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ABSTRACT

Training a deep neural network (DNN) for breast cancer detection from medical
images suffers from the (hopefully) low prevalence of the pathology. For a sen-
sible amount of positive cases, images must be collected from numerous places
resulting in large heterogeneous datasets with different acquisition devices, pop-
ulations, cancer incidences. Without precaution, this heterogeneity may result
in a DNN biased by latent variables a priori independent of the pathology. This
may be dramatic if this DNN is used inside a software to help radiologists to de-
tect cancers. This work mitigates this issue by acting on how mini-batches for
Stochastic Gradient Descent (SGD) algorithms are constructed. The dataset is di-
vided into homogeneous subsets sharing some attributes (e.g. acquisition device,
source) called Data Segments (DSs). Batches are built by sampling each DS peri-
odically with a frequency proportional to the rarest label in the DS and by simulta-
neously preserving an overall balance between positive and negative labels within
the batch. Periodic sampling is compared to balanced sampling (equal amount
of labels within a batch, independently of DS) and to balanced sampling within
DS (equal amount of labels within a batch and each DS). We show, on breast
cancer prediction from mammography images of various devices and origins, that
periodic sampling leads to better generalization than other sampling strategies.

1 INTRODUCTION

Breast cancer screening leads to an earlier detection of breast cancer resulting in an improved prog-
nosis and a reduced mortality (Marmot et al., 2013). During a screening exam, Full-Field Digital
Mammography (FFDM) images of the breasts of a patient are acquired. They are then analyzed by
1 or 2 radiologist(s) who look(s) for signs of malignancy. If any sign of malignancy is observed,
the patient is recalled to assert the final diagnosis with complementary exams. Despite constant
technological progress, cancers may still be missed while the recall rate remains high with a limited
fraction of recalled patients actually diagnosed with cancer (Rawashdeh et al., 2013).

Machine Learning (ML) based screening systems may help radiologists detecting cancers and im-
prove their sensitivity, specificity and reading time, (Pacilè et al., 2020; McKinney et al., 2020;
Schaffter et al., 2020; Shen et al., 2019; Kooi et al., 2017). Indeed, Deep Neural Networks (DNNs)
can help to solve this problem initially formalized as a binary classification problem. Recent ap-
proaches build upon breasts symmetry (Brhane Hagos et al., 2018; Kooi & Karssemeijer, 2017), the
patient history (Kooi & Karssemeijer, 2017) or the whole set of exam images (Geras et al., 2017)
to enhance classification performances. Other approaches further aim at localizing the malignant
lesion(s) in the breast (Shen et al., 2021; Pedemonte et al., 2020) or improving the generalization
of DNNs trained on FFDM images but used on Digital Breast Tomosynthesis (DBT) images, 3D
images of the breast (Matthews et al., 2021; Singh et al., 2020).

It is hard to train a DNN on FFDM images that aims to be used in a software delivering nearly
real time recommendations for a radiologist investigating screening exams. First, it requires a large
quantity of labeled training data but medical data sources are typically small and partially labeled.
Transfer Learning (TL) may help to partially cope with this problem (Morid et al., 2021; Karimi
et al., 2021) while Domain Adaptation (DA) may help to reduce the potential distribution mismatch
between multiple source data distributions and a test data distributions (Crammer et al., 2008; Ben-
David et al., 2010; Ganin et al., 2016; Guan & Liu, 2021). Yet, TL may deliver little performance
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gain (Raghu et al., 2019), DA may not be appropriate for the setup considered here due to the poten-
tially large number of training sources and the infinite number of testing sources and the ”nearly real
time” prediction constraint may be incompatible with the common offline setup most DA solutions
embrace as they often build upon source and target domains available at the same time (Ben-David
et al., 2007; 2010; Ganin et al., 2016). Second, each medical institution exhibits its own charac-
teristics (patients, radiologists experiences, sets of acquisition devices, disease incidences, ...), thus
the DNN trained on data from such sources may still be biased: its predictions being modulated by
latent uncontroled variables. If not addressed, this may result in dramatic consequences once the
model is used in production (Barocas & Selbst, 2014). Finally, training a DNN on FFDM implies
fighting class imbalance (the disease incidence being hopefully small) to avoid technical issues for
ML models (He & Garcia, 2009) that could amplify the potential bias issue highlighted above.

The following experiment exhibits the complexity of training a DNN from only 2 sources of data.
The goal was to train 2 DNNs to classify benign vs malignant FFDM images on 2 sets of data,
DS1 (7258 malignant / 13341 benign images) and DS2 (160 malignant / 21871 benign) and to
evaluate them on a left out set of data DS3 (1106 malignant / 14192 benign) from another medical
institution. A train / validation split was used patient-wise and source-wise: 80% (resp. 20%)
of patients of a source were used for training (resp. validation). The proportion of patients with
cancers was kept constant in both train / val sets. The first DNN, dnn1, was trained on DS1, the
second one, dnn1∪2 on DS1 ∪ DS2 with a Stochastic Gradient Descent (SGD) like algorithm.
Balancing benign and malignant images within mini-batches was used during training to cope with
class imbalance. The Weighted Logloss per image (WLL / image), log loss with class weights, was
monitored on a validation set during the training, see Figure 1 - left. The model dnn1∪2 exhibits a
low global validation WLL / image on DS1 ∪DS2, but a higher WLL / image on DS1 compared to
dnn1. The validation WLL / image on DS2 further indicates that it was over-fitted. Plus, dnn1∪2
shows a lower Area Under the ROC Curve (AUC) on DS3 than dnn1, though it was trained on
more data, see Figure 1 - center. Finally, the distributions of models predictions on DS3 show that
dnn1∪2 predictions are shifted towards low values compared to dnn1 predictions and that even for
the malignant images, see Figure 1 - right. Hardly, does dnn1∪2 benefit from data brought by DS2.
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Figure 1: The model trained on DS1∪DS2 (green) exhibits poor validation metrics on the validation
sets of DS1 and DS2 taken individually. It does not outperform the baseline trained on DS1 (blue)
on test set DS3. Its predictions are shifted towards low values on benign and even malignant images.

This paper identifies 2 main locks to train efficiently a DNN for breast cancer prediction from mam-
mography images: class imbalance and a non homogeneous learning set. Class imbalance can
be addressed via an appropriate sampling strategy (He et al., 2008; Chawla et al., 2002), sample
weighting (Byrd & Lipton, 2018) or a learnable sampling (Hu et al., 2019; Ren et al., 2018). The
sampling strategy may add further benefits such as stratified sampling which may help to efficiently
select samples from low variance clusters to speed up the convergence of mini-batch optimization
algorithms (Csiba & Richtárik, 2018; Zhao & Zhang, 2014).

This paper focuses on training a DNN with a mini-batch SGD like optimization algorithm on a train-
ing set, divided into a finite ensemble of independent and homogeneous sets of samples, sharing an
explicit and unique set of properties, called Data Segments (DSs). A Periodic Sampling strategy is
proposed to build mini-batches of data by sampling each DS periodically with a frequency propor-
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tional to its rarest label and by balancing the labels within a batch and a DS to fight class imbalance.
This paper, first introduces formally the proposed Periodic Sampling, then provides numerical evi-
dence of its benefits and finally discusses its main limitations and directions for improvement.

2 METHOD

This paper focuses on binary classification and introduces a method to train a DNN, with a SGD like
algorithm, from several segments of data while reducing the risk of using an identified bias. It aims
to build appropriately the mini-batches of data with a dedicated Periodic Sampling strategy.

2.1 NOTATION AND PROBLEM STATEMENT

Let X stand for the input space, i.e. the space of FFDM images of a given shape. Let
Y = {0, 1} stand for the space of labels, 0 standing for a benign image, 1 for a malignant
image. x, y ∈ X × Y is a learning sample: an image with its label. Let i,Ni ∈ N, then
DSi = {(xj , yj) ∈ X × Y : j = 0, · · · , Ni − 1} refers to a Data Segment (DS) i.e. a subset of
homogeneous learning samples. Let M ∈ N be the number of DSs at hand. The learning set is
composed of M homogeneous and independent DSs: ∪M−1i=0 DSi. With a DNN: f : X −→ Y , and
with ` standing for the binary cross-entropy, the empirical optimization problem to solve reads:

f∗ ∈ arg min
f

1∑M−1
i=0 Ni

M−1∑
i=0

∑
(x,y)∈DSi

`(y, f(x)) (1)

2.2 PERIODIC SAMPLING

General description First, the DNN should work on all the DSs of interest. It should learn at the
same pace on the training DSs to avoid the issue seen in Figure 1 and not overfit to quickly a DS
with few malignant images. Third, the DNN should not be biased toward a specific label on any DS.

Periodic Sampling is a two step process introduced to meet these requirements. First, it builds a
sampling pattern that indicates how often samples from the DSs should be included in a mini-batch.
Second, it iterates over the sampling pattern and selects a sample from the designated DS while
alternating in a balanced way the labels to ensure label balance in a DS.

Sampling proportion With the above notation, we define the number of samples of the least
represented label ymin

i , inside DSi by nmin
i =

∑Ni−1
j=0 1yj=ymin

i
. Now, let Nmin =

∑M−1
i=0 nmin

i

be the sum of the samples of the least represented label inside each DS. The main idea is to feed the
DNN with the samples from DSi with a proportion pi = nmin

i /Nmin during the training process.

Sampling pattern Periodically selecting samples from DSi with a period 1/pi allows to feed the
DNN with samples from DSi with a proportion pi. This way, even if pi is dramatically small,
samples from DSi would still be selected on a regular basis. To do so, a sampling pattern S is built.
This is a sequence of DS ids i ∈ {0, · · · ,M − 1} of length Nmin, where the number of occurrences
of DSi is given by nmin

i . To build it, one first sorts the DS by their numbers nmin
i , in the ascending

order. Then, one iterates over the sequence of i, nmin
i , to fill in the available slots of a list of length

Nmin and places the indices i at nmin
i locations, equally spaced while avoiding potential collisions

with already filled slot. This is described in Algorithm 1.

Construction of training batches Then, one builds batches of b ∈ N samples by iterating sequen-
tially (and infinitely) over the sampling pattern S to get, for each sample to be included in a batch,
the index i of the DS from which it should be drawn. This way, for every nearly Nmin/b + 1 seen
samples by the DNN, the DNN has been trained on nearly pi × (Nmin/b + 1) samples from DSi.
To ensure that the labels are presented in equal proportions to the DNN, the mechanism alternates
between 0 and 1 labels when selecting a sample from DS i. The batch construction pipeline is sum-
marized in Algorithm 2. An example of the selection of samples according to a sampling pattern
with the alternating label mechanism is provided in Figure 2
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Algorithm 1: Build the sampling pattern
Data: N , {DSi : i = 0, · · · ,M − 1}
Result: Sampling pattern S

1 step 1: Compute the numbers of samples with the least represented label for every DSi:{
nmin
i : i = 0, · · · ,M − 1

}
2 step 2: Compute the length of the sampling pattern L←

∑M−1
i=0 nmin

i

3 step 3: Build the sampling pattern:
S ← array of size L filled with -1 values
for i← 0 to M − 1 do

pos← linspace(0, Nmin, nmin
i ) ;

for j ← 0 to nmin
i − 1 do

p← pos[j]
while S[p] 6= −1 do

p← p + 1
end
S[p]← i

end
end
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Figure 2: Selection of samples from 4 DSs, DS0, DS1, DS2, DS3, while alternating the labels 0, 1
within a DS. A sampling pattern of length Nmin = 37 was used to select the samples. It was built
from the numbers of samples having the rarest labels (1 in this case) in DSi: nmin

i for i = 0, · · · 3.
The following values were used: nmin

0 = 2, nmin
1 = 5, nmin

2 = 10 and nmin
3 = 20.

Algorithm 2: Build batches from sampling pattern

Data: b, S, Nmin, DS = {DSi : i = 0, · · · ,M − 1}
Result: A collection of batches of size b
Y ← {0, 1}M randomly initialized
idx← 0
while training do

B ← [· · · ] empty list
for j ← 0 to b− 1 do

i← S[idx]
yi ← Y [i]
(x, y)← next samples (x, y) ∈ DSi such that y = yi
B ← B + (x, y)
idx = idx + 1 (mod Nmin)
Y [i] = Y [i] + 1 (mod 2)

end
yield B

end

Practically, some Deep Learning (DL) libraries ensure that the order of the samples indices returned
by a sampling function is maintained inside the mini-batches while others do not. This may not be
an issue as long as the proportions of DSs are ensured at a scale of a few (hundreds) learning steps /
batches.
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3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

3.1.1 DATA

Image modality and labeling process The considered data are FFDM images e.g. gray-scale
images, with pixel values in [0, 4095], although other ranges can be used depending on the FFDM
device manufacturer. Every full view (not zoom) FFDM image is considered for training and evalu-
ating the models: Cranio-Caudal (CC), Medio-Lateral Oblique (MLO), ...

Images labels (0 and 1) are assigned as follows. A positive image (label 1) is an image where
a suspicious lesion was localized and for which the malignant status was confirmed by a biopsy
shortly after the mammogram was done (within 3 months). Each malignant lesion is localized as
precisely as possible with a bounding box drawn by trained radiologists. A positive breast is a breast
with at least one positive image. When the malignant lesion is not visible inside a specific view of a
malignant breast the image is discarded from the dataset e.g. a lesion not visible in CC view while
visible in MLO view. Images anterior and posterior to a positive breast are discarded as well. On
the other hand, a negative image (label 0) is an image of a negative patient i.e. a patient without a
positive breast. In addition, a one-year negative follow-up is required to confirm absence of signs of
malignancy in the image. Additional data information are provided in Appendix.

Data segments The learning set is composed of 2 sources of data, S1 and S2. Each source con-
tains images obtained with acquisition devices of 2 manufacturers Ma and Mb. Thus, 4 DSs can
naturally be defined: (S1,Ma), (S1,Mb), (S2,Ma), (S2,Mb). The testing sets are composed of up
to 3 sources of data, S3, S4 and S5, containing images obtained with acquisition devices from 4
manufacturers, Ma, Mb, Mc and Md, leading to 5 DSs. The numbers of malignant and benign
images from all train and test DSs are given in table 1.

Table 1: Numbers of benign (ben.) and malignant (mal.) images by DS and incidence rate in DSs

DS # ben. images # mal. images pmal in DS

(S1, Ma) 13341 7258 0.3523
(S1, Mb) 527 408 0.4364
(S2, Ma) 21871 160 0.0073
(S2, Mb) 19040 146 0.0076

(S3, Ma) 14192 1106 0.0723
(S3, Mb) 46006 2059 0.0428
(S4, Mc) 4387 28 0.0063
(S4, Md) 19740 133 0.0067
(S5, Mc) 38951 131 0.0034

Cross-validation scheme For each experiment, the learning set is divided into training and val-
idation data using a source-wise and patient-wise split: 80% (resp. 20%) of the patients of each
source are used for training (resp. validation). Furthermore, the split is made such that the ratio of
malignant / benign patients is similar for the validation and the training sets.

Image pre-processing and data augmentation Each image is extracted from its native DICOM
storing file (Pianykh, 2010) and resized to a shape of (1152, w), the width w being adjusted accord-
ingly to keep the same image proportions. The mask of the breast is extracted from the reshaped
image using automatic thresholding and morphological operations.

Normalization and preprocessing techniques are used to standardize the FFDM images. First, the
images are cropped / padded to fit a shape of 1152 ∗ 832. Then, the pixels inside the breast mask
are re-normalized to have values in [0, 1]. The pixels outside mask are set to a constant value such
that the average pixel value of the image is always the same. A standard augmentation pipeline
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(random rotation, zoom, shearing... ) is used to augment images used for training while ensuring
the malignant lesion remains visible in the augmented image.

3.1.2 MODEL TRAINING AND EVALUATION

Metrics As mammography data usually comes with strong class imbalance, the evaluation metrics
need to be independent of labels proportions. The Weighted Logloss per image (WLL / image), the
standard logloss with samples weights estimated on the evaluation (here validation) set, the Receiver
Operating Characteristic curve (ROC curve) and the AUC are considered. Metrics are computed
globally i.e. on the whole (validation or test) set, and also locally i.e. on the DSs taken individually.
To make sure a model exhibits a similar behavior on every DS, one also considers the Operating
Points (OPs) at threshold in {0.2, 0.4, 0.6, 0.8} on the ROC curve of this DS. The AUC of a DNN
and the difference in AUC between 2 DNNs, ∆ AUC, are evaluated measured using 2000 Efron’s
bootstraps with uniform sampling with replacement over the test set (or test data-segment). Then
95% Confidence Interval (CI), given in brackets, and P-value are provided as well for the ∆AUC,
(Altman & Bland, 2011). A negative CI upper bound of ∆AUC, with p-value < 0.05 is regarded
as a significant decrease in performance. A non negative CI lower bound of ∆AUC, with p-value
< 0.05 is regarded as a significant increase in performance.

Neural network The considered DNN processes every image independently, it makes image wise
predictions and assigns for each image a probability of malignancy. It follows a VGG-like archi-
tecture pattern (Schaffter et al., 2020) and is composed of 2 parts: a backbone and a classification
head, the backbone being first pre-trained to classify lesions annotated on a subset of images from
(S1,Ma), see Appendix for more details. The full model is fine-tuned to perform binary classifica-
tion on 2 Tesla P100, for 150000 steps with Adam optimizer (Kingma & Ba, 2014) and a learning
rate equal to 10−4. Exponential moving average with decay 0.99 of all trainable parameters are
tracked, their averaged versions are then used for inference on validation and test data. A batch
size of 24 samples is used (12 per GPU). A validation step is made every 1000 training steps. The
checkpoint achieving the best WLL / image on the validation set is kept for inference. Tensorflow
2.3 (Abadi et al., 2015) was used for the experiments.

3.1.3 BASELINES AND COMPARED METHODS

Baselines Two baselines are considered and are obtained by training the model on a single DS:
(S1,Ma) for baseline (1), (S1,Mb) for baseline (2). Training is done with standard balanced sam-
pling to cope with class imbalance. Baseline 1 (resp. 2) is used as a reference in experiments where
models are evaluated on (S3,Ma), (S4,Mc), (S4,Md), (S5,Mc) (resp. (S3,Mb)) to compute the
differences of AUC with the other methods (c.f. ∆ AUC).

Compared methods Three strategies are benchmarked. They all aim at training the considered
DNN on 2 or more DSs. The first one is called ”balance labels only” and is referred to by ”Bal.
labels”. It aims at sampling equally the labels 0, 1 independently of the DSs. This boils down to
consider that all the training samples come from a unique DS as often assumed in ML. The second
one is called ”balance every data-segments equally” and is referred to by ”Bal. segments”. It aims
at sampling equally the DSs and the labels 0, 1. In other words, it can be seen as a sampling pattern
S built as if the proportion pi of every DS DSi was given by 1/M , with M the number of DSs. This
way, negative and positive samples from DSi are sampled as often as negative and positive samples
from DSj , with i 6= j. The last one is the proposed Period Sampling, referred to by ”P. sampling”.

3.2 EXPERIMENT 1: TRAINING ON 2 DATA-SEGMENTS (2 SOURCES, 1 MANUFACTURER)

In this experiment, the training / validation set is divided into 2 DSs: (S1,Ma) and (S2,Ma): images
have been obtained with acquisition devices of the same manufacturer but come from 2 different
institutions. Performances on the test set (S3,Ma) are reported in Table 2.

The DNNs trained with ”Bal. labels” and ”Bal. segments” do not beat the baseline on DS (S3,Ma)
whereas the DNN trained with ”P. sampling” brings a small gain of performance. Such a small gain
may be due to the limited amount of malignant images of the DS (S2,Ma) compared to the large
number of malignant images in the DS (S1,Ma).

6



Under review as a conference paper at ICLR 2022

Table 2: Performances of DNNs on (S3,Ma).

AUC baseline Method AUC ∆ AUC p-value

84.05 (82.64, 85.41) Bal. labels 82.50 (81.04, 83.95) -1.55 (-2.61, -0.45) 0.0048
84.05 (82.64, 85.41) Bal. segments 82.87 (81.43, 84.27) -1.19 (-2.26, -0.06) 0.0340
84.05 (82.64, 85.41) P. sampling 84.72 (83.38, 86.04) 0.66 (-0.24, 1.57) 0.1500
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Figure 3: Validation metrics of DNNs trained on 2 DSs (S1,Ma) and (S2,Ma). First column:
global metrics. Second column: local metrics on DS (S1,Ma). Third column: local metrics on DS
(S2,Ma). First row: WLL / image. Second row: AUC per image.

The global metrics and the local metrics on (S1,Ma) and (S2,Ma) exhibit a significantly large
discrepancy for the DNN trained with ”Bal. labels”, see Figure 3 - blue curves. Indeed, this DNN
presents a very low global WLL / image and a very (suspiciously) high global AUC / image while
it also has much higher WLL / images and much lower AUCs on the DSs (S1,Ma) and (S2,Ma).
It is as if the DNN trained with ”Bal labels” learned a wrong task: classify the malignant images
from (S1,Ma) vs the benign images of (S2,Ma). Moreover, the WLL / image (resp. the AUC) on
(S2,Ma) indicates that the DNN has over-fitted very quickly this DS and does not learn from it after
5000 learning steps. Everything appears as if this second DS (S2,Ma) is never used in the end. The
DNN trained with ”Bal. segments” seems to over-fitting more slowly the DS (S2,Ma) as suggested
by the local metrics on this DS, Figure 3 - green curves. On the contrary, the DNN trained with ”P.
sampling” demonstrates much more coherent and reliable global and local metrics, Figure 3 - yellow
curves. The global metrics look like an average of local metrics both for the WLL / image and the
AUC / image. Plus, the DNN does not seem to quickly over-fit the segment (S2,Ma): it seems to
learn at the same pace on both DSs. Last but not least, as a (small) gain of AUC is observed on the
test set, this implies that, the DNN trained with ”P. sampling” is able to learn from both DSs and to
leverage the second DS (S2,Ma) to improve the test performances.

The ROC curves obtained on the validation sets of DSs (S1,Ma) and (S2,Ma) are represented for
each model as well as the OPs at thresholds 0.2, 0.4, 0.6, 0.8, see Fig 4. On the whole validation
set, the DNNs trained with ”Bal. labels” and ”Bal. segments” seem globally better than the DNN
trained with ”P. sampling”. Indeed, they reach higher global AUC, see black curves in Fig 4. Yet,
on the DSs taken individually the DNN trained with ”P. sampling” performs better than the others
and reduces the discrepancy between OPs of the ROC curves of both DSs. This likely indicates that
the DNN trained with ”P. sampling” works similarly on both DSs. On the contrary, the DNN trained
with ”Bal. labels” leads to un-synchronized OPs between the ROC curves of the 2 DSs. Plus the
OPs of (S1,Ma) look like opposite to the ones of (S2,Ma) suggesting that this DNN may actually
classify the malignant images from (S1,Ma) vs the benign images from (S2,Ma).
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Figure 4: Global and local ROC curves on the validation sets DSs (S1,Ma) and (S2,Ma) for
DNNs trained with: ”Bal. labels”, ”Bal. Segments” and ”P. sampling” (left to right). In black the
global ROC curve is presented. In blue (resp. green) the ROC curves obtained on the validation sets
of DSs (S1,Ma) (resp. (S2,Ma)). OPs at threshold 0.2, 0.4, 0.6, 0.8 are added on each ROC curve.

3.3 EXPERIMENT 2: TRAINING ON 4 DATA-SEGMENTS

In this experiment, the training / validation set is composed of 4 DSs: (S1,Ma), (S1,Mb), (S2,Ma)
and (S2,Mb). 2 baselines are considered: a DNN trained on (S1,Ma) (resp. (S1,Mb)) which is
used when evaluating / comparing the methods on (S3,Ma) (resp. (S3,Mb)). The models perfor-
mances on the test sets (S3,Ma) and (S3,Mb) are reported in Table 3.

Table 3: Performances on the data-segment (S3,Ma) and (S3,Mb).

AUC baseline Method AUC ∆ AUC p-value

(S3,Ma)

84.05 (82.64, 85.41) Bal. labels 82.88 (81.39, 84.28) -1.18 (-2.21, -0.11) 0.0280
84.05 (82.64, 85.41) Bal. segments 82.17 (80.72, 83.68) -1.89 (-3.02, -0.70) 0.0015
84.05 (82.64, 85.41) P. sampling 84.98 (83.58, 86.31) 0.92 (0.15, 1.69) 0.0190

(S3,Mb)

80.20 (79.03, 81.35) Bal. labels 88.59 (87.75, 89.40) 8.39 (7.33, 9.54) < 0.0001
80.20 (79.03, 81.35) Bal. segments 86.89 (85.99, 87.73) 6.69 (5.61, 7.75) < 0.0001
80.20 (79.03, 81.35) P. sampling 90.03 (89.28, 90.80) 9.84 (8.79, 10.88) < 0.0001

The DNNs trained with ”Bal. labels” and ”Bal. segments” do not beat the baseline on (S3,Ma) and
exhibit a negative ∆ AUC which is statistically significant. On the other hand, the DNN trained with
”P. sampling” brings a small gain of performance which is is statistically significant. On (S3,Mb),
all DNNs beat the baseline, but the one trained with ”P. sampling” gives a larger gain of AUC.
Synchronization of OPs on the ROC curves is again impacted, c.f. Figure 6 in Appendix.

Last but not least, the DNN trained with the proposed ”P. sampling” seems to better generalize on
new manufacturers than the DNNs trained with other compared approaches and seems slightly better
than the baseline trained on DS (S1,Ma) although the gain is not significant, see Table 4.

4 DISCUSSION

Periodic sampling exhibits some drawbacks that are now discussed.

The main drawback of the proposed method is related to the segmentation of the learning set into
DSs as we have little information on how building DSs. Two questions arise: (1) ”when does one
have to segment the learning set ?” and (2) ”how ?”.
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Table 4: Benchmark on 2 unknown manufacturers from the 3 DSs: (S4,Mc), (S4,Md), (S5,Mc).

AUC Baseline Method AUC ∆ AUC p-value

(S4,Mc)

85.20 (75.16, 92.90) Bal. labels 83.02 (73.13, 91.38) -2.18 (-9.37, 6.24) 0.6000
85.20 (75.16, 92.90) Bal. segments 83.76 (74.19, 92.30) -1.44 (-10.58, 7.37) 0.7700
85.20 (75.16, 92.90) P. sampling 88.26 (78.80, 95.25) 3.06 (-3.14, 10.94) 0.4000

(S4,Md)

89.01 (85.24, 92.29) Bal. labels 87.67 (83.74, 91.31) -1.34 (-4.99, 2.40) 0.4900
89.01 (85.24, 92.29) Bal. segments 85.46 (81.39, 89.26) -3.55 (-6.79, -0.46) 0.0280
89.01 (85.24, 92.29) P. sampling 88.57 (84.79, 91.88) -0.45 (-2.19, 1.64) 0.6600

(S5,Mc)

85.97 (82.14, 89.43) Bal. labels 82.70 (77.94, 87.20) -3.27 (-7.43, 0.62) 0.1100
85.97 (82.14, 89.43) Bal. segments 85.94 (82.16, 89.42) -0.03 (-4.05, 3.80) 0.9900
85.97 (82.14, 89.43) P. sampling 87.93 (84.02, 91.66) 1.96 (-1.20, 5.11) 0.2300

By experimenting, we came up with 3 empirical ways to know whether a set of data should be
divided into DSs. First, a poor generalization performance on a left out source of data is likely to
indicate that the learning set should be split into DSs as in experiments 1 and 2. Second, a very
surprisingly nice validation metrics is also a good indicator that the learning set should be divided
into DSs, see Figure 3. Finally, good knowledge of the learning set and a careful look at positive
and negative samples numbers in natural subsets of data may indicate a required division of the
learning set into DSs, see Table 1. An unbalance between negative samples from a subset and
positive samples from another one is likely to indicate a needed segmentation.

Through an iterative process, one can define the DSs relevant to the the learning set and the task
to perform: (a) consider N = 1 DS (b) train a model (c) evaluate the models on the potential test
DSs of interest, (d) consider partitioning the learning set into N > 1 DSs according to some known
characteristics (e.g. source, manufacturer, acquisition device version, population characteristics).
Only accumulated knowledge of the data led us to consider the sources and the manufacturers as
a segmentation levels to split the learning set into DSs. A potential segmentation of the learning
set according to the ethnicity (which may be already covered by the segmentation by source), the
age, the biological sex of patients stand as different levels which may be worth investing to improve
fairness. Still, addressing such segmentation levels implies dealing with sensible information raising
concerns about data privacy and data security. The proposed approach still works when there are
more than 2 segmentation levels (not shown) but the segmentation into DSs needs to be defined
on some categorical criteria. Binning a continuous variable could allow one to tackle a continuous
source of bias (e.g. age). Further investigation are needed to cover this aspect.

This work builds upon the assumption that 2 DSs DSi and DSj do not have some shared information
and are independent. Yet, this may be wrong at some point. Indeed, some patients may have data in
different DSs when for instance a hospital has used different acquisition devices over time or when
a patient goes to another hospital. Adapting the sampling proportions used to generate the sampling
pattern could help to cope with this issue. Future work should investigate this subject.

The proposed approach relies on a fixed sampling pattern that cannot change with the dynamics of
the training process (Hu et al., 2019; Ren et al., 2018). A dynamic and learnable sampling could
be an advantage and cope with issues when 2 DSs are not independent. Alternatively, the problem
addressed in this work could be tackled with sample weighting (Shimodaira, 2000) and may lead
to similar performances provided that one samples all labels and DSs in equal proportions to avoid
having batches containing samples of a single label or a single DS.

This paper focuses on binary classification through the application of breast cancer prediction, a
concrete but also restricted scenario. Yet, the formalism is general enough to be tried with other
modalities of data and / or other learning tasks. This shall be covered in follow up studies
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A APPENDIX

A.1 ADDITIONAL INFORMATION ABOUT DATA

This section contains additional information about the training and testing data. Table 5 provides
information about the countries of origin of the sources and the number of images per status and
type of view. Table 6 provides information about the types of the malignant lesions in each DS.
Table 7 provides information about the age of patients in the different DSs.

A.2 MODEL ARCHITECTURE

A.2.1 GENERAL ARCHITECTURE

The considered DNN is a fully convolutional neural network predicting image wise probability
of malignancy on FFDM images. The DNN is thus trained on whole FFDM images of shape
(1152, 832) with image-wise labels as explained in the main body of the paper.

The DNN exhibits a VGG-like architecture (Simonyan & Zisserman, 2015) and adopts a 2-level
architecture as depicted in Figure 5. The first part of the DNN is referred to as the Backbone.
The Backbone aims at creating an intermediate representation of the full image which facilitates
prediction of the final image-wise probability of malignancy. The second part of the model is the
classifier and it is in charge of predicting the final image wise probability of malignancy. The
Backbone and the classifier are detailed below.

A.2.2 BACKBONE

The Backbone is built to take as input a patch of size (224, 224) and to predict its associated label. As
5 labels are possible, the Backbone outputs a vector of size 5. It is designed in a fully convolutionnal
way and thus can take as input, images of arbitrary size to form an output feature map. In the case
of images at resolution (1152, 832), the Backbone outputs a feature map of size (16, 11, 5). This
returned feature map plays the role of the intermediate representation mentioned above. This can be
seen as a score vector of size 5 for each spatial position in the grid (16, 11).

The backbone architecture is given in Figure 5. It builds upon a succession of convolution blocks
of the form: (a) batch normalization Ioffe & Szegedy (2015), (b) 2D convolution with (3, 3) kernels
and ReLU activation Nair & Hinton (2010), (c) 2D max pooling with (2, 2) pool size and stride
of (2, 2). The numbers of kernels in each convolution block are given in Figure 5. Finally, 3 2D
convolution layers with resp. 1024, 512 and 5 kernels of shapes resp. (2, 2), (1, 1) and (1, 1) and
ReLU activations play the role of the patch classifier to output a vector of size 5.

A.2.3 IMAGE CLASSIFIER

To predict the final image-wise probability of malignancy, the intermediate representation built by
the Backbone is fed into the classifier that processes it with convolutional blocks to obtain the final
image wise prediction.
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Table 5: Additional statistics about DSs countries and number of images for each type of view. CC
stands for Cranio-Caudal, MLO for Medio-Lateral Oblique, other for any other views.

Segment Source Manufacturer Organization Status view # images

(S1, Ma) S1 Ma U.K. benign CC 6626
(S1, Ma) S1 Ma U.K. malignant CC 3536
(S1, Ma) S1 Ma U.K. benign MLO 6705
(S1, Ma) S1 Ma U.K. malignant MLO 3713
(S1, Ma) S1 Ma U.K. benign other 10
(S1, Ma) S1 Ma U.K. malignant other 9
(S1, Mb) S1 Mb U.K. benign CC 262
(S1, Mb) S1 Mb U.K. malignant CC 195
(S1, Mb) S1 Mb U.K. benign MLO 264
(S1, Mb) S1 Mb U.K. malignant MLO 204
(S1, Mb) S1 Mb U.K. benign other 1
(S1, Mb) S1 Mb U.K. malignant other 9

(S2, Ma) S2 Ma France benign CC 10868
(S2, Ma) S2 Ma France malignant CC 66
(S2, Ma) S2 Ma France benign MLO 10692
(S2, Ma) S2 Ma France malignant MLO 70
(S2, Ma) S2 Ma France benign other 311
(S2, Ma) S2 Ma France malignant other 24
(S2, Mb) S2 Mb France benign CC 9121
(S2, Mb) S2 Mb France malignant CC 66
(S2, Mb) S2 Mb France benign MLO 9144
(S2, Mb) S2 Mb France malignant MLO 70
(S2, Mb) S2 Mb France benign other 775
(S2, Mb) S2 Mb France malignant other 10

(S3, Ma) S3 Ma U.S.A. benign CC 7046
(S3, Ma) S3 Ma U.S.A. malignant CC 547
(S3, Ma) S3 Ma U.S.A. benign MLO 7144
(S3, Ma) S3 Ma U.S.A. malignant MLO 558
(S3, Ma) S3 Ma U.S.A. benign other 2
(S3, Ma) S3 Ma U.S.A. malignant other 1
(S3, Mb) S3 Mb U.S.A. benign CC 22982
(S3, Mb) S3 Mb U.S.A. malignant CC 1011
(S3, Mb) S3 Mb U.S.A. benign MLO 22994
(S3, Mb) S3 Mb U.S.A. malignant MLO 1045
(S3, Mb) S3 Mb U.S.A. benign other 30
(S3, Mb) S3 Mb U.S.A. malignant other 3

(S4, Mc) S4 Mc France benign CC 1984
(S4, Mc) S4 Mc France malignant CC 11
(S4, Mc) S4 Mc France benign MLO 2347
(S4, Mc) S4 Mc France malignant MLO 12
(S4, Mc) S4 Mc France benign other 56
(S4, Mc) S4 Mc France malignant other 5
(S4, Md) S4 Md France benign CC 9938
(S4, Md) S4 Md France malignant CC 61
(S4, Md) S4 Md France benign MLO 9777
(S4, Md) S4 Md France malignant MLO 59
(S4, Md) S4 Md France benign other 25
(S4, Md) S4 Md France malignant other 13

(S5, Mc) S5 Mc France benign CC 20802
(S5, Mc) S5 Mc France malignant CC 64
(S5, Mc) S5 Mc France benign MLO 16955
(S5, Mc) S5 Mc France malignant MLO 57
(S5, Mc) S5 Mc France benign other 1194
(S5, Mc) S5 Mc France malignant other 10
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Table 6: Malignant lesions types over the different DSs

Segment Source Manufacturer Status Lesion type # images

(S1, Ma) S1 Ma malignant calcification 2069
(S1, Ma) S1 Ma malignant calcification & soft tissue lesion 185
(S1, Ma) S1 Ma malignant soft tissue lesion 5004
(S1, Mb) S1 Mb malignant calcification 117
(S1, Mb) S1 Mb malignant calcification & soft tissue lesion 14
(S1, Mb) S1 Mb malignant soft tissue lesion 277

(S2, Ma) S2 Ma malignant calcification 44
(S2, Ma) S2 Ma malignant calcification & soft tissue lesion 5
(S2, Ma) S2 Ma malignant soft tissue lesion 111
(S2, Mb) S2 Mb malignant calcification 41
(S2, Mb) S2 Mb malignant calcification & soft tissue lesion 2
(S2, Mb) S2 Mb malignant soft tissue lesion 103

(S3, Ma) S3 Ma malignant calcification 289
(S3, Ma) S3 Ma malignant calcification & soft tissue lesion 44
(S3, Ma) S3 Ma malignant soft tissue lesion 773
(S3, Mb) S3 Mb malignant calcification 670
(S3, Mb) S3 Mb malignant calcification & soft tissue lesion 89
(S3, Mb) S3 Mb malignant soft tissue lesion 1300

(S4, Mc) S4 Mc malignant calcification 7
(S4, Mc) S4 Mc malignant calcification & soft tissue lesion 2
(S4, Mc) S4 Mc malignant soft tissue lesion 19
(S4, Md) S4 Md malignant calcification 37
(S4, Md) S4 Md malignant calcification & soft tissue lesion 5
(S4, Md) S4 Md malignant soft tissue lesion 91

(S5, Mc) S5 Mc malignant calcification 10
(S5, Mc) S5 Mc malignant calcification & soft tissue lesion 13
(S5, Mc) S5 Mc malignant soft tissue lesion 108

Table 7: Average age (mean ± std) for patients in the different training and testing DSs

Segment Source Manufacturer Status Age in years

(S1, Ma) S1 Ma benign 59 ± 7
(S1, Ma) S1 Ma malignant 60 ± 8
(S1, Mb) S1 Mb benign 59 ± 8
(S1, Mb) S1 Mb malignant 60 ± 11

(S2, Ma) S2 Ma benign 54 ± 10
(S2, Ma) S2 Ma malignant 57 ± 14
(S2, Mb) S2 Mb benign 54 ± 11
(S2, Mb) S2 Mb malignant 61 ± 16

(S3, Ma) S3 Ma benign 57 ± 10
(S3, Ma) S3 Ma malignant 61 ± 10
(S3, Mb) S3 Mb benign 54 ± 10
(S3, Mb) S3 Mb malignant 60 ± 10

(S4, Mc) S4 Mc benign 53 ± 11
(S4, Mc) S4 Mc malignant 57 ± 14
(S4, Md) S4 Md benign 55 ± 11
(S4, Md) S4 Md malignant 59 ± 14

(S5, Mc) S5 Mc benign 54 ± 11
(S5, Mc) S5 Mc malignant 61 ± 13
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Figure 5: Full model architecture composed of a Backbone and a classifier. The Backbone is in
charge of building a meaning full feature representation. The classifier is in charge of predicting
image wise probability of malignancy. The Backbone is first pre-trained to classify (224, 224)
patches into 5 classes: healthy tissue, benign / malignant soft tissue lesion, benign / malignant
calcification. The whole model is then fine-tuned to classify (1152, 832) mammography images into
2 classes: benign and malignant. The number of convolution kernels of each convolution block are
given as well as the shapes of the intermediate feature maps.

The classifier builds upon a MaxPooling layer with poolsize of (5, 5) and stride of (5, 5). Then, it is
composed of 2 sub-parts which process the max-pooled feature maps. The first sub-part builds on 3
successive blocks of convolution of the form: (a) batch normalization layer, (b) ReLU activation (c)
2D convolution with resp. 16, 8 and 2 kernels of size resp. (3, 2), (1, 1) and (1, 1). This sub-part
returns a vector of size 2. The second sub-part is composed of a batch normalization layer and a
convolution layer with 2 kernels of size (3, 2). This sub-part returns a vector of size 2 as well. The
outputs of the sub-parts are finally summed up to form the final image wise prediction.

A.2.4 REMARK ON TRAINING

The 2-level architecture is also reflected in the training procedure which is a two-step process. First,
the Backbone is pre-trained on patches to predict their labels. Then, the Backbone weights are used
to initialized the full DNN weights and the DNN is then fine-tuned on whole FFDM images to make
image wise predictions of malignancy.

A.3 BACKBONE TRAINING

The training process of the Backbone is detailed below, the training / fine-tuning process of the
DNN being described in the main body of the paper. Practically, the Backbone is fed with patches
centered on annotated lesions and is trained to predict which label among 5 possible labels should
be assigned to the patch.

A.3.1 DATA

Lesions have been annotated on some images from the DS (S1,Ma) by trained radiologists. Le-
sions positions and lesions labels have been assigned. Lesions have been categorized into 5 classes:
healthy tissue, benign soft tissue, benign calcification, malignant soft tissue, malignant calcification.
The numbers of annotated lesions and images are provided in Table 8.

Cross-validation scheme Similarly as described in the main paper, the learning set is divided into
training and validation data using a source-wise and patient-wise split: 80% (resp. 20%) of the
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Table 8: Numbers of annotated lesions of each label. The corresponding numbers of annotated
images are provided as well.

Segment Label # patches # images

(S1, Ma) benign calcification 1611 1162
(S1, Ma) benign soft tissue lesion 4287 2252
(S1, Ma) healthy tissue 2597 1773
(S1, Ma) malignant calcification 2629 2254
(S1, Ma) malignant soft tissue lesion 5747 5187

patients of each source are used for training (resp. validation). Furthermore, the split is made such
that the ratio of malignant / benign patients is similar for the validation and the training sets.

The same train-validation split as described in the paper is used to train the Backbone. This means
that the learning samples of a patient used for training (resp. validation of) the BackBone, are also
used for training (resp. validation of) the DNN.

Image pre-processing and data augmentation Similarly as in the paper, normalization and pre-
processing techniques are used to standardize the FFDM images. A patch of size nearly equal to
(224, 224) (see below why) is first cropped from a FFDM image. The pixels inside the breast mask
are re-normalized to have values in [0, 1]. The pixels outside mask are set to a constant value such
that the average pixel value of the image is always the same. A standard augmentation pipeline
(random rotation, zoom, shearing... ) is used to augment images used for training and to return an
augmented patch of size (224, 224). No augmentation technique is used for validation patches.

The augmentation transform is always pre-computed, to know exactly the dimension of the patch
to crop. This way, every pixel in the augmented patch is an output, through the augmentation
transform, of a pixel from the original patch: the transform is surjective. This is why the cropping
step, for training patches, does not return patches with an exact shape of (224, 224) but with a shape
of nearly (224, 224).

A.3.2 TRAINING SETUP

The Backbone is trained to minimize the categorical cross-entropy defined for 5 classes. The train-
ing process is done on 20000 learning steps, a sufficiently large number of steps to see convergence.
Samples labels are balanced within a batch to fight potential issues related to class imbalance. The
training relies on Adam optimizer (Kingma & Ba, 2014) and a learning rate equal to 10−3. Ex-
ponential moving average with decay 0.99 of all trainable parameters are tracked, their averaged
versions are then used for inference on validation data. The training is done on 2 Tesla P100 and a
batch size of 64 samples is used (32 per GPU).

A validation step is made every 500 training steps. The Weighted Logloss per lesion (WLL / lesion),
the standard logloss with samples weights estimated on the validation set was used to monitor the
training progress. The checkpoint achieving the best Weighted Logloss per lesion (WLL / lesion) on
the validation set is kept to initialize the DNN weights.

The models and the experiments were carried out with Tensorflow 2.3 (Abadi et al., 2015).

A.4 ADDITIONAL FIGURE FOR EXPERIMENT 2

On top of AUC gain - loss training a DNN with ”Bal. labels” leads to a poor synchronization of
OPs on the ROC curves obtained on (S3,Ma) and (S3,Mb), see Figure 6 - left. This suggests that
the DNN works in 2 different regimes on the 2 test DSs: a non desired property which stresses the
manufacturer bias the DNN has integrated. On the other hand, the DNN trained with ”P. sampling”
gives visually better synchronized OPs on the ROC curves of test DSs. This suggests that this DNN
behaves quite similarly on them and that it is not influenced by the manufacturer to take its decisions.
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Figure 6: Global and local ROC curves on: (S3,Ma) and (S3,Mb). Black: global ROC curve on
(S3,Ma) ∪ (S3,Mb). Blue (resp green): ROC curve on (S3,Ma) (resp. (S3,Mb)).
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