗,P∗)− J(π̂; r∗,P∗)

]
=

N∑
n=1

zn,1︸ ︷︷ ︸
Term (a)

+

N∑
n=1

zn,2︸ ︷︷ ︸
Term (b)

+

N∑
n=1

zn,3︸ ︷︷ ︸
Term (c)

, (E.9)

where un = {unh}Hh=1 is the bonus we define in (4.5) and {zn,j}(n,h)∈[N ]×[3] are defined as

zn,1 = J(π∗; r∗,P∗)− J(π∗; rn + un,Pn),

zn,2 = J(π∗; rn + un,Pn)− J(πn+1; rn + un,Pn),

zn,3 = J(πn+1; rn + un,Pn)− J(πn+1; r∗,P∗).

In the sequel, we bound the terms from the above in (E.9) separately.

Term (a). To bound Term (a), we introduce the following characterization of the bonus.

Lemma E.5 (Almost Optimistic for the Planning Phase). Following the same condition of Theorem
5.3, when condition on the good events E1, E2 defined in (E.5), (E.6) and (E.7), we have

J(π; r̂n + un,Pn)− J(π; r,P∗) ≥ −(H + 1) |A| ζ/
√
n.

holds for any policy π. Here the bonus un = {unh}Hh=1 is defined in (4.5).
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Proof. See Appendix §I.1 for a detailed proof.

By Lemma E.5, we have Term (a) ≤
∑N
n=1(H + 1) |A| ζ/

√
n ≤ 8H |A| ζ

√
N .

Term (b). The following lemma bounds Term (b) from the above.

Lemma E.6. For the policy πn+1 returned by Algorithm 4 (Planning Algorithm), we have

J(π∗; rn + un,Pn)− J(πn+1; rn + un,Pn) ≤ 0.

Proof. See Appendix §I.2 for a detailed proof.

By Lemma E.6, we have Term (b) =
∑N
n=1[J(π∗; rn + un,Pn)− J(πn+1; rn + un,Pn)] ≤ 0.

Term (c). We have the following lemma, which bounds Term (c) from the above.

Lemma E.7 (Bounded optimistism). Following the same condition of Theorem 5.3, we have

N∑
n=1

[
J(πn+1; rn + un,Pn)− J(πn+1; r∗,P∗)

]
≤ 46H2 |A| ζβ1

√
deffN log(10H/δ)

with probability at least 1− δ/2. Here β1 = (4H2 + 6H + 2)
√

4λv2/c2min + 4r2
max |A|β2ζ2deff

and ζ is defined in Lemma E.3.

Proof. See Appendix §I.3 for a detailed proof.

We denote by E3 the event defined by Lemma E.7. In the following part of the proof, we condition on
Event E3. By Lemma E.7, we have Term (c) ≤ 46H2 |A| ζβ1

√
deffN log(10H/δ). Combining the

upper bounds of the terms in (E.9), we have

N∑
n=1

[
J(π∗; r∗,P∗)− J(πn+1; r∗,P∗)

]
≤ H |A| ζ

√
N
(
8 + 46Hβ1

√
deff log(10H/δ)

)
, (E.10)

By the definition of β1 in Lemma E.7, we have β1 ≤ 24H2vcmax/c
2
min(
√
λ+ ζβ

√
deff |A|). By the

definition of β in Theorem 5.3, we have β ≤ 24Hvcmax/c
2
min(
√
λ+ ζ

√
|A|). Therefore, we have

β1 ≤ 600H3ζv2c2max/c
4
min

√
deff |A|

(√
λ+

√
|A|
)

(E.11)

Combining (E.10), (E.11) with the value of λ in Theorem 5.3, we have

N∑
n=1

[
J(π∗; r∗,P∗)− J(πn+1; r∗,P∗)

]
≤ 36000H5v2c2max |A|

2
ζ2deff

√
λN log(10H/δ)/c4min

≤ C3H
5 |A|2 deffN

(1+4γ)/(2+2γ)
(
log(48HRN/δ)

)5/2
(E.12)

where C3 is a constant that only depends on the dimension of the feature m, the bound of the feature
maps R, and Cnet in Assumption 5.2. The following lemma bounds deff from the above.

Lemma E.8. For the Gaussian kernel K(x1, x2) = exp(−‖x1 − x2‖22 /2), we have

deff ≤ C4(logN)m+1.

Here C4 is a constant that only depends on the dimension m and the radius R.

Proof. See Appendix §H.1 for a detailed proof.

Combining (E.8), (E.12) with Lemma E.8, we have

J(π∗; r∗,P∗)− J(π̂; r∗,P∗) ≤ C5H
5 |A|2N (2γ−1)/(2+2γ)

(
log(48HRN/δ)

)5/2
(logN)m+1,

where C5 is a constant that only depends on the dimension of the feature m, the bound of the feature
maps R, and Cnet in Assumption 5.2. Thus, we conclude the proof of Theorem 5.3.
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F CONCENTRATION OF THE INVERSE COVARIANCE

In this section, we provide the proof of Lemma E.2, which shows that Event E1 defined in (E.5)
happens with high probability. We first show that we can prove Lemma E.2 by the concentration of
covariance using Lemma F.2. We then prove the concentration of the covariance for a fixed feature
map using the concentration inequality in Lemma F.3. Next, we take a union bound to prove the
uniform concentration for a covering of the feature map class, and use the property of the covering to
prove the uniform concentration of the covariance for the whole feature map class, which concludes
the proof of Lemma F.2.

Proof. We first introduce the filtration we use for our analysis.

Definition F.1 (Filtration). For any n ∈ [N ], we define Fn as the σ-algebra generated by the
trajectories in the first n loops of Algorithm 2 (ELNF).

By taking a union bound, we only need to show that for a fix n ∈ [N ] and i ∈ {0, 1, 2}, we have∥∥k(φ(s, a)
)∥∥2

Γ−1
p [φ,ρnh,i,λ,n]

/4 ≤
∥∥k(φ(s, a)

)∥∥2

Γ−1
e [φ,Dnh,i,λ]

≤ 4
∥∥k(φ(s, a)

)∥∥2

Γ−1
p [φ,ρnh,i,λ,n]

for any φ ∈ Φ and (s, a) ∈ S ×A with probability 1− δ/(24HN). Since we have ‖φ(s, a)‖2 ≤ R,
it remains to show that with probability 1− δ/(24HN), we have

‖k(x)‖2Γ−1
p [φ,ρnh,i,λ,n] /4 ≤ ‖k(x)‖2Γ−1

e [φ,Dnh,i,λ] ≤ 4 ‖k(x)‖2Γ−1
p [φ,ρnh,i,λ,n]

for any x ∈ Rm with ‖x‖2 ≤ R. We first prove that ‖k(x)‖2Γ−1
e [φ,Dnh,i,λ] ≤ 4 ‖k(x)‖2Γ−1

p [φ,ρnh,i,λ,n]

for any x ∈ Rm with ‖x‖2 ≤ R with probability at least 1 − δ/(48HN). The following lemma
allows us to prove the concentration of the inverse covariance by the concentration of the covariance.

Lemma F.2. LetH be a Hilbert space, and A, B be two positive-definite and self-adjoint bounded
linear operators on H. Suppose 〈x,Ax〉H ≥ 〈x,Bx〉H for all x ∈ D, we have 〈x,A−1x〉H ≤
〈x,B−1x〉H when B−1/2C−1B−1/2x ∈ D. Here C = (B−1/2AB−1/2)1/2.

Proof. See Appendix §J.8 for a detailed proof.

For simplicity, we define Γ1 = Γp[φ, ρ
n
h,i, λ, n], Γ2 = Γe[φ,Dnh,i, λ],

H0 =
{
k(x) | x ∈ Rm, and ‖x‖2 ≤ R

}
, and H1 =

{
Γk(x) | x ∈ Rm, and ‖x‖2 ≤ R

}
, (F.1)

where Γ = Γ
−1/2
1 (Γ

−1/2
1 Γ2Γ

−1/2
1 )−1/2Γ

−1/2
1 . By Lemma F.2, it remains to show that ‖g‖2Γ1

≤
4 ‖g‖2Γ2

for any g ∈ H1 with probability at least 1− δ/(48HN). By the definition of the population
operator, we have

‖g‖2Γ1
= ‖g‖2Γp[φ,ρnh,i,λ,n] = λ ‖g‖2H +

n∑
τ=1

E(s,a)∼%τh,i

[
g2
(
φ(s, a)

)]
.

Similarly, we have ‖g‖2Γ2
= λ ‖g‖2H +

∑n
τ=1 g

2(φ(sτh,i, a
τ
h,i)). Therefore, we can prove ‖g‖2Γ1

≤
4 ‖g‖2Γ2

by the concentration of g2. We define

N1 =
∣∣∣C(H1, ε1, ‖·‖∞

)∣∣∣, N2 =
∣∣∣C(Φ, ε2, ‖·‖∞,2)∣∣∣, (F.2)

for simplicity. Here C denote the covering sets we defined in notations, ε1 and ε2 are tuning parameters.
By Bernstein inequality, we have the following lemma, which can be used to show the concentration
of g2.
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Lemma F.3. Suppose that {Fτ}nτ=0 is a filtration and {(sτ , aτ )}nτ=1 is a S × A-value stochastic
process adapted to this filtration. We denote by %τ the distribution of (sτ , aτ ) when condition on
Fτ−1. For any fix g ∈ H and φ ∈ Φ, The following inequality holds with probability at least 1− δ/2.

n∑
τ=1

g2
(
φ(sτ , aτ )

)
≤ 2

n∑
τ=1

E(s,a)∼%τ
[
g2
(
φ(s, a)

)]
+ 2 log(2/δ)〈g, g〉H.

We also have the following inequality with probability at least 1− δ/2.
n∑
τ=1

E(s,a)∼%τ
[
g2
(
φ(s, a)

)]
/2 ≤

n∑
τ=1

g2
(
φ(sn, an)

)
+ 2 log(2/δ)〈g, g〉H.

Proof. See Appendix §J.9 for a detailed proof.

For any g ∈ C(H1, ε1, ‖·‖∞) and φ ∈ C(Φ, ε2, ‖·‖∞,2), by Lemma F.3, we have
n∑
τ=1

E(s,a)∼%τh,i

[
g2
(
φ(s, a)

)]
/2 ≤

n∑
τ=1

g2
(
φ(sτh,i, a

τ
h,i)
)

+ 2 log(48HNN1N2/δ)〈g, g〉H (F.3)

with probability at least 1 − δ/(48HNN1N2). Here N1 and N2 are defined in (F.2), %τh,i is the
distribution of (sτh,i, a

τ
h,i) when condition on Fτ−1. By taking a union bound, we have (F.3) holds

for all g ∈ C(H1, ε1, ‖·‖∞) and φ ∈ C(Φ, ε2, ‖·‖∞,2) with probability at least 1 − δ/(48HN).
Therefore, we have P(En,h,i) ≥ 1− δ/(48HN) when we define En,h,i as the event that (F.3) holds
for all g ∈ C(H1, ε1, ‖·‖∞) and φ ∈ C(Φ, ε2, ‖·‖∞,2).

In the following part of the proof, we condition on Event En,h,i. For an arbitrary g ∈ H1 and φ ∈ Φ,
we choose g0 ∈ C(H1, ε1, ‖·‖∞) and φ0 ∈ C(Φ, ε2, ‖·‖∞,2) such that supx∈X |g(x)− g0(x)| ≤ ε1
and sup(s,a)∈S×A ‖φ(s, a)− φ0(s, a)‖2 ≤ ε2. We decompose the difference in the expectation by

n∑
τ=1

E(s,a)∼%τh,i

[
g2

0

(
φ0(s, a)

)]
−

n∑
τ=1

E(s,a)∼%τh,i

[
g2
(
φ(s, a)

)]
(F.4)

=

n∑
τ=1

E(s,a)∼%τh,i

[(
g0

(
φ0(s, a)

)
+ g
(
φ(s, a)

))(
g0

(
φ0(s, a)

)
− g
(
φ(s, a)

))]
.

Since supx∈X |g(x)− g0(x)| ≤ ε1, we have∣∣∣g0

(
φ0(s, a)

)
− g
(
φ(s, a)

)∣∣∣ ≤ ε1 +
∣∣∣g(φ0(s, a)

)
− g
(
φ(s, a)

)∣∣∣ (F.5)

for any (s, a) ∈ S ×A. Combining (F.5) with the reproducing property ofH, we have∣∣∣g0

(
φ0(s, a)

)
− g
(
φ(s, a)

)∣∣∣ ≤ ε1 +

∣∣∣∣〈g, k(φ0(s, a)
)
− k
(
φ(s, a)

)〉
H

∣∣∣∣ (F.6)

≤ ε1 + ‖g‖H
∥∥∥k(φ0(s, a)

)
− k
(
φ(s, a)

)∥∥∥
H
,

where the last inequality follows Cauchy-Schwarz inequality. For the kernel feature map k, we have∥∥∥k(φ0(s, a)
)
− k
(
φ(s, a)

)∥∥∥2

H
=
∥∥k(φ0(s, a)

)∥∥2

H +
∥∥k(φ(s, a)

)∥∥2

H − 2
〈
k
(
φ0(s, a)

)
, k
(
φ(s, a)

)〉
H

= 2
(

1− exp
(
−
∥∥φ0(s, a)− φ(s, a)

∥∥2
/2
))
≤
∥∥φ0(s, a)− φ(s, a)

∥∥2 ≤ ε22. (F.7)

Combining (F.6) with (F.7), we have |g0(φ0(s, a))− g(φ(s, a))| ≤ ε1 + ε2 ‖g‖H, and∣∣∣g0

(
φ0(s, a)

)
+ g
(
φ(s, a)

)∣∣∣ ≤ ε1 + ε2 ‖g‖H + 2 ‖g‖H . (F.8)

We plug (F.8) into (F.4) and have
n∑
τ=1

E(s,a)∼%τh,i

[
g2
(
φ(s, a)

)]
−

n∑
τ=1

E(s,a)∼%τh,i

[
g2

0

(
φ0(s, a)

)]
(F.9)

≤ n
[
(ε22 + 2ε2)〈g, g〉H + (2ε1ε2 + 2ε1) ‖g‖H + ε21

]
.

The following lemma provide an upper bound and a lower bound of 〈g, g〉H for g ∈ H1.
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Lemma F.4. For any g ∈ H and the operator Γ defined in (F.1), we have

λ〈g, g〉H/(λ+ n)3 ≤
〈
Γg,Γg

〉
H ≤ (λ+ n)〈g, g〉H/λ3.

Proof. See Appendix §J.10 for a detailed proof.

Combining the definition ofH1 in (F.1) with Lemma F.4, we have

〈g, g〉H =
〈
Γk(x),Γk(x)

〉
H ≥ λ

〈
k(x), k(x)

〉
H/(λ+ n)3 = λ/(λ+ n)3, (F.10)

where the operator Γ is defined in Lemma F.4. Therefore, we plug (F.10) into (F.9) and have

n∑
τ=1

E(s,a)∼%τh,i

[
g2
(
φ(s, a)

)]
−

n∑
τ=1

E(s,a)∼%τh,i

[
g2

0

(
φ0(s, a)

)]
(F.11)

≤ n
[
(ε22 + 2ε2) + (λ+ n)3/2(2ε1ε2 + 2ε1)/λ1/2 + ε21(λ+ n)3/λ

]
〈g, g〉H.

By the same method that induces (F.11), we have

n∑
τ=1

g2
0

(
φ0(sτh,i, a

τ
h,i)
)
−

n∑
τ=1

g2
(
φ(sτh,i, a

τ
h,i)
)

(F.12)

≤ n
[
(ε22 + 2ε2) + (λ+ n)3/2(2ε1ε2 + 2ε1)/λ1/2 + ε21(λ+ n)3/λ

]
〈g, g〉H.

By the definition of Event En,h,i in (F.3), we have

n∑
τ=1

E(s,a)∼%τh,i

[
g2

0

(
φ(s, a)

)]/
2 ≤

n∑
τ=1

g2
0

(
φ(sτh,i, a

τ
h,i)
)

+ 2 log(48HNN1N2/δ) (F.13)

for g0 ∈ C(H1, ε1, ‖·‖∞) when En,h,i holds. We plug (F.11), (F.12) into (F.13), and have

n∑
τ=1

E(s,a)∼%τh,i

[
g2
(
φ(s, a)

)]/
2 (F.14)

≤
n∑
τ=1

g2
(
φ(sτh,i, a

τ
h,i)
)

+
(
2 log(48HNN1N2/δ) + κ[n, ε1, ε2]

)
〈g, g〉H

when condition on Event En,h,i defined in (F.13). Here κ[n, ε1, ε2] is defined as

κ[n, ε1, ε2] = 3n
[
(ε22 + 2ε2) + (λ+ n)3/2(2ε1ε2 + 2ε1)/λ1/2 + ε21(λ+ n)3/λ

]/
2 (F.15)

By the definition of κ[n, ε1, ε2] in (F.15), we have

κ[n, ε1, ε2] ≤ 5nγ/(1+γ) + 6(λ+ n)3/2/(n3/2λ3/2) + 2(λ+ n)3/(n4λ3) ≤ 38nγ/(1+γ) (F.16)

when we set ε1 = 1/(n5/2λ) and ε2 = n−1/(1+γ). Combining (F.14) with (F.16), we have

n∑
τ=1

E(s,a)∼%τh,i

[
g2
(
φ(s, a)

)]/
2 (F.17)

≤
n∑
τ=1

g2
(
φ(sτh,i, a

τ
h,i)
)

+
(

2 logN1 + 2 logN2 + 2 log(48HN/δ) + 38nγ/(1+γ)
)
〈g, g〉H.

It remains to bound logN1 and logN2 from the above. The following lemma bounds N1 from the
above.

Lemma F.5. For the setH1 defined in (F.1), we have N (H1, ε, ‖·‖∞) ≤ (R2(λ+ n)/(λ3ε2))m/2.

Proof. See Appendix §J.11 for a detailed proof.
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By the definition ofN1 in (F.2) and Lemma F.5, we have 2 logN1 ≤ 12m log(nR). By the definition
of N1 in (F.2) and Assumption 5.2, we have 2 logN2 ≤ Ccic,1n

γ/(1+γ) log n, where Ccic,1 is a
constant only depends on Cnet in Assumption 5.2. Therefore, by (F.17), we have

n∑
τ=1

E(s,a)∼%τh,i

[
g2
(
φ(s, a)

)]
/2

≤
n∑
τ=1

g2
(
φ(sτh,i, a

τ
h,i)
)

+ 53Ccic,1mN
γ/(1+γ) log(48HNR/δ)〈g, g〉H

when condition on En,h,i in (F.3). By choosing λ = 106Ccic,1mN
γ/(1+γ) log(48HNR/δ), we have

n∑
τ=1

E(s,a)∼%τh,i

[
g2
(
φ(s, a)

)]
/2 + λ〈g, g〉H/2 ≤

n∑
τ=1

g2
(
φ(sτh,i, a

τ
h,i)
)

+ λ〈g, g〉H (F.18)

for any g ∈ H1 and φ ∈ Φ when condition on En,h,i. By the same method inducing (F.18), we have
n∑
τ=1

g2
(
φ(sτh,i, a

τ
h,i)
)

+ λ〈g, g〉H ≤ 2

n∑
τ=1

E(s,a)∼%τh,i

[
g2
(
φ(s, a)

)]
+ 2λ〈g, g〉H

for any g ∈ H1 and φ ∈ Φ when condition on En,h,i, which concludes the proof of Lemma E.2.

G PROOF OF LEMMA E.3

In this section, we provide the proof of Lemma E.3, which shows that Event E2 defined in (E.6) and
(E.7) happens with high probability. We conclude the proof of Lemma E.3 by combining Lemma G.1
and Lemma G.2, which provide upper bounds of the estimation errors of the reward and the transition
estimation. Lemma G.1 is proven by the standard technique of bounding generalization error. Lemma
G.2 is proven by the same method of Theorem 7.4 in Van de Geer (2000). To prove Lemma G.2, we
show that the estimation error in the transition is closely related to the uniform convergence over
a function class induced by the transition kernel, and then prove the uniform convergence over the
function class using empirical process theory.

Proof. The following lemma bounds the population risk of the estimators of the reward from the
above.

Lemma G.1. Let {Fτ}nτ=0 be a filtration and {xτ}nτ=1 be a X -valued stochastic process adapted to
this filtration. Suppose rτ is a Fτ+1-measurable random variable with E[rτ | Fτ ] = r∗(xτ ), where
r∗ ∈ R is an unknown function andR is a known function class. We define the estimator of r∗ as

r̂ = argmin
r∈R

n∑
τ=1

(
rτ − r(xτ )

)2
.

We also define the population risk as Risk(r) =
∑n
τ=1 E[(r(xτ ) − r∗(xτ ))2 | Fτ−1]/n, and then

have

Risk(r̂) ≤ 16 log
(
N (R, ε, ‖·‖∞)/δ

)
/n+ 12ε

with probability at least 1− δ for any fix ε, δ > 0.

Proof. See Appendix §G.1 for a detailed proof.

We first apply Lemma G.1 with ε = 1/n−1/(1+γ), we then have

E(s,a)∼ρnh,1

[
|r̂nh(s, a)− r∗h(s, a)|2

]
+ E(s,a)∼ρnh,2

[
|r̂nh(s, a)− r∗h(s, a)|2

]
≤ 24n−1/(1+γ) + 32

(
log(20HN/δ) + Cnetn

γ/(1+γ) log(n)/(1 + γ)
)
/n

≤ Cnet,1n
−1/(1+γ) log(20HN/δ)
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for any (h, n) ∈ [H] × [N ] with probability at least 1 − δ/(20HN) by Assumption 5.2. Here
Cnet,1 = 56 + 32Cnet/(1 + γ) is a constant only depends on the parameter of the neural network
classes. By taking a union bound, we have

E(s,a)∼ρnh,i

[∣∣r̂n+1
h (s, a)− r∗h(s, a)

∣∣2] ≤ Cnet,1n
−1/(1+γ) log(20HN/δ)

holds for all (i, h, n) ∈ [2]× [H]× [N ] with probability at least 1− δ/20.

The following lemma bounds the population risk of the estimators of the transition kernel from the
above.

Lemma G.2. Let {Fτ}nτ=0 be a filtration and let {(Sτ , Aτ , S′τ )}nτ=1 be a S×A×S-value stochastic
process adapted to this filtration. Let ρτ be the distribution of (Sτ , Aτ ) when condition on Fτ−1. We
assume that S′τ ∼ P∗(· | Sτ , Aτ ) when condition on (Sτ , Aτ ) and Fτ−1. We estimate P∗ by

P̂ = argmax
P∈M

n∑
τ=1

logP(S′τ | Sτ , Aτ ).

Let N (ε,M, ‖·‖∞) be the covering number of the transition classM, and define H∞(ε,M) =
logN (ε,M, ‖·‖∞). Let G be a function satisfies (1). G(ε)/ε2 is non-increasing, and (2)

G(ε) ≥ max

{
8

∫ ε/23

ε2/217

H1/2
∞
(
(2v)−1/2u, Ḡ

)
du, ε

}
,

where Ḡ = {ḡP | ḡP(s, a, s′) =
√

(P(s′ | s, a) + P∗(s′ | s, a))/2, P ∈M}. Suppose εn satisfies√
nε2n ≥ C9G(εn), where C9 is an absolute constant. Then for any ε ≥ max{εn, 1/

√
n}, we have

P
(

1

n

n∑
τ=1

E(s,a)∼ρτ

[
TV2

(
P̂(· | s, a),P∗(· | s, a)

)]
≥ ε2

)
≤ C9 exp

(
−nε2/C2

9

)
.

Proof. See Appendix §G.2 for a detailed proof.

The following lemma bounds the covering number of Ḡ in Lemma G.2 from the above.

Lemma G.3. For two feature map classes Φ and Ψ, we define the density class as

M =
{
P : P(s′ | s, a) = exp

(
−‖φ(s, a)− ψ(s′)‖22 /2

)/
c[φ, ψ](s, a)

∣∣ φ ∈ Φ, ψ ∈ Ψ
}
,

where the normalization function c[φ, ψ](s, a) is defined in (E.1). We then have

H∞(δ, Ḡ) ≤ H2

(
exp(−R2)c2minδ

R
√
cmax(v + cmax)

,Φ, ‖·‖∞,2

)
+H2

(
exp(−R2)c2minδ

R
√
cmax(v + cmax)

,Ψ, ‖·‖∞,2

)
,

where Ḡ is defined in Lemma G.2.

Proof. See Appendix §G.3 for a detailed proof.

By Lemma G.3, when we define Ḡ in the same way as Lemma G.2, we have

H∞(ε, Ḡ) ≤ H2(Creg,1ε,Φ) +H2(Creg,1ε,Ψ)

≤ 2Cnet

(
1− logCreg,1 + log(1/ε)

)
/(Cγreg,1ε

γ) ≤ C2
reg,2

(
1 + log(1/ε)

)
/εγ ,

where Creg,1 = exp(−R2)c2min/
(
R
√
cmax(v + cmax)

)
, and

Creg,2 =
√

2Cnet(1− logCreg,1)/Cγreg,1

are constants only depend on the regularity parameters. We have∫ ε/8

ε2/217

H1/2
∞ (u, Ḡ)du ≤

∫ ε/8

ε2/217

Creg,2

√
1 + log(1/u)/uγ/2du

≤ Creg,2

√
log(219/ε2)ε1−γ/2/(1− γ/2)
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when γ < 2. Therefore, we set G(ε) = Creg,2

√
log(215/ε2)ε1−γ/2/(1 − γ/2). By such def-

inition, the solution of
√
nε2n = CG(εn) should satisfy εn ≤ Creg,3n

−1/(2+γ) log n, where
Creg,3 is a constant only depends on the regularity parameters. Therefore, when we choose
ε = Creg,4n

−1/(2+γ)
√

log(20HN/δ), where Creg,4 is a constant only depends on the regularity
parameters, we have

1

2

2∑
i=1

E(s,a)∼ρτh,i

[
TV2

(
P̂nh (· | s, a),P∗h(· | s, a)

)]
≤ C2

reg,4n
−2/(2+γ) log(20HN/δ)

for any (h, n) ∈ ×[H]× [N ] with probability 1− δ/(20HN). By taking a union bound, (E.6) holds
for all (i, h, n) ∈ [2]× [H]× [N ] with probability at least 1− δ/20, which concludes the proof of
Lemma E.3.

G.1 PROOF OF LEMMA G.1

Proof. We first define ετ = rτ − r∗(xτ ) and Risk(r) =
∑n
τ=1[rτ − r(xτ )]2/n. By the definition,

the noise ετ is a Fτ+1-measurable random variable with E[ετ | Fτ ] = 0. We have[
rτ − r(xτ )

]2
= ε2τ + 2ετ

[
r∗(xτ )− r(xτ )

]
+
[
r∗(xτ )− r(xτ )

]2
(G.1)

for any fix r ∈ R. We also have Risk(r∗) =
∑n
τ=1 ε

2
τ . Since E[ετ | Fτ ] = 0, by (G.1), we have

E
[(
rτ − r(xτ )

)2 − (rτ − r∗(xτ )
)2 − (r∗(xτ )− r(xτ )

)2 | Fτ−1

]
= 0,

and Var
[(
rτ − r(xτ )

)2 − (rτ − r∗(xτ )
)2 − (r∗(xτ )− r(xτ )

)2 | Fτ−1

]
= Var

[
2ετ (r∗(xτ )− r(xτ )) | Fτ−1

]
≤ 4E

[(
r∗(xτ )− r(xτ )

)2 | Fτ−1

]
.

Applying Lemma J.4 with λ = 1/4, we have

Risk(r)− Risk(r∗)− Risk(r) ≥ −(e− 2)

n∑
τ=1

E
[(
r∗(xτ )− r(xτ )

)2 | Fτ−1

]/
n− 4 log(1/δ)/n

with probability at least 1− δ. By the definition of the population risk Risk(r), we have

Risk(r)− Risk(r∗)− (3− e)Risk(r) ≥ −4 log(1/δ)/n (G.2)
with probability at least 1− δ. Equation (G.2) shows the concentration of the risk for a fix r ∈ R.
For the uniform convergence, we define C as the ε-covering set ofR with infinity norm, and have

Risk(r)− Risk(r∗)− Risk(r)/4 ≥ −4 log(N/δ)/n (G.3)
for all r ∈ C with probability at least 1 − δ by taking a union bound. Here the covering number
N = |C|. Therefore, when we denote by ER the event that (G.3) holds for all r ∈ C, we have
P(ER) ≥ 1− δ. In the following part of the proof, we condition on Event ER. For an arbitrary r ∈ R,
we choose r′ ∈ R such that ‖r − r′‖∞ ≤ ε. First, we have

Risk(r)− Risk(r)/4− Risk(r′) + Risk(r′)/4 =
1

n

n∑
τ=1

(
2rτ − r(xτ )− r′(xτ )

)(
r′(xτ )− r(xτ )

)
+

1

4n

n∑
τ=1

E
[(

2r∗(xτ )− r(xτ )− r′(xτ )
)(
r(xτ )− r′(xτ )

)
| Fτ−1

]
By the definition of the covering and the boundedness of the reward, we have Risk(r)−Risk(r)/4−
Risk(r′) + Risk(r′)/4 ≥ −3ε. Therefore, we have

Risk(r)− Risk(r)/4− Risk(r∗) ≥ −4 log(N/δ)/n− 3ε

for all r ∈ R when condition on ER defined in (G.3). Let r̂ be the minimizer of Risk(r), we have

−Risk(r̂) ≥ 4Risk(r̂)− Risk(r̂)− 4Risk(r∗) ≥ −16 log(N/δ)/n− 12ε

when condition on Event ER. Since P(ER) ≥ 1− δ, we conclude the proof of Lemma G.1.
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G.2 PROOF OF LEMMA G.2

Proof. We denote by H the Hellinger divergence of two probability measures, which is defined as

H2
(
P1(·),P2(·)

)
=

1

2

∫
S

(√
P1(s)−

√
P2(s)

)2

ds.

Since we have TV2(P1,P2) ≤ 8H2(P1,P2), it remains to bound the population risk from the above
in terms of the Hellinger divergence. We now require the following lemmas, which connect the
Hellinger divergence with the uniform law of large number (ULLN).

Lemma G.4 (Lemma 4.2 in Van de Geer (2000)). For the Hellinger divergence H, two probability
measures P̂(· | s, a) and P∗(· | s, a), we have

16H2
((
P̂(· | s, a) + P∗(· | s, a)

)
/2,P∗(· | s, a)

)
≥ H2

(
P̂(· | s, a),P∗(· | s, a)

)
.

Lemma G.5. When we define P̄(s′ | s, a) = (P̂(s′ | s, a) + P∗(s′ | s, a))/2, we have

2

n∑
τ=1

E
[
H2
(
P̄(· | Sτ , Aτ ),P∗(· | Sτ , Aτ )

) ∣∣ Fτ−1

]
≤

n∑
τ=1

log
P̄(S′τ | Sτ , Aτ )

P∗(S′τ | Sτ , Aτ )
−

n∑
τ=1

E

[
log
P̄(S′τ | Sτ , Aτ )

P∗(S′τ | Sτ , Aτ )

∣∣∣ Fτ−1

]
.

Proof. We conclude the proof by directly applying Lemma 4.1 in Van de Geer (2000).

We define the function gP,1, the functional νn,1, νn,1 as follows,

gP,1(s, a, s′) =
1

2
log
((
P(s′ | s, a) + P∗(s′ | s, a)

)
/
(
2P∗(s′ | s, a)

))
, (G.4)

νn,1(g) =
1√
n

n∑
τ=1

{
g(sτ , aτ , s

′
τ )− E(s,a)∼ρτ ,s′∼P∗(·|s,a)

[
g(s, a, s′)

]}
,

νn,2(P) =
1

n

n∑
τ=1

E(s,a)∼ρτ

[
H2
((
P(s′ | s, a) + P∗(s′ | s, a)

)
/2,P∗(· | s, a)

)]
. (G.5)

By Lemma G.5, we have νn,1(gP̂,1)−
√
nνn,2(P̂) ≥ 0. By Lemma G.4, we can prove Lemma G.2

by showing that νn,2(P̂) ≤ ε2/128 holds with high probability. Therefore, we only need to prove
that

P
(

sup
P∈M,νn,2(P)≥ε2/128

νn,1(gP,1)−
√
nνn,2(P) ≥ 0

)
≤ C exp

(
−nε2/C2

)
for some absolute constant C. Since the Hellinger distance is bounded from the above by 1, we have

P
(

sup
P∈M,νn,2(P)≥ε2/128

νn,1(gP,1)−
√
nνn,2(P) ≥ 0

)
(G.6)

≤
S∑
s=1

P
(

sup
g∈G(2s−4ε)

νn,1(g) ≥
√
n22s−10ε2

)
,

where S = min{s : 2s−4ε > 1} and G(ε) = {gP,1 | P ∈ M, νn,2(P) ≤ ε2}. Therefore, we can
prove Lemma G.2 by the uniform law of large number on the function class G(ε). We introduce the
definition of the bracketing and a related ULLN in martingale processes as follows.

Definition G.6 (δ-entropy with the bracketing). Let {Fτ}nτ=0 be a filtration and {Xτ}nτ=1
be a X -valued random process adapted to this filtration. For 0 < δ ≤ R, let
NB,M (δ,G, {Xτ}nτ=1, {Fτ}nτ=0) be the smallest value of N for which there exists a non-random
collection {[gLj , gUj ]}Nj=1, such that (1) for all g ∈ G, there exists a non-random j(g) ∈ [N ], such
that gLj(g)(x) ≤ g(x) ≤ gUj(g)(x) for all x ∈ X , and (2). χM (gUj − gLj , {Xτ}nτ=1, {Fτ}nτ=0) ≤ δ for
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all j ∈ [N ]. We define δ-entropy with the bracketing HB,M as HB,M (δ,G, {Xτ}nτ=1, {Fτ}nτ=0) =
logNB,M (δ,G, {Xτ}nτ=1, {Fτ}nτ=0). Here χM (g, {Xτ}nτ=1, {Fτ}nτ=0) is defined as

χ2
M

(
g, {Xτ}nτ=1, {Fτ}nτ=0

)
= 2M2

n∑
τ=1

E
[
exp
(
|g(Xτ )| /M

)
− 1− |g(Xτ )| /M

∣∣ Fτ−1

]/
n.

Lemma G.7. Let {Fτ}nτ=0 be a filtration and {Xτ}nτ=1 be a X -valued random process adapted to
this filtration. Suppose we have supg∈G χM (g) ≤ R for the function class G. We set the values of the
parameters M , ς0, ς1, ς2, and C2 such that the following inequalities hold.

ς0 ≤ ς2
√
nR2/M, ς0 ≤ 8

√
nR, ς21 ≥ C2

2 (ς2 + 1), (G.7)

ς0 ≥ ς1 max
{∫ R

ς0/(64
√
n)

H
1/2
B,M

(
u,G, {Xτ}nτ=1, {Fτ}nτ=0

)
du,R

}
, (G.8)

where HB,M is defined in Definition G.6 and C2 is an absolute constant. We have

P

(
sup
g∈G

1√
n

∣∣∣∣∣
n∑
τ=1

{
g(Xτ )− E

[
g(Xτ ) | Fτ−1

]}∣∣∣∣∣ ≥ ς0
)
≤ C2 exp

(
− ς20
C2

2 ς2R
2

)
.

Proof. We conclude the proof by directly applying Theorem 8.13 in Van de Geer (2000).

By the following lemma, we have χ1(g) ≤ 4ε for g ∈ G(ε).

Lemma. For the function gP,1, νn,2(P) defined in (G.4), (G.5). We have χ2
1(gP,1) ≤ 16νn,2(P).

Proof. We conclude the proof by directly applying Lemma 7.2 in Van de Geer (2000).

Therefore, we can apply Lemma G.7 on G(2s−4ε) with ς0 =
√
n22s−10ε2, ς1 = 4C2, ς2 = 15,

M = 1, and R = 2s−2ε. Our selection of parameters satisfies (G.7). To validate (G.8), we need
to bound the generalized entropy of G(ε) from the above, which depends on the distribution of the
corresponding stochastic process. The following lemma decouples such dependency.

Lemma G.8. We assume that 0 ≤ P1(s′ | s, a) ≤ P2(s′ | s, a), and define gi, P̄i as

P̄i(s, a, s′) =

√
Pi(s′ | s, a) + P∗(s′ | s, a)

2
, gi(s, a, s′) =

1

2
log
P̄2
i (s, a, s′)

P∗(s′ | s, a)
1{P∗(s′|s,a)>0},

for i = 1, 2. Let v be the Lebesgue measure of S. We have

χ1

(
g2 − g1,

{
(Sτ , Aτ , S

′
τ )
}n
τ=1

,
{
Fτ
}n
τ=0

)
≤
√

2v sup
(s,a,s′)∈S×A×S

(
P̄2(s, a, s′)− P̄1(s, a, s′)

)
.

Proof. See G.7 for a detailed proof.

Combining Lemma G.8, Definition G.6, with the definition of G(ε) in (G.6), we have

HB,1

(
u,G(ε),

{
(Sτ , Aτ , S

′
τ )
}n
τ=1

,
{
Fτ
}n
τ=0

)
≤ H∞

(
(8v)−1/2u, Ḡ

)
, (G.9)

where H∞(ε,G) is the ε-log-covering number of G with respect to the infinity norm, and Ḡ is defined
in Lemma G.2. When εn satisfies the condition in Lemma G.2 with C9 = 210C2 and ε ≥ εn, we have

√
n22s−10ε2 ≥ C2G(2sε) (G.10)

≥ C2 max

{
8

∫ 2s−3ε

22s−17ε2
H1/2
∞
(
(2v)−1/2u, Ḡ

)
du, 2sε

}
.

Combining (G.9) with (G.10), we have

√
n22s−10ε2 ≥ 4C2 max

{∫ 2s−2ε

22s−16ε2
H

1/2
B,1

(
u,G(2s−4ε),

{
(Sτ , Aτ , S

′
τ )
}n
τ=1

,
{
Fτ
}n
τ=0

)
du, 2s−2ε

}
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for all ε ≥ εn and s ≥ 0, which validates (G.8) in Lemma G.7. Therefore, by Lemma G.7, we have

P
(

sup
g∈G(2s−4ε)

νn,1(g) ≥
√
n22s−10ε2

)
≤ C2 exp

(
−(n22s−16ε2)/(15C2

2 )
)
.

Therefore, by (G.6), when ε > 1/
√
n and C3 is an absolute constant that large enough, we have

P
(

sup
P∈M,νn,2(P)>ε2/128

νn(gP,1)−
√
nνn,2(P)

)
≤ C2

∞∑
s=0

exp
(
−(n22s−16ε2)/(15C2

2 )
)

≤ C3 exp
(
−nε2/C2

3

)
.

We conclude the proof of Lemma G.2 by setting C9 in Lemma G.2 by the maximum of C3 and
210C2.

G.3 PROOF OF LEMMA G.3

Proof. We use the following lemmas to connect the covering number of different function classes
and bound the covering number of Ḡ from the above using the covering number of Ψ and Ψ.

Lemma G.9. We haveN (δ, Ḡ, ‖·‖∞) ≤ N (4δ
√
c,M, ‖·‖∞), where Ḡ is defined in Lemma G.2 and

c = infP∈M,s′,s∈S,a∈A P(s′ | s, a).

Proof. See Appendix §G.4 for a detailed proof.

Lemma G.10. Suppose the function classM is defined as

M =
{
Pu(s′ | s, a)/c[Pu](s, a) | Pu ∈Mu

}
,

where the normalization function c[Pu](s, a) is defined as c[Pu](s, a) =
∫
s′∈S Pu(s′ | s, a)d(s′).

We assume that cmax ≥ c[Pu](s, a) ≥ cmin and Pu(s′ | s, a) ≤ 1 for any Pu ∈Mu. We have

N
(
δ,M, ‖·‖∞

)
≤ N

(
c2minδ/(v + cmax),Mu, ‖·‖∞

)
.

Proof. See Appendix §G.5 for a detailed proof.

Lemma G.11. For two feature map classes Φ and Ψ, we define the function classMu as

Mu =
{

exp
(
−‖φ(s, a)− ψ(s′)‖22 /2

)
| φ ∈ Φ, ψ ∈ Ψ

}
.

We have N (δ,Mu, ‖·‖∞) ≤ N (δ/(4R),Φ, ‖·‖∞,2) · N (δ/(4R),Ψ, ‖·‖∞,2), where R is the bound
of the feature maps.

Proof. See Appendix §G.6 for a detailed proof.

For the density classM, we have infP∈M,s′,s∈S,a∈A P(s′ | s, a) ≥ exp(−2R2)/cmax, where R
bounds the norm of the feature maps from the above. Combining Lemma G.9, G.10, with G.11, we
have

N
(
δ,M′, ‖·‖∞

)
≤ N

(
ccoverδ,Φ, ‖·‖∞,2

)
N
(
ccoverδ,Ψ, ‖·‖∞,2

)
, (G.11)

where ccover = exp(−R2)c2min/(r
√
cmax(v + cmax)). We conclude the proof of Lemma G.3 by

taking logarithms of both sides of (G.11).
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G.4 PROOF OF LEMMA G.9

Proof. For P ′1, P ′2 ∈ G′, we have P ′i(s′ | s, a) =
√

(Pi(s′ | s, a) + P∗(s′ | s, a))/2 for i = 1, 2,
s′, s ∈ S and a ∈ A for some P1, P2 ∈M. Therefore, we have

P ′1(s′ | s, a)− P ′2(s′ | s, a) (G.12)

=
P1(s′ | s, a)− P2(s′ | s, a)√

2
(√
P1(s′ | s, a) + P∗(s′ | s, a) +

√
P2(s′ | s, a) + P∗(s′ | s, a)

)
Combining (G.12) with the fact that P(s′ | s, a) ≥ c for any P ∈M, we have∣∣P ′1(s′ | s, a)− P ′2(s′ | s, a)

∣∣ ≤ ∣∣P1(s′ | s, a)− P2(s′ | s, a)
∣∣/4√c. (G.13)

Let C be a 4
√
cε-covering set ofM. We define C′ by

C′ =
{
ḡP | ḡP(s, a, s′) =

√(
P(s′ | s, a) + P∗(s′ | s, a)

)
/2, P ∈ C

}
.

By (G.13), C′ is an ε-covering set of Ḡ, and |C′| = N (4δ
√
c,M, ‖·‖∞). Thus, we conclude the proof

of Lemma G.9.

G.5 PROOF OF LEMMA G.10

Proof. For P1,P2 ∈ M, we have Pi(s′ | s, a) = Piu(s′ | s, a)/c[Piu](s, a) holds for all i ∈ [2],
s′, s ∈ S and a ∈ A for some P1

u,P2
u ∈Mu. Therefore, we have

P1(s′ | s, a)− P2(s′ | s, a) =
c[P1

u](s, a)P1
u(s′ | s, a)− c[P1

u](s, a)P2
u(s′ | s, a)

c[P1
u](s, a)c[P1

u](s, a)
(G.14)

+
c[P1

u](s, a)P2
u(s′ | s, a)− c[P2

u](s, a)P2
u(s′ | s, a)

c[P1
u](s, a)c[P2

u](s, a)
.

Combining (G.14) with cmax ≥ c[Pu](s, a) ≥ cmin for all Pu ∈Mu, we have∣∣P1(s′ | s, a)− P2(s′ | s, a)
∣∣ ≤cmax

∣∣P1
u(s′ | s, a)− P2

u(s′ | s, a)
∣∣ /c2min (G.15)

+ P2
u(s′ | s, a)

∣∣c[P1
u](s, a)− c[P2

u](s, a)
∣∣ /c2min.

By the definition of the normalization function c[Pu](s, a), we have∣∣c[P1
u](s, a)− c[P2

u](s, a)
∣∣ ≤ ∫

S

∣∣P1
u(s′ | s, a)− P2

u(s′ | s, a)
∣∣ds′ ≤ v ∥∥P1

u − P2
u

∥∥
∞ , (G.16)

where v is the Lebesgue measure of S . Combining (G.15), (G.16) with the fact that Pu(s′ | s, a) ≤ 1
for all Pu ∈ Mu, we have

∣∣P1(s′ | s, a)− P2(s′ | s, a)
∣∣ ≤ ∥∥P1

u − P2
u

∥∥
∞ (v + cmax)/c2min. Let C

be a c2minε/(v + cmax)-covering set ofMu. We define C′ by

C′ =
{
Pu(s′ | s, a)/c[Pu](s, a) | Pu ∈ C

}
.

The set C′ is an ε-covering set of M, and |C′| = N (c2minδ/(v + cmax),Mu, ‖·‖∞). Thus, we
conclude the proof of Lemma G.10.

G.6 PROOF OF LEMMA G.11

Proof. First, for any x, y > 0, we have

∣∣ exp(−x2)− exp(−y2)
∣∣ =

∣∣∣ ∫ y2

x2

exp(−u)du
∣∣∣ ≤ ∣∣x2 − y2

∣∣ . (G.17)
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We set x = ‖φ1(s, a)− ψ1(s′)‖2 /
√

2 and y = ‖φ2(s, a)− ψ2(s′)‖2 /
√

2 in (G.17) and have∣∣∣exp
(
−‖φ1(s, a)− ψ1(s′)‖22 /2

)
− exp

(
−‖φ2(s, a)− ψ2(s′)‖22 /2

)∣∣∣ (G.18)

≤ 1

2

∣∣ ‖φ1(s, a)− ψ1(s′)‖22 − ‖φ1(s, a)− ψ2(s′)‖22
∣∣

+
1

2

∣∣ ‖φ1(s, a)− ψ2(s′)‖22 − ‖φ2(s, a)− ψ2(s′)‖22
∣∣

by triangle inequality. For the first term in (G.18), we have∣∣ ‖φ1(s, a)− ψ1(s′)‖22 − ‖φ1(s, a)− ψ2(s′)‖22
∣∣ (G.19)

≤ ‖ψ2(s′)− ψ1(s′)‖2 ‖2φ1(s, a)− ψ1(s′)− ψ2(s′)‖2
Combining (G.19) with the boundedness of the feature maps, we have∣∣ ‖φ1(s, a)− ψ1(s′)‖22 − ‖φ1(s, a)− ψ2(s′)‖22

∣∣ ≤ 4R ‖ψ2(s′)− ψ1(s′)‖2 .

Similarly, we have | ‖φ1(s, a)− ψ2(s′)‖22 − ‖φ2(s, a)− ψ2(s′)‖22 | ≤ 4R ‖φ2(s, a)− φ1(s, a)‖2 .
By (G.18), we have∣∣∣exp

(
−‖φ1(s, a)− ψ1(s′)‖22 /2

)
− exp

(
−‖φ2(s, a)− ψ2(s′)‖22 /2

)∣∣∣
≤ 4Rmax

{
‖ψ2(s′)− ψ1(s′)‖2 , ‖φ2(s, a)− φ1(s, a)‖2

}
. (G.20)

Let C1 be a ε/(4r)-covering set of Φ, and C2 be a ε/(4r)-covering set of Ψ. We define C by

C =
{

exp
(
−‖φ(s, a)− ψ(s′)‖22 /2

)
| φ ∈ C1, ψ ∈ C2

}
.

By (G.20), C is an ε-covering set ofMu, and |C| = N (δ/(4R),Φ, ‖·‖∞,2) · N (δ/(4R),Ψ, ‖·‖∞,2).
Thus, we conclude the proof of Lemma G.11.

G.7 PROOF OF LEMMA G.8

Proof. Since 2(exp(x)− 1− x) ≤ (exp(x)− 1)2 when x ≥ 0, we have

χ2
1

(
gU − gL,

{
(sτ , aτ , s

′
τ )
}n
τ=1

)
≤ 1

n

n∑
τ=1

E
[(

exp
(
gU (sτ , aτ , s

′
τ )− gL(sτ , aτ , s

′
τ )
)
− 1
)2 ∣∣∣ Fτ−1

]

=
1

n

n∑
τ=1

E

[∫
S

(√
P∗(s′ | sτ , aτ ) + PU (s′ | sτ , aτ )

P∗(s′ | sτ , aτ ) + PL(s′ | sτ , aτ )
− 1

)2

P∗(s′ | sτ , aτ )ds′
∣∣ Fτ−1

]

≤ 2

n

n∑
τ=1

E
[∫
S

(
P̄U (sτ , aτ , s

′)− P̄L(sτ , aτ , s
′)
)2

ds′
∣∣ Fτ−1

]
. (G.21)

We also have

E
[∫
S

(
P̄U (sτ , aτ , s

′)− P̄L(sτ , aτ , s
′)
)2

ds′
∣∣ Fτ−1

]
(G.22)

≤ v sup
(s,a,s′)∈S×A×S

(
P̄U (s, a, s′)− P̄L(s, a, s′)

)2
.

Thus, we conclude the proof of Lemma G.8 by combining (G.21) with (G.22).

H DISCUSSION ON THE EFFECTIVE DIMENSION

We first provide the following lemma, which shows the relation between Λ2 in Definition E.4 and the
dimension of a space in the case of finite dimension.

Lemma H.1. We have Λ[n, λ0] ≤ d when X = Rd and K(x1, x2) = x>1 x2.
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Proof. For any f ∈ H, there exists xf ∈ Rd, such that f(x) = x>f x. We also have k(x) = x. By the
definition of Γp, we have Γp[ρ, λ0, n]f(x) = λ0x

>
f x+ nx>f Ex1∼ρ[x1x

>
1 ]x. Therefore, the operator

Γp[ρ, λ0, n] can be written as λ0Id + nEx1∼ρ[x1x
>
1 ]. By the property of the matrix trace, we have

nEx∼ρ
[〈
k(x),Γ−1

p [ρ, λ0, n]k(x)
〉
H

]
=nEx∼ρ

[
tr
(
x>
{
λ0Id + nEx1∼ρ[x1x

>
1 ]
}−1

x
)]

=nEx∼ρ
[
tr
({
λ0Id + nEx1∼ρ[x1x

>
1 ]
}−1

xx>
)]

for any ρ ∈ ∆(X ). By the exchangeability of the expectation and the trace, we have

nEx∼ρ
[〈
k(x),Γ−1

p [ρ, λ0, n]k(x)
〉
H

]
= n tr

({
λ0Id + nEx1∼ρ[x1x

>
1 ]
}−1Ex∼ρ[xx>]

)
= tr(Id)− λ0 tr

({
λ0Id +NEx1∼ρ[x1x

>
1 ]
}−1

)
≤ d.

Since ρ can be an arbitrary distribution over X , we conclude the proof of Lemma H.1.

H.1 PROOF OF LEMMA E.8

To bound the effective dimension from the above, we construct an upper bound of the effective
dimension by the eigenvalue of the operator in the RKHS, and then use the characterization of the
eigenvalue in Lemma H.2 to obtain the upper bound. Lemma H.2 can be proven by Theorem A of
Belkin (2018), and we provide the proof in Appendix §H.2 here for the completeness of our paper.

Proof. In the following part of the proof, we bound Λ1 and Λ2 from the above separately.

Upper Bound of Λ1. Let XN+1 = {x1, . . . , xN+1} be a subset of X . We define KN+1 =

[K(xτ1 , xτ2)]N+1
τ1,τ2=1. Let λj be the j-th eigenvalue of KN+1 and αj = (α1,j , . . . , αN+1,j)

> denote
the corresponding eigenvector, we have

log det(IN+1 +KN+1/λ) =

N+1∑
i=1

log(1 + λi/λ). (H.1)

Therefore, we can bound log det(IN+1 + KN+1/λ) from the above by bounding {λi}N+1
i=1 from

the above. We define the operator Γ0 as Γ0f(x) =
∑N+1
i=1 f(xi)K(xi, x)/(N + 1). The function∑N+1

i=1 αi,jK(xi, x) is an eigenfunction of Γ0 and λj/(N + 1) is the corresponding eigenvalue. The
following lemma bounds the eigenvalue of Γ0 from the above.

Lemma H.2. Suppose X ⊂ X̄ ⊂ Rm, and X̄ is a cube with side length l ≥ 1/
√
m, and ρ is a

distribution over X , and the operator Γ : Lρ2(X )→ Lρ2(X ) is defined as

Γf(x) =

∫
x∈X

f(t)K(t, x)dρ(t),

where K(t, x) = exp(−‖t− x‖22 /2). It holds that λi(Γ) ≤ Capp,5 exp(−Capp,4i
1/m). Here

Capp,5 and Capp,4 are two constants only depend on the side length l and the dimension m.

Proof. See Appendix §H.2 for a detailed proof.

Applying Lemma H.2 on Γ0, we have λj ≤ NCapp,5 exp(−Capp,4j
1/m), where Capp,4, Capp,4 are

two constants that only depend on m and R. Therefore, by (H.1), we have

log det(IN+1 +KN+1/λ) ≤e
Nmid∑
j=1

log
(
1 +NCapp,5 exp(−Capp,4j

1/m)/λ
)

(H.2)

+ e

N∑
j=Nmid+1

log
(
1 +NCapp,5 exp(−Capp,4j

1/m)/λ
)
.

We have
∑Nmid

j=1 log(1 + NCapp,5 exp(−Capp,4j
1/m)/λ) ≤ Nmid log(1 + NCapp,5/λ). The fol-

lowing lemma bounds the second term from the above.
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Lemma H.3. If m is a positive integer, we have
∫∞
x
tme−tdt ≤ 2m!xme−x when x ≥ 1.

Proof. When we define bm =
∫∞
x
tme−tdt ≤ 2xme−x, we have

bm = −
∫ ∞
x

tmde−t = xme−x +m

∫ ∞
x

tm−1e−tdt = xme−x +mbm−1.

By induction, we have bm = m!e−x
∑m
m0=0 x

m0/m0! ≤ 2m!xme−x, which concludes the proof of
Lemma H.3.

Since log(1 + x) ≤ x, by the lemma above, we have

N∑
j=Nmid+1

log
(
1 +NCapp,5 exp(−Capp,4j

1/m)/λ
)
≤

N∑
j=Nmid+1

NCapp,5 exp(−Capp,4j
1/m)/λ

≤ NmCapp,5

∫ ∞
Capp,4N

1/m
mid

jm−1 exp(−j)dj/(Cmapp,4λ)

≤ 2Nm!Capp,5N
(m−1)/m
mid exp(−Capp,4N

1/m
mid )/(λCapp,4). (H.3)

By (H.2) and (H.3), we have log det(IN+1 +KN+1/λ) ≤ C4(logN/Capp,4)m+1 when we choose
Nmid = (logN/Capp,4)m. Here C4 is a constant that only depends on the dimension m and the
bound of the feature maps R. Since XN+1 can be any subset of X with |XN+1| = N + 1, we have
Λ1(N + 1, λ) ≤ C4(logN/Capp,4)m+1.

Upper Bound of Λ2. In order to bound Λ2 from the above, we need to choose an appropriate
representation of the RKHS. We define the integral operator Γ0 : Lρ2(X ) → Lρ2(X ) as Γ0f(x) =
Ex0∼ρ[f(x0)K(x0, x)]. Since ρ is a probability measure and the Gaussian kernel K is bounded from
the above, Γ0 is compact and self-adjoint. Therefore, by spectral theorem, there exists {ej}∞j=1 such
that it is both the eigenfunction of the operator Γ0 and the orthonormal basis of the space Lρ2(X ). We
then defineH as

H =
{
f : f ∈ Lρ2(X ), f(x) =

∞∑
j=1

αjej(x)
∣∣ ∞∑
j=1

α2
j/λj <∞

}
,

where λj is the eigenvalue corresponding to ej . We also know that K(x, y) =
∑∞
j=1 λjej(x)ej(y).

For f(x) =
∑∞
j=1 αjej(x) and g(x) =

∑∞
j=1 βjej(x), we define the inner product on H as

〈f, g〉H =
∑∞
j=1 αjβj/λj . Then the space H is an RKHS with the kernel K, ej/

√
λj is an

eigenfunction of Γ with eigenvalue λj , and {ej/
√
λj}∞j=1 is an orthonormal basis of H. We

represent k(x) using the orthonormal basis and have

‖k(x)‖2Γ−1 =
〈
k(x),Γ−1k(x)

〉
H =

〈 ∞∑
j=1

λjej(x)ej ,

∞∑
j=1

λjej(x)ej/(λ+Nλj)
〉
H

=

∞∑
j=1

λje
2
j (x)/(λ+Nλj)

when we define Γf(x) = λf(x) +NΓ0f(x). Therefore, using Fubini’s Theorem, we have

NEx∼ρ
[
‖k(x)‖2Γ−1

]
=

∞∑
j=1

NλjEx∼ρ
[
e2
j (x)

]
/(λ+Nλj) =

∞∑
j=1

Nλj/(λ+Nλj). (H.4)
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By Lemma H.2, we have λj ≤ Capp,5 exp(−Capp,4j
1/m), where C0 and C1 are two constants only

depend on the side length l and the dimension m. We combine the bound on λj with (H.4) and have

NEx∼ρ
[
‖k(x)‖2Γ−1

]
≤
∞∑
j=1

NCapp,5 exp(−Capp,4j
1/m)

NCapp,5 exp(−Capp,4j1/m) + λ

=

Nmid∑
j=1

NCapp,5 exp(−Capp,4j
1/m)

NCapp,5 exp(−Capp,4j1/m) + λ
+

∞∑
j=Nmid+1

NCapp,5 exp(−Capp,4j
1/m)

NCapp,5 exp(−Capp,4j1/m) + λ

≤ Nmid +NCapp,5

∫ ∞
Nmid

exp(−Capp,4j
1/m)dj/λ.

By Lemma H.3, we have
∫∞
Nmid

exp(−Capp,4j
1/m)dj ≤ 2m!N

1−1/m
mid exp(−Capp,4N

1/m
mid )/Capp,4.

Therefore, we choose Nmid = (logN/Capp,4)m and have

NEx∼ρ[‖k(x)‖2Γ−1 ] ≤(logN/Capp,4)m + 2m!Capp,5(logN)m−1/(Capp,4λ) ≤ C4(logN)m,

where C4 = (1 + 2m!Capp,5C
m−1
app,4)/Cmapp,5. By the definition, C4 is a constant that only depends

on the side length l and the dimension m.

We conclude the proof of Lemma E.8 by combining the upper bound of Λ1 and Λ2.

H.2 PROOF OF LEMMA H.2

Proof. We require the following two lemmas. The first lemma allows us to bound the eigenvalues by
the bound on the residuals of the approximation, and the second lemma bounds the residuals.

Lemma H.4 (Lemma 1 in Belkin (2018)). Suppose Γ : H → H is a self-adjoint operator on a
Hilbert space H, and Γn is a finite-rank operator with rank n, such that ‖Γ− Γn‖op ≤ ε. Here
‖A‖op = supx∈H/{0} ‖Ax‖H / ‖x‖H. It holds that all eigenvalues of the operator Γ except for at
most n (counting multiplicity) are smaller than ε.

Lemma H.5. Suppose X ⊂ Rm is a cube with side length l ≥ 1/
√
m, and Γ : V → H is a (not

necessarily linear) map from a Hilbert space V to an RKHSH of functions on Rm. There exists a
map Γn from the space V to an n-dimensional linear subspaceHn ⊂ H, such that

‖Γ− Γn‖V→Lρ2(X ) ≤ Capp,2 exp(−Capp,3n
1/m) ‖Γ‖V→H .

Here Capp,2 and Capp,3 are two positive constants that only depend on the side length l and the
dimension m, and ‖Γ‖V→Lρ2(X ) = supv∈V/{0} ‖Γv‖Lρ2(X ) / ‖v‖V .

Remark. SinceH is a subset of Lρ2(X ), we can view Γ as an operator from the space V to the space
Lρ2(X ) and investigate its operator norm accordingly.

Proof. See Appendix §H.3 for a detailed proof.

First, by Lemma H.4, we have λi(Γ) ≤ infrank(Γi−1)=i−1 ‖Γ− Γi−1‖op. By Lemma H.5, we have

inf
rank(Γi−1)=i−1

‖Γ− Γi−1‖op = inf
rank(Γi−1)=i−1

‖Γ− Γi−1‖Lρ2(X )→Lρ2(X ) (H.5)

≤ Capp,2 exp
(
−Capp,3(i− 1)1/m

)
‖Γ‖Lρ2(X )→H ≤ Capp,2 exp

(
−Capp,4i

1/m
)
‖Γ‖Lρ2(X )→H

for i > 1. Here Capp,4 = Capp,32−1/m. It remains to bound ‖Γ‖Lρ2(X )→H from the above. For
elements e ∈ H and e′ ∈ Lρ2(X ), we have

〈e,Γe′〉H =

〈
e,

∫
x∈X

e′(t)K(t, ·)dρ(t)

〉
H

=

∫
x∈X

〈
e,K(t, ·)

〉
He
′(t)dρ(t) =

∫
x∈X

e(t)e′(t)dρ(t)

≤‖e‖Lρ2(X ) ‖e
′‖Lρ2(X ) ≤ ‖e‖H ‖e

′‖Lρ2(X ) ,
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where the last inequality is derived from (H.10). Therefore, we have

‖Γe′‖H = sup
e∈H
〈e,Γe′〉H/ ‖e‖H ≤ ‖e

′‖Lρ2(X ) ,

which implies ‖Γ‖Lρ2(X )→H ≤ 1. Therefore, we have λi(Γ) ≤ Capp,2 exp(−Capp,4i
1/m) for i > 1

by (H.5). For i = 1, we have

λ1(Γ) ≤ sup
x∈Lρ2(X )/{0}

‖Γx‖Lρ2(X ) / ‖x‖Lρ2(X )

≤ sup
x∈Lρ2(X )/{0}

‖Γx‖H / ‖x‖Lρ2(X ) = ‖Γ‖Lρ2(X )→H ≤ 1.

Therefore, we have λi(Γ) ≤ Capp,5 exp(−Capp,4i
1/m) for all integer i when we set Capp,5 =

Capp,2 exp(Capp,4), which concludes the proof of Lemma H.2.

H.3 PROOF OF LEMMA H.5

Proof. We prove Lemma H.5 by constructing an operator that satisfies the condition in this lemma.
For n ≥ (3γm exp(8mγm + 2)m3/2l2)m, we have

max
x∈X

min
x′∈Xn

‖x− x′‖2 =
√
mln−1/m ≤ 1/

(
3γm exp(8mγm + 2)ml

)
when γm = 4mm! and Xn = (x1, . . . , xn) is an m-dimensional grid of X . By Theorem 6.10 of
Wendland (2004), the kernel K(x1, x2) = exp(−‖x1 − x2‖22 /2) is positive-definite. Therefore, the
matrix K[Xn] is invertible, and

∑n
i=1 αij1K(xi, xj2) = 1j1=j2 when K[Xn]αj = ej , αij is the i-th

element of αj , and

K[Xn] =
[
K(xτ1 , xτ2)

]n
τ1,τ2=1

, (H.6)

k[Xn](x) =
(
K(x, x1), . . . ,K(x, xn)

)>
. (H.7)

The following lemma allows us to construct an operator that satisfies the condition in Lemma H.5.

Lemma H.6. LetH be the RKHS induced by the kernel K, where K : Rm × Rm → R is defined as
K(x, x′) = exp(−‖x− x′‖22 /2). Suppose X ⊂ Rm is a cube with side length l ≥

√
2/m, and

max
x∈X

min
x′∈Xn

‖x− x′‖2 = ι ≤ 1/
(
3 · 4mm! exp(m22m+3m! + 2)ml

)
,

for the set Xn ⊂ X with |Xn| = n. We define uj(x) =
∑n
i=1 αijK(xi, x), where αj = K−1[Xn]ej ,

αij is the i-th element of αj , and the matrix K[Xn] is defined in (H.6). We also define SXn as
SXnf(x) =

∑n
i=1 f(xi)ui(x) for all f ∈ H. For an operator Γ : H → Lρ2(X ), where ρ is a

probability measure over X , we define ‖Γ‖H→Lρ2(X ) = supf∈H/{0} ‖Γf‖Lρ2(X ) / ‖f‖H. We have

‖S0 − SXn‖H→Lρ2(X ) ≤ 4l
√
m exp

(
−Capp,1/(2ι)

)
,

where γm = 4m ·m!, Capp,1 = l/(3γm), and S0 : H → Lρ2(X ) is defined as S0f(x) = f(x).

Proof. See Appendix §H.4 for a detailed proof.

Let S0 and SXn be the operator defined in Lemma H.6, we have Γ − SXn = (S0 − SXn) ◦ Γ.
Combining the definition of the norm with Lemma H.6, we have

‖Γ− SXn ◦ Γ‖V→Lρ2(X ) ≤ ‖Γ‖V→H ‖S0 − SXn‖H→Lρ2(X ) (H.8)

≤ 4l
√
m exp

(
−Capp,1n

1/m/(2l)
)
‖Γ‖V→H .

Here Capp,1 = l/(3γm). Therefore, we also have

‖Γ− Γn‖V→Lρ2(X ) ≤ 4l
√
m exp

(
−Capp,1n

1/m/(2l)
)
‖Γ‖V→H
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when we define Γn = SXn ◦ Γ in the case that n ≥ (3γm exp(8mγm + 2)m3/2l2)m. Since the
rank of SXn does not exceed n, the rank of Γn does not exceed n. When n < (3γm exp(8mγm +
2)m3/2l2)m, we define Γn as Γnf(x) = 0 for all x ∈ X and v ∈ V . We then have ‖Γ‖V→Lρ2(X ) =

‖Γ− Γn‖V→Lρ2(X ). We first show that ‖Γ‖V→Lρ2(X ) is bounded from the above by ‖Γ‖V→H. By
the reproducing property of the spaceH, we have

‖g‖2Lρ2(X ) =

∫
x∈X

g2(x)dρ(x) =

∫
x∈X

(〈
g, k(x)

〉
H

)2

dρ(x) (H.9)

for any g ∈ H. Combining (H.9) with Cauchy-Schwarz inequality, we have

‖g‖2Lρ2(X ) ≤
∫
x∈X
〈g, g〉H

〈
k(x), k(x)

〉
Hdρ(x) =

∫
x∈X
〈g, g〉Hdρ(x) = ‖g‖2H (H.10)

for any g ∈ H when ρ is a probability measure. By (H.10), we have

‖Γ‖V→Lρ2(X ) = sup
v∈V/{0}

‖Γv‖Lρ2(X ) / ‖v‖V ≤ sup
v∈V/{0}

‖Γv‖H / ‖v‖V = ‖Γ‖V→H . (H.11)

Since ‖Γ− Γn‖V→Lρ2(X ) = ‖Γ‖V→Lρ2(X ) when we define Γn as Γnv(x) = 0, we have

‖Γ− Γn‖V→Lρ2(X ) ≤ exp
(
Capp,1n

1/m/(2l)
)

exp
(
−Capp,1n

1/m/(2l)
)
‖Γ‖V→H . (H.12)

by (H.11). Combining (H.12) with n ≤ (3γm exp(8mγm + 2)m3/2l2)m, we have

‖Γ− Γn‖V→Lρ2(X ) ≤ exp
(
m3/2l2 exp(8mγm + 2)/2

)
exp
(
−n1/m/(6γm)

)
‖Γ‖V→H (H.13)

since Capp,1 = l/(3γm). Therefore, by combining (H.8) with (H.13), when we choose

Capp,2 = max
{

4l
√
m, exp

(
m3/2l2 exp(8mγm + 2)/2

)}
and Capp,3 = Capp,1/(2l) = 1/(6γm), we have (1) both Capp,2 and Capp,3 are constants that only
depend on the side-length l and the dimension m, and (2) for any positive integer n, there exists an
operator Γn : V → Lρ2(X ) with finite rank n, such that

‖Γ− Γn‖V→Lρ2(X ) ≤ Capp,2 exp(−Capp,3n
1/m) ‖Γ‖V→H .

Thus, we conclude the proof of Lemma H.5.

H.4 PROOF OF LEMMA H.6

Proof. By the definition in Lemma H.6 and the reproducing property of the kernel, we have∣∣f(x)− SXnf(x)
∣∣ =

∣∣∣〈k(x), f
〉
H −

n∑
i=1

〈
k(xi), f

〉
Hui(x)

∣∣∣ (H.14)

=
∣∣∣〈k(x)−

n∑
i=1

ui(x)k(xi), f
〉
H

∣∣∣.
Combining (H.14) with Cauchy-Schwarz inequality, we have∣∣f(x)− SXnf(x)

∣∣ ≤ ∥∥∥k(x)−
n∑
i=1

ui(x)k(xi)
∥∥∥
H
‖f‖H .

Therefore, taking expectation with respect to the probability measure ρ, we have∥∥(R− SXn) ◦ f
∥∥
L2
ρ(X )

=

∫
X

∣∣f(x)− SXn,uf(x)
∣∣2dρ(x) (H.15)

≤ sup
x∈X

∥∥∥k(x)−
n∑
i=1

ui(x)k(xi)
∥∥∥2

H
‖f‖2H .

The following lemma allows us to bound the term supx∈X ‖k(x)−
∑n
i=1 ui(x)k(xi)‖

2

H from the
above.
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Lemma H.7. For a fix x ∈ X , a set Xn = {xτ}nτ=1 ⊂ X , and a vector v = (v1, . . . , vn)>, we have
minv∈Rn Q(v) = K(x, x)− k[Xn](x)>K−1[Xn]k[Xn](x) when we define Q(v) as

Q(v) = K(x, x)− 2

n∑
i=1

viK(xi, x) +

n∑
i=1

n∑
j=1

vivjK(xi, xj)

= K(x, x)− 2v>k[Xn](x) + v>K[Xn]v.

Here the matrix K[Xn], the vector k[Xn](x) are defined in (H.6) and (H.7).

Proof. We conclude the proof by using simple linear algebra.

Combining (H.15) with the lemma above, we can prove Lemma H.6 by bounding the term

sup
x∈X

inf
v∈Rn

K(x, x)− 2v>k[Xn](x) + v>K[Xn]v.

We bound the term using tools from the approximation theory.

Lemma H.8 (Theorem 11.21 in Wendland (2004)). Suppose that X ⊂ Rm is a cube with side length
l, and we have maxx∈X minx′∈Xn ‖x− x′‖2 ≤ ι for Xn = {x1, . . . , xn}. We define γm = 4mm!,
Capp,1 = l/(3γm), and q = [Capp,1/ι], where [x] denote the maximal integer that does not exceed x.
Then there exists a sequence of function {υi(x)}ni=1 ⊂ X → R such that (1) for every p ∈ $q(Rm),
we have p(x) =

∑n
i=1 υi(x)p(xi) for all x ∈ X , (2) we have

∑n
i=1 |υi(x)| ≤ exp(2mγm(q + 1))

for all x ∈ X , and (3) we have υi(x) = 0 when ‖x− xi‖2 >
√
ml. Here $q(Rm) is the set of all

polynomials in Rm with total degree no higher than q.

By the lemma above, there exists a sequence of function {υi}ni=1 such that (1) we have

p(x) =

n∑
i=1

υi(x)p(xi). (H.16)

for all x ∈ X and p ∈ $q(Rm), and (2) we have
∑n
i=1 |υi(x)| ≤ exp(2mγm(q + 1)) for all x ∈ X .

For a fix x0, we have p(x− x0) ∈ $q(Rm) when p(x) ∈ $q(Rm). By (H.16), we have

p(0) = p(x0 − x0) =

n∑
i=1

υi(x0)p(xi − x0). (H.17)

Similarly, we have p(xi − x) ∈ $q(Rm) when p(x) ∈ $q(Rm). We apply (H.16) again and have
n∑
i=1

υi(x0)p(xi − x0) =

n∑
i=1

n∑
j=1

υi(x0)υj(x0)p(xi − xj) (H.18)

for all x0 ∈ X and p ∈ $q(Rm). Combining (H.17) with (H.18), we have

p(0)− 2

n∑
i=1

υi(x0)p(xi − x0) +

n∑
i=1

n∑
j=1

υi(x0)υj(x0)p(xi − xj) = 0. (H.19)

Combining (H.19) with Lemma H.7, we have∣∣K(x0, x0)− k[Xn](x0)>K−1[Xn]k[Xn](x0)
∣∣ ≤ K(x0, x0)− p(0) (H.20)

− 2

n∑
i=1

υi(x0)
[
K(xi, x0)− p(xi − x0)

]
+

n∑
i=1

n∑
j=1

υi(x0)υj(x0)
[
K(xi, xj)− p(xi − xj)

]
for all x0 ∈ X and p ∈ $q(Rm). By the definition of the kernel K, we have K(x, x′) = ks(x− x′)
when we define ks(x) = exp(−‖x‖22 /2). Therefore, by (H.20), we have∣∣K(x0, x0)− k[Xn](x0)>K−1[Xn]k[Xn](x0)

∣∣ (H.21)

≤
n∑
i=1

n∑
j=1

∣∣∣υi(x0)υj(x0)
[
ks(xi − xj)− p(xi − xj)

]∣∣∣
+ 2

n∑
i=1

∣∣∣υi(x0)
[
ks(xi − x0)− p(xi − x0)

]∣∣∣+
∣∣ks(0)− p(0)

∣∣
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for all x0 ∈ X and p ∈ $q(Rm). Combining (H.21) with the fact that ‖x− x′‖2 ≤
√
ml when

x, x′ ∈ X , we have∣∣K(x0, x0)− k[Xn](x0)>K−1[Xn]k[Xn](x0)
∣∣ ≤ ‖ks − p‖L∞(B(0,

√
ml)) (H.22)

+ 2

n∑
i=1

∣∣υi(x0)
∣∣ ‖ks − p‖L∞(B(0,

√
ml)) + ‖ks − p‖L∞(B(0,

√
ml))

n∑
i=1

n∑
j=1

∣∣υi(x0)υj(x0)
∣∣.

Here ‖f‖L∞(B(0,
√
ml)) = sup‖x‖2≤

√
ml |f(x)|. By Lemma H.8, we have

∑n
i=1 |υi(x0)| ≤

exp(2mγm(q + 1)) for all x0 ∈ X . Therefore, by (H.22), we have∣∣K(x0, x0)− k[Xn](x0)>K−1[Xn]k[Xn](x0)
∣∣ ≤ (1 + exp

(
2mγm(q + 1)

))2

ςp (H.23)

for all x0 ∈ X and p ∈ $q(Rm). Here ςp = ‖ks − p‖L∞(B(0,
√
ml)) = sup‖x‖2≤

√
ml |ks(x)− p(x)|.

Therefore, we only need to bound infp∈$q(Rm) ‖ks − p‖L∞(B(0,
√
ml)) from the above. We have

p(‖x‖22) ∈ $q(Rm) when p ∈ $q/2(R). Since we define ks(x) = exp(−‖x‖22 /2), by (H.23), we
have ∣∣K(x0, x0)− k[Xn](x0)>K−1[Xn]k[Xn](x0)

∣∣ (H.24)

≤ 4 exp
(
4mγm(q + 1)

)
inf

p∈$q/2(R)
sup

x∈[0,ml2]

∣∣exp(−x/2)− p(x)
∣∣.

By Taylor’s Theorem (with Lagrange Remainder), we have

sup
x∈[0,ml2]

|exp(−x/2)− pt(x)| ≤ (ml2/2)[q/2]+1/
(
[q/2] + 1

)
! (H.25)

when we choose the polynomial pt as the Taylor polynomial of exp(−x/2) around zero of degree
[q/2]. Without loss of generality, we assume ml2 > 2. Since the degree q is an integer, we have
[q/2] ≥ (q − 1)/2 and q ≥ 1 when ι ≤ Capp,1. Combining (H.25) with Stirling’s formula, we have

sup
x∈[0,ml2]

∣∣exp(−x/2)− pt(x)
∣∣ ≤ (ml2/2)[q/2]+1 1

([q/2] + 1)!
≤ (eml2/2)[q/2]+1

(
[q/2] + 1

)−[q/2]−1

≤ (ml2/2)[q/2]+1 exp
(
(q + 1)/2

)(
(q + 1)/2

)−(q+1)/2
. (H.26)

We plug (H.26) into (H.24) and have∣∣K(x0, x0)− k[Xn](x0)>K−1[Xn]k[Xn](x0)
∣∣ ≤ 4l

√
m
(
exp(8mγm + 1)ml2/(q + 1)

)(q+1)/2
.

Since we choose q = [Capp,1/ι], we have q + 1 ≥ Capp,1/ι. Therefore, we have∣∣K(x0, x0)− k[Xn](x0)>K−1[Xn]k[Xn](x0)
∣∣ ≤4l

√
m
(
exp(8mγm + 1)ml2ι/Capp,1

)(q+1)/2

=4l
√
m
(
3γm exp(8mγm + 1)mlι

)(q+1)/2

where the second equation is induced by the definition of Capp,1 in Lemma H.8. Therefore, when
ι < 1/(3γm exp(8mγm + 2)ml), we have∣∣K(x0, x0)− k[Xn](x0)>K−1[Xn]k[Xn](x0)

∣∣ ≤ 4l
√
m exp

(
−(q + 1)/2

)
(H.27)

≤ 4l
√
m exp

(
−Capp,1/(2ι)

)
.

Combining (H.15) with (H.27), we have

‖(R− SXn) ◦ f‖Lρ2(X ) =

√∫
X

∣∣f(x)− SXnf(x)
∣∣2dρ(x) ≤ 4l

√
m exp

(
−Capp,1/(2ι)

)
‖f‖H

for f ∈ H. By the definition of the operator norm, we have

‖R− SXn‖H→Lρ2(X ) = sup
f∈H/{0}

‖(R− SXn) ◦ f‖Lρ2(X ) / ‖f‖H ≤ 4l
√
m exp

(
−Capp,1/(2ι)

)
,

which concludes the proof of Lemma H.6.
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I PROOF OF LEMMAS IN APPENDIX §E

I.1 PROOF OF LEMMA E.5

Proof. In the following part of the proof, we condition on the events good events E1 and E2. First, by
Lemma J.1, we decompose the difference in value as follows,

J(π; r̂n + un,Pn)− J(π; r∗,P∗) (I.1)

=

H∑
h=1

Eπ,Pn
[
Es′h+1∼P

n
h (sh,ah)

[
V πh+1(s′h+1; r∗,P∗)

]
− Es′h+1∼P

∗
h(sh,ah)

[
V πh+1(s′h+1; r∗,P∗)

]]
+

H∑
h=1

Eπ,Pn [unh(sh, ah) + r̂nh(sh, ah)− r∗h(sh, ah)] .

Since the value function in (I.1) is bounded from the above by H , we have

J(π; r̂n + un,Pn)− J(π; r∗,P∗) (I.2)

≥
H∑
h=1

Eπ,Pn [unh(sh, ah)]−
H∑
h=1

Eπ,Pn [fh,r(sh, ah)]−
H∑
h=1

Eπ,Pn [Hfh,P(sh, ah)] ,

where fh,P(s, a) = ‖Pnh (· | s, a)− P∗h(· | s, a)‖1 and fh,r(s, a) = |r̂nh(sh, ah)− r∗h(sh, ah)|. In
the following part of the proof, we bound the expectation of f in (I.2) from the above. For h = 1, by
the definition of Event E1 in (E.5) and ρn1,1 in (E.3), we have

Eπ,Pn
[
f1,P(s1, a1)

]
≤ |A|Eρn1,1

[
f1,P(s, a)

]
≤ |A|

√
Eρn1,1

[
f2

1,P(s, a)
]
≤ |A| ζ/

√
n, (I.3)

when condition on Event E1. Here the second inequality follows Cauchy-Schwarz inequality. By the
same technique in (I.3), we have

Eπ,Pn
[
f1,r(s1, a1)

]
≤ |A| ζ/

√
n.

For h > 1, we have ‖fh,P‖∞ ≤ 2. Since we have (s′, a′) ∼ ρnh,2 when (s, a) ∼ ρnh−1,1, s
′ ∼

P∗h−1(· | s, a), a′ ∼ U(A), by Lemma J.2, we have

|Eπ,Pn [fh,P(sh, ah)]| ≤ βnhEπ,Pn
[∥∥k(φnh−1(sh−1, ah−1)

)∥∥
Γ−1
p [φnh−1,ρ

n
h−1,1,λ,n]

]
,

where βnh =
√

4λv2/c2min + 2r2
max(n |A|Eρnh,1 [fh,P(s, a)2] + 4ζ2). By the definition of E1 in (E.5),

we have nEρnh,1 [fh,P(s, a)2] ≤ ζ2 when condition on E1. We also have∥∥k(φnh(sh, ah)
)∥∥

Γ−1
p [φnh ,ρ

n
h,1,λ,n]

≤ 2
∥∥k(φnh(sh, ah)

)∥∥
Γ−1
e [φnh ,D

n
h,1,λ]

when condition on Event E2 in Lemma E.2. By the definition of unh in (4.5), we have∣∣Eπ,Pn[fh,P(sh, ah)
]∣∣ ≤ Eπ,Pn

[
unh(sh, ah)

]
/(H + 1).

By the exactly same method, we have |Eπ,Pn [fh,r(sh, ah)]| ≤ Eπ,Pn [unh(sh, ah)]/(H + 1). There-
fore, we conclude the proof of Lemma E.5 by combing the bound above, (I.2), with (I.3).

I.2 PROOF OF LEMMA E.6

Proof. By the definition of Qnh in Algorithm 4 (Planning Algorithm), we have Qnh(s, a) =
Qnh(s, a, πn+1; r̂n + un,Pn) for all (s, a) ∈ S × A, and πn+1 is the greedy policy with regard
to Qnh . By the definition of the value function, we have

V π
∗

h (s; rn + un,Pn)− V nh (s) =
〈
Qπ
∗

h (s, ·; rn + un,Pn)−Qnh(s, ·), π∗h(· | s)
〉
A (I.4)

+
〈
Qnh(s, ·), π∗h(· | s)− π̂h(· | s)

〉
A.
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Since πn+1 is the greedy policy with regard to Qnh, we have 〈Qnh(s, ·), π∗h(· | s)− π̂h(· | s)〉A ≤ 0.
We also haveQπ

∗

h (s, a; rn+un,Pn)−Qnh(s, a) = Es′∼Pnh (·|s,a)[V
π∗

h+1(s′; rn+un,Pn)−Qnh+1(s′)].
Therefore, taking expectation over Pn and π∗ in both sides of (I.4), we have
EPn,π∗

[
V π
∗

h (sh; rn + un,Pn)− V nh (sh)
]
≤ EPn,π∗

[
V π
∗

h+1(sh+1; rn + un,Pn)− V nh+1(sh+1)
]
.

Using induction on h, we have
V π
∗

1 (sinit; r
n + un,Pn)− V n1 (sinit) ≤ EPn,π∗ [V π

∗

H+1(sH+1; rn + un,Pn)− V nH+1(sH+1)] = 0.

Since we have V π1 (sinit; r
n+un,Pn) = J(π∗; rn+un,Pn) and V n1 (sinit) = J(πn+1; rn+un,Pn),

we conclude the proof of Lemma E.6.

I.3 PROOF OF LEMMA E.7

Proof. The following lemma shows that the value function defined by the estimated model is bounded
from the above by the value function defined by the true model.

Lemma I.1 (Bounded optimistism in Each Iteration). Following the same condition with Theorem
5.3, when condition on the good events E1 and E2, which are defined in (E.5), (E.6) and (E.7), we
have

J(π; r∗ + un + u∗,n,P∗)− J(π; r̂n + un,Pn) ≥ −(2H2 + 3H + 1) |A| ζ/
√
n

for any policy π, where the bonus un = {unh}Hh=1 is defined in Lemma E.5. Here the underlying
bonus u∗,n = {u∗,nh }Hh=1 is defined as

u∗,nh (s, a) = min
{

4H2 + 6H + 2, β1

∥∥k(φ∗h(sh, ah)
)∥∥

Γ−1
e [φ∗h,D

n
h,0,λ]

}
,

where β1 = (4H2 + 6H + 2)
√

4λv2/c2min + 4r2
max |A|β2ζ2deff and β is defined in Lemma E.5.

Proof. See Appendix §I.4 for a detailed proof.

By Lemma I.1, and the definition of the expected total reward, we have
N∑
n=1

[
J(πn+1; rn + un,Pn)− J(πn+1; r∗,P∗)

]
(I.5)

≤
N∑
n=1

(2H2 + 3H + 1) |A| ζ/
√
n+

N∑
n=1

J(πn+1;un + u∗,n,P∗)

However, the bonus defined by the learned feature might vary in each episode, which make it difficult
to bound from the above. The following lemma connects the bonus defined by the learned feature
with the bonus defined by the true feature.

Lemma I.2 (Bonus Equivalence for the True Model). Following the same condition with Theorem
5.3, when condition on E1 and E2, which are defined in (E.5), (E.6), and (E.7), we have

J(π;un,P∗) ≤2 |A|βd1/2
eff /
√
n+ J(π;u∗,n,P∗)

for any policy π and n ≥ 2, where the bonus un = {unh}Hh=1 is defined in Lemma E.5 and the
underlying bonus u∗,n = {u∗,nh }Hh=1 is defined in Lemma I.1.

Proof. See Appendix §I.5 for a detailed proof.

Combining (I.5) with Lemma I.2, we have
N∑
n=1

[
J(πn; rn + un,Pn)− J(πn; r∗,P∗)

]
(I.6)

≤
N∑
n=1

(2H2 + 3H + 1) |A| ζ/
√
n+

N∑
n=1

2 |A|βd1/2
eff /
√
n+ 2

N∑
n=1

J(πn+1;u∗,n,P∗)

≤ 32H2 |A| ζ
√
deffN + 2

N∑
n=1

J(πn+1;u∗,n,P∗).

43



Published as a conference paper at ICLR 2023

Therefore, it remains to bound J(sinit, π;u∗,n,P∗). Since the bonus u∗,n are bounded by 4H2 +
6H + 2, it is a 12H2-subGaussian random variable. Therefore, by Hoeffding’s inequality and the
definition of the value function, we have

N∑
n=1

J(πn+1;u∗,n,P∗) =

H∑
h=1

N∑
n=1

Eπn+1,P∗
[
u∗,nh (sh, ah)

]
(I.7)

≤ 12H2 log(10H/δ)
√
N +

H∑
h=1

N∑
n=1

u∗,nh (sn+1
h,0 , a

n+1
h,0 )

with probability at least 1− δ/10. Combining the definition of the underlying bonus in Lemma I.1
with Cauchy-Schwarz inequality, we have

H∑
h=1

N∑
n=1

u∗,nh (sn+1
h,0 , a

n+1
h,0 ) ≤β1

H∑
h=1

N∑
n=1

∥∥∥k(φ∗h(sn+1
h,0 , a

n+1
h,0 )

)∥∥∥
Γ−1
e [φ∗h,D

n
h,0,λ]

(I.8)

≤β1

√
N

H∑
h=1

√√√√ N∑
n=1

∥∥∥k(φ∗h(sn+1
h,0 , a

n+1
h,0 )

)∥∥∥2

Γ−1
e [φ∗h,D

n
h,0,λ]

.

For simplicity, we define xnh = φ∗h(snh,0, a
n
h,0), Kn

h = [K(xτ1h , x
τ2
h )]nτ1,τ2=1, and

knh =
(
K(x1

h, x
n+1
h ), . . . ,K(xnh, x

n+1
h )

)
.

By Lemma D.3, we have∥∥∥k(φ∗h(sn+1
h,0 , a

n+1
h,0 )

)∥∥∥2

Γ−1
e [φ∗h,D

n
h,0,λ]

=
(
K(xn+1

h , xn+1
h )− kn,>h (λI +Kn

h )−1knh
)
/λ.

We also define anh = (K(xn+1
h , xn+1

h )− kn,>h (λI +Kn
h )−1knh)/λ. We then have

det(I +Kn+1
h /λ) = det

(
I +Kn

h/λ knh/λ

kn,>h /λ 1 +K(xn+1
h , xn+1

h )/λ

)
= det

(
I 0
b> 1

)
det

(
I +Kn/λ 0

0 1 + an

)
det

(
I b
0 1

)
= det(I +Kn

h/λ)(1 + anh),

where b = (λI +Kn
h )−1knh . We also have anh ≤ 1. Since x ≤ e log(1 +x) when x ≤ e− 1, we have

anh ≤ e log(I +Kn+1
h /λ)− e log(I +Kn

h/λ), and
∑N
n=1 a

n
h ≤ e log(1 +KN+1

h /λ) ≤ edeff by the
definition of deff in Definition E.4. Therefore, by (I.8), we have

∑H
h=1

∑N
n=1 u

∗,n
h (sn+1

h,0 , a
n+1
h,0 ) ≤

β1H
√
eNdeff . Combining (I.6) with (I.7), we have

N∑
n=1

[
J(πn; rn + un,Pn)− J(πn; r∗,P∗)

]
≤ 32H2 |A| ζ

√
deffN + 12H2 log(10H/δ)

√
N + β1H

√
eNdeff

≤ 46H2 |A| ζβ1

√
deffN log(10H/δ),

which concludes the proof of Lemma E.7.

I.4 PROOF OF LEMMA I.1

Proof. In the following part of the proof, we condition on E1 and E2. First, by Lemma J.1, we
decompose the difference in value as follows,
J(π; r∗ + un + u∗,n,P∗)− J(π; r̂n + un,Pn) (I.9)

=

H∑
h=1

Eπ,P∗
[
Es′h+1∼P

∗
h(sh,ah)

[
V πh+1(s′h+1; r̂n + un,Pn)

]
− Es′h+1∼P

n
h (sh,ah)

[
V πh+1(s′h+1; r̂n + un,Pn)

]]
+

H∑
h=1

Eπ,P∗
[
u∗,nh (sh, ah) + r∗h(sh, ah)− r̂nh(sh, ah)

]
.

44



Published as a conference paper at ICLR 2023

Since ‖r̂n + un‖∞ ≤ (2H + 3), the value function in (I.9) is bounded from the above, and we have

J(π; r∗ + un + u∗,n,P∗)− J(π; r̂n + un,Pn) (I.10)

≥
H∑
h=1

Eπ,P∗
[
u∗,nh (sh, ah)

]
−

H∑
h=1

Eπ,P∗
[
fh,r(sh, ah)

]
−

H∑
h=1

Eπ,P∗
[
(2H2 + 3H)fh,P(sh, ah)

]
,

where fh,P(s, a) = ‖Pnh (· | s, a)− P∗h(· | s, a)‖1 and fh,r(s, a) = |r̂nh(sh, ah)− r∗h(sh, ah)| are
defined for simplicity. In the following part of the proof, we bound the expectation of f in (I.10)
from the above. For h = 1, by the definition of Event E1 in (E.5) and ρn1,1 in (E.3), we have

Eπ,P∗
[
f1,P(s1, a1)

]
≤ |A|Eρn1,1

[
f1,P(s, a)

]
≤ |A|

√
Eρn1,1

[
f2

1,P(s, a)
]
≤ |A| ζ/

√
n (I.11)

when condition on E1. Here the second inequality follows Cauchy-Schwarz inequality. By the same
technique in (I.11), we have

Eπ,P∗
[
f1,r(s1, a1)

]
≤ |A| ζ/

√
n.

For h > 1, we have ‖fh,P‖∞ ≤ 2. Since (s′, a′) ∼ ρnh,1 when (s, a) ∼ ρnh−1,0, s
′ ∼ P∗h−1(· |

s, a), a′ ∼ U(A), by Lemma J.3, we have∣∣Eπ,P∗[fh,P(sh, ah)
]∣∣ ≤ βn,′h Eπ,P∗

[∥∥k(φ∗h−1(sh−1, ah−1), ·)
∥∥

Γ−1
p [φ∗h−1,ρ

n
h−1,0,λ,n]

]
, (I.12)

where βn,′h =
√

4λv2/c2min + r2
maxn |A|E(sh,ah)∼ρnh,1 [fh,P(sh, ah)2]. By the definition of E1 in

(E.5), we have nE(sh,ah)∼ρnh,1 [fh,P(sh, ah)2] ≤ ζ2 when E1 holds. We also have∥∥k(φ∗h(sh, ah)
)∥∥

Γ−1
p [φ∗h,ρ

n
h,0,λ,n]

≤ 2
∥∥k(φ∗h(sh, ah)

)∥∥
Γ−1
e [φ∗h,D

n
h,0,λ]

when condition on Event E2 defined in (E.6), (E.7). By the definition of u∗,nh in Lemma I.1 and (I.12),
we have ∣∣Eπ,P∗[fh,P(sh, ah)

]∣∣ ≤ Eπ,P∗
[
u∗,nh−1(sh−1, ah−1)

]
/(2H2 + 3H + 1).

By the same method, we have |Eπ,P∗ [fh,r(sh, ah)]| ≤ Eπ,P∗ [u∗,nh−1(sh−1, ah−1)]/(2H2 + 3H + 1).
Therefore, we conclude the proof of Lemma I.1 by combing the bound above, (I.10), with (I.11).

I.5 PROOF OF LEMMA I.2

Proof. In the following part of the proof, we condition on the good events E1 and E2 defined in (E.5),
(E.6), and (E.7). By the definition of the value function, we have

J(π;un,P∗) = Eπ
[
un1 (sinit, ah)

]︸ ︷︷ ︸
Term (a)

+

H∑
h=2

Eπ,P∗
[
unh(sh, ah)

]
︸ ︷︷ ︸

Term (b)

. (I.13)

Now we bound the terms in (I.13) from the above separately.

Term (a). By the definition of ρn1,1 in (E.3), Algorithm 3 (Sampling Scheme), and Cauchy-Schwarz
inequality, we have

Eπ
[
un1 (sinit, ah)

]
≤ |A|Eρn1,1

[
un1 (s, a)

]
≤ |A|

√
Eρn1,1

[(
un1 (s, a)

)2]
. (I.14)

By the definition of unh in (4.5) and deff in Definition E.4, when Event E2 defined in Lemma E.2
holds, we have

Eρnh,1
[(
unh(s, a)

)2] ≤β2Eρnh,1
[∥∥k(φnh(s, a)

)∥∥2

Γ−1
e [φnh ,D

n
h,1,λ]

]
≤4β2Eρnh,1

[∥∥k(φnh(s, a)
)∥∥2

Γ−1
p [φnh ,ρ

n
h,1,λ,n]

]
≤ 4β2deff/n.
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Therefore, by (I.14), we have Eπ[un1 (sinit, a1)] ≤ 2 |A|βd1/2
eff /
√
n.

Term (b). By the definition of unh in Lemma E.5, we have ‖un‖∞ ≤ 2H+2. By the definition of ρnh,0
and ρnh,1 in (E.3), we have (s′, a′) ∼ ρnh,1 when (s, a) ∼ ρnh−1,0, s

′ ∼ P∗h−1(· | s, a), a′ ∼ U(A).
Therefore, by Lemma J.3, when we condition on Event E2 defined in Lemma E.2, we have

Eπ,P∗
[(
unh(sh, ah)

)2] ≤βn,∗h Eπ,P∗
[∥∥k(φ∗h−1(sh−1, ah−1)

)∥∥
Γ−1
p [φ∗h−1,ρ

n
h−1,0,λ,n]

]
(I.15)

≤2βn,∗h Eπ,P∗
[∥∥k(φ∗h−1(sh−1, ah−1)

)∥∥
Γ−1
e [φ∗h−1,D

n
h−1,0,λ]

]
,

where βn,∗h =
√

4λ(H + 1)2v2/c2min + r2
maxn |A|Eρnh,1 [unh(s, a)2]. By the definition of unh in (4.5),

and deff in Definition E.4, when we condition on Event E2 defined in Lemma E.2, we have

Eρnh,1 [unh(s, a)2] ≤ β2Eρnh,1
[∥∥k(φnh(s, a)

)∥∥
Γ−1
e [φnh ,D

n
h ,λ]

]
≤ 2β2Eρnh,1

[∥∥k(φnh(s, a)
)∥∥

Γ−1
p [φnh ,ρ

n
h,1,λ,n]

]
≤ 2β2deff/n.

Therefore, we have β1 ≥ 2βn,∗h , where β1 is defined in Lemma I.1. By (I.15) and the definition of
u∗,nh−1(sh−1, ah−1) in Lemma I.1, we have Eπ,P∗ [unh(sh, ah)] ≤ Eπ,P∗ [u∗,nh−1(sh−1, ah−1)].

We conclude the proof of Lemma I.2 by combining the bound on Term (a) and Term (b).

J PROOF OF AUXILIARY LEMMAS

J.1 PROOF OF LEMMA J.1

In this subsection, we provide the proof of the simulation lemma. We first state it below.
Lemma J.1 (Simulation Lemma). Let Vh(s; r,P, π) be the value function defined in (2.1). For the
transition kernels P = {Ph}Hh=1, P∗ = {P∗h}Hh=1 and the reward functions r = {rh}Hh=1, we have

V πh (s; r + u,P)− V πh (s; r,P∗) =

H∑
h̄=h

Eπ,P [uh̄(sh̄, ah̄) | sh = s]

+

H∑
h̄=h

Eπ,P
[
E1,h̄

[
V πh̄+1(s′h̄+1; r,P∗)

]
− E2,h̄

[
V πh̄+1(s′h̄+1; r,P∗)

]
| sh = s

]
,

where E1,h[·] = Es′h+1∼Ph(sh,ah)[·] and E2,h[·] = Es′h+1∼P
∗
h(sh,ah)[·]. Here Eπ,P is the expectation

taken over the trajectory induced by the policy π = {πh}Hh=1 and the transition kernel P .

Proof. By the definition of Vh(s; r,P, π) in (2.1), we have

V πh (s; r + u,P)− V πh (s; r,P∗) = V πh (s;u,P) + V πh (s; r,P)− V πh (s; r,P∗) (J.1)

=

H∑
h̄=h

Eπ,P
[
uh̄(sh̄, ah̄) | sh = s

]
+ V πh (s; r,P)− V πh (s; r,P∗).

Here Eπ,P is the expectation taken over the trajectory induced by policy π and the transition kernel
P . By the definition of the value function Vh̄(s; r,P, π) in (2.1), we have

V πh̄ (strue
h̄ ; r,P) = Eπ,P

[
rh̄(sh̄, ah̄) + V πh̄+1(sh̄+1; r,P) | sh̄ = strue

h̄

]
(J.2)

=
∑
a∈A

rh̄(strue
h̄ , a)πh̄(a | strue

h̄ ) + Eπ,P
[
V πh̄+1(sh̄+1; r,P) | sh̄ = strue

h̄

]
.

By (J.2), we have

V πh̄ (strue
h̄ ; r,P)− V πh̄ (strue

h̄ ; r,P∗) (J.3)

= Eπ,P
[
V πh̄+1(sh̄+1; r,P) | sh̄ = strue

h̄

]
− Eπ,P∗

[
V πh̄+1(sh̄+1; r,P∗) | sh̄ = strue

h̄

]
.
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Combining the property of the expectation with (J.3), we have

V πh̄ (strue
h̄ ; r,P)− V πh̄ (strue

h̄ ; r,P∗) = Eπ,P
[
V πh̄+1(sh̄+1; r,P)− V πh̄+1(sh̄+1; r,P∗) | sh̄ = strue

h̄

]
+ Eπ,P

[
V πh̄+1(sh̄+1; r,P∗) | sh̄ = strue

h̄

]
− Eπ,P∗

[
V πh̄+1(sh̄+1; r,P∗) | sh̄ = strue

h̄

]
. (J.4)

Taking expectation in both sides of (J.4) and summing it up from h̄ = h to H , we have

V πh (s; r,P)− V πh (s; r,P∗) (J.5)

=

H∑
h̄=h

Eπ,P
[
E1,h̄

[
V πh̄+1(s′h̄+1; r,P∗)

]
− E2,h̄

[
V πh̄+1(s′h̄+1; r,P∗)

] ∣∣ sh = s
]
,

where E1,h[·] = Es′h+1∼Ph(sh,ah)[·] and E2,h[·] = Es′h+1∼P
∗
h(sh,ah)[·]. We conclude the proof of

Lemma J.1 by combining (J.1) with (J.5).

J.2 PROOF OF LEMMA J.2

In this subsection, we provide the proof of the one-step backward inequality for the learned model.
We first state this lemma below.
Lemma J.2 (One-Step Backward for the Learned Model). Let ρnh−1 be a distribution over S ×A.
We assume that the transition kernels Pn = {Pnh }Hh=1 and P∗ = {P∗h}Hh=1 satisfy

Pnh (s′ | s, a) =
〈
k
(
φnh(s, a)

)
, k
(
ψnh+1(s′)

)〉
H

/
c[φnh, ψ

n
h+1](s, a),

and P∗h(s′ | s, a) =
〈
k
(
φ∗h(s, a)

)
, k
(
ψ∗h+1(s′)

)〉
H

/
c[φ∗h, ψ

∗
h+1](s, a),

where c[φ, ψ](s, a) is the normalization function defined in (E.1) and k : X → H is the feature map
of the RKHS H. We assume further that nE(s,a)∼ρnh−1

[TV2(Pnh−1(· | s, a),P∗h−1(· | s, a))] ≤ ζ2,
and the non-negative function g satisfies ‖g‖∞ ≤ B. For any policy π, we have∣∣∣Eπ,Pn[g(sh, ah)

]∣∣∣ ≤ Eπ,Pn
[
βl
∥∥k(φnh−1(sh−1, ah−1)

)∥∥
Γ−1
p [φnh−1,ρ

n
h−1,λ,n]

]
.

Here the operator Γp[φ
n
h−1, ρ

n
h−1, λ, n] is defined in (E.4), Eπ,P is the expectation taken over the

trajectory induced by the policy π = {πh}Hh=1 and the transition kernel P , β is defined as

βl =

√
λB2v2/c2min + 2r2

max

(
n |A|Eρnh−1,P

∗
h,U(A)

[
g2(sh, ah)

]
+B2ζ2

)
,

and the expectation Eρnh−1,P
∗
h,U(A)[g(sh, ah)] is defined as

Eρnh−1,P
∗
h−1,U(A)

[
g(sh, ah)

]
= E(sh−1,ah−1)∼ρnh−1,sh∼P

∗
h−1(·|sh−1,ah−1),ah∼U(A)

[
g(sh, ah)

]
.

Proof. By the structure of the transition and the property of conditional expectation, we have∣∣∣Eπ,Pn[g(sh, ah)
]∣∣∣ (J.6)

=

∣∣∣∣∣Eπ,Pn
[∫

s

Pnh−1(s | sh−1, ah−1)
∑
a∈A

πh(a | s)g(s, a)ds

]∣∣∣∣∣
=

∣∣∣∣Eπ,Pn [∫
s∈S

K
(
φnh−1(sh−1, ah−1), ψnh(s)

)
ḡ(s, πh)ds/c[φnh−1, ψ

n
h ](sh−1, ah−1)

]∣∣∣∣ ,
where the last equation follows from the structure of Pnh−1, and ḡ(s, π) is defined as

ḡ(s, π) =
∑
a∈A

π(a | s)g(s, a). (J.7)

Combining (J.6) with the lower bound of the normalization constant, we have∣∣∣Eπ,Pn[g(sh, ah)
]∣∣∣ ≤ Eπ,Pn

[∣∣∣∣∫
s∈S

K
(
φnh−1(sh−1, ah−1), ψnh(s)

)
ḡ(s, πh)ds

∣∣∣∣/cmin

]
. (J.8)
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For a bounded function g, we define the functional χ[ψnh , π, g] : H → R as

χ[ψnh , π, g]g′ =

∫
s∈S

〈
g′, k

(
ψnh(s)

)〉
H

∑
a∈A

πh(a | s)g(s, a)ds. (J.9)

The functional χ[ψnh , π, g] is linear. Moreover, for any g′ ∈ H, we have∣∣χ[ψnh , π, g]g′
∣∣ ≤ ∫

s∈S
‖g′‖H

∥∥k(ψnh(s)
)∥∥
H

∣∣∣∑
a∈A

πh(a | s)g(s, a)
∣∣∣ds (J.10)

≤
∫
s∈S
‖g′‖HBds = Bv ‖g′‖H ,

where v is the Lebesgue measure of S . Therefore, χ[ψnh , π, g] is bounded by Bv. By Riesz theorem,
there exists an element u[ψnh , π, g] ∈ H with ‖u[ψnh , π, g]‖H ≤ Bv, such that χ[ψnh , π, g]g′ =
〈u[ψnh , π, g], g′〉H for any g′ ∈ H. Therefore, by (J.8) and Cauchy-Schwarz inequality, we have∣∣∣Eπ,Pn [g(sh, ah)]

∣∣∣ ≤ Eπ,Pn
[∣∣∣〈u[ψnh , π, g], k

(
φnh−1(sh−1, ah−1)

)〉
H

∣∣∣ /cmin

]
(J.11)

≤ Eπ,Pn
[∥∥k(φnh−1(sh−1, ah−1)

)∥∥
Γ−1
p [φnh−1,ρ

n
h−1,λ,n]

∥∥u[ψnh , π, g]
∥∥

Γp[φnh−1,ρ
n
h−1,λ,n]

/cmin

]
,

where Γp[φ
n
h−1, ρ

n
h−1, λ, n] is defined in (E.4), and cmin is the lower bound of the normalization

constant c[φnh−1, ψ
n
h ](sh−1, ah−1). What remains is to bound the term ‖u[ψnh , π, g]‖Γp[φnh−1,ρ

n
h−1,λ,n]

from the above. By the definition of Γp[φ
n
h−1, ρ

n
h−1, λ, n], we have∥∥u[ψnh , π, g]

∥∥2

Γp[φnh−1,ρ
n
h−1,λ,n]

=λ
∥∥u[ψnh , π, g]

∥∥2

H + nE(s,a)∼ρnh−1

[
u2[ψnh , π, g]

(
φnh−1(s, a)

)]
≤λB2v2 + nE(s,a)∼ρnh−1

[
u2[ψnh , π, g]

(
φnh−1(s, a)

)]
. (J.12)

Since u[ψnh , π, g] is the representation of χ[ψnh , π, g] defined in (J.9), we have

u[ψnh , π, g]
(
φnh−1(s, a)

)
=
〈
u[ψnh , π, g], k

(
φnh−1(s, a)

)〉
H

(J.13)

=

∫
s∈S

〈
k
(
φnh−1(s, a)

)
, k
(
ψnh(s′)

)〉
H

∑
a′∈A

πh(a′ | s′)g(s′, a′)ds′.

Combining (J.13) with the structure of the transition kernel Pnh−1 in Lemma J.2, we have

u[ψnh , π, g]
(
φnh−1(s, a)

)
= c[φnh−1, ψ

n
h ](s, a)

∫
s∈S
Pnh−1(s′ | s, a)

∑
a′∈A

πh(a′ | s′)g(s′, a′)ds′

≤ cmaxEs′∼Pnh−1(·|s,a),πh

[
g(s′, a′)

]
(J.14)

since c[φnh−1, ψ
n
h ](s, a) is bounded from the above by cmax. By the property of the sum of squares,

we have

Es′∼Pnh−1(·|s,a),πh

[
g(s′, a′)

]2 ≤2
{
Es′∼P∗h−1(·|s,a),πh

[
g(s′, a′)

]
− Es′∼Pnh−1(·|s,a),πh

[
g(s′, a′)

]}2

+ 2Es′∼P∗h−1(·|s,a),πh

[
g(s′, a′)

]2
. (J.15)

By simple calculation, we have∣∣∣Es′∼P∗h−1(·|s,a),πh

[
g(s′, a′)

]
− Es′∼Pnh−1(·|s,a),πh

[
g(s′, a′)

]∣∣∣ (J.16)

≤
∫
s′

∣∣∣P∗h−1(s′ | s, a)− Pnh−1(s′ | s, a)
∣∣∣ ∑
a′∈A

πh(a′ | s′)g(s′, a′)ds′.

≤ B · TV
(
Pnh−1(· | s, a),P∗h−1(· | s, a)

)
,

where the last inequality follows from the definition of the total variance divergence. Combining
(J.14), (J.15) with (J.16), we have

u[ψnh , π, g]
(
φnh−1(s, a)

)2
= c2[φnh−1, ψ

n
h ](s, a)Es′∼Pnh−1(·|s,a),πh

[
g(s′, a′)

]2
(J.17)

≤ 2c2max

{
Es′∼P∗h−1(·|s,a),πh

[
g(s′, a′)

]2
+B2TV2

(
Pnh−1(· | s, a),P∗h−1(· | s, a)

)}
.
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We plug (J.17) into (J.12) and have∥∥u[ψnh , π, g]
∥∥2

Γp[φnh−1,ρ
n
h−1,λ,n]

≤ λB2v2 + 2nE(s,a)∼ρnh−1

[
c2maxEs′∼P∗h−1(·|s,a),πh

[
g(s′, a′)

]2]
+ 2nB2E(s,a)∼ρnh−1

[
c2maxTV2

(
Pnh−1(· | s, a),P∗h−1(· | s, a)

)]
. (J.18)

Therefore, when nE(s,a)∼ρnh−1
[TV2(Pnh−1(· | s, a),P∗h−1(· | s, a))] ≤ ζ2 holds, we have∥∥u[ψnh , π, g]

∥∥2

Γp[φnh−1,ρ
n
h−1,λ,n]

≤ λB2v2 + 2c2max

{
nEρnh−1,P

∗
h−1,πh

[
g2(s′, a′)

]
+B2ζ2

}
(J.19)

by (J.18). Here the expectation is defined in Lemma J.2. By the definition of U(A), we have

Eρnh−1,P
∗
h−1,πh

[
g2(s′, a′)

]
≤ |A|Eρnh−1,P

∗
h−1,U(A)

[
g2(s′, a′)

]
. (J.20)

Combining (J.11), (J.19) with (J.20), we have∣∣∣Eπ,Pnh−1
[g(sh, ah)]

∣∣∣ ≤Eπ,Pnh−1

[
βl
∥∥k(φnh−1(sh−1, ah−1)

)∥∥
Γ−1
p [φnh−1,ρ

n
h−1,λ,n]

]
.

Here the expectation and βl are defined in Lemma J.2. Thus, we conclude the proof of Lemma
J.2.

J.3 PROOF OF LEMMA J.3

In this subsection, we provide the proof of the one-step backward inequality for the true model. We
first state this lemma below.
Lemma J.3 (One-Step Backward for the True Model). Let ρnh−1 be a distribution over S ×A. We
assume that for the transition kernel Pn = {Pnh }Hh=1 and the transition kernel P∗ = {P∗h}Hh=1 with

Pnh (s′ | s, a) =
〈
k
(
φnh(s, a)

)
, k
(
ψnh+1(s′)

)〉
H

/
c[φnh, ψ

n
h+1](s, a),

and P∗h(s′ | s, a) =
〈
k
(
φ∗h(s, a)

)
, k
(
ψ∗h+1(s′)

)〉
H

/
c[φ∗h, ψ

∗
h+1](s, a).

We also assume that the non-negative function g satisfies ‖g‖∞ ≤ B. Then for any policy π, we have∣∣∣Eπ,P∗h[g(sh, ah)
]∣∣∣ ≤ Eπ,P∗h

[
βt
∥∥k(φ∗h−1(sh−1, ah−1))

∥∥
Γ−1
p [φ∗h−1,ρ

n
h−1,λ,n]

]
.

Here the expectation Eρnh−1,P
∗
h,U(A)[g(sh, ah)] is defined as

Eρnh−1,P
∗
h,U(A)

[
g(sh, ah)

]
= E(sh−1,ah−1)∼ρnh−1,sh∼P

∗
h(·|sh−1,ah−1),ah∼U(A)

[
g(sh, ah)

]
,

the operator Γp[φ
∗
h−1, ρ

n
h−1, λ, n] is the operator defined in (E.4), and βt is defined as

βt =
√
λB2v2/c2min + r2

maxn |A|Eρnh−1,P
∗
h,U(A)

[
g2(sh, ah)

]
.

Proof. The proof is similar with the proof of Lemma J.2. Similar with (J.8), we have∣∣∣Eπ,P∗[g(sh, ah)
]∣∣∣ ≤ Eπ,P∗h

[∣∣∣∣∫
s∈S

K
(
φ∗h−1(sh−1, ah−1), ψ∗h(s)

)
ḡ(s, πh)ds

∣∣∣∣/cmin

]
, (J.21)

where ḡ(s, πh) is defined in (J.7). By (J.10), the the linear functional χ[ψ∗h, π, g] defined in (J.9) is
bounded by Bv. Here v is the Lebesgue measure of S. By Riesz’s theorem, there exists an element
u[ψ∗h, π, g] ∈ H with ‖u[ψ∗h, π, g]‖H ≤ Bv, such that χ[ψ∗h, π, g]g′ = 〈u[ψ∗h, π, g], g′〉H holds for
all g′ ∈ H. Combining this property with (J.21), we have∣∣∣Eπ,P∗h[g(sh, ah)

]∣∣∣ ≤ Eπ,P∗h

[∣∣∣〈u[ψ∗h, π, g], k
(
φ∗h−1(sh−1, ah−1)

)〉
H

∣∣∣/cmin

]
(J.22)

≤
∣∣∣Eπ,P∗h [∥∥k(φ∗h−1(sh−1, ah−1)

)∥∥
Γ−1
p [φ∗h−1,ρ

∗
h−1,λ,n]

∥∥u[ψ∗h, π, g]
∥∥

Γp[φ∗h−1,ρ
∗
h−1,λ,n]

]∣∣∣ /cmin.
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Here Γp[φ
∗
h−1, ρ

∗
h−1, λ, n] is defined in (E.4), and cmin is the lower bound of the normalization

constant c[φnh−1, ψ
n
h ](sh−1, ah−1). By the definition of the operator , we have∥∥u[ψ∗h, π, g]

∥∥2

Γp[φ∗h−1,ρ
∗
h−1,λ,n]

=λ
∥∥u[ψ∗h, π, g]

∥∥2

H + nE(s,a)∼ρ∗h−1

[
u2[ψ∗h, π, g]

(
φ∗h−1(s, a)

)]
≤λB2v2 + nE(s,a)∼ρ∗h−1

[
u2[ψ∗h, π, g]

(
φ∗h−1(s, a)

)]
. (J.23)

Similar with (J.14), we have
u[ψ∗h, π, g]

(
φ∗h−1(s, a)

)
= c[φ∗h−1, ψ

∗
h](s, a)Es′∼P∗h−1(·|s,a),πh

[
g(s′, a′)

]
. (J.24)

We plug (J.24) into (J.23) and have∥∥u[ψ∗h, π, g]
∥∥2

Γp[φ∗h−1,ρ
n
h−1,λ,n]

≤λB2v2 + nc2maxE(s,a)∼ρnh−1

[
Es′∼P∗h(·|s,a),πh

[
g(s′, a′)

]2]
≤λB2v2 + nc2maxEρnh−1,P

∗
h(·|s,a),πh

[
g2(s′, a′)

]
, (J.25)

where the last inequality follows from Cauchy-Schwarz inequality. Since g2 is non-negative, we have
Eρnh−1,P

∗
h(·|s,a),πh

[
g2(sh, ah)

]
≤ |A|Eρnh−1,P

∗
h(·|s,a),U(A)

[
g2(sh, ah)

]
. (J.26)

Here Eρnh−1,P
∗
h,πh

[g(sh, ah)] = E(sh−1,ah−1)∼ρnh−1,sh∼P
∗
h(·|sh−1,ah−1),ah∼πh(·|sh)[g(sh, ah)]. Com-

bining (J.22), (J.25) and (J.26), we have∣∣∣Eπ,P∗h[g(sh, ah)
]∣∣∣ ≤ Eπ,P∗h

[
βt
∥∥k(φ∗h−1(sh−1, ah−1))

∥∥
Γ−1
p [φ∗h−1,ρ

n
h−1,λ,n]

]
,

where βt is defined in Lemma J.3. Thus, we conclude the proof of Lemma J.3.

J.4 PROOF OF LEMMA C.7

Proof. The lower bound of the ε-Eluder dimension has been proven by Theorem 5.2 of Dong et al.
(2021). Therefore, we only need to bound the ε-log covering number of R from the above. Let C1
be an ε/2-covering set of the unit sphere in Rm, and C2 be an ε/2-covering set of [0, 1]. We have
|C1| ≤ 22dε−d and |C1| ≤ 2/ε. We define the set C as

C = {rθ,b : A → R | rθ,b(a) = σ(θ>a+ b), θ ∈ C1, b ∈ C2}.
For any rθ,b ∈ R, there exists θ0 ∈ C1 and b0 ∈ C2, such that ‖θ − θ0‖2 ≤ ε and |b− b0| ≤ ε/2. We
have rθ0,b0 ∈ C, and

|rθ,b(a)− rθ0,b0(a)| =
∣∣max{θ>a+ b, 0} −max{θ>0 a+ b0, 0}+

∣∣ (J.27)

≤ ‖θ − θ0‖2 ‖a‖2 + |b− b0| ≤ ε
for any a ∈ A. Therefore, C is an ε-covering set ofR, and

log |C| ≤ log |C1|+ log |C2| ≤ (d+ 1) log(4/ε),

which concludes the proof of Lemma C.7.

J.5 PROOF OF LEMMA D.2

Proof. By the reproducing property ofH and Cauchy-Schwarz inequality, we have∫
X
g2(x)dρ(x) =

∫
X

〈
g, k(x)

〉2
Hdρ(x) ≤

∫
X
〈g, g〉HK(x, x)dρ(x) = 〈g, g〉H (J.28)

when g ∈ H. Therefore, we haveH ⊂ L2
ρ(X ) and ‖g‖2L2

ρ(X ) ≤ ‖g‖
2
H. We also have∫

X

[
Γg(x)

]2
dρ(x) =

∫
X

[∫
X
K(x′, x)g(x′)dρ(x′)

]2

dρ(x) (J.29)

≤
∫
X

[∫
X
K2(x′, x)dρ(x′)

] [∫
X
g2(x′′)dρ(x′′)

]
dρ(x)

=

[∫
X
g2(x′′)dρ(x′′)

] ∫
X

∫
X
K2(x′, x)dρ(x′)dρ(x) =

∫
X
g2(x′′)dρ(x′′).
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Where the last equation holds since K(x, x′) = exp(−‖x− x′‖22 /2).Therefore, we have Γg ∈
L2
ρ(X ) when g ∈ L2

ρ(X ), which implies that Γ is a linear operator on L2
ρ(X ). When we define the

functional γg : H → R as γg(ḡ) =
∫
X g(x)ḡ(x)dρ(x) for g ∈ L2

ρ(X ), we have

γg(ḡ) ≤

√∫
X
g2(x)dρ(x)

√∫
X
ḡ2(x)dρ(x) ≤

√
〈ḡ, ḡ〉H

√∫
X
g2(x)dρ(x)

by (J.28) and (J.29). Therefore, by Riesz’s theorem, we know that there exists u ∈ H, such that
〈u, ḡ〉H = γg(ḡ), which implies. Γg(x) ∈ H. The operator Γ : H → H is also non-negative definite
since we have 〈g,Γg〉H =

∫
X g

2(x)dρ(x) ≥ 0 when g ∈ H. Thus, we conclude the proof of Lemma
D.2.

J.6 PROOF OF LEMMA D.3

Proof. We first define the operator Γ̄[Xn] as

Γ̄[Xn]g(x) =
(
g(x)− g[Xn]>

(
λI +K[Xn]

)−1
k[Xn](x)

)/
λ, (J.30)

for any g ∈ H, x ∈ X . Here g[Xn] is defined in §1.2. We show that Γ̄[Xn] is the inverse of Γ[Xn].
By the definition of Γ[Xn] in Lemma D.3, we have (Γ[Xn]g)[Xn] = (λI +K[Xn])g[Xn], and

Γ[Xn]g(x) = λg(x) + g[Xn]>k[Xn](x), (J.31)
where k[Xn](x) is defined in Lemma D.3. Combining Equaitions (J.30) with (J.31), we have

Γ̄[Xn]Γ[Xn]g(x) =
(

Γ[Xn]g(x)−
(
Γ[Xn]g

)
[Xn]>

(
λI +K[Xn]

)−1
k[Xn](x)

)/
λ

=
(
λg(x) + g[Xn]>k[Xn](x)− g[Xn]>k[Xn](x)

)/
λ = g(x).

By the definition in (J.30) and the definition of (Γ̄[Xn]g)[Xn] in §1.2, we have(
Γ̄[Xn]g

)
[Xn] =

(
g[Xn]−K[Xn]

(
λI +K[Xn]

)−1
g[Xn]

)/
λ =

(
λI +K[Xn]

)−1
g[Xn]. (J.32)

Combining (J.32) with (J.30), we have
Γ[Xn]Γ̄[Xn]g(x) = λΓ̄[Xn]g(x) +

(
Γ̄[Xn]g

)
[Xn]>k[Xn](x)

= g(x)− g[Xn]>
(
λI +K[Xn]

)−1
k[Xn](x) + g[Xn]>

(
λI +K[Xn]

)−1
k[Xn](x) = g(x).

Therefore, the operator Γ̄[Xn] is the inverse operator of Γ[Xn], and∥∥k(x)
∥∥2

Γ−1[Xn]
=〈k(x),Γ−1[Xn]k(x)〉H =

(
K(x, x)− k[Xn](x)>

(
λI +K[Xn]

)−1
k[Xn](x)

)/
λ.

Thus, we conclude the proof of Lemma D.3.

J.7 PROOF OF LEMMA D.4

Proof. By the definition of the operator Γe[φ,D, λ], we have〈
g,Γe[φ,D, λ]g

〉
H = λ〈g, g〉H +

∑
(s,a,r,s′)∈D

g
(
φ(s, a)

)2
. (J.33)

Therefore, we have λ〈g, g〉H ≤ 〈g,Γe[φ,D, λ]g〉H. By the definition of the reproducing kernel, we
have

∑
(s,a,r,s′)∈D g(φ(s, a))2 =

∑
(s,a,r,s′)∈D〈g, k(φ(s, a))〉2H. Therefore, we have∑

(s,a,r,s′)∈D

g
(
φ(s, a)

)2 ≤ 〈g, g〉H ∑
(s,a,r,s′)∈D

K
(
φ(s, a), φ(s, a)

)
(J.34)

by Cauchy-Schwarz inequality. Combining (J.33) with (J.34), we have〈
g,Γe[φ,D, λ]g

〉
H ≤

(
λ+

∑
(s,a,r,s′)∈D

K
(
φ(s, a), φ(s, a)

))
〈g, g〉H.

Similarly, by the definition of the operator Γp[φ, ρ, λ, τ ], we have〈
g,Γp[φ, ρ, λ, τ ]g

〉
H = λ〈g, g〉H + τE(s,a)∼ρ

[
g2
(
φ(s, a)

)]
. (J.35)

Therefore, we have λ〈g, g〉H ≤ 〈g,Γp[φ, ρ, λ, τ ]g〉H. Similar with (J.34), we have

E(s,a)∼ρ

[
g2
(
φ(s, a)

)]
≤ 〈g, g〉HE(s,a)∼ρ

[
K
(
φ(s, a), φ(s, a)

)]
. (J.36)

We conclude the proof of Lemma D.4 by combining (J.35) with (J.36).
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J.8 PROOF OF LEMMA F.2

Proof. Since the operators A, B are self-adjoint and positive-definite, the operator B−1/2AB−1/2

is also self-adjoint and positive-definite. Therefore, the operator C = (B−1/2AB−1/2)1/2 is also
self-adjoint and positive-definite. Since B−1/2C−1B−1/2x ∈ D, we have

〈B−1/2C−1B−1/2x,BB−1/2C−1B−1/2x〉H ≥ 〈B−1/2C−1B−1/2x,AB−1/2C−1B−1/2x〉H
by the definition of D in Lemma F.2. Since the operators B and C are self-adjoint, we have

〈B−1/2C−1B−1/2x,BB−1/2C−1B−1/2x〉H (J.37)

= 〈x,B−1/2C−1B−1/2BB−1/2C−1B−1/2x〉H = 〈x,B−1/2C−2B−1/2x〉H.

We also have C−2 = B1/2A−1B1/2 when C = (B−1/2AB−1/2)1/2. Therefore, we have

〈B−1/2C−1B−1/2x,BB−1/2C−1B−1/2x〉H = 〈x,B−1/2B1/2A−1B1/2B−1/2x〉H (J.38)

= 〈x,A−1x〉H
by (J.37). Similarly, we have

〈B−1/2C−1B−1/2x,AB−1/2C−1B−1/2x〉H = 〈x,B−1/2C−1B−1/2AB−1/2C−1B−1/2x〉H
= 〈x,B−1/2C−1C2C−1B−1/2x〉H = 〈x,B−1x〉H. (J.39)

We conclude the proof of Lemma F.2 by combining (J.38) with (J.39).

J.9 PROOF OF LEMMA F.3

Proof. Without loss of generality, we assume that 〈g, g〉H = 1. We then have

g(x) =
〈
g, k(x)

〉
H ≤

√
〈g, g〉H

〈
k(x), k(x)

〉
H = 1

for any x ∈ X . We also introduce the following version of Bernstein inequality.

Lemma J.4. Let {Fτ}nτ=0 be a filtration, and {Xτ}nτ=1 be a R-valued stochastic process adapted to
this filtration. Suppose E[Xτ | Fτ−1] = 0 and |Xτ | ≤ c almost surely, we have

P
( n∑
τ=1

Xτ ≤ (e− 2)λE[X2
τ | Fτ−1] + log(1/δ)/λ

)
≥ 1− δ

for any fix 0 < λ ≤ 1/c.

Proof. See Appendix §J.12 for a detailed proof.

Since E(s,a)∼%τ [g2(φ(s, a))] = E[g2(φ(sτ , aτ )) | Fτ−1], using Lemma J.4 with λ = 1/2, we have

n∑
τ=1

g2
(
φ(sτ , aτ )

)
−

n∑
τ=1

E(s,a)∼%τ
[
g2
(
φ(s, a)

)]
(J.40)

≤ (e− 2)

n∑
τ=1

Var
(
g2
(
φ(sτ , aτ )

) ∣∣ Fτ−1

)/
2 + 2 log(1/δ)

holds with probability at least 1− δ. By the property of the variance, we have

Var
(
g2
(
φ(sτ , aτ )

) ∣∣ Fτ−1

)
≤ E

[
g4
(
φ(sτ , aτ )

) ∣∣ Fτ−1

]
≤ E

[
g2
(
φ(sτ , aτ )

) ∣∣ Fτ−1

]
. (J.41)

Combining (J.40) with (J.41), we have
n∑
τ=1

g2
(
φ(sτ , aτ )

)
≤ e

n∑
τ=1

E
[
g2
(
φ(sτ , aτ )

) ∣∣ Fτ−1

]/
2 + 2 log(1/δ)〈g, g〉H
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holds with probability at least 1− δ. Similarly, we have
n∑
τ=1

E(s,a)∼%τ
[
g2
(
φ(s, a)

)]
−

n∑
τ=1

g2
(
φ(sτ , aτ )

)
≤ (e− 2)

n∑
τ=1

E
[
g2
(
φ(sτ , aτ )

) ∣∣ Fτ−1

]/
2 + 2 log(1/δ),

holds with probability at least 1− δ. By simple calculation, we have

(4− e)
n∑
τ=1

E
[
g2
(
φ(sτ , aτ )

) ∣∣ Fτ−1

]/
2 ≤

n∑
τ=1

g2
(
φ(sτ , aτ )

)
+ 2 log(1/δ)〈g, g〉H

holds with probability at least 1− δ. Thus, we conclude the proof of Lemma F.3.

J.10 PROOF OF LEMMA F.4

Proof. By the definition of Γ in (F.1), we have Γg = Γ
−1/2
1 (Γ

−1/2
1 Γ2Γ

−1/2
1 )−1/2Γ

−1/2
1 g. Since the

operator Γ
−1/2
1 is self-adjoint, we have

〈Γg,Γg〉H =
〈

(Γ
−1/2
1 Γ2Γ

−1/2
1 )−1/2Γ

−1/2
1 g,Γ−1

1 (Γ
−1/2
1 Γ2Γ

−1/2
1 )−1/2Γ

−1/2
1 g

〉
H
. (J.42)

By Lemma D.4, we have 〈g1,Γ
−1
1 g1〉H ≤ 〈g1, g1〉H/λ for any g1 ∈ H. Therefore, we have

〈Γg,Γg〉H ≤
〈

(Γ
−1/2
1 Γ2Γ

−1/2
1 )−1/2Γ

−1/2
1 g, (Γ

−1/2
1 Γ2Γ

−1/2
1 )−1/2Γ

−1/2
1 g

〉
H

/
λ (J.43)

=
〈

Γ
−1/2
1 g, (Γ

−1/2
1 Γ2Γ

−1/2
1 )−1Γ

−1/2
1 g

〉
H

/
λ.

The following lemma characterize the operator Γ
−1/2
1 Γ2Γ

−1/2
1 .

Lemma J.5. When we define Γ1 = Γp[φ, ρ
n
h,i, λ, n] and Γ2 = Γe[φ,Dnh,i, λ], we have

λ〈g, g〉H/(λ+ n) ≤
〈
g,Γ
−1/2
1 Γ2Γ

−1/2
1 g

〉
H ≤ (λ+ n)〈g, g〉H/λ

for any g ∈ H. Similarly we have

λ〈g, g〉H/(λ+ n) ≤
〈
g, (Γ

−1/2
1 Γ2Γ

−1/2
1 )−1g

〉
H
≤ (λ+ n)〈g, g〉H/λ.

Here Γp[φ, ρ
n
h,i, λ, n] and Γe[φ,Dnh,i, λ] are defined in (E.2) and (E.4).

Proof. See Appendix §J.13 for a detailed proof.

Combining Lemma J.5 with (J.43), we have

〈Γg,Γg〉H ≤(λ+ n)
〈
Γ
−1/2
1 g,Γ

−1/2
1 g

〉
H/λ

2 = (λ+ n)
〈
g,Γ−1

1 g
〉
H/λ

2.

By Lemma D.4, we have 〈g1,Γ
−1
1 g1〉H ≤ 〈g1, g1〉H/λ for any g1 ∈ H. Therefore, we have

〈Γg,Γg〉H ≤ (λ+ n)〈g, g〉H/λ3.

Similarly, by Lemma D.4, we have 〈g1,Γ
−1
1 g1〉H ≥ 〈g1, g1〉H/(λ+ n) for any g1 ∈ H. Therefore,

by (J.42), we have

〈Γg,Γg〉H ≥
〈

(Γ
−1/2
1 Γ2Γ

−1/2
1 )−1/2Γ

−1/2
1 g, (Γ

−1/2
1 Γ2Γ

−1/2
1 )−1/2Γ

−1/2
1 g

〉
H

/
(λ+ n) (J.44)

=
〈

Γ
−1/2
1 g, (Γ

−1/2
1 Γ2Γ

−1/2
1 )−1Γ

−1/2
1 g

〉
H

/
(λ+ n).

Combining Lemma J.5 with (J.44), we have

〈Γg,Γg〉H ≥λ〈Γ−1/2
1 g,Γ

−1/2
1 g〉H/(λ+ n)2 = λ〈g,Γ−1

1 g〉H/(λ+ n)2.

By Proposition D.4, we have 〈g1,Γ
−1
1 g1〉H ≥ 〈g1, g1〉H/(λ + n) for any g1 ∈ H. Therefore, we

have
〈Γg,Γg〉H ≥ λ〈g,Γ−1

1 g〉H/(λ+ n)3.

Thus, we conclude the proof of Lemma F.4.
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J.11 PROOF OF LEMMA F.5

Proof. We denote by C the ε̄-covering of the unit ball in m dimension, and define C′ by C′ =

{ΓK(x, ·) | x ∈ C}. In the following part of the proof, we show that C′ is a
√

(λ+ n)ε̄2/λ3-
covering ofH1 with regard to the infinity norm.

For any g ∈ H1, we have g(·) = ΓK(x, ·) for some x in the unit ball. By the definition of the set C,
there exist x′ ∈ C, such that ‖x− x′‖ ≤ ε̄. By the reproducing property of the kernel, we have∣∣ΓK(x, y)− ΓK(x′, y)

∣∣ =
∣∣∣〈Γ
(
k(x)− k(x′)

)
, k(y)

〉
H

∣∣∣ (J.45)

for any y ∈ Rm. Combining (J.45) with Cauchy-Schwarz inequality, we have∣∣ΓK(x, y)− ΓK(x′, y)
∣∣ ≤√〈Γ

(
k(x)− k(x′)

)
,Γ
(
k(x)− k(x′)

)〉
H

〈
k(y), k(y)

〉
H (J.46)

=

√〈
Γ
(
k(x)− k(x′)

)
,Γ
(
k(x)− k(x′)

)〉
H

for any y ∈ Rm, where the second equation follows from the fact that 〈k(y), k(y)〉H = 1. By Lemma
F.4, we have 〈Γg1,Γg1〉H ≤ (λ+ n)〈g1, g1〉/λ3 for any g1 ∈ H. Therefore, by (J.46), we have∣∣ΓK(x, y)− ΓK(x′, y)

∣∣ ≤√(λ+ n)
〈
k(x)− k(x′), k(x)− k(x′)

〉
H

/
λ3 (J.47)

Similar with (F.7), we have 〈k(x) − k(x′), k(x) − k(x′)〉H ≤ ε̄2 when ‖x− x′‖2 ≤ ε̄. By (J.47),
we have |ΓK(x, y)− ΓK(x′, y)| ≤

√
(λ+ n)ε̄2/λ3. Therefore, C′ is a

√
(λ+ n)ε̄2/λ3-covering

ofH1 with regard to the infinity norm. We also have |C′| = |C| ≤ (R/ε̄)m. We conclude the proof of
Lemma F.5 by setting ε̄ = ελ

√
λ/(λ+ n).

J.12 PROOF OF LEMMA J.4

Proof. Since ex ≤ 1 + x+ (e− 2)x2 holds for any x ≤ 1, we have
E
[
exp(λXτ ) | Fτ−1

]
≤ E

[
1 + λXτ + (e− 2)λ2X2

τ | Fτ−1

]
= E

[
1 + (e− 2)λ2X2

τ | Fτ−1

]
≤ exp

{
E
[
(e− 2)λ2X2

τ | Fτ−1

]}
when λ ≤ 1/c. Therefore, when we define Yt = exp{λ

∑t
τ=1Xτ−(e−2)λ2

∑t
τ=1 E[X2

τ | Fτ−1]},
we have E[Yt | Ft−1] ≤ E[Yt−1 | Ft−1]. Using induction, we have E[Yn] ≤ 1. Therefore, we have

P
( n∑
τ=1

Xτ ≤ (e− 2)λ

n∑
τ=1

E[X2
τ | Fτ−1] + log(1/δ)/λ

)
≥ 1− δ

by Markov inequality. Thus, we conclude the proof of Lemma J.4.

J.13 PROOF OF LEMMA J.5

Proof. By the property of the inverse operator, it remains to prove that

λ〈g, g〉H/(λ+ n) ≤ 〈g,Γ−1/2
1 Γ2Γ

−1/2
1 g〉H ≤ (λ+ n)〈g, g〉H/λ

for any g ∈ H. By Lemma D.4, we have 〈g1,Γ2g1〉H ≤ (λ+ n)〈g1, g1〉H. Therefore, we have

〈g,Γ−1/2
1 Γ2Γ

−1/2
1 g〉H = 〈Γ−1/2

1 g,Γ2Γ
−1/2
1 g〉H ≤ (λ+ n)〈Γ−1/2

1 g,Γ
−1/2
1 g〉H.

By Lemma D.4, we have 〈g1,Γ
−1
1 g1〉H ≤ 〈g1, g1〉H/λ for any g1 ∈ H. Therefore, we have

〈g,Γ−1/2
1 Γ2Γ

−1/2
1 g〉H ≤ (λ+ n)〈g,Γ−1

1 g〉H ≤ (λ+ n)〈g, g〉H/λ.
Similarly, by Lemma D.4, we have 〈g1,Γ2g1〉H ≥ λ〈g1, g1〉H. Therefore, we have

〈g,Γ−1/2
1 Γ2Γ

−1/2
1 g〉H = 〈Γ−1/2

1 g,Γ2Γ
−1/2
1 g〉H ≥ λ〈Γ−1/2

1 g,Γ
−1/2
1 g〉H

By Lemma D.4, we have 〈g1,Γ
−1
1 g1〉H ≥ 〈g1, g1〉H/(λ+ n) for any g1 ∈ H. Therefore, we have

〈g,Γ−1/2
1 Γ2Γ

−1/2
1 g〉H ≥ λ〈g,Γ−1

1 g〉H ≥ λ〈g, g〉H/(λ+ n).

Thus, we conclude the proof of Lemma J.5.
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