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Abstract

Multi-source domain adaptation (MSDA) addresses the challenge of learning a label pre-
diction function for an unlabeled target domain by leveraging both the labeled data from
multiple source domains and the unlabeled data from the target domain. Conventional
MSDA approaches often rely on covariate shift or conditional shift paradigms, which assume
a consistent label distribution across domains. However, this assumption proves limiting in
practical scenarios where label distributions do vary across domains, diminishing its appli-
cability in real-world settings. For example, animals from different regions exhibit diverse
characteristics due to varying diets and genetics.
Motivated by this, we propose a novel paradigm called latent covariate shift (LCS), which
introduces significantly greater variability and adaptability across domains. Notably, it pro-
vides a theoretical assurance for recovering the latent cause of the label variable, which we
refer to as the latent content variable. Within this new paradigm, we present an intricate
causal generative model by introducing latent noises across domains, along with a latent
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content variable and a latent style variable to achieve more nuanced rendering of observa-
tional data. We demonstrate that the latent content variable can be identified up to block
identifiability due to its versatile yet distinct causal structure. We anchor our theoretical
insights into a novel MSDA method, which learns the label distribution conditioned on the
identifiable latent content variable, thereby accommodating more substantial distribution
shifts. The proposed approach showcases exceptional performance and efficacy on both
simulated and real-world datasets.
The code is available at: https://sites.google.com/view/yuhangliu/projects

1 Introduction

Multi-source domain adaptation (MSDA) aims to utilize labeled data from multiple source domains and
unlabeled data from the target domain, to learn a model to predict well in the target domain. Formally,
denoting the input as x (e.g., an image), y as labels in both source and target domains, and u as the domain
index, during MSDA training, we have labeled source domain input-output pairs, (xS , yS), drawn from
source domain distributions pu=u1(x, y), ..., pu=um(x, y), ...1 Note that the distribution pu(x, y) may vary
across domains. Additionally, we observe some unlabeled target domain input data, xT , sampled from the
target domain distribution puT (x, y).

The success of MSDA hinges on two crucial elements: variability in the distribution pu(x, y), determining
the extent to which it may differ across domains, and the imperative of invariability in a certain portion of
the same distribution to ensure effective adaptation to the target domain. Neglecting to robustly capture
this invariability, often necessitating a theoretical guarantee, hampers adaptability and performance in the
target domain. Our approach comprehensively addresses both these elements, which will be elaborated upon
in subsequent sections.

(a) Covariate Shift (b) Conditional Shift (c) Latent Covariate Shift

Figure 1: The illustration of three different paradigms for MSDA. Covariate Shift: pu(x) changes across domains,
while pu(y|x) is invariant across domains. Conditional Shift: pu(y) is invariant, while pu(x|y) changes across domains.
Latent Covariate Shift: pu(zc) changes across domains while pu(y|zc) is invariant.

MSDA can be broadly classified into two primary strands: Covariate Shift (Huang et al., 2006; Bickel et al.,
2007; Sugiyama et al., 2007; Wen et al., 2014) and Conditional Shift (Zhang et al., 2013; 2015; Schölkopf
et al., 2012; Stojanov et al., 2021; Peng et al., 2019). In the early stages of MSDA research, MSDA methods
focus on the first research strand Covariate Shift as depicted by Figure 1(a). It assumes that pu(x) changes
across domains, while the conditional distribution pu(y|x) remains invariant across domains. However,
this assumption does not always hold in practical applications, such as image classification. For example,
the assumption of invariant pu(y|x) implies that pu(y) should change as pu(x) changes. Yet, we can easily
manipulate style information (e.g., hue, view) in images to alter pu(x) while keeping pu(y) unchanged, which
clearly contradicts the assumption. In contrast, most recent works delve into the Conditional Shift as depicted
by Figure 1(b). It assumes that the conditional pu(x|y) changes while pu(y) remains invariant across domains
(Zhang et al., 2013; 2015; Schölkopf et al., 2012; Stojanov et al., 2021; Peng et al., 2019). Consequently,
it has spurred a popular class of methods focused on learning invariant representations across domains to
target the latent content variable zc in Figure 1(b) (Ganin et al., 2016; Zhao et al., 2018; Saito et al., 2018;
Mancini et al., 2018; Yang et al., 2020; Wang et al., 2020; Li et al., 2021; Kong et al., 2022). However,
the label distribution pu(y) can undergo changes across domains in many real-world scenarios (Tachet des

1To simplify our notation without introducing unnecessary complexity, we employ the notation pu=um (x, y) to denote
p(x, y|u = um), and express u = um as U = um with the aim of clarity.
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Combes et al., 2020; Lipton et al., 2018; Zhang et al., 2013), and enforcing invariant representations can
degenerate the performance (Zhao et al., 2019).

In many real-world applications, the label distribution pu(y) exhibits variation across different domains. For
instance, diverse geographical locations entail distinct species sets and/or distributions. This characteristic is
well-illustrated by a recent, meticulously annotated dataset focused on studying visual generalization across
various locations (Beery et al., 2018). Their findings illuminate that the species distribution presents a
long-tailed pattern at each location, with each locale featuring a distinct and unique distribution 2. Label
distribution shifts can also be corroborated through analysis on the WILDS benchmark dataset, which
investigates shifts in distributions within untamed and unregulated environments (Koh et al., 2021). This
study uncovers pronounced disparities in label distributions between Africa and other regions 3. These
distinctions encompass a notable decrease in recreational facilities and a marked rise in single-unit residential
properties.

To enhance both critical elements of MSDA, namely variability and invariability, we introduce a novel
paradigm termed Latent Covariate Shift (LCS), as depicted in Figure 1(c). Unlike previous paradigms, LCS
introduces a latent content variable zc as the common cause of x and y. The distinction between LCS
and previous paradigms is detailed in Section 2. In essence, LCS allows for the flexibility for pu(zc), pu(x),
pu(y) and pu(x|zc) to vary across domains (greater variability). Simultaneously, its inherent causal structure
guarantees that pu(y|zc) remains invariant irrespective of the domain (invariability with assurance). This
allowance for distributional shifts imparts versatility and applicability to a wide array of real-world problems,
while the stability of pu(y|zc) stands as the pivotal factor contributing to exceptional performance across
domains.

Within this new paradigm, we present an intricate latent causal generative model, by introducing the latent
style variable zs in conjunction with zc, as illustrated in Figure 2(a). We delve into an extensive analysis
of the identifiability within our proposed causal model, affirming that the latent content variable zc can
be established up to block identifiability4 through rigorous theoretical examination. Since zs and the label
become independent given zc, it is no need to recover zc. The identifiability on zc provides a solid foundation
for algorithmic designs with robust theoretical assurances. Subsequently, we translate these findings into a
novel method that learns an invariant conditional distribution pu(y|zc), known as independent causal mech-
anism, for MSDA. Leveraging the guaranteed identifiability of zc, our proposed method ensures principled
generalization to the target domain. Empirical evaluation on both synthetic and real-world data showcases
the effectiveness of our approach, outperforming state-of-the-art methods.

2 Related Work

Learning invariant representations. Due to the limitations of covariate shift, particularly in the context
of image data, most current research on domain adaptation primarily revolves around addressing conditional
shift. This approach focuses on learning invariant representations across domains, a concept explored in
works such as Ganin et al. (2016); Zhao et al. (2018); Saito et al. (2018); Mancini et al. (2018); Yang et al.
(2020); Wang et al. (2020); Li et al. (2021); Wang et al. (2022b); Zhao et al. (2021); Kong et al. (2022);
Wen et al. (2024). These invariant representations are typically obtained by applying appropriate linear or
nonlinear transformations to the input data. The central challenge in these methods lies in enforcing the
invariance of the learned representations. Various techniques are employed to achieve this, such as maximum
classifier discrepancy (Saito et al., 2018), domain discriminator for adversarial training (Ganin et al., 2016;
Zhao et al., 2018; 2021), moment matching (Peng et al., 2019), and relation alignment loss (Wang et al.,
2020). However, all these methods assume label distribution invariance across domains. Consequently, when
label distributions vary across domains, these methods may perform well only in the overlapping regions
of label distributions across different domains, encountering challenges in areas where distributions do not
overlap. To overcome this, recent progress focuses on learning invariant representations conditional on the

2For a comprehensive depiction of these distributions, please refer to Figure 4 in Beery et al. (2018). Additionally, the
APPENDIX offers an analogous representation, as shown in Figure 7 for completeness.

3For a thorough comparison of distributions, refer to Figures 24 and 27 in Koh et al. (2021).
4There exists an invertible function between the recovered zc and the true one (Von Kügelgen et al., 2021).
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label across domains (Gong et al., 2016; Ghifary et al., 2016; Tachet des Combes et al., 2020). One of the
challenges in these methods is that the labels in the target domain are unavailable. Moreover, these methods
do not guarantee that the learned representations align consistently with the true relevant information. A
recent work Kong et al. (2022) introduces high-level invariant variables, which differ from traditional invariant
variables by identifying them through the transfer of domain index-based variant variables to invariant ones.
However, this approach remains limited to the context of invariant label distributions across domains.

Learning invariant conditional distribution pu(y|zc). The investigation of learning invariant condi-
tional distributions, specifically pu(y|zc), for domain adaptation has seen limited attention compared to the
extensive emphasis on learning invariant representations (Kull and Flach, 2014; Bouvier et al., 2019). What
sets our proposed method apart from these two works is its causal approach, providing identifiability for the
true latent content zc, a significant challenge in latent causal models (Liu et al., 2022; 2024c). This serves
as a theoretical guarantee for capturing invariability, addressing the second key element of MSDA. In other
words, it ensures that the learned pu(y|zc) in our work can generalize to the target domain in a principled
manner. In addition, certain studies explore the identification of pu(y|zc) by employing a proxy variable,
as demonstrated by (Alabdulmohsin et al., 2023). The challenge of these studies lies in devising an efficient
proxy variable. In contrast, although the work do not need such proxy variable, it is worth noting that our
work may necessitate stronger assumptions for identifying latent zc, compared with proxy based methods.
Additionally, our Latent Causal Structure (LCS) allows for more flexibility in accommodating variability,
addressing the first key element of MSDA. Besides, in the context of out-of-distribution generalization, some
recent works have explored the learning of invariant conditional distributions pu(y|zc) (Arjovsky et al., 2019;
Sun et al., 2021; Liu et al., 2021; Lu et al., 2021). For example, Arjovsky et al. (2019) impose learning the op-
timal invariant predictor across domains, while the proposed method directly explores conditional invariance
by the proposed latent causal model. Moreover, some recent works design specific causal models tailored to
different application scenarios from a causal perspective. For example, Liu et al. (2021) mainly focus on a
single source domain, while the proposed method considers multiple source domains. The work by Sun et al.
(2021) explores the scenarios where a confounder to model the causal relationship between latent content
variables and style variables, while the proposed method considers the scenarios in which latent style variable
is caused by content variable. The work in (Lu et al., 2021) focuses on the setting where label variable is
treated as a variable causing the other latent variables, while in our scenarios label variable has no child
nodes. A very recent work by (Li et al., 2023) also aims to learn such an invariant conditional distribution.
However, unlike ours, their approach assumes that the latent space can be split into four distinct subspaces.
This specific and detailed partitioning introduces additional assumptions, which may impose unnecessary
constraints and limit applicability in real-world scenarios, potentially leading to suboptimal results. We
provide experimental comparisons on real datasets to substantiate this claim.

Causality for Domain Generalization A strong connection between causality and generalization has been
established in the literature (Peters et al., 2016), primarily focusing on leveraging invariant mechanisms for
generalization, often through causal discovery (Zhang et al., 2022; 2025). Building upon this insight, current
research has leveraged causality to introduce novel methods across various applications, including domain
generalization (Mahajan et al., 2021; Christiansen et al., 2021; Wang et al., 2022a), text classification (Veitch
et al., 2021), and Out-of-Distribution Generalization (Ahuja et al., 2021). Among these applications, domain
generalization is closely related to our problem setting. However, it involves scenarios where the input data
in the target domain cannot be directly observed. The lack of access to the input data makes obtaining
identifiability results challenging, and is left for future work.

3 The Proposed Latent Causal Model for LCS

LCS is a new paradigm in MSDA, enriching the field with elevated variability and versatility. Within this
innovative framework, we’re presented with an opportunity to delve into more intricate models. This section
is dedicated to presenting a refined causal model, tailored to this paradigm.

LCS introduces a novel framework to MSDA, providing a flexible framework that incorporates a wide range
of latent causal generative models. These models can be customized for different application scenarios,
allowing the integration of various causal structures and latent variables according to the specific challenges
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(a) The proposed causal model (b) An equivalent graph structure

Figure 2: (a) The proposed latent causal model, which splits latent noise variables n into two disjoint parts,
nc and ns. (b) An equivalent graph structure, which can generate the same observed data x as obtained by
(a), resulting in a non-identifiability result.

and characteristics of each domain. This adaptability enables LCS to effectively capture underlying causal
relationships and manage complex distribution shifts across multiple sources. For instance, in a specific
application scenario, we incorporate a latent style variable that works alongside the latent content variable.
This enables more nuanced modeling of domain-specific factors, such as style variations in image data,
while preserving core content information across domains. By jointly modeling both content and style, the
framework is better equipped to capture complex relationships between sources and enhance generalization
performance in domain adaptation tasks.

Fundamentally, the latent content exerts direct influence over the available styles. To account for this, we
introduce a latent style variable, seamlessly integrated as a direct descendant of the latent content variable,
as depicted in Figure 2(a). Concurrently, the observed domain variable u serves as an indicator of the specific
domain from which the data is sourced. This domain variable gives rise to two distinct groups of latent noise
variables: latent content noise, denoted as nc, and latent style noise, denoted as ns. Analogous to exogenous
variables in causal systems, these elements play pivotal roles in shaping both the latent content variable zc

and the latent style variable zs.

This model stands out in terms of versatility and applicability across a wide range of real-world scenarios,
surpassing the capabilities of models in previous paradigms including covariate shift and conditional shift.
This is because it accommodates variations in pu(zc), pu(x) and pu(x|zc) across domains. Moreover, it
provides a theoretically established guarantee of invariability for pu(y|zc) independent of the domain (see
Sections 4 and 5). This pivotal property facilitates the model’s ability to generalize predictions across a
diverse array of domains. To parameterize it, we make the assumption that n follows an exponential family
distribution given u, and we describe the generation of z and x as follows:

p(T,η)(n|u) =
ℓ∏

i=1

1
Zi(u) exp[

2∑
j=1

(Ti,j(ni)ηi,j(u))], (1)

zc = gc(nc), zs = gs2(gs1(zc) + ns), (2)
x = f(zc, zs) + ε. (3)

In Eq. 1, Zi(u) represents the normalizing constant, Ti,j(ni) stands as the sufficient statistic for ni, and ℓ
denotes the number of latent noises. The natural parameter ηi,j(u) is dependent on the domain variable
u. To establish a coherent connection between these latent noise variables n and the latent variables z, we
employ post-nonlinear models, as defined in Eq. 2, where gc and gs2 are invertible functions. This concept
of post-nonlinear models (Zhang and Hyvarinen, 2012) represents a generalized form of additive noise models
(Hoyer et al., 2008), which find widespread use across various domains. Furthermore, our proposed model
incorporates two fundamental causal assumptions that serve to underscore its novelty and distinctiveness
within the field of latent causal modeling.

zc causes y: Prior research has often considered the causal relationship between x and y as y → x (Gong
et al., 2016; Stojanov et al., 2019; Li et al., 2018). In contrast, our approach employs zc → y. Note that
these two cases are not contradictory, as they pertain to different interpretations of the labels y representing
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distinct physical meanings. To clarify this distinction, let us denote the label in the first case as ŷ (i.e.,
ŷ → x) to distinguish it from y in the second case (i.e., zc → y). In the first case, consider the generative
process for images: a label, ŷ, is initially sampled, followed by the determination of content information based
on this label, and finally, the generation of an image. This sequence aligns with reasonable assumptions in
real-world applications. In our proposed latent causal model, we introduce nc to play a role similar to ŷ and
establish a causal connection with the content variable zc. In the second case, zc → y represents the process
where experts extract content information from provided images and subsequently assign appropriate labels
based on their domain knowledge. This assumption has been adopted by recent works (Mahajan et al., 2021;
Liu et al., 2021; Sun et al., 2021). Notably, both of these distinct labels, ŷ and y, have been concurrently
considered in Mahajan et al. (2021). In summary, these two causal models, ŷ → x and zc → y, capture
different aspects of the generative process and are not inherently contradictory, reflecting varying perspectives
on the relationship between labels and data generation.

zc causes zs: As discussed earlier, the underlying content directly molds the styles. Therefore, we adopt the
causal relationship where zc serves as the cause of zs. In real applications, for example, different animals (e.g.,
zc) often choose different environments (e.g., zs) where the basic needs of the animals to survive are met.
This can be interpreted as the essence of the object, zc, being the primary factor from which a latent style
variable, zs, emerges to ultimately render the observation x. This is aligned with previous works in domain
adaptation field (Gong et al., 2016; Stojanov et al., 2019; Mahajan et al., 2021), and with advancements in
self-supervised learning (Von Kügelgen et al., 2021; Daunhawer et al., 2023; Cai et al., 2024).

Comparison with Previous Works The proposed model introduces an intermediate latent variable zc,
which enhances interpretability and disentanglement in latent space compared to the previous model Zhang
et al. (2013) that employs u → y → x, neglecting such high-level latent variables. By structuring the
causal pathways as u → zc → y and (u, zc) → x, our approach better captures indirect effects compared
to u → y → x, handles distribution shifts more robustly, and supports clearer intervention modeling. For
example, for the latter model, once we determine y, then x is also determined. However, consider an
animal dataset: even if we fix the animal label y, the observed features x may still change due to variations
in background caused by environmental shifts. This highlights a limitation of the direct causal structure
u → y → x, as it fails to account for latent factors such as habitat conditions, lighting, or seasonal effects
that influence x. Our model, by introducing zs in Figure 2, a specific case of the proposed model, allow for
all these variations, leading to better robustness under distribution shifts. In addition, compared to previous
work Tachet des Combes et al. (2020), which also considers label distribution shift, we formulate the problem
from the perspective of a latent causal generative model and provide a theoretical guarantee for recovering
the latent variables zc. In contrast, the previous work assumes the existence of invariant representations
given y, which is challenging to learn due to the unknown nature of y in the target domain.

4 Identifiability Analysis

In this section, we provide an identifiability analysis for the proposed latent causal model in section 3.
We commence by illustrating that attaining complete identifiability for the proposed causal model proves
unattainable without the imposition of stronger assumptions. This assertion is substantiated by the con-
struction of an alternative solution that deviates from the true latent causal variables, yet yields the same
observational data. Following this, we move forward to affirm that achieving partial identifiability of the
latent content variables, denoted as zc, up to block identifiability is within reach. This level of identifiability
already provides a solid foundation for guiding algorithm designs with robust theoretical guarantees, while
maintaining the necessary flexibility for adaptation. Indeed, we can see that zc serves as a common cause for
both y and zs, illustrating a typical scenario of spurious correlation between y and zs. Once zc is successfully
recovered, it alone contains ample information to make accurate predictions about the label. Given zc, the
label and the latent style become independent. Thus, it is unnecessary and potentially counterproductive to
recover the latent style variable for label prediction, when the latent content has already been retrieved.
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4.1 Complete Identifiability: The Non-identifiability Result

Given the proposed causal model, one of the fundamental problems is whether we can uniquely recover the
latent variables, i.e., identifiability. We show that achieving complete identifiability of the proposed latent
causal model remains a challenging endeavor, as follows:

Proposition 4.1 Suppose that the latent causal variables z and the observed variable x follow the latent
causal models defined in Eq. 1-3, given observational data distribution p(y, x|u), there exists an alternative
solution, which can yield exactly the same observational distribution, resulting in non-identifiablity, without
further assumptions.

Proof sketch The proof of proposition 4.1 can be done by proving that we can always construct another
alternative solution to generate the same observation, leading to the non-identifiability result. The alternative
solution can be constructed by removing the edge from zc to zs as depicted by Figure 2(b), i.e., z′

c =
zc = gc(nc), z′

s = ns, and the mixing mapping from z′ to x is a composition function, e.g., f ◦ f ′ where
f ′(z′) = [z′

c, gs2(gs1(z′
c) + z′

s)].

Intuition The non-identifiability result above is because we can not determine which path is the correct
path corresponding to the net effect of nc on x; i.e.., both nc → zc → zs → x in Figure 2(a) and nc → zc → x
in Figure 2(b) can generate the same observational data x. This problem often appears in latent causal
discovery and seriously hinders the identifiability of latent causal models.

4.2 Partial Identifiability: Identifying zc

While the above result in proposition 4.1 shows that achieving complete identifiability may pose challenges,
for the specific context of domain adaptation, our primary interest lies in the identifiability of zc, rather
than the latent style variable zs. This focus is justified by the fact that the label y is solely caused by zc.
In fact, we have established the following partial identifiability result:

Proposition 4.2 Suppose latent causal variables z and the observed variable x follow the generative models
defined in Eq. 1- Eq. 3. Assume the following holds:

(i) The set {x ∈ X |φε(x) = 0} has measure zero (i.e., has at the most countable number of elements),
where φε is the characteristic function of the density pε.

(ii) The function f in Eq. 3 is bijective.

(iii) There exist 2ℓ + 1 distinct points u0, u1, ..., u2ℓ such that the matrix

L = (η(u = u1) − η(u = u0), ..., η(u = u2ℓ) − η(u = u0)) (4)

of size 2ℓ × 2ℓ is invertible where η(u) = [ηi,j(u)]i,j,

then the recovered latent content variables ẑc, which are learned by matching the true marginal data distribu-
tion p(x|u) and by using the dependence between nS

c and yS conditional on u, are related to the true latent
causal variables zc by the following relationship: zc = h(ẑc), where h denotes an invertible mapping.

Assumptions (i)-(iii) are motivated by the nonlinear ICA literature (Khemakhem et al., 2020), which is to
provide a guarantee that we can recover latent noise variables n up to a permutation and scaling transforma-
tion. The main Assumption (iii) essentially requires sufficient changes in latent noise variables to facilitate
their identification, which has also been introduced in recent advances in causal representation learning Liu
et al. (2024b;a). Furthermore, we conduct model assumptions, as defined in Eqs. 1-3. Essentially, Eq. 1, de-
rived from Sorrenson et al. (2020), posits that each ni is sampled from the two-parameter exponential family.
We adopt this assumption in consideration of real-world applications where the dimension of ni is unknown.
By assuming two-parameter exponential family members, it has been demonstrated that informative latent

7



Published in Transactions on Machine Learning Research (04/2025)

noise variables ni can be automatically separated from noise by an estimating model (for more details, refer
to Sorrenson et al. (2020)). However, it is important to acknowledge that in real applications, the distribu-
tion of n could be arbitrary. In this context, assumption Eq. 1 may only serve as an approximation for the
true distribution of n. Nevertheless, in terms of the performance of the proposed method on real datasets
such as PACS and TerraIncognita, such an approximation may be deemed acceptable to some extent. To
establish a coherent connection between these latent noise variables n and the latent variables z, we assume
post-nonlinear models, as defined in Eq. 2. We posit that post-nonlinear models could be further relaxed,
as long as the assumed models are invertible from n to x. Here, we choose to employ post-nonlinear models,
considering their ease of parameterization and understanding.

Remark 4.3 With access to label y in source domains, and the identified zc in those domains, it becomes
possible to accurately estimate the parameters of the conditional distribution p(y|zc). This allows for a
robust modeling of the relationship between the latent content variables zc and the corresponding labels y
in the source domains. Then since zc in target domain is also identified, and leveraging the invariance of
p(y|zc), the learned conditional distribution p(y|zc) theoretically be generalized to the target domain. This
generalization is grounded in the notion that the causal relationship between zc and y remains consistent
across domains.

Proof sketch The proof of Proposition 4.2 can be outlined as follows: Given that the mapping from
n to z is invertible, and in consideration of assumptions (i)-(iii), we can leverage results from nonlinear
ICA (Hyvarinen et al., 2019; Khemakhem et al., 2020; Sorrenson et al., 2020). This implies that n can be
identified up to permutation and scaling, i.e., n = Pn̂ + c, where n̂ represents the recovered latent noise
variables. Furthermore, the graph structure depicted in Figure 2(a) implies that yS is dependent on nS

c

but independent of nS
s , given u. This insight enables us to eliminate the permutation indeterminacy, thus

allowing us to identify nc. Ultimately, since the mapping from nc to zc is invertible as defined in Eq. 2, we
can conclude the proof.

Intuition We note that all three assumptions align with standard practices in the nonlinear ICA literature
(Hyvarinen et al., 2019; Khemakhem et al., 2020). This alignment is possible because nonlinear ICA and
latent causal models naturally converge through the independence of components in the nonlinear ICA
domain and the independence among exogenous variables in causal systems. However, there exists a crucial
distinction: while nonlinear ICA seeks to identify independent latent variables, our objective in this context
is to pinpoint the latent content variable within a causal system that allows for causal relationships among
latent variables. This inherently renders the task more challenging. Fortunately, this discrepancy can be
reconciled through two pivotal conditions: 1) the mapping from n to z is made invertible by constraining
the function class, as defined in Eq. 2. 2) The conditional independence between nS

s and yS , given u, as
depicted in the graph structure shown in Figure 2(a). This condition effectively eliminates the permutation
indeterminacy typically encountered in nonlinear ICA. Furthermore, Proposition 4.2 establishes the existence
of an invertible transformation between the recovered ẑc and the true latent content variable zc. Importantly,
this invertible transformation has no bearing on domain adaptation tasks, as it indicates that ẑc encapsulates
all and only the information pertaining to zc.

5 Learning Independent Causal Mechanism pu(y|zc) for MSDA

The identifiability of zc provides a solid foundation for ensuring that the independent causal mechanism
pu(y|zc) can be effectively learned across different domains. This, in turn, supports robust generalization
to the target domain. Moreover, given the invertible mapping between nc and zc, as shown in Eq. 2, the
task of learning pu(y|zc) can be reformulated as the task of learning pu(y|nc). This reformulation remains
consistent and invariant across domains, as demonstrated in Figure 2(a).

As elucidated in Proposition 4.2, the learned latent content variables ẑc are obtained by aligning with the true
marginal data distribution p(x|u). Consequently, it logically follows that the acquired latent noise variables
n̂c should also be obtained through a matching of the marginal distribution. To fulfill this objective, our
proposed method harnesses the framework of a Variational Autoencoder (Kingma and Welling, 2013) to learn
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Figure 3: The proposed iLCC-LCS to learn the invariant p(y|nc) for multiple source domain adaptation. C
denotes concatenation, and S denotes sampling from the posterior distributions.

the recovered latent noise. Specifically, we employ a Gaussian prior distribution for nc and ns as follows:

pu(n) = pu(nc)pu(ns) = N
(
µnc(u), Σnc(u)

)
N

(
µns(u), Σns(u)

)
, (5)

where µ and Σ denote the mean and variance, respectively. Both µ and Σ depend on the domain variable
u and can be implemented with multi-layer perceptrons. Since providing the true posterior is in general
challenging (Liu et al., 2018; 2019), we turn to the following variational posterior to approximate it:

qu(n|x) = qu(nc|x)qu(ns|x) = N
(
µ′

nc(u, x), Σ′
nc(u, x)

)
N

(
µ′

ns(u, x), Σ′
ns(u, x)

)
, (6)

where µ′ and Σ′ denote the mean and variance of the posterior, respectively. Combining the variational
posterior with the Gaussian prior, we can derive the following evidence lower bound:

LELBO = Equ(n|x)
(

log pu(x)
)

− βDKL
(
qu(n|x)||pu(n)

)
, (7)

where DKL denotes the Kullback–Leibler divergence. We here empirically use a hyperparameter β, motivated
by Higgins et al. (2017); Kim and Mnih (2018); Chen et al. (2018), to enhance the independence among
ni, considering a common challenge encountered in real-world applications where the availability of source
domains is often limited. By maximizing the Evidence Lower Bound (ELBO) as expressed in Eq. 7, we can
effectively recover ni up to scaling and permutation. To address the permutation indeterminacy, as shown
in proposition 4.2, we can evaluate the dependence between yS and nS

i to identify which ni correspond to
nS

c . In the implementation, we use the variational low bounder of mutual information as proposed in Alemi
et al. (2016) to quantify the dependence as follows:

LMI = Equ(nS
c |x)

(
log p(yS |nS

c )
)
. (8)

This loss function serves to maximize the mutual information between nS
c and yS in source domains. Notably,

this maximization also signifies an amplification of the information flow within the causal relationship from
nS

c for yS . This alignment between information flow and mutual information arises from the independence
among ni, conditioned on u, which is a structural characteristic inherent in the graph representation of our
proposed causal model. To promote information flow in the target domain, we can also maximize the mutual
information between ŷT (representing the estimated label in the target domain) and nT

c . This is achieved
by minimizing the following conditional entropy term:

LENT = −Equ(nT
c |x)

( ∑
ŷT

p(ŷT |nT
c ) log p(ŷT |nT

c )
)

, (9)

where ŷT denotes the estimated label in the target domain. It is obtained using the encoder component of
the VAE framework, which is trained with the LELBO loss to derive nT

c . This latent representation is then
passed into a classifier that is trained on nS

c and yS from the source domain. It is interesting to note that
this regularization approach has been empirically utilized in previous works to make label predictions more
deterministic (Wang et al., 2020; Li et al., 2021). However, our perspective on it differs as we consider it
from a causal standpoint. As a result, we arrive at the final loss function:

max LMI + λLELBO + γLENT, (10)

where λ and γ are hyper-parameters that trade off the three loss functions. A graphical depiction of the
proposed iLCC-MSDA is shown in Figure 3.
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6 Experiments

6.1 Experiments on Synthetic Data

(a) Recovered nc (b) Predicted y on the target segment

Figure 4: The Result on Synthetic Data. Due to the invariant conditional distribution p(y|nc), even with the change
of p(nc) as shown in Figure 4(a), the learned p(y|nc) can generalize to target segment in a principle way

We conduct experiments on synthetic data to verify our theoretical results and the ability of the proposed
method to adapt to a new domain. The synthetic data generative process is as follows: we divide the latent
variables into 5 segments, which correspond to 5 domains. Each segment includes 1000 examples. Within
each segment, we first sample the mean and the variance from uniform distributions [1, 2] and [0.3, 1] for
the latent exogenous variables nc and ns, respectively. Then for each segment, we generate zc, zs, x and y
according to the following structural causal model:

zc := nc, zs := z3
c + ns, y := z3

c , x := MLP(zc, zs), (11)

where following (Khemakhem et al., 2020) we mix the latent zc and zs using a multi-layer perceptron to
generate x. We use the first 4 segments as source domains, and the last segment as the target domain.

For the synthetic data, we used an encoder, e.g. 3-layer fully connected network with 30 hidden nodes
for each layer, and a decoder, e.g. 3-layer fully connected network with 30 hidden nodes for each layer.
We use a 3-layer fully connected network with 30 hidden nodes for the prior model. Since this is an ideal
environment to verify the proposed method, for hyper-parameters, we set β = 1 and γ = 0 to remove the
heuristic constraints, and we set λ = 1e − 2. Figure 4(a) shows the true and recovered distributions of nc.
The proposed iLCC-LCS obtains the mean correlation coefficient (MCC) of 0.96 between the original nc and
the recovered one. Due to the invariant conditional distribution p(y|nc), even with the change of p(nc) as
shown in Figure 4(a), the learned p(y|nc) can generalize to target segment as depicted by the Figure 4(b).

6.2 Experiments on Real Resampled PACS data

There exist datasets, such as PACS (Li et al., 2017) and Office-Home (Venkateswara et al., 2017), commonly
used for evaluating MSDA under previous paradigms. These datasets exhibit very limited changes in label

Resampled PACS (DKL = 0.3) Resampled PACS (DKL = 0.5) Resampled PACS (DKL = 0.7)

Figure 5: Classification results on resampled PACS data.
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distribution across domains. For instance, in the PACS dataset, the KL divergence of label distributions
between any two domains is exceedingly small, approximately DKL ≈ 0.1. Consequently, these datasets
are well-suited for evaluating models in the setting of conditional shift, where label distributions remain
consistent across domains, as illustrated in Figure 1(b). In order to render the PACS dataset more suitable
for assessing the adaptability of MSDA algorithms to more challenging and realistic scenarios characterized
by significant label distribution shifts, we apply the filtering process. We resample the original PACS dataset,
which contains 4 domains, Photo, Artpainting, Cartoon, and Sketch, and shares the same seven categories.
We filter the original PACS dataset by re-sampling it, i.e., we randomly filter some samples in the original
PACS to obtain pre-defined label distribution. As a result, we can obtain three new datasets, resampled PACS
(DKL = 0.3), resampled PACS (DKL = 0.5), and resampled PACS (DKL = 0.7). Here DKL = 0.3(0.5, 0.7)
denotes that KL divergence of label distributions in any two different domains is approximately 0.3 (0.5,
0.7). Figure 6 depicts label distributions in these resampled datasets.

(a) (b) (c)

Figure 6: Label distributions of the resampled PACS datasets with DKL = 0.3 (a), 0.5 (b), 0.7 (c).

We compare the proposed method with state-of-the-art methods to verify its effectiveness. Particularly,
we compare the proposed methods with empirical risk minimization (ERM), MCDA (Saito et al., 2018),
M3DA (Peng et al., 2019), LtC-MSDA (Wang et al., 2020), T-SVDNet (Li et al., 2021), IRM (Arjovsky
et al., 2019), IWCDAN (Tachet des Combes et al., 2020), LaCIM (Sun et al., 2021), iMSDA (Kong et al.,
2022), SIG (Li et al., 2023), and MIEM Wen et al. (2024). In these methods, MCDA, M3DA, LtC-MSDA,
T-SVDNet, and MIEM learn invariant representations for MSDA, while IRM, IWCDAN, SIG and LaCIM
are tailored for label distribution shifts. All the methods above are averaged over 3 runs. All methods used
the same network backbone, ResNet-18 pre-trained on ImageNet. Since it can be challenging to train VAE
on high-resolution images, we use extracted features by ResNet-18 as our VAE input. We then use 2-layer
fully connected networks as the VAE encoder and decoder, use 2-layer fully connected network for the prior
model, and use 2-layer fully connected network to transfer nc to zc. For hyper-parameters, we set β = 4,
γ = 0.1, λ = 1e − 4 for the proposed method on all datasets. For the compared methods, we make every
effort to tune their hyper-parameters to ensure a fair comparison.

The results by different methods on the resampled PACS are presented in Figure 5. Detailed results can be
found in Tables 1-3. We can observe that as the increase of KL divergence of label distribution, the perfor-
mances of MCDA, M3DA, LtC-MSDA and T-SVDNet, which are based on learning invariant representations,
gradually degenerate. In the case where the KL divergence is about 0.7, the performances of these methods
are worse than traditional ERM. Compared with IRM, IWCDAN and LaCIM, specifically designed for label
distribution shifts, the proposed iLCC-LCS obtains the best performance, due to our theoretical guarantee
for identifying the latent causal content variable, resulting in a principled way to guarantee adaptation.

6.3 Experiments on Real Terra Incognita data

We further evaluate the proposed iLCC-LCS on Terra Incognita dataset proposed in (Beery et al., 2018)
used for evaluation for domain generalization. For Terra Incognita (Beery et al., 2018), it consists of 57,
868 images across 20 locations, each labeled with one of 15 classes (or marked as empty). Classes are either
single species (e.g. ”Coyote” or groups of species, e.g. ”Bird”). Figure 7 shows the label distribution in
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Table 1: Classification results on resampled PACS data (DKL = 0.3).

Methods Accuracy

→Art →Cartoon →Photo →Sketch Average

ERM 82.3 ± 0.3 81.3 ± 0.9 94.9 ± 0.2 76.2 ± 0.7 83.6
MCDA (Saito et al. (2018)) 76.6 ± 0.6 85.1 ± 0.3 96.6 ± 0.1 70.1 ± 1.3 82.1
M3SDA (Peng et al., 2019) 79.6 ± 1.0 86.6 ± 0.5 97.1 ± 0.3 83.3 ± 1.0 86.6
LtC-MSDA (Wang et al., 2020) 82.7 ± 1.3 84.9 ± 1.4 96.9 ± 0.2 75.3 ± 3.1 84.9
T-SVDNet (Li et al., 2021) 81.8 ± 0.3 86.5 ± 0.2 95.9 ± 0.2 80.7 ± 0.8 86.3
IRM (Arjovsky et al., 2019) 79.6 ± 0.7 77.0 ± 2.2 94.6 ± 0.2 71.7 ± 2.3 80.7
IWCDAN (Tachet des Combes et al., 2020) 84.0 ± 0.5 78.1 ± 0.7 96.0 ± 0.1 75.5 ± 1.9 83.4
LaCIM (Sun et al., 2021) 63.1 ± 1.5 72.6 ± 1.0 82.7 ± 1.3 71.5 ± 0.9 72.5
iMSDA (Kong et al., 2022) 82.1 ± 1.2 86.1 ± 0.3 96.9 ± 0.2 80.6 ± 1.2 86.4
SIG (Li et al., 2023) 86.2 ± 1.0 86.3 ± 0.8 97.3 ± 0.2 73.3 ± 0.8 85.7
MIEM (Wen et al., 2024) 81.6 ± 1.0 81.3 ± 1.0 96.6 ± 0.2 73.4 ± 0.7 83.2
iLCC-LCS(Ours) 86.4 ± 0.8 81.1 ± 0.8 95.9 ± 0.1 86.0 ± 1.0 87.4

Table 2: Classification results on resampled PACS data (DKL = 0.5).

Methods Accuracy

→Art →Cartoon →Photo →Sketch Average

ERM 85.4± 0.6 76.4 ± 0.5 94.4 ± 0.4 85.0 ± 0.6 85.3
MCDA ((Saito et al., 2018)) 81.6 ± 0.1 76.8 ± 0.1 93.6 ± 0.1 84.1 ± .6 84.0
M3SDA (Peng et al., 2019) 81.2 ± 1.2 77.5 ± 1.3 94.5 ± 0.5 84.3 ± 0.5 84.4
LtC-MSDA (Wang et al., 2020) 85.2 ± 1.5 75.2 ± 2.6 94.9 ± 0.6 85.1 ± 2.7 85.1
T-SVDNet (Li et al., 2021) 84.8 ± 0.3 77.6 ± 1.7 94.2 ± 0.2 86.4 ± 0.2 85.6
IRM (Arjovsky et al., 2019) 81.5 ± 0.3 71.1 ± 1.3 94.2 ± 0.1 78.7 ± 0.7 81.4
IWCDAN (Tachet des Combes et al., 2020) 79.2 ± 1.6 72.6 ± 0.7 95.6 ± 0.1 82.1 ± 2.2 82.4
LaCIM (Sun et al., 2021) 67.4 ± 1.6 66.6 ± 0.6 81.0 ± 1.2 82.3 ± 0.6 74.3
iMSDA (Kong et al., 2022) 82.4 ± 0.4 76.4 ± 1.2 94.3 ± 0.2 84.1 ± 0.6 84.3
SIG (Li et al., 2023) 85.7 ± 0.8 79.3 ± 0.7 95.2 ± 0.2 80.1 ± 0.8 85.1
MIEM (Wen et al., 2024) 85.2 ± 1.0 72.5 ± 0.8 94.7 ± 0.2 79.7 ± 0.6 83.0
iLCC-LCS(Ours) 89.0 ± 0.7 77.6 ± 0.5 95.0 ± 0.3 87.4 ± 1.6 87.3

Table 3: Classification results on resampled PACS data (DKL = 0.7).

Methods Accuracy

→Art →Cartoon →Photo →Sketch Average

ERM 86.1 ± 0.6 76.8 ± 0.3 94.6 ± 0.4 81.3 ± 2.0 84.7
MCDA ((Saito et al., 2018)) 80.8 ± 0.7 74.1 ± 1.2 94.4 ± 0.4 77.9 ± 0.4 81.8
M3SDA (Peng et al., 2019) 82.7 ± 1.3 76.2 ± 1.0 94.5 ± 0.7 80.8 ± 1.2 83.6
LtC-MSDA (Wang et al., 2020) 83.7 ± 1.6 74.6 ± 1.4 95.0 ± 0.7 80.8 ± 0.6 83.5
T-SVDNet (Li et al., 2021) 83.3 ± 0.8 74.7 ± 0.6 95.2 ± 0.3 74.5 ± 3.3 81.9
IRM (Arjovsky et al., 2019) 84.3 ± 0.8 73.3 ± 1.8 94.3 ± 0.1 69.4 ± 4.6 80.3
IWCDAN (Tachet des Combes et al., 2020) 76.3 ± 0.8 73.9 ± 1.6 93.1 ± 0.5 77.6 ± 3.8 80.2
LaCIM (Sun et al., 2021) 63.6 ± 0.9 68.7 ± 1.4 77.5 ± 3.8 77.8 ± 2.2 71.9
iMSDA (Kong et al., 2022) 81.9 ± 0.6 72.4 ± 1.0 94.2 ± 0.1 79.4 ± 0.8 82.0
SIG (Li et al., 2023) 85.1 ± 0.4 73.3 ± 0.8 93.1 ± 0.1 77.5 ± 0.8 82.3
MIEM (Wen et al., 2024) 85.8 ± 0.6 72.9 ± 1.0 94.2 ± 0.2 80.1 ± 1.0 83.3
iLCC-LCS(Ours) 90.7 ± 0.3 74.2 ± 0.7 95.8 ± 0.3 83.0 ± 2.2 86.0
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(a) (b)

Figure 7: (a) Label distributions of the whole Terra Incognita data. (b) Label distributions in the four
domains of the Terra Incognita data, which are used in our experiments.

Table 4: Classification results on TerraIncognita.
Methods Accuracy

→L28 →L43 →L46 →L7 Average
ERM 54.1 ± 2.8 62.3 ± 0.7 44.7 ± 0.9 74.5 ± 2.6 58.9
MCDA ((Saito et al., 2018)) 54.9 ± 4.1 61.2 ± 1.2 42.7 ± 0.3 64.8 ± 8.1 55.9
M3SDA (Peng et al., 2019) 62.3 ± 1.4 62.7 ± 0.4 41.3 ± 0.3 57.4 ± 0.9 55.9
LtC-MSDA (Wang et al., 2020) 51.9 ± 5.7 54.6 ± 1.3 45.7 ± 1.0 69.1 ± 0.3 55.3
T-SVDNet (Li et al., 2021) 58.2 ± 1.7 61.9 ± 0.3 45.6 ± 2.0 68.2 ± 1.1 58.5
IRM (Arjovsky et al., 2019) 57.5 ± 1.7 60.7± 0.3 42.4 ± 0.6 74.1 ± 1.6 58.7
IWCDAN (Tachet des Combes et al., 2020) 58.1 ± 1.8 59.3 ± 1.9 43.8± 1.5 58.9 ± 3.8 55.0
LaCIM (Sun et al., 2021) 58.2 ± 3.3 59.8 ± 1.6 46.3 ± 1.1 70.8 ± 1.0 58.8
iMSDA (Kong et al., 2022) 59.3 ± 1.3 62.9 ± 0.8 47.1 ± 1.0 70.4 ± 1.0 59.9
SIG (Li et al., 2023) 58.4 ± 0.9 61.8 ± 0.8 45.4 ± 0.6 68.4 ± 0.9 58.5
MIEM (Wen et al., 2024) 57.5 ± 1.7 60.8 ± 0.9 44.1 ± 0.8 67.9 ± 1.1 57.6
iLCC-LCS(Ours) 64.3 ± 3.4 63.1 ± 1.6 44.7 ± 0.4 80.8 ± 0.4 63.2

different locations. The label distribution is long-tailed at each domain, and each domain has a different label
distribution, hence it naturally has significant label distribution shifts, ideal for the challenging scenarios that
LCS describes. We select four domains from the original data, L28, L43, L46, and L7, which share the same
seven categories: bird, bobcat, empty, opossum, rabbit, raccoon, and skunk. Here ’L28’ denotes that the
image data is collected from location 28. Figure 7(b) depicts label distributions in the four domains above.
Similar to implementation on PACS, for Terra Incognita data, we use the same network backbone, ResNet-
18, use 2-layer fully connected networks as the VAE encoder and decoder, use 2-layer fully connected network
for the prior model, and use 2-layer fully connected network to transfer nc to zc. For hyper-parameters, we
set β = 4, γ = 0.1, λ = 1e − 4 for the proposed method on all datasets.

Table 4 depicts the results by different methods on challenging Terra Incognit. The proposed iLCC-LCS
achieves a significant performance gain on the challenging task →L7. Among the methods considered,
the proposed proposed iLCC-LCS and iMSDA stands out as the only two that outperforms ERM. This
superiority is especially pronounced due to the substantial variation in label distribution across domains. In
cases where the label distribution changes significantly, traditional approaches may lead to the development
of uninformative features, making them less effective for domain adaptation. In contrast, the proposed
method excels at capturing and adapting to these label distribution changes, enabling accurate predictions
even under such dynamic conditions.
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Table 5: Ablation study on resampled PACS data (DKL = 0.7), and TerraIncognita.
Methods Accuracy on resampled PACS data(DKL = 0.7) Accuracy on TerraIncognita

→Art →Cartoon →Photo →Sketch Average →L28 →L43 →L46 →L7 Average
iLCC-LCS with β = 1 90.2 ± 0.5 73.4 ± 0.8 95.7 ± 0.4 82.7 ± 0.7 85.5 56.3 ± 4.3 61.5 ± 0.7 45.2 ± 0.3 80.1 ± 0.6 60.8
iLCC-LCS with λ = 0 89.8 ± 0.3 71.1 ± 1.0 95.5 ± 0.4 81.6 ± 0.6 84.5 55.9 ± 3.9 59.4 ± 0.6 45.0 ± 0.4 79.6 ± 0.5 60.0
iLCC-LCS with γ = 0 81.1 ± 1.5 70.0 ± 1.6 92.0 ± 0.5 59.6 ± 0.7 75.7 54.8 ± 1.4 58.9 ± 1.8 46.8 ± 1.4 73.1 ± 0.6 58.4
iLCC-LCS 90.7 ± 0.3 74.2 ± 0.7 95.8 ± 0.3 83.0 ± 2.2 86.0 64.3 ± 3.4 63.1 ± 1.6 44.7 ± 0.4 80.8 ± 0.4 63.2

6.4 Ablation studies

Table 5 displays the results of our ablation studies conducted on PACS (DKL = 0.3) and TerraIncognita,
respectively. Notably, we observe a significant improvement in performance (approximately 10% and 5%,
respectively) for the proposed method on both datasets when employing entropy regularization (as per Eq.
9). This finding aligns with previous research (Wang et al., 2020; Li et al., 2021), which has also underscored
the importance of entropy regularization (Eq. 9). From the viewpoint of the proposed causal model, entropy
regularization essentially encourages causal influence between y and nc, as elaborated upon in Section 5.
Furthermore, the hyperparameter β plays a pivotal role in enhancing performance by enforcing independence
among the latent variables ni.

We further consider the sensitive analysis for β, λ and γ, which are shown in Figure 8, on TerraIncognita
data. There results reveal that the model’s accuracy is most sensitive to changes in γ. As γ increased from
0 to 0.10, accuracy improved, peaking at 63.2%, before decreasing at higher values. Similarly, β showed a
slight improvement up to 4, with the highest accuracy at 63.2%, and a small decline beyond that. For λ,
accuracy increased with λ, but exhibited more volatility, with the best performance at λ = 1e − 4.

The sensitivity of the parameter γ in our model aligns with common trends observed in domain adaptation
methods Wang et al. (2020); Li et al. (2021); Kong et al. (2022). As γ controls the conditional entropy in
the target domain, it plays a crucial role in making label predictions more deterministic. Our results suggest
that, similar to many existing methods in domain adaptation, small increases in γ initially improve the
model’s accuracy, as it better aligns the distribution between source and target domains. However, beyond
an optimal value, further increases in γ introduce overfitting or distortions in the representation, leading
to a decrease in performance. This highlights the importance of carefully tuning γ for achieving the best
performance, as it is a sensitive parameter influencing both the accuracy and the generalizability of the
model across domains.

(a) (b) (c)

Figure 8: Sensitive analysis for β, λ and γ

6.5 t-SNE visualization

We visualize features of each class obtained by the proposed method via t-SNE to show how the distributions
of learned features change across domains. Figure 9 (a)-(d) depicts the detailed distributions of the learned
features by the proposed method in different 4 domains of TerraIncognita data. Differing from the methods
that learn invariant representations across domains, the distributions of the learned features by the proposed
method change across domains.
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(a) (b)

(c) (d)

Figure 9: The t-SNE visualizations of learned features nc of different domains on the →L7 task in Ter-
raIncognita. (a)-(d) The learned features nc in domain L28, L43, L46, L7. Here ’L28’ denotes that the
image data is collected from location 28. We can observe that the distribution of learned feature nc by the
proposed method changes across domains.
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7 Further Discussion

7.1 The Proposed Causal Graph

The versatility of our proposed causal graph extends beyond being narrowly designed for domain adaptation.
Instead, we hope that it is potential to effectively tackle a wide range of tasks across diverse problem
domains. In scenarios such as causal or anti-causal tasks, where a more specific causal graph structure is
deemed essential, our proposed causal graph might stand out as a flexible and adaptable framework. It
may serve not only as a solution for domain adaptation but also as a source of inspiration for various tasks.
This adaptability is rooted in the intentional modeling of latent causal relationships within unstructured
observational data. To illustrate, consider its application in segmentation tasks, where interpreting graph
nodes as distinct regions. Here, the absence of direct connections between nodes may be reasonable; instead,
connections should be contemplated within high-level latent variables. This attribute enhances the versatility
and potency of the proposed causal graph, making it adaptable to the nuanced requirements of diverse tasks
and problem domains.

7.2 Limitations

One of the foundational assumptions mandates significant alterations in the latent noise variables, driving
observable variations in the data. However, the pragmatic feasibility of meeting this assumption in real-
world applications adds a layer of intricacy. The endeavor to induce substantial changes in latent noise
variables encounters challenges rooted in the inherent complexities of data-generating processes. Specifi-
cally, in practical applications, the availability of an extensive pool of training data across diverse domains
may be limited. This limitation introduces a potential vulnerability for the proposed method. Addressing
such scenarios involves effectively leveraging the independence among n. For instance, the imposition of
independence can be achieved through various regularization techniques, as enforcing a hyperparameter to
enhance the independence among ni in Eq. 7.

7.3 Model Selection

Model selection in domain adaptation is challenging due to the complexities of transferring knowledge across
domains with different distributions. Unlike traditional supervised learning, where training and test data
share the same distribution, domain adaptation requires models to generalize from a source domain to a
target domain, often with limited labeled data. Selecting the right model and tuning hyperparameters for
domain alignment and task performance is difficult, especially with large domain shifts or noisy target data.
Additionally, the choice of adaptation techniques (e.g., feature alignment, adversarial training) depends on
factors like domain discrepancy, requiring empirical testing. The lack of a universal framework further
complicates model selection, as it is highly problem-specific and influenced by domain similarity and data
quality.

In domain adaptation, due to the access to input data in the target domain, the community often resorts
to model selection based on the target domain’s characteristics, assuming that since input data is available,
human labeling can be used to generate labeled samples for model selection. However, first, manually
labeling data in the target domain can be prohibitively expensive, time-consuming, and labor-intensive,
especially for complex or large-scale datasets. Second, relying on target domain labeling for model selection
undermines one of the key objectives of domain adaptation: minimizing the need for labeled data in the
target domain. Additionally, even when labels are available, ensuring that the model trained on these labeled
samples generalizes well to unseen data is challenging.

In the future, providing a unified framework for evaluation in domain adaptation remains an interesting and
valuable goal. Such a framework could standardize the assessment of domain adaptation methods, offering
clear metrics for comparing different approaches across various domains and tasks. This would help address
challenges like domain discrepancy, generalization, and model robustness, allowing researchers to better
understand the strengths and weaknesses of different techniques.
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8 Conclusion

The key for domain adaptation is to understand how the joint distribution of features and label changes
across domains. Previous works usually assume covariate shift or conditional shift to interpret the change of
the joint distribution, which may be restricted in some real applications that label distribution shifts. Hence,
this work considers a new and milder assumption, latent covariate shift. Specifically, we propose a latent
causal model to precisely formulate the generative process of input features and labels. We show that the
latent content variable in the proposed latent causal model can be identified up to scaling. This inspires a
new method to learn the invariant label distribution conditional on the latent causal variable, resulting in a
principled way to guarantee adaptation to target domains. Experiments demonstrate the theoretical results
and the efficacy of the proposed method, compared with state-of-the-art methods across various data sets.

References
Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-Christophe Gagnon-Audet, Yoshua Bengio, Ioan-

nis Mitliagkas, and Irina Rish. Invariance principle meets information bottleneck for out-of-distribution
generalization. Advances in Neural Information Processing Systems, 34:3438–3450, 2021.

Ibrahim Alabdulmohsin, Nicole Chiou, Alexander D’Amour, Arthur Gretton, Sanmi Koyejo, Matt J Kusner,
Stephen R Pfohl, Olawale Salaudeen, Jessica Schrouff, and Katherine Tsai. Adapting to latent subgroup
shifts via concepts and proxies. In International Conference on Artificial Intelligence and Statistics, pages
9637–9661. PMLR, 2023.

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information bottle-
neck. arXiv preprint arXiv:1612.00410, 2016.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. arXiv
preprint arXiv:1907.02893, 2019.

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings of the
European conference on computer vision (ECCV), pages 456–473, 2018.

Steffen Bickel, Michael Brückner, and Tobias Scheffer. Discriminative learning for differing training and test
distributions. In Proceedings of the 24th international conference on Machine learning, pages 81–88, 2007.

Victor Bouvier, Philippe Very, Céline Hudelot, and Clément Chastagnol. Hidden covariate shift: A minimal
assumption for domain adaptation. arXiv preprint arXiv:1907.12299, 2019.

Yichao Cai, Yuhang Liu, Zhen Zhang, and Javen Qinfeng Shi. Clap: Isolating content from style through
contrastive learning with augmented prompts. In European Conference on Computer Vision, pages 130–
147. Springer, 2024.

Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentanglement
in variational autoencoders. Advances in neural information processing systems, 31, 2018.

Rune Christiansen, Niklas Pfister, Martin Emil Jakobsen, Nicola Gnecco, and Jonas Peters. A causal frame-
work for distribution generalization. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2021.

Imant Daunhawer, Alice Bizeul, Emanuele Palumbo, Alexander Marx, and Julia E Vogt. Identifiability
results for multimodal contrastive learning. ICLR, 2023.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. The journal of
machine learning research, 17(1):2096–2030, 2016.

Muhammad Ghifary, David Balduzzi, W Bastiaan Kleijn, and Mengjie Zhang. Scatter component analysis:
A unified framework for domain adaptation and domain generalization. IEEE transactions on pattern
analysis and machine intelligence, 39(7):1414–1430, 2016.

17



Published in Transactions on Machine Learning Research (04/2025)

Mingming Gong, Kun Zhang, Tongliang Liu, Dacheng Tao, Clark Glymour, and Bernhard Schölkopf. Domain
adaptation with conditional transferable components. In International conference on machine learning,
pages 2839–2848. PMLR, 2016.

I. Higgins, Loïc Matthey, A. Pal, Christopher P. Burgess, Xavier Glorot, M. Botvinick, S. Mohamed, and
Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational framework.
In ICLR, 2017.

Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear causal
discovery with additive noise models. Advances in neural information processing systems, 21, 2008.

Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Schölkopf, and Alex Smola. Correcting
sample selection bias by unlabeled data. Advances in neural information processing systems, 19, 2006.

Aapo Hyvarinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ica using auxiliary variables and generalized
contrastive learning. In The 22nd International Conference on Artificial Intelligence and Statistics, pages
859–868. PMLR, 2019.

Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvarinen. Variational autoencoders and
nonlinear ica: A unifying framework. In International Conference on Artificial Intelligence and Statistics,
pages 2207–2217. PMLR, 2020.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International Conference on Machine
Learning, pages 2649–2658. PMLR, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani,
Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A benchmark of in-
the-wild distribution shifts. In International Conference on Machine Learning, pages 5637–5664. PMLR,
2021.

Lingjing Kong, Shaoan Xie, Weiran Yao, Yujia Zheng, Guangyi Chen, Petar Stojanov, Victor Akinwande,
and Kun Zhang. Partial disentanglement for domain adaptation. In International Conference on Machine
Learning, pages 11455–11472. PMLR, 2022.

Meelis Kull and Peter Flach. Patterns of dataset shift. In First International Workshop on Learning over
Multiple Contexts (LMCE) at ECML-PKDD, 2014.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain gen-
eralization. In Proceedings of the IEEE international conference on computer vision, pages 5542–5550,
2017.

Ruihuang Li, Xu Jia, Jianzhong He, Shuaijun Chen, and Qinghua Hu. T-svdnet: Exploring high-order pro-
totypical correlations for multi-source domain adaptation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9991–10000, 2021.

Ya Li, Mingming Gong, Xinmei Tian, Tongliang Liu, and Dacheng Tao. Domain generalization via condi-
tional invariant representations. In Proceedings of the AAAI conference on artificial intelligence, 2018.

Zijian Li, Ruichu Cai, Guangyi Chen, Boyang Sun, Zhifeng Hao, and Kun Zhang. Subspace identification for
multi-source domain adaptation. Advances in Neural Information Processing Systems, 36:34504–34518,
2023.

Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. Detecting and correcting for label shift with black
box predictors. In International conference on machine learning, pages 3122–3130. PMLR, 2018.

18



Published in Transactions on Machine Learning Research (04/2025)

Chang Liu, Xinwei Sun, Jindong Wang, Haoyue Tang, Tao Li, Tao Qin, Wei Chen, and Tie-Yan Liu.
Learning causal semantic representation for out-of-distribution prediction. Advances in Neural Information
Processing Systems, 34, 2021.

Yuhang Liu, Wenyong Dong, and Mengchu Zhou. Frame-based variational bayesian learning for independent
or dependent source separation. IEEE Transactions on Neural Networks and Learning Systems, 29(10):
4983–4996, 2018.

Yuhang Liu, Wenyong Dong, Lei Zhang, Dong Gong, and Qinfeng Shi. Variational bayesian dropout with a
hierarchical prior. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 7124–7133, 2019.

Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang,
and Javen Qinfeng Shi. Identifying weight-variant latent causal models. arXiv preprint arXiv:2208.14153,
2022.

Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang,
and Javen Qinfeng Shi. Identifiable latent neural causal models. arXiv preprint arXiv:2403.15711, 2024a.

Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang,
and Javen Qinfeng Shi. Identifiable latent polynomial causal models through the lens of change. In The
Twelfth International Conference on Learning Representations, 2024b.

Yuhang Liu, Zhen Zhang, Dong Gong, Biwei Huang, Mingming Gong, Anton van den Hengel, Kun Zhang,
and Javen Qinfeng Shi. Revealing multimodal contrastive representation learning through latent partial
causal models. arXiv preprint arXiv:2402.06223, 2024c.

Chaochao Lu, Yuhuai Wu, José Miguel Hernández-Lobato, and Bernhard Schölkopf. Invariant causal repre-
sentation learning for out-of-distribution generalization. In International Conference on Learning Repre-
sentations, 2021.

Divyat Mahajan, Shruti Tople, and Amit Sharma. Domain generalization using causal matching. In Inter-
national Conference on Machine Learning, pages 7313–7324. PMLR, 2021.

Massimiliano Mancini, Lorenzo Porzi, Samuel Rota Bulo, Barbara Caputo, and Elisa Ricci. Boosting domain
adaptation by discovering latent domains. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3771–3780, 2018.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching for
multi-source domain adaptation. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 1406–1415, 2019.

Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant prediction:
identification and confidence intervals. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 78(5):947–1012, 2016.

Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier discrepancy for
unsupervised domain adaptation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3723–3732, 2018.

Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and Joris Mooij. On
causal and anticausal learning. arXiv preprint arXiv:1206.6471, 2012.

Peter Sorrenson, Carsten Rother, and Ullrich Köthe. Disentanglement by nonlinear ica with general
incompressible-flow networks (gin). arXiv preprint arXiv:2001.04872, 2020.

Petar Stojanov, Mingming Gong, Jaime Carbonell, and Kun Zhang. Data-driven approach to multiple-source
domain adaptation. In The 22nd International Conference on Artificial Intelligence and Statistics, pages
3487–3496. PMLR, 2019.

19



Published in Transactions on Machine Learning Research (04/2025)

Petar Stojanov, Zijian Li, Mingming Gong, Ruichu Cai, Jaime Carbonell, and Kun Zhang. Domain adap-
tation with invariant representation learning: What transformations to learn? Advances in Neural Infor-
mation Processing Systems, 34, 2021.

Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul Buenau, and Motoaki Kawanabe. Direct
importance estimation with model selection and its application to covariate shift adaptation. Advances in
neural information processing systems, 20, 2007.

Xinwei Sun, Botong Wu, Xiangyu Zheng, Chang Liu, Wei Chen, Tao Qin, and Tie-Yan Liu. Recovering
latent causal factor for generalization to distributional shifts. Advances in Neural Information Processing
Systems, 34, 2021.

Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and Geoffrey J Gordon. Domain adaptation with
conditional distribution matching and generalized label shift. Advances in Neural Information Processing
Systems, 33:19276–19289, 2020.

Victor Veitch, Alexander D’Amour, Steve Yadlowsky, and Jacob Eisenstein. Counterfactual invariance to
spurious correlations in text classification. Advances in Neural Information Processing Systems, 34:16196–
16208, 2021.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing
network for unsupervised domain adaptation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 5018–5027, 2017.

Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel Besserve,
and Francesco Locatello. Self-supervised learning with data augmentations provably isolates content from
style. NeurIPS, 34:16451–16467, 2021.

Hang Wang, Minghao Xu, Bingbing Ni, and Wenjun Zhang. Learning to combine: Knowledge aggregation for
multi-source domain adaptation. In European Conference on Computer Vision, pages 727–744. Springer,
2020.

Ruoyu Wang, Mingyang Yi, Zhitang Chen, and Shengyu Zhu. Out-of-distribution generalization with causal
invariant transformations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 375–385, 2022a.

Zengmao Wang, Chaoyang Zhou, Bo Du, and Fengxiang He. Self-paced supervision for multi-source domain
adaptation. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence,
IJCAI-22, 2022b.

Junfeng Wen, Chun-Nam Yu, and Russell Greiner. Robust learning under uncertain test distributions:
Relating covariate shift to model misspecification. In International Conference on Machine Learning,
pages 631–639. PMLR, 2014.

Lisheng Wen, Sentao Chen, Mengying Xie, Cheng Liu, and Lin Zheng. Training multi-source domain
adaptation network by mutual information estimation and minimization. Neural Networks, 171:353–361,
2024.

Luyu Yang, Yogesh Balaji, Ser-Nam Lim, and Abhinav Shrivastava. Curriculum manager for source selection
in multi-source domain adaptation. In European Conference on Computer Vision, pages 608–624. Springer,
2020.

Kun Zhang and Aapo Hyvarinen. On the identifiability of the post-nonlinear causal model. arXiv preprint
arXiv:1205.2599, 2012.

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and Zhikun Wang. Domain adaptation under target
and conditional shift. In International Conference on Machine Learning, pages 819–827. PMLR, 2013.

Kun Zhang, Mingming Gong, and Bernhard Schölkopf. Multi-source domain adaptation: A causal view. In
Twenty-ninth AAAI conference on artificial intelligence, 2015.

20



Published in Transactions on Machine Learning Research (04/2025)

Zhen Zhang, Ignavier Ng, Dong Gong, Yuhang Liu, Ehsan Abbasnejad, Mingming Gong, Kun Zhang, and
Javen Qinfeng Shi. Truncated matrix power iteration for differentiable dag learning. In Advances in Neural
Information Processing Systems, 2022.

Zhen Zhang, Ignavier Ng, Dong Gong, Yuhang Liu, Mingming Gong, Biwei Huang, Kun Zhang, Anton
van den Hengel, and Javen Qinfeng Shi. Analytic dag constraints for differentiable dag learning. arXiv
preprint arXiv:2503.19218, 2025.

Han Zhao, Shanghang Zhang, Guanhang Wu, José MF Moura, Joao P Costeira, and Geoffrey J Gordon.
Adversarial multiple source domain adaptation. Advances in neural information processing systems, 31,
2018.

Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. On learning invariant representa-
tions for domain adaptation. In International Conference on Machine Learning, pages 7523–7532. PMLR,
2019.

Sicheng Zhao, Bo Li, Pengfei Xu, Xiangyu Yue, Guiguang Ding, and Kurt Keutzer. Madan: multi-source
adversarial domain aggregation network for domain adaptation. International Journal of Computer Vision,
129(8):2399–2424, 2021.

21



Published in Transactions on Machine Learning Research (04/2025)

.1 The Proof of Proposition 4.1

To establish non-identifiability, it suffices to demonstrate the existence of an alternative solution that differs
from the ground truth but can produce the same observed data. Let’s consider the latent causal generative
model defined in Eqs. 1 to 3 as our ground truth, represented in Figure 2(a), where there exists a causal
relationship from zc to zs. Now, we can always construct new latent variables z′ as follows: z′

c = gc(nc)
and z′

s = ns, depicted in Figure 2(b). Importantly, there is no causal influence from z′
c to z′

s in this
construction, which is different from the ground truth in Figure 2(a). It becomes evident that this new set
of latent variables z′ can generate the same x as obtained by z through a composition function f ◦ f ′, where
f ′(z′) = [z′

c, gs2(gs1(z′
c) + z′

s)]. This scenario leads to a non-identifiable result, as the same observed data
can be produced by different latent variable configurations, thus confirming non-identifiability.

.2 The Proof of Proposition 4.2

For convenience, we first introduce the following lemma.

Lemma .1 Denote the mapping from n to z by g, given the assumption (ii) in proposition 4.2 that the
mapping f from z to x is invertible, we have that the mapping from n to x, e.g., f ◦ g, is invertible.

Proof can be easily shown by the following: since the mapping g from n to z is defined as 2 where both gc

and gs2 are assumed to be invertible, we can obtain the inverse function of the mapping g from n to z as
follows: nc = g−1

c (zc), ns = g−1
s2 (zs) − g−1

s1 (zc), which clearly shows that the the mapping g is invertible.
Then by the assumption (ii) in proposition 4.2 that f is invertible, we have that the composition of f and g
is invertible, i.e., f ◦ g is invertible.

The proof of proposition 4.2 is done in three steps. Step I is to show that the latent noise variables n can
be identified up to linear transformation, n = An̂ + c, where n̂ denotes the recovered latent noise variable
obtained by matching the true marginal data distribution. Step II shows that the linear transformation can
be reduced to permutation transformation, i.e., n = P(n̂) + c. Step III shows that zc = h(ẑc), by using
d-separation criterion in the graph structure in Figure 2(a), i.e., yS is dependent on nS

c but independent of
nS

s , given u.

Step I: Suppose we have two sets of parameters θ = (f , g, T, η) and θ = (f̂ , ĝ, T̂, η̂) corresponding to the
same conditional probabilities, i.e., p(f ,g,T,η)(x|u) = p((f̂ ,ĝ,T̂,η̂))(x|u) for all pairs (x, u). Since the mapping
from n to x is invertible, as Lemma .1, with the assumption (i), by expanding the conditional probabilities
(see Step I for proof of Theorem 1 in Khemakhem et al. (2020) for more details), we have:

log | det J(f◦g)−1(x)| + log p(T,η)(n|u) = log | det J(f̂◦ĝ)−1(x)| + log p(T̂,η̂)(n̂|u), (12)

Using the exponential family Eq. 1 to replace p(Tn,β)(n|u), we have:

log | det J(f◦g)−1(x)| + TT
(
(f ◦ g)−1(x)

)
η(u) − log

∏
i

Zi(u) =

log | det J(f̂◦ĝ)−1(x)| + T̂T
(
(f̂ ◦ ĝ)−1(x)

)
η̂(u) − log

∏
i

Ẑi(u), (13)

Then by expanding the above at points ul and u0 mentioned in assumption (iii), and using Eq. 13 at point
ul subtract Eq. 13 at point u0, we find:

⟨T(n), η̄(u)⟩ +
∑

i

log Zi(u0)
Zi(ul)

= ⟨T̂(n̂), ¯̂η(u)⟩ +
∑

i

log Ẑi(u0)
Ẑi(ul)

. (14)

Here η̄(ul) = η(ul) − η(u0). Then by combining the 2ℓ expressions (from assumption (iii) we have 2ℓ such
expressions) into a single matrix equation, we can write this in terms of L from assumption (iii),

LT T(n) = L̂T T̂(n̂) + b. (15)
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Since LT is invertible, we can multiply this expression by its inverse from the left to get:

T(n) = AT̂(n̂) + c, (16)

where A = (LT )−1L̂T. According to a lemma 3 in Khemakhem et al. (2020) that there exist k distinct
values n1

i to nk
i such that the Derivative T ′(n1

i ), ..., T ′(nk
i ) are linearly independent, and the fact that each

component of Ti,j is univariate. We can show that A is invertible.

Step II Since we assume the noise to be two-parameter exponential family members, Eq. 16 can be re-
expressed as: (

T1(n)
T2(n)

)
= A

(
T̂1(n̂)
T̂2(n̂)

)
+ c, (17)

Then, we re-express T2 in term of T1, e.g., T2(ni) = t(T1(ni)) where t is a nonlinear mapping. As a result,
we have from Eq. 17 that: (a) T1(ni) can be linear combination of T̂1(n̂) and T̂2(n̂), and (b) t(T1(ni))
can also be linear combination of T̂1(n̂) and T̂2(n̂). This implies the contradiction that both T1(ni) and
its nonlinear transformation t(T1(ni)) can be expressed by linear combination of T̂1(n̂) and T̂2(n̂). This
contradiction leads to that A can be reduced to permutation matrix P (See APPENDIX C in Sorrenson
et al. (2020) for more details):

n = Pn̂ + c, (18)

where P denote the permutation matrix with scaling, c denote a constant vector. Note that this result
holds for not only Gaussian, but also inverse Gaussian, Beta, Gamma, and Inverse Gamma (See Table 1 in
Sorrenson et al. (2020)).

Step III: The above result shows that we can obtain the recovered latent noise variables n̂ up to permutation
and scaling transformation of the true n, which are learned by matching the true marginal data distribution
p(x|u). However, it is still not clear which part of n̂ corresponds to nc, e.g., permutation indeterminacy.
Fortunately, the permutation can be removed by d-separation criteria in the graph structure in Figure 2(a),
which implies that nc is dependent on label y, while ns is independent with y, given u. Thus, together with
the d-separation criteria, Eq. 18 implies that:

nc = Pcn̂c + cc. (19)

Then by model assumption as defined in Eq. 2, using zc to replace nc obtains:

g−1
c (zc) = Pcĝ−1

c (ẑc) + cc, (20)

which can re-expressed as:

zc = gc(P−1
c (ĝ−1

c (ẑc) − cc)) = h((ẑc)), (21)

where h is clearly invertible, which implies that zc can be recovered up to block identifiability.
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