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Abstract001

Causal reasoning in natural language requires002
identifying relevant variables, understanding003
their interactions, and reasoning about effects004
and interventions, often under noisy or ambigu-005
ous conditions. While large language models006
(LLMs) exhibit strong general reasoning abil-007
ities, they struggle to disentangle correlation008
from causation, particularly when observations009
are partially incorrect or irrelevant information010
is present. In this work, we introduce Noisy-011
Causal, a new benchmark designed to eval-012
uate causal reasoning under structured noise.013
Each instance is generated from a ground-truth014
causal graph and contextualized with a natu-015
ral language scenario by injecting controllable016
forms of noise, such as irrelevant distractors,017
value perturbations, confounding, and partial018
observability. Moreover, we propose a modu-019
lar reasoning framework that combines LLMs020
with explicit causal structure to address these021
challenges. Our method prompts the LLM to022
extract variables, construct a causal graph from023
context, and then reformulates the reasoning024
task as a structured prompt grounded in this025
graph. Rather than relying on statistical pat-026
terns alone, the LLM is guided by symbolic027
structure, enabling more interpretable and ro-028
bust inference. Experimental results show that029
our method significantly outperforms standard030
prompting and reasoning baselines on Noisy-031
Causal. Furthermore, it generalizes well to032
external benchmarks such as Cladder without033
task-specific tuning. Our findings highlight the034
importance of combining causal abstractions035
with language-driven reasoning to achieve faith-036
ful and robust causal understanding in LLMs.037

1 Introduction038

Causal reasoning is a fundamental component of039

human cognition and a critical capability for intel-040

ligent systems. It enables agents to go beyond041

surface-level statistical correlations and instead042

identify underlying mechanisms that govern ob-043

servations, support counterfactual thinking, and044
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Figure 1: Existing causal reasoning datasets are of-
ten constructed with clean, idealized scenarios and di-
rect causal questions, allowing large language models
(LLMs) to succeed via pattern matching or shallow
heuristics. As shown on the left, these settings typically
lack noise, distractors, or confounding variables, which
leads to overly optimistic estimates of reasoning ability.
In contrast, NoisyCausal (right) introduces structured,
diverse forms of noise—including value perturbations,
irrelevant information, and latent confounders—to sim-
ulate more realistic and challenging environments.

generalize across domains. While recent advances 045

in machine learning have led to impressive progress 046

in language understanding, these systems often fall 047

short when confronted with tasks that require struc- 048

tured reasoning about cause and effect, especially 049

under uncertainty or noise. 050

Existing benchmarks ((Bondarenko et al., 2022; 051

Jin et al., 2023)) for causal reasoning focus on 052

clean, abstract scenarios where the causal structure 053

is either simple or implicitly assumed. As a result, 054

they fail to reflect the challenges faced in real-world 055

reasoning, where observations are often noisy, in- 056

complete, or confounded by irrelevant information. 057

Moreover, current models ((Lasheras et al., 2025; 058

Luo et al., 2025)) typically treat causal reasoning 059

as a generic prediction problem, without explic- 060

itly modeling the dependencies or structure that 061

underlie the task. This limits their interpretability 062

and makes them fragile in the presence of spurious 063

associations or misleading correlations. 064

To address these limitations, we introduce Noisy- 065
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Causal, a new benchmark dataset specifically de-066

signed to evaluate causal reasoning under realistic,067

structured noise. Each instance in NoisyCausal is068

generated from a well-defined causal graph that069

encodes the actual dependencies among variables.070

A corresponding natural language scenario is con-071

structed around this structure, such as a medical,072

mechanical, or social context. From this back-073

ground, we generate variable values through a struc-074

tural causal model (SCM), ensuring that clean sam-075

ples are consistent with the causal rules. We then076

apply carefully designed perturbations—such as077

irrelevant variable injection, value flipping, partial078

observability, and latent confounding—to simulate079

noise and ambiguity in a controlled fashion. This080

allows us to construct samples of varying complex-081

ity and difficulty, enabling fine-grained analysis of082

model robustness, reasoning fidelity, and general-083

ization.084

This benchmark enables robust evaluation and085

motivates the design of a modular framework that086

can leverage its structured signals for improved rea-087

soning. Complementing the dataset, we propose088

a causal reasoning framework that leverages large089

language models (LLMs) in a structured and inter-090

pretable way. Rather than relying on end-to-end091

black-box architectures or symbolic graph propaga-092

tion, our model decomposes the reasoning process093

into modular steps. It begins by extracting task-094

relevant variables from the natural language prompt095

and constructing a causal graph that encodes direc-096

tional relationships among them. The LLM is then097

prompted to answer causal questions with the ob-098

served variables and the textualized graph structure.099

This design allows the system to retain LLMs’ flex-100

ibility and semantic richness while constraining the101

reasoning process using explicit causal structure.102

The causal graph serves as an interpretable inter-103

mediate and a way to guide the LLM’s attention104

toward plausible reasoning paths.105

Our approach brings several advantages. First,106

disentangling variable identification, structural107

modeling, and reasoning improves interpretabil-108

ity and modularity. Second, it supports flexible109

reasoning over noisy or incomplete inputs, as the110

LLM can adapt to uncertain observations while re-111

specting causal constraints. Third, it enables coun-112

terfactual and interventional reasoning via simple113

changes to the input graph or variable values, mak-114

ing it suitable for applications that require hypo-115

theticals or "what-if" analysis.116

We evaluate our method on the NoisyCausal117

benchmark and demonstrate that combining causal 118

structure with LLM reasoning leads to improved 119

performance over standard prompting baselines. 120

Our results suggest that structured prompting 121

grounded in causal graphs offers a promising direc- 122

tion for enabling LLMs to reason more faithfully 123

and robustly. 124

In summary, our contributions are: 125

• We introduce NoisyCausal, a new benchmark 126

for evaluating causal reasoning under struc- 127

tured noise, with explicit causal graphs, natu- 128

ral language scenarios, and controllable per- 129

turbations; 130

• We propose a modular framework that uses 131

causal graphs to structure the reasoning pro- 132

cess and delegates the final inference to a large 133

language model, combining interpretability 134

with linguistic flexibility; 135

• We provide empirical evidence that our 136

method improves performance and robustness 137

across various reasoning tasks compared to 138

baseline LLM prompting approaches. 139

2 Related Work 140

Causal Reasoning Benchmarks. Evaluating 141

models on causal reasoning has been an active re- 142

search area across NLP, vision, and knowledge rep- 143

resentation. Early work such as COPA ((Roemmele 144

et al., 2011)) focuses on binary selection between 145

plausible causes and effects, emphasizing shal- 146

low commonsense plausibility. Other datasets like 147

Event2Mind ((Rashkin et al., 2018)) and ATOMIC 148

((Sap et al., 2019)) extend this direction by mod- 149

eling causal commonsense in social and narrative 150

contexts. However, these benchmarks generally 151

rely on implicit structure, and models are not re- 152

quired to explicitly recover or reason over a formal 153

causal graph. 154

More recent datasets have attempted to bring 155

structural causal modeling into the evaluation loop. 156

CausalQA ((Bondarenko et al., 2022)) introduces 157

causal reasoning questions over tabular datasets, 158

involving do-calculus and interventions. Clad- 159

der ((Jin et al., 2023)) provides an algorithm that 160

can automatically generate causal reasoning ques- 161

tions. These efforts provide valuable insights but 162

are either limited in domain diversity, lack textual 163

grounding, or assume complete observability and 164

clean environments. Most notably, they do not ex- 165

plicitly test how models handle structured noise 166
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or spurious variables that may mislead correlation-167

based heuristics.168

Reasoning with Large Language Models.169

Large language models (LLMs) such as GPT-3170

((Brown et al., 2020)), PaLM ((Chowdhery et al.,171

2023)), and GPT-4 (Achiam et al., 2023) have172

demonstrated remarkable emergent capabilities in173

reasoning, planning, and few-shot generalization.174

Techniques such as chain-of-thought prompting175

((Wei et al., 2022)), tree-of-thought ((Yao et al.,176

2023a)), and ReAct ((Yao et al., 2023b)) have im-177

proved multi-step reasoning through intermediate178

generation. LLMs have also been used to assist179

with formal logic problems ((Pan et al., 2023)),180

math ((Zhou et al., 2023)), and tool use ((Yuan181

et al., 2024)). However, causal reasoning remains182

a uniquely difficult challenge for LLMs. Recent183

studies ((Jiang et al., 2023; Cheng et al., 2024))184

show that LLMs frequently confuse correlation185

with causation and fail to reason accurately about186

interventions or counterfactuals, especially in noisy187

or ambiguous environments. In many cases, mod-188

els default to learned statistical associations from189

pretraining corpora, rather than identifying mecha-190

nistic dependencies. For example, they may predict191

that "people who cough take medicine" without un-192

derstanding that coughing is an effect of illness and193

not a cause of recovery. These limitations highlight194

the need for structural guidance in the reasoning195

process.196

Causal Graph Modeling and Structured Infer-197

ence. Explicit causal modeling has a long his-198

tory in statistics and AI, with foundational work199

such as Pearl’s structural causal models ((Pearl,200

2009)) and the PC/FCI family of causal discov-201

ery algorithms ((Malinsky and Danks, 2018)). In202

machine learning, causal graphs have been inte-203

grated into representation learning ((Schölkopf204

et al., 2021)), counterfactual simulation ((Zuo et al.,205

2022)), and reinforcement learning ((Dasgupta206

et al., 2019)). Many recent approaches use graph207

neural networks (GNNs) to perform inference over208

learned or given causal graphs, such as CausalGNN209

((Wang et al., 2022)) or structure-aware transform-210

ers ((Chen et al., 2022)).211

3 Dataset Construction – The212

NoisyCausal Benchmark213

To rigorously evaluate causal reasoning capabil-214

ities in language models, we construct Noisy-215

Causal, a synthetic benchmark that couples sym- 216

bolic causal structure with realistic natural lan- 217

guage prompts and structured noise. The dataset 218

generation pipeline is illustrated in Figure 2. It 219

consists of five sequential stages: (1) causal graph 220

sampling, (2) semantic grounding, (3) structural 221

causal model (SCM) sampling, (4) structured noise 222

injection, and (5) natural language question assem- 223

bly. 224

Causal Graph Sampling We begin by generat- 225

ing a directed acyclic graph (DAG) G = (V,E), 226

where each node vi ∈ V represents an abstract vari- 227

able and each edge (vi → vj) ∈ E denotes a direct 228

causal influence. To encourage structural diversity, 229

we vary graph size between 3 and 7 nodes and sam- 230

ple from multiple topological motifs such as chains, 231

forks, colliders, and graphs with multiple converg- 232

ing parents. We use topological sorting to ensure 233

acyclicity and discard any cyclic or disconnected 234

graphs. Each generated graph forms the backbone 235

of an eventual reasoning instance. 236

Semantic Grounding Once a graph is sampled, 237

we assign each node a real-world semantic label 238

based on predefined domains such as medicine, ed- 239

ucation, and economics. For example, a path like 240

A → B → C may be interpreted as “infection 241

causes medication intake, which affects recovery.” 242

These labels are drawn from a curated vocabulary 243

and adjusted to ensure internal coherence within 244

the scenario. In addition, we assign metadata to 245

each variable, including its type (binary, categor- 246

ical, continuous), observability (observable or la- 247

tent), and role (e.g., symptom, cause, mediator, or 248

outcome). The whole graph is then embedded into 249

a naturalistic background story, serving as context 250

for downstream reasoning questions. 251

SCM Sampling Given a semantically grounded 252

causal graph, we generate a consistent assign- 253

ment of variable values by sampling from a struc- 254

tural causal model (SCM). Each node is associ- 255

ated with a structural equation fi that determines 256

its value based on its parents. The form of fi 257

is sampled from a class of logic-based or proba- 258

bilistic rules: binary nodes may use logical con- 259

junction/disjunction, categorical nodes may fol- 260

low lookup tables with probabilistic outputs, and 261

continuous nodes are defined using additive or 262

threshold-based functions. Sampling proceeds in 263

topological order to respect causality. For exam- 264

ple, given a scenario where A represents infection, 265

3



Randomly sample a 
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Assign Variable and 
values
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A

B C

Z

A

C

P(A)=0.1
P(B|A)=0.7
……

Generate Noisy Causal Questions
There is a disease. Now we know that 10% people get infected. 70% people will take 

medicine if they are infected. 30% people will take medicine even if they are not 

infected. 90% people will recover in three days if they take medicine. 40% people will 

recover in three days if they don’t take medicine. Also, 90% of people who live in 

sunny areas recover faster.

Question: What’s the ratio of people that are still infected?

Figure 2: Overview of the NoisyCausal dataset construction pipeline. The process begins by randomly sampling
a causal graph and embedding it into a realistic real-world scenario (e.g., modeling infection, medicine intake,
and recovery). Each variable is assigned a semantic role and a probabilistic function. Clean, noise-free natural
language questions are then generated from this grounded causal model. To simulate real-world uncertainty,
we inject structured noise—such as irrelevant variables, value perturbations, latent confounders, and missing
information—into both the graph and variable observations. This leads to the synthesis of multiple noisy instances,
which are then used to formulate diverse, linguistically fluent reasoning questions. The resulting dataset enables
rigorous evaluation of causal reasoning robustness in large language models across varying noise conditions.

B represents taking medicine, and C represents266

recovery, we may specify: P (A = 1) = 0.1267

(10% infection rate), P (B = 1|A = 1) = 0.7,268

P (B = 1|A = 0) = 0.3 (higher medicine up-269

take among infected), P (C = 1|A = 1) = 0.4,270

P (C = 1|B = 1) = 0.9 (recovery probability271

conditioned on infection or treatment).272

Such probabilistic dependencies instantiate clean273

observational traces that reflect the underlying274

causal mechanisms.275

Structured Noise Injection To model real-world276

imperfections, we introduce structured noise types277

that distort variable values, the causal relation-278

ships, or the question context. Here, we organize279

the noise types from local variable-level perturba-280

tions to higher-level structural and linguistic dis-281

turbances. These include: Value Perturbation282

(VP): Randomly alter variable assignments. For283

example, flipping the value of C (recovery) from 1284

to 0 even if the structural model predicts recovery;285

Irrelevant Variable Injection (IV): Introduce non-286

causal variables (e.g., "drinks tea") that correlate287

spuriously with outcomes like recovery, mislead-288

ing LLMs; Partial Masking (PM): Hide values289

of selected observed variables (e.g., B), simulating290

missing information scenarios that force the model291

to reason under uncertainty; Causal Swap (CS):292

Swap values of causally linked nodes (e.g., B and293

C), which breaks conditional logic (e.g., makes it294

appear that recovery causes medicine intake); La-295

tent Confounders (CI): Simulate hidden variables296

influencing multiple nodes (e.g., an unobserved 297

variable Z influencing both A and C), introduc- 298

ing dependencies not shown in the observed graph; 299

Question Perturbation (QP): Modify or corrupt 300

the question such that its assumptions contradict 301

the proper SCM (e.g., asking about outcomes under 302

counterfactual settings that are logically inconsis- 303

tent). 304

Each noise type is applied under a controlled 305

probability distribution and can be composed with 306

others to simulate increasingly challenging infer- 307

ence conditions. This allows for fine-grained con- 308

trol over task difficulty and supports comprehensive 309

robustness evaluation. Clean and noisy variants of 310

each sample are stored in parallel to enable con- 311

trastive evaluation and supervision. 312

Natural Language QA Assembly Finally, we 313

transform each data instance into a natural lan- 314

guage prompt and a reasoning question. The gen- 315

erated text explicitly or implicitly reflects the as- 316

signed probabilities and variable interactions de- 317

fined in Step 3 for each scenario. For instance, a 318

prompt may state: "Only 10% of people are in- 319

fected. Among those infected, 70% take medicine. 320

Medicine leads to recovery in 90% of cases. What 321

is the likelihood that someone recovers if infected 322

and takes medicine?" We support several task types, 323

including interventional queries ("If the patient 324

had not taken medicine, what would happen?"), 325

counterfactual reasoning ("Had the infection not 326

occurred, would recovery still be likely?"), More- 327
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over, attributional analysis ("What caused the re-328

covery?"). The background scenario is narrated329

fluently, and variable names are embedded into the330

text using handcrafted templates and paraphrasing331

engines to produce diverse and natural questions.332

Answers are derived based on the clean SCM and333

the causal graph, even in the presence of distractors334

or inconsistent evidence.335

4 Causal Graph-Based Reasoning Model336

To enable robust causal reasoning under noisy nat-337

ural language conditions, we propose a framework338

that integrates lightweight causal graph construc-339

tion with large language models (LLMs). Instead of340

relying on symbolic inference or message-passing341

algorithms, we use causal graphs as intermediate,342

interpretable structures that organize relevant vari-343

ables and their directional relationships. The LLM344

then performs reasoning based on this structured345

representation.346

The process begins with variable extraction,347

where the LLM identifies key entities (e.g., “fever”,348

“medicine”) and latent factors (e.g., “infection”)349

from the background context. Next, we con-350

struct a task-specific causal graph using LLM-351

based prompting: for each variable pair, the model352

predicts causal directionality, forming a directed353

acyclic graph. Low-confidence or inconsistent354

edges are post-processed or deferred.355

Once the graph is built, we compile a natural356

language prompt containing the background, ob-357

served variable values, and a textual description of358

the graph. The LLM uses this structured input to359

answer the reasoning question, producing answers360

that reflect both surface context and the underlying361

causal structure.362

This architecture enhances explainability, sup-363

ports counterfactual queries via prompt edits, and364

improves robustness under noise. By separating365

structure extraction from inference, our method en-366

courages causal reasoning over correlation, bridg-367

ing symbolic structure and LLM flexibility.368

5 Experiments369

5.1 Datasets370

Our primary evaluation dataset is NoisyCausal, a371

synthetic benchmark containing 10,617 question-372

answer pairs with controlled causal structures and373

structured noise injections. Each instance includes374

a natural language background, an observation set375

(clean or perturbed), a causal reasoning question,376

User Questions

Variable Extraction

A: Inflection
B: Medicine  
C: Recovery 

P(A)=0.1
P(B|A)=0.7
……

Causal Graph 
Construction

A

B C

0.7

0.9

P(A)=0.1

Q: P(C=1|A=1)

0.4

Calculate

Q: P(C=1|A=1)

P(C=1|A=1)=
P(B=1|A=1)*P(
C=1|B=1)+P(B=
0|A=1)*P(C=1|
B=0)=0.75

Figure 3: Overview of the graph-guided causal reason-
ing framework. The process begins by extracting task-
relevant variables and constructing a question-specific
causal graph via LLM prompting. This graph encodes
directional relationships among variables (e.g., “infec-
tion” causes “medicine”, which causes “recovery”). Ob-
served variable values and graph structure are then con-
verted into a structured natural language prompt, which
is passed to an LLM for final inference.

and the ground-truth answer derived from a sym- 377

bolic SCM. We evaluate models under six primary 378

noise types (Value Perturbation, Irrelevant Vari- 379

ables, Causal Swap, Partial Masking, Confounders, 380

and Question Perturbation) and multi-noise com- 381

binations of increasing difficulty. We also report 382

results on the Cladder datasets for generalization. 383

5.2 Main Results 384

Table 1 presents the performance of various mod- 385

els on the NoisyCausal benchmark and the exter- 386

nal Cladder dataset. Our graph-guided method 387

achieves the highest accuracy across all conditions, 388

including both clean and noisy settings. In the 389

noise-free case, it reaches 80.7% accuracy, outper- 390

forming GPT-4 (62.8%) and Causal CoT (73.4%), 391

indicating that structural guidance improves even 392

standard reasoning. Under structured noise types 393

such as value perturbation (VP), irrelevant vari- 394

ables (IV), and latent confounders (CI), traditional 395

LLMs and CoT-style methods show noticeable 396

degradation, with GPT-3.5 falling to as low as 397

43.8% on question perturbation (QP). In contrast, 398

our model maintains stable performance across all 399

perturbations (e.g., 77.3% on VP, 74.6% on IV, 400

73.5% on CI), highlighting its robustness to un- 401

certainty. While advanced prompting strategies 402

like ToT, ReAct, and Reflexion offer moderate 403

gains over vanilla prompting, they are still sen- 404

sitive to causal inconsistencies such as swaps or 405

confounders. Finally, our model generalizes well 406

to Cladder, achieving 82.3% accuracy without task- 407

specific tuning, outperforming all baselines. These 408

results demonstrate the benefit of combining causal 409

structure with LLMs for robust and interpretable 410

reasoning under noisy conditions. 411
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Table 1: Accuracy (%) of different methods across datasets and noise types. The left block shows performance on
our NoisyCausal benchmark under different noise types (VP: Value Perturbation, IV: Irrelevant Variable, etc.); the
right block shows generalization to Cladder without task-specific tuning.

Model NoisyCausal External Dataset
W/O Noise VP IV CS PM CI QP Cladder

GPT-3.5((Brown et al., 2020)) 57.9 54.2 49.6 44.7 52.0 47.1 43.8 52.2
GPT-4((Achiam et al., 2023)) 62.8 60.4 56.3 50.1 59.8 54.0 48.5 62.0
LLaMa((Touvron et al., 2023)) 52.4 50.1 45.7 41.3 48.9 42.6 40.7 44.0
Alpaca((Taori et al., 2023)) 53.6 51.4 46.6 42.0 50.3 43.8 41.2 44.7
CoT((Wei et al., 2022)) 65.5 63.5 58.9 55.4 60.8 56.2 53.3 –
ToT((Yao et al., 2023a)) 68.3 65.1 61.7 57.2 63.4 59.5 54.6 –
ReAct((Yao et al., 2023b)) 64.5 64.2 60.4 56.1 62.5 57.0 52.7 –
Reflexion((Shinn et al., 2023)) 67.8 65.7 62.3 58.4 64.1 60.2 56.9 –
Causal CoT((Jin et al., 2023)) 73.4 70.4 66.9 63.1 68.8 65.2 60.7 70.4
Ours (Graph-Guided) 80.7 77.3 74.6 71.8 76.2 73.5 69.9 82.3

Table 2: Ablation study results on the NoisyCausal
benchmark (Accuracy %). Each variant removes or
alters a specific component of our full model to evaluate
its contribution. The final block shows the performance
drop as more types of noise are combined.

Ablation Setting Accuracy (%) vs. Full Model

Full Model (Ours) 80.68 –

Graph Structure and Variable Semantics
No Graph 65.32 -15.36
Random Graph 60.87 -19.81
Shuffled Variable Names 63.41 -17.27

Prompt Design and Language Robustness
Edge-Only Prompt 74.34 -6.34
Natural Prompt 78.92 -1.76
Question Variation 80.12 -0.56

Cumulative Noise Combinations
1 Noise Type 73.47 -7.21
2 Noise Types 67.32 -13.36
3 Noise Types 63.45 -17.23
4 Noise Types 60.51 -20.17
All 6 Noise Types 57.98 -22.70

5.3 Ablation Studies412

To better understand the effectiveness and robust-413

ness of our proposed framework, we conduct a414

comprehensive set of ablation studies. These ex-415

periments are designed to isolate and evaluate the416

contributions of individual components within the417

system, including the causal graph, prompt design,418

and resilience under increasingly noisy conditions.419

As shown in Table 2, our analysis is structured into420

three categories.421

Graph Structure and Variable Semantics. We422

first examine how the presence and correctness of423

causal structure influence reasoning. Removing424

the causal graph entirely (No Graph) results in sig-425

nificant performance degradation, indicating that 426

the model falls back on shallow statistical heuris- 427

tics. Replacing the ground-truth graph with a struc- 428

turally equivalent but randomly rewired version 429

(Random Graph) leads to even lower accuracy, con- 430

firming that not only the existence of structure but 431

its correctness is crucial. We also test the impact 432

of variable naming by shuffling variable names 433

across the graph (Shuffled Variable Names), which 434

disrupts semantic alignment with the question and 435

causes further degradation. These results suggest 436

that structural topology and linguistic consistency 437

contribute substantially to model performance. 438

Prompt Design and Language Robustness. We 439

evaluate the effect of different ways of presenting 440

the graph on the model. Switching from natural 441

language descriptions to a structured prompt (full 442

model) format improves robustness slightly. Pro- 443

viding the graph as an edge list alone (Edge-Only 444

Prompt) hurts performance, likely due to the lack 445

of reasoning context. We also test Question Varia- 446

tion by paraphrasing the same prompt in different 447

syntactic forms. The model maintains stable per- 448

formance, suggesting it generalizes well to surface- 449

level linguistic changes. 450

Cumulative Noise Combinations. To assess the 451

model’s robustness under compounding uncer- 452

tainty, we introduce a new ablation protocol where 453

noise types are randomly sampled and composed. 454

Instead of isolating individual noise categories (e.g., 455

Value Perturbation or Confounder Injection), we 456

incrementally combine multiple types to simulate 457

more realistic and challenging environments. We 458

observe a graceful decline in performance as the 459
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number of noise types increases: from 73.47% ac-460

curacy with one noise type to 57.98% when all six461

types are combined.462

Summary Together, these ablation studies high-463

light several insights: (1) the presence and correct-464

ness of the causal graph structure play a central role465

in reasoning quality, (2) LLMs benefit from natu-466

ral language contextualization of structure, not just467

formal edge lists, (3) robustness varies significantly468

across different types of noise, with distractors and469

confounders posing the most serious challenges,470

and (4) variable and graph extraction modules must471

be accurate and well-calibrated, as small mistakes472

can propagate downstream. These findings further473

support the design philosophy of using causal struc-474

ture to constrain and guide LLM-based reasoning475

under uncertainty.476

5.4 Graph Perturbation Sensitivity477

In ablation studies, we noticed that the correctness478

of the causal graph structure plays a central role in479

reasoning quality. Hence, we want to explore the480

graph perturbation sensitivity further. Here, we per-481

form a controlled structural perturbation analysis.482

Starting from the ground-truth graph, we introduce483

common types of errors: edge deletion (ED), where484

key connections are removed; false edge injection485

(FE), where spurious edges are added; and edge486

direction reversal (DR), which flips the cause-and-487

effect direction of existing edges. As shown in Fig-488

ure 4, we evaluate three types of structural noise:489

Edge Deletion, False Edge Injection, and Direction490

Reversal, each applied with increasing numbers491

of errors (1–4). we find that while the model is492

relatively robust to minor edge deletion, it is sig-493

nificantly more sensitive to misleading or reversed494

causal links. In particular, direction reversal leads495

to the steepest performance drop, indicating that in-496

correct directional flow severely disrupts reasoning497

chains. These results emphasize the importance498

of accurate graph construction and motivate future499

research in validating or refining LLM-generated500

causal graphs before inference.501

5.5 Structure Discovery Reliability502

A key component of our framework is the ability to503

automatically construct causal graphs from natural504

language using a prompted large language model505

(LLM). While our downstream performance sug-506

gests that these structures are often useful, we seek507

to evaluate the accuracy and reliability of LLM-508

Table 3: Structure discovery performance across models,
noise levels, and prompt designs. Reported: Edge-level
Precision / Recall / F1 (%).

Condition Precision Recall F1 Score

GPT-4 (clean, structured prompt) 87.1 83.5 85.2
GPT-4 (value perturbed) 81.3 78.9 80.1
GPT-4 (confounding + masking) 76.2 72.1 74.1
GPT-4 (clean, natural prompt) 82.5 77.4 79.8

LLaMA-2 (clean, structured prompt) 65.4 60.7 62.9
LLaMA-2 (value perturbed) 60.4 57.6 58.9
LLaMA-2 (confounding + masking) 52.3 49.6 50.9

extracted graphs directly. To this end, we select 509

1000 NoisyCausal examples with known ground- 510

truth graphs and prompt the LLM to extract rele- 511

vant variables and causal edges. We compare the 512

predicted graphs to the ground truth using edge- 513

level Precision, Recall, and F1 score. 514

We evaluate performance across three axes: (1) 515

different noise levels (clean vs. perturbed vs. 516

masked/confounded), (2) prompt styles (structured 517

vs. natural language), and (3) model types (GPT-4 518

vs. LLaMA). Results in Table 3 show that GPT-4 519

achieves high accuracy in clean settings (F1 > 85) 520

and remains robust under moderate noise, while 521

smaller models like LLaMA degrade significantly. 522

Structured prompts yield better extraction quality 523

than open-ended instructions. These findings sug- 524

gest that LLMs can recover causal structure with 525

reasonable fidelity, but remain sensitive to input 526

noise and prompt formulation—highlighting the 527

need for better prompt calibration, graph valida- 528

tion, or hybrid symbolic support. 529

5.6 Error Typology Analysis 530

To gain deeper insights into the types of failures 531

exhibited by our model, we conduct a qualitative 532

and quantitative analysis of model errors across 533

the NoisyCausal benchmark. Specifically, we man- 534

ually inspect a representative subset of incorrect 535

predictions and categorize them into distinct er- 536

ror types based on their underlying cause. This 537

analysis allows us to better understand how dif- 538

ferent forms of reasoning breakdown occur and 539

how they relate to specific challenges introduced 540

by structured noise. We define the following error 541

categories: E1. Variable Identification Failure: 542

The model fails to recognize or track a key variable 543

mentioned in the prompt (e.g., overlooks a latent 544

confounder or misidentifies the target outcome); 545

E2. Causal Path Misinterpretation: The model 546

identifies variables but incorrectly infers the causal 547

direction or reasoning chain (e.g., infers recovery 548
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→ medicine instead of medicine → recovery); E3.549

Numerical Reasoning Error: The model iden-550

tifies the structure correctly but fails to compute551

or compare probabilities accurately, often due to552

surface-level heuristics; E4. Distractor Overfit-553

ting: The model is misled by irrelevant or spurious554

variables introduced as structured noise, such as555

"people who drink tea recover faster"; E5. Ques-556

tion Misalignment: The model misunderstands the557

logical intent of the question, especially in counter-558

factual or interventional settings.559

We randomly sample 100 error cases from the560

validation set across all six noise types and assign561

each error to one of the five categories. The results562

are summarized in Figure 5563

The most common failure mode involves incor-564

rect causal path interpretation (E2), especially in565

the presence of swapped edges or latent confound-566

ing. This highlights the need for stronger graph567

validation or constraint mechanisms. A substantial568

portion of errors are also due to distractor over-569

fitting (E4), suggesting that LLMs still struggle to570

distinguish spurious associations even when guided571

by structure. Interestingly, numerical reasoning er-572

rors (E3) are not limited to statistical estimation,573

but also occur when conflicting cues (e.g., base574

rates vs conditional probabilities) are present.575

These findings underscore the multifaceted na-576

ture of causal reasoning errors and suggest that577

future improvements should not only target graph578

construction accuracy, but also incorporate better579

reasoning supervision, distractor suppression, and580

probabilistic calibration.581

5.7 Belief-Inconsistent Perturbation582

We design a new experiment to evaluate model583

robustness when exposed to misleading but struc-584

turally irrelevant contextual beliefs. Specifically,585

we introduce Belief-Inconsistent Perturbation586

Table 4: Performance under Belief-Inconsistent Perturbation
(BIP). Accuracy (%) on original and belief-perturbed ques-
tions.

Model Original + BIP

GPT-3.5 57.9 51.2
GPT-4 62.8 56.7
Causal CoT 73.4 69.1
Ours (Graph-Guided) 80.7 79.5

(BIP), where the prompt includes incorrect or 587

commonly held misconceptions that contradict the 588

underlying causal graph, while the actual vari- 589

able relationships and numerical values remain 590

unchanged. For example, the scenario may state 591

“Many people believe that taking medicine in- 592

creases the chance of infection,” even though the 593

true causal direction is Infection → Medicine. 594

We inject such statements into 1000 clean Noisy- 595

Causal instances and compare performance with 596

the original versions. As shown in Table 4, models 597

relying on surface-level reasoning (e.g., GPT-3.5, 598

GPT-4) show notable accuracy drops (up to 6%), 599

suggesting vulnerability to belief-level cues. In con- 600

trast, our graph-guided model degrades minimally, 601

demonstrating that structural grounding improves 602

resistance to contextual bias. 603

6 Conclusion 604

We introduced NoisyCausal, a benchmark for eval- 605

uating LLMs’ causal reasoning under structured 606

noise. Each instance is grounded in a causal graph 607

and perturbed with distractors, confounders, or in- 608

consistent information to assess robustness and rea- 609

soning fidelity. To address this challenge, we pro- 610

posed a modular graph-guided framework that ex- 611

tracts variables and constructs causal graphs from 612

natural language, reformulating the task into struc- 613

tured prompts for more interpretable and noise- 614

resilient inference. Experiments show our method 615

consistently outperforms standard prompting and 616

generalizes well to external datasets like Cladder. 617

Ablation studies highlight the importance of ac- 618

curate structure and prompt design. Looking for- 619

ward, NoisyCausal can support future research in 620

causally aware LLMs, including extensions to real- 621

world and multimodal tasks, and improvements in 622

efficiency via lightweight reasoning agents. Our 623

findings demonstrate the value of combining sym- 624

bolic structure with language-based reasoning for 625

robust and faithful AI. 626
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7 Limitations627

While our framework shows strong performance628

under noisy conditions, several limitations remain.629

First, it relies on LLM-based variable extraction630

and graph construction, which may introduce cas-631

cading errors. Future work could incorporate con-632

fidence estimation or correction mechanisms to633

improve stability. Second, the current modular634

design lacks end-to-end optimization. Joint train-635

ing of variable extractors and graph builders, or636

lightweight finetuning strategies, may enhance ro-637

bustness in low-resource settings. Third, although638

NoisyCausal includes diverse synthetic noise, real-639

world generalization remains untested. Future640

benchmarks with real or multimodal data (e.g., ta-641

bles, images) are needed to evaluate broader ap-642

plicability. Finally, our method assumes a recov-643

erable structure from the input. Open-domain or644

discourse-level tasks may require stronger integra-645

tion with causal discovery or contrastive learning646

to infer latent structure.647

AI Disclosure We used ChatGPT solely for gram-648

mar correction and language polishing. All re-649

search content, literature analysis, and writing were650

conducted independently by the authors.651
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A Dataset Composition and Annotation.798

Each NoisyCausal instance includes: (1) a natural799

language background and reasoning question, (2) a800

corresponding causal graph G (optionally provided801

to models), (3) both clean and noisy variable as-802

signments, (4) the correct answer computed from803

the SCM, and (5) metadata describing the applied804

noise types and severity. These components allow805

NoisyCausal to support robust benchmarking of806

causal reasoning across structured noise conditions,807

enabling diagnostic insights into model behavior808

under uncertainty.809

B Example of different noise injection810

To supplement the formal definitions of structured811

noise in the main text, Table 5 presents concrete812

examples illustrating each perturbation type used813

in the NoisyCausal benchmark. For clarity, all ex-814

amples are based on a common question template,815

with only one modification applied per instance.816

The modified elements are highlighted in red to817

isolate the injected noise.818

Beyond showcasing what is perturbed, we also819

annotate which part of the causal reasoning pipeline820

is likely to be affected—such as conditional depen-821

dencies, causal directions, variable observability, or822

question alignment. These annotations help clarify823

how each type of noise challenges specific reason-824

ing skills, including structure tracking, probabilis-825

tic reasoning, confounder adjustment, and counter-826

factual inference.827

This appendix serves as a reference to under-828

stand better how different noise patterns are in-829

stantiated in our dataset and how they may induce830

distinct failure modes in language-based causal rea-831

soning models.832

C Faliure Cases With Graph833

Perturbation834

Table 6 illustrates representative failure cases in835

causal reasoning arising from incorrect or incom-836

plete causal graph structures. While the numeri-837

cal calculations may appear sound in both exam-838

ples, the underlying assumptions encoded in the839

graph are flawed—leading to misinterpretation of840

the causal mechanisms.841

In the first case, the model incorrectly assumes842

that taking medicine (X) causes infection status (843

Z), inverting the actual causal direction. Although844

the resulting infection rate appears numerically cor-845

rect, this structure violates causal semantics and846

will fail to generalize to interventions or counter- 847

factual queries. In the second case, the model omits 848

a critical confounder (S)—student ability—which 849

influences both the treatment (tutoring, T) and the 850

outcome (exam pass, E). Without adjusting for this 851

hidden variable, the estimated treatment effect con- 852

flates correlation with causation, yielding biased 853

results. 854

These examples demonstrate that correct causal 855

reasoning depends not only on correct math, but 856

on correctly structured causal assumptions. They 857

further underscore the importance of evaluating 858

both the output and the underlying causal model in 859

language-based reasoning systems. 860
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Noise Type Modified Question (red = perturbed) What is Perturbed Potential Impact

VP: Value Perturbation There is a disease.
Now we know that 10% people get infected.
70% people will take medicine if they are infected.
30% people will take medicine even if they are not infected.
80% people will recover in three days if they take medicine.
40% people will recover in three days if they don’t take medicine.
Question: What’s the ratio of people that are still infected?

Numerical value of
P (C | B) changed
from 90% to 80%

Underestimates true ef-
fect of treatment, weaken-
ing causal inference.

IV: Irrelevant Variable In-
jection

There is a disease.
Now we know that 10% people get infected.
70% people will take medicine if they are infected.
30% people will take medicine even if they are not infected.
90% people will recover in three days if they take medicine.
40% people will recover in three days if they don’t take medicine.
Also, 90% of people who live in sunny areas recover faster.
Question: What’s the ratio of people that are still infected?

Injection of irrelevant but
highly correlated variable

Model may confuse cor-
relation with causation,
leading to spurious infer-
ence.

CS: Causal Swap There is a disease.
Now we know that 10% people get infected.
People who recover are more likely to have taken medicine.
70% people will take medicine if they are infected.
30% people will take medicine even if they are not infected.
90% people will recover in three days if they take medicine.
40% people will recover in three days if they don’t take medicine.
Question: What’s the ratio of people that are still infected?

Causal direction reversed
(C → B instead of
B → C)

Misleads the model to re-
verse causal flow, impact-
ing reasoning fidelity.

PM: Partial Masking There is a disease.
Now we know that 10% people get infected.
(Missing) 70% people will take medicine if they are infected.
30% people will take medicine even if they are not infected.
90% people will recover in three days if they take medicine.
40% people will recover in three days if they don’t take medicine.
Question: What’s the ratio of people that are still infected?

Removal of conditional
dependency P (B | A)

Model must reason under
uncertainty or fail grace-
fully.

CI: Confounder Injection There is a disease.
Now we know that 10% people get infected.
70% people will take medicine if they are infected.
30% people will take medicine even if they are not infected.
90% people will recover in three days if they take medicine.
40% people will recover in three days if they don’t take medicine.
Also, people with strong immune systems tend to both recover
more quickly and are less likely to take medicine.
Question: What’s the ratio of people that are still infected?

Latent confounder
Z added (Z → B,
Z → C)

Introduces backdoor path,
potentially biases causal
reasoning.

QP: Question Perturba-
tion

There is a disease.
Now we know that 10% people get infected.
70% people will take medicine if they are infected.
30% people will take medicine even if they are not infected.
90% people will recover in three days if they take medicine.
40% people will recover in three days if they don’t take medicine.
Question: If people did not get infected but still took medicine,
will they definitely recover?

Question contradicts
causal structure

Forces model to answer
counterfactual inconsis-
tent with given SCM.

Table 5: Illustration of six structured noise types in NoisyCausal. Modified questions include targeted perturbations
(highlighted in red) that affect different components of causal reasoning, such as structure, semantics, or inference
assumptions.
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Table 6: Failure Cases in Causal Reasoning Due to Incorrect Graph Structures

Error Type Original Question and Reasoning Error Incorrect
Causal
Graph

Correct
Causal
Graph

Graph Pertur-
bation (X →
Z)

10% of people are infected. 70% of infected take medicine;
30% of uninfected also take medicine. 90% recover in 3 days
if treated; 40% recover otherwise.
Question: What is the infection rate?
Incorrect reasoning:
1. P (X = 1) = 0.7 · 0.1 + 0.3 · 0.9 = 0.34
2. P (Z = 1|X = 1) = 0.7·0.1

0.34 ≈ 0.2059
3. P (Z = 1|X = 0) = 0.3·0.1

0.66 ≈ 0.0455
4. Final: P (Z = 1) ≈ 0.2059 · 0.34 + 0.0455 · 0.66 ≈ 0.10
Flaw: Wrong causal direction (X causes Z), leads to incorrect
inversion logic.
Correct Answer : 0.025

X → Z
Z → Y
X → Y

Z → X
Z → Y
X → Y

Graph
Perturba-
tion(Delete
Edge S → E)

25% of students received tutoring. 80% of them passed; 50%
passed without it. 40% of students have strong ability and
always pass, regardless of tutoring.
Question: What is the pass rate?
Incorrect reasoning:
Enumerate combinations:
S=1,T=1: 0.4 · 0.25 · 0.8 = 0.08
S=1,T=0: 0.4 · 0.75 · 1 = 0.30
S=0,T=1: 0.6 · 0.25 · 0.8 = 0.12
S=0,T=0: 0.6 · 0.75 · 0.5 = 0.225
Total: P (E = 1) = 0.08 + 0.30 + 0.12 + 0.225 = 0.725
Flaw: S is a confounder for both T and E, and not controlling
for it leads to misleading observational estimates.
Correct Answer: 0.745

T → E S → E
T → E
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