NoisyCausal: A Benchmark for Evaluating Causal Reasoning Under
Structured Noise

Anonymous ACL submission

Abstract

Causal reasoning in natural language requires
identifying relevant variables, understanding
their interactions, and reasoning about effects
and interventions, often under noisy or ambigu-
ous conditions. While large language models
(LLMs) exhibit strong general reasoning abil-
ities, they struggle to disentangle correlation
from causation, particularly when observations
are partially incorrect or irrelevant information
is present. In this work, we introduce Noisy-
Causal, a new benchmark designed to eval-
uate causal reasoning under structured noise.
Each instance is generated from a ground-truth
causal graph and contextualized with a natu-
ral language scenario by injecting controllable
forms of noise, such as irrelevant distractors,
value perturbations, confounding, and partial
observability. Moreover, we propose a modu-
lar reasoning framework that combines LL.Ms
with explicit causal structure to address these
challenges. Our method prompts the LLM to
extract variables, construct a causal graph from
context, and then reformulates the reasoning
task as a structured prompt grounded in this
graph. Rather than relying on statistical pat-
terns alone, the LLM is guided by symbolic
structure, enabling more interpretable and ro-
bust inference. Experimental results show that
our method significantly outperforms standard
prompting and reasoning baselines on Noisy-
Causal. Furthermore, it generalizes well to
external benchmarks such as Cladder without
task-specific tuning. Our findings highlight the
importance of combining causal abstractions
with language-driven reasoning to achieve faith-
ful and robust causal understanding in LLMs.

1 Introduction

Causal reasoning is a fundamental component of
human cognition and a critical capability for intel-
ligent systems. It enables agents to go beyond
surface-level statistical correlations and instead
identify underlying mechanisms that govern ob-
servations, support counterfactual thinking, and
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Figure 1: Existing causal reasoning datasets are of-
ten constructed with clean, idealized scenarios and di-
rect causal questions, allowing large language models
(LLMs) to succeed via pattern matching or shallow
heuristics. As shown on the left, these settings typically
lack noise, distractors, or confounding variables, which
leads to overly optimistic estimates of reasoning ability.
In contrast, NoisyCausal (right) introduces structured,
diverse forms of noise—including value perturbations,
irrelevant information, and latent confounders—to sim-
ulate more realistic and challenging environments.

generalize across domains. While recent advances
in machine learning have led to impressive progress
in language understanding, these systems often fall
short when confronted with tasks that require struc-
tured reasoning about cause and effect, especially
under uncertainty or noise.

Existing benchmarks ((Bondarenko et al., 2022;
Jin et al., 2023)) for causal reasoning focus on
clean, abstract scenarios where the causal structure
is either simple or implicitly assumed. As a result,
they fail to reflect the challenges faced in real-world
reasoning, where observations are often noisy, in-
complete, or confounded by irrelevant information.
Moreover, current models ((Lasheras et al., 2025;
Luo et al., 2025)) typically treat causal reasoning
as a generic prediction problem, without explic-
itly modeling the dependencies or structure that
underlie the task. This limits their interpretability
and makes them fragile in the presence of spurious
associations or misleading correlations.

To address these limitations, we introduce Noisy-



Causal, a new benchmark dataset specifically de-
signed to evaluate causal reasoning under realistic,
structured noise. Each instance in NoisyCausal is
generated from a well-defined causal graph that
encodes the actual dependencies among variables.
A corresponding natural language scenario is con-
structed around this structure, such as a medical,
mechanical, or social context. From this back-
ground, we generate variable values through a struc-
tural causal model (SCM), ensuring that clean sam-
ples are consistent with the causal rules. We then
apply carefully designed perturbations—such as
irrelevant variable injection, value flipping, partial
observability, and latent confounding—to simulate
noise and ambiguity in a controlled fashion. This
allows us to construct samples of varying complex-
ity and difficulty, enabling fine-grained analysis of
model robustness, reasoning fidelity, and general-
ization.

This benchmark enables robust evaluation and
motivates the design of a modular framework that
can leverage its structured signals for improved rea-
soning. Complementing the dataset, we propose
a causal reasoning framework that leverages large
language models (LLMs) in a structured and inter-
pretable way. Rather than relying on end-to-end
black-box architectures or symbolic graph propaga-
tion, our model decomposes the reasoning process
into modular steps. It begins by extracting task-
relevant variables from the natural language prompt
and constructing a causal graph that encodes direc-
tional relationships among them. The LLM is then
prompted to answer causal questions with the ob-
served variables and the textualized graph structure.
This design allows the system to retain LLMs’ flex-
ibility and semantic richness while constraining the
reasoning process using explicit causal structure.
The causal graph serves as an interpretable inter-
mediate and a way to guide the LLM’s attention
toward plausible reasoning paths.

Our approach brings several advantages. First,
disentangling variable identification, structural
modeling, and reasoning improves interpretabil-
ity and modularity. Second, it supports flexible
reasoning over noisy or incomplete inputs, as the
LLM can adapt to uncertain observations while re-
specting causal constraints. Third, it enables coun-
terfactual and interventional reasoning via simple
changes to the input graph or variable values, mak-
ing it suitable for applications that require hypo-
theticals or "what-if" analysis.

We evaluate our method on the NoisyCausal

benchmark and demonstrate that combining causal
structure with LLM reasoning leads to improved
performance over standard prompting baselines.
Our results suggest that structured prompting
grounded in causal graphs offers a promising direc-
tion for enabling LLMs to reason more faithfully
and robustly.
In summary, our contributions are:

* We introduce NoisyCausal, a new benchmark
for evaluating causal reasoning under struc-
tured noise, with explicit causal graphs, natu-
ral language scenarios, and controllable per-
turbations;

* We propose a modular framework that uses
causal graphs to structure the reasoning pro-
cess and delegates the final inference to a large
language model, combining interpretability
with linguistic flexibility;

* We provide empirical evidence that our
method improves performance and robustness
across various reasoning tasks compared to
baseline LLM prompting approaches.

2 Related Work

Causal Reasoning Benchmarks. Evaluating
models on causal reasoning has been an active re-
search area across NLP, vision, and knowledge rep-
resentation. Early work such as COPA ((Roemmele
et al., 2011)) focuses on binary selection between
plausible causes and effects, emphasizing shal-
low commonsense plausibility. Other datasets like
Event2Mind ((Rashkin et al., 2018)) and ATOMIC
((Sap et al., 2019)) extend this direction by mod-
eling causal commonsense in social and narrative
contexts. However, these benchmarks generally
rely on implicit structure, and models are not re-
quired to explicitly recover or reason over a formal
causal graph.

More recent datasets have attempted to bring
structural causal modeling into the evaluation loop.
CausalQA ((Bondarenko et al., 2022)) introduces
causal reasoning questions over tabular datasets,
involving do-calculus and interventions. Clad-
der ((Jin et al., 2023)) provides an algorithm that
can automatically generate causal reasoning ques-
tions. These efforts provide valuable insights but
are either limited in domain diversity, lack textual
grounding, or assume complete observability and
clean environments. Most notably, they do not ex-
plicitly test how models handle structured noise



or spurious variables that may mislead correlation-
based heuristics.

Reasoning with Large Language Models.
Large language models (LLMs) such as GPT-3
((Brown et al., 2020)), PaLM ((Chowdhery et al.,
2023)), and GPT-4 (Achiam et al., 2023) have
demonstrated remarkable emergent capabilities in
reasoning, planning, and few-shot generalization.
Techniques such as chain-of-thought prompting
((Wet et al., 2022)), tree-of-thought ((Yao et al.,
2023a)), and ReAct ((Yao et al., 2023b)) have im-
proved multi-step reasoning through intermediate
generation. LLLMs have also been used to assist
with formal logic problems ((Pan et al., 2023)),
math ((Zhou et al., 2023)), and tool use ((Yuan
et al., 2024)). However, causal reasoning remains
a uniquely difficult challenge for LLMs. Recent
studies ((Jiang et al., 2023; Cheng et al., 2024))
show that LLMs frequently confuse correlation
with causation and fail to reason accurately about
interventions or counterfactuals, especially in noisy
or ambiguous environments. In many cases, mod-
els default to learned statistical associations from
pretraining corpora, rather than identifying mecha-
nistic dependencies. For example, they may predict
that "people who cough take medicine" without un-
derstanding that coughing is an effect of illness and
not a cause of recovery. These limitations highlight
the need for structural guidance in the reasoning
process.

Causal Graph Modeling and Structured Infer-
ence. Explicit causal modeling has a long his-
tory in statistics and Al, with foundational work
such as Pearl’s structural causal models ((Pearl,
2009)) and the PC/FCI family of causal discov-
ery algorithms ((Malinsky and Danks, 2018)). In
machine learning, causal graphs have been inte-
grated into representation learning ((Scholkopf
et al., 2021)), counterfactual simulation ((Zuo et al.,
2022)), and reinforcement learning ((Dasgupta
et al., 2019)). Many recent approaches use graph
neural networks (GNNs) to perform inference over
learned or given causal graphs, such as Causal GNN
((Wang et al., 2022)) or structure-aware transform-
ers ((Chen et al., 2022)).

3 Dataset Construction — The
NoisyCausal Benchmark

To rigorously evaluate causal reasoning capabil-
ities in language models, we construct Noisy-

Causal, a synthetic benchmark that couples sym-
bolic causal structure with realistic natural lan-
guage prompts and structured noise. The dataset
generation pipeline is illustrated in Figure 2. It
consists of five sequential stages: (1) causal graph
sampling, (2) semantic grounding, (3) structural
causal model (SCM) sampling, (4) structured noise
injection, and (5) natural language question assem-
bly.

Causal Graph Sampling We begin by generat-
ing a directed acyclic graph (DAG) G = (V, E),
where each node v; € V represents an abstract vari-
able and each edge (v; — v;) € E denotes a direct
causal influence. To encourage structural diversity,
we vary graph size between 3 and 7 nodes and sam-
ple from multiple topological motifs such as chains,
forks, colliders, and graphs with multiple converg-
ing parents. We use topological sorting to ensure
acyclicity and discard any cyclic or disconnected
graphs. Each generated graph forms the backbone
of an eventual reasoning instance.

Semantic Grounding Once a graph is sampled,
we assign each node a real-world semantic label
based on predefined domains such as medicine, ed-
ucation, and economics. For example, a path like
A — B — (C may be interpreted as “infection
causes medication intake, which affects recovery.”
These labels are drawn from a curated vocabulary
and adjusted to ensure internal coherence within
the scenario. In addition, we assign metadata to
each variable, including its type (binary, categor-
ical, continuous), observability (observable or la-
tent), and role (e.g., symptom, cause, mediator, or
outcome). The whole graph is then embedded into
a naturalistic background story, serving as context
for downstream reasoning questions.

SCM Sampling Given a semantically grounded
causal graph, we generate a consistent assign-
ment of variable values by sampling from a struc-
tural causal model (SCM). Each node is associ-
ated with a structural equation f; that determines
its value based on its parents. The form of f;
is sampled from a class of logic-based or proba-
bilistic rules: binary nodes may use logical con-
junction/disjunction, categorical nodes may fol-
low lookup tables with probabilistic outputs, and
continuous nodes are defined using additive or
threshold-based functions. Sampling proceeds in
topological order to respect causality. For exam-
ple, given a scenario where A represents infection,
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There is a disease. Now we know that 10% people get infected. 70% people will take
medicine if they are infected. 30% people will take medicine even if they are not
infected. 90% people will recover in three days if they take medicine. 40% people will
recover in three days if they don’t take medicine. Also, 90% of people who live in
sunny areas recover faster.

Question: What's the ratio of people that are still infected?

Figure 2: Overview of the NoisyCausal dataset construction pipeline. The process begins by randomly sampling
a causal graph and embedding it into a realistic real-world scenario (e.g., modeling infection, medicine intake,
and recovery). Each variable is assigned a semantic role and a probabilistic function. Clean, noise-free natural
language questions are then generated from this grounded causal model. To simulate real-world uncertainty,
we inject structured noise—such as irrelevant variables, value perturbations, latent confounders, and missing
information—into both the graph and variable observations. This leads to the synthesis of multiple noisy instances,
which are then used to formulate diverse, linguistically fluent reasoning questions. The resulting dataset enables
rigorous evaluation of causal reasoning robustness in large language models across varying noise conditions.

B represents taking medicine, and C' represents
recovery, we may specify: P(A = 1) = 0.1
(10% infection rate), P(B = 1|A = 1) = 0.7,

P(B = 1|A = 0) = 0.3 (higher medicine up-
take among infected), P(C = 1|A = 1) = 0.4,
P(C = 1|B = 1) = 0.9 (recovery probability

conditioned on infection or treatment).

Such probabilistic dependencies instantiate clean
observational traces that reflect the underlying
causal mechanisms.

Structured Noise Injection To model real-world
imperfections, we introduce structured noise types
that distort variable values, the causal relation-
ships, or the question context. Here, we organize
the noise types from local variable-level perturba-
tions to higher-level structural and linguistic dis-
turbances. These include: Value Perturbation
(VP): Randomly alter variable assignments. For
example, flipping the value of C' (recovery) from 1
to 0 even if the structural model predicts recovery;
Irrelevant Variable Injection (I'V): Introduce non-
causal variables (e.g., "drinks tea") that correlate
spuriously with outcomes like recovery, mislead-
ing LLMs; Partial Masking (PM): Hide values
of selected observed variables (e.g., B), simulating
missing information scenarios that force the model
to reason under uncertainty; Causal Swap (CS):
Swap values of causally linked nodes (e.g., B and
(), which breaks conditional logic (e.g., makes it
appear that recovery causes medicine intake); La-
tent Confounders (CI): Simulate hidden variables

influencing multiple nodes (e.g., an unobserved
variable Z influencing both A and C'), introduc-
ing dependencies not shown in the observed graph;
Question Perturbation (QP): Modify or corrupt
the question such that its assumptions contradict
the proper SCM (e.g., asking about outcomes under
counterfactual settings that are logically inconsis-
tent).

Each noise type is applied under a controlled
probability distribution and can be composed with
others to simulate increasingly challenging infer-
ence conditions. This allows for fine-grained con-
trol over task difficulty and supports comprehensive
robustness evaluation. Clean and noisy variants of
each sample are stored in parallel to enable con-
trastive evaluation and supervision.

Natural Language QA Assembly Finally, we
transform each data instance into a natural lan-
guage prompt and a reasoning question. The gen-
erated text explicitly or implicitly reflects the as-
signed probabilities and variable interactions de-
fined in Step 3 for each scenario. For instance, a
prompt may state: "Only 10% of people are in-
fected. Among those infected, 70% take medicine.
Medicine leads to recovery in 90% of cases. What
is the likelihood that someone recovers if infected
and takes medicine?" We support several task types,
including interventional queries ("If the patient
had not taken medicine, what would happen?"),
counterfactual reasoning ("Had the infection not
occurred, would recovery still be likely?"), More-



over, attributional analysis ("What caused the re-
covery?"). The background scenario is narrated
fluently, and variable names are embedded into the
text using handcrafted templates and paraphrasing
engines to produce diverse and natural questions.
Answers are derived based on the clean SCM and
the causal graph, even in the presence of distractors
or inconsistent evidence.

4 Causal Graph-Based Reasoning Model

To enable robust causal reasoning under noisy nat-
ural language conditions, we propose a framework
that integrates lightweight causal graph construc-
tion with large language models (LLMs). Instead of
relying on symbolic inference or message-passing
algorithms, we use causal graphs as intermediate,
interpretable structures that organize relevant vari-
ables and their directional relationships. The LLM
then performs reasoning based on this structured
representation.

The process begins with variable extraction,
where the LLM identifies key entities (e.g., “fever”,
“medicine”) and latent factors (e.g., “infection”)
from the background context. Next, we con-
struct a task-specific causal graph using LLM-
based prompting: for each variable pair, the model
predicts causal directionality, forming a directed
acyclic graph. Low-confidence or inconsistent
edges are post-processed or deferred.

Once the graph is built, we compile a natural
language prompt containing the background, ob-
served variable values, and a textual description of
the graph. The LLM uses this structured input to
answer the reasoning question, producing answers
that reflect both surface context and the underlying
causal structure.

This architecture enhances explainability, sup-
ports counterfactual queries via prompt edits, and
improves robustness under noise. By separating
structure extraction from inference, our method en-
courages causal reasoning over correlation, bridg-
ing symbolic structure and LLM flexibility.

5 Experiments

5.1 Datasets

Our primary evaluation dataset is NoisyCausal, a
synthetic benchmark containing 10,617 question-
answer pairs with controlled causal structures and
structured noise injections. Each instance includes
a natural language background, an observation set
(clean or perturbed), a causal reasoning question,
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Figure 3: Overview of the graph-guided causal reason-
ing framework. The process begins by extracting task-
relevant variables and constructing a question-specific
causal graph via LLM prompting. This graph encodes
directional relationships among variables (e.g., “infec-
tion” causes “medicine”, which causes “recovery”). Ob-
served variable values and graph structure are then con-
verted into a structured natural language prompt, which
is passed to an LLM for final inference.

and the ground-truth answer derived from a sym-
bolic SCM. We evaluate models under six primary
noise types (Value Perturbation, Irrelevant Vari-
ables, Causal Swap, Partial Masking, Confounders,
and Question Perturbation) and multi-noise com-
binations of increasing difficulty. We also report
results on the Cladder datasets for generalization.

5.2 Main Results

Table 1 presents the performance of various mod-
els on the NoisyCausal benchmark and the exter-
nal Cladder dataset. Our graph-guided method
achieves the highest accuracy across all conditions,
including both clean and noisy settings. In the
noise-free case, it reaches 80.7% accuracy, outper-
forming GPT-4 (62.8%) and Causal CoT (73.4%),
indicating that structural guidance improves even
standard reasoning. Under structured noise types
such as value perturbation (VP), irrelevant vari-
ables (IV), and latent confounders (CI), traditional
LLMs and CoT-style methods show noticeable
degradation, with GPT-3.5 falling to as low as
43.8% on question perturbation (QP). In contrast,
our model maintains stable performance across all
perturbations (e.g., 77.3% on VP, 74.6% on 1V,
73.5% on CI), highlighting its robustness to un-
certainty. While advanced prompting strategies
like ToT, ReAct, and Reflexion offer moderate
gains over vanilla prompting, they are still sen-
sitive to causal inconsistencies such as swaps or
confounders. Finally, our model generalizes well
to Cladder, achieving 82.3% accuracy without task-
specific tuning, outperforming all baselines. These
results demonstrate the benefit of combining causal
structure with LLMs for robust and interpretable
reasoning under noisy conditions.



Table 1: Accuracy (%) of different methods across datasets and noise types. The left block shows performance on
our NoisyCausal benchmark under different noise types (VP: Value Perturbation, IV: Irrelevant Variable, etc.); the
right block shows generalization to Cladder without task-specific tuning.

Model NoisyCausal External Dataset
W/ONoise VP IV CS PM CI QP Cladder

GPT-3.5((Brown et al., 2020)) 57.9 542 49.6 447 520 47.1 438 522
GPT-4((Achiam et al., 2023)) 62.8 604 563 50.1 59.8 54.0 485 62.0
LLaMa((Touvron et al., 2023)) 52.4 50.1 457 413 489 42.6 40.7 44.0
Alpaca((Taori et al., 2023)) 53.6 514 466 420 503 438 412 447
CoT((Wei et al., 2022)) 65.5 63.5 589 554 608 562 533 -
ToT((Yao et al., 2023a)) 68.3 65.1 61.7 572 634 595 54.6 -
ReAct((Yao et al., 2023b)) 64.5 642 604 56.1 625 570 527 -
Reflexion((Shinn et al., 2023)) 67.8 65.7 623 584 64.1 602 569 -
Causal CoT((Jin et al., 2023)) 73.4 704 669 63.1 68.8 652 60.7 70.4
Ours (Graph-Guided) 80.7 773 746 71.8 762 735 69.9 82.3

Table 2: Ablation study results on the NoisyCausal
benchmark (Accuracy %). Each variant removes or
alters a specific component of our full model to evaluate
its contribution. The final block shows the performance
drop as more types of noise are combined.

Ablation Setting Accuracy (%)  vs. Full Model
Full Model (Ours) 80.68 -
Graph Structure and Variable Semantics
No Graph 65.32 -15.36
Random Graph 60.87 -19.81
Shuffled Variable Names 63.41 -17.27
Prompt Design and Language Robustness
Edge-Only Prompt 74.34 -6.34
Natural Prompt 78.92 -1.76
Question Variation 80.12 -0.56
Cumulative Noise Combinations
1 Noise Type 73.47 -7.21
2 Noise Types 67.32 -13.36
3 Noise Types 63.45 -17.23
4 Noise Types 60.51 -20.17
All 6 Noise Types 57.98 -22.70

5.3 Ablation Studies

To better understand the effectiveness and robust-
ness of our proposed framework, we conduct a
comprehensive set of ablation studies. These ex-
periments are designed to isolate and evaluate the
contributions of individual components within the
system, including the causal graph, prompt design,
and resilience under increasingly noisy conditions.
As shown in Table 2, our analysis is structured into
three categories.

Graph Structure and Variable Semantics. We
first examine how the presence and correctness of
causal structure influence reasoning. Removing
the causal graph entirely (No Graph) results in sig-

nificant performance degradation, indicating that
the model falls back on shallow statistical heuris-
tics. Replacing the ground-truth graph with a struc-
turally equivalent but randomly rewired version
(Random Graph) leads to even lower accuracy, con-
firming that not only the existence of structure but
its correctness is crucial. We also test the impact
of variable naming by shuffling variable names
across the graph (Shuffled Variable Names), which
disrupts semantic alignment with the question and
causes further degradation. These results suggest
that structural topology and linguistic consistency
contribute substantially to model performance.

Prompt Design and Language Robustness. We
evaluate the effect of different ways of presenting
the graph on the model. Switching from natural
language descriptions to a structured prompt (full
model) format improves robustness slightly. Pro-
viding the graph as an edge list alone (Edge-Only
Prompt) hurts performance, likely due to the lack
of reasoning context. We also test Question Varia-
tion by paraphrasing the same prompt in different
syntactic forms. The model maintains stable per-
formance, suggesting it generalizes well to surface-
level linguistic changes.

Cumulative Noise Combinations. To assess the
model’s robustness under compounding uncer-
tainty, we introduce a new ablation protocol where
noise types are randomly sampled and composed.
Instead of isolating individual noise categories (e.g.,
Value Perturbation or Confounder Injection), we
incrementally combine multiple types to simulate
more realistic and challenging environments. We
observe a graceful decline in performance as the



number of noise types increases: from 73.47% ac-
curacy with one noise type to 57.98% when all six
types are combined.

Summary Together, these ablation studies high-
light several insights: (1) the presence and correct-
ness of the causal graph structure play a central role
in reasoning quality, (2) LLMs benefit from natu-
ral language contextualization of structure, not just
formal edge lists, (3) robustness varies significantly
across different types of noise, with distractors and
confounders posing the most serious challenges,
and (4) variable and graph extraction modules must
be accurate and well-calibrated, as small mistakes
can propagate downstream. These findings further
support the design philosophy of using causal struc-
ture to constrain and guide LLM-based reasoning
under uncertainty.

5.4 Graph Perturbation Sensitivity

In ablation studies, we noticed that the correctness
of the causal graph structure plays a central role in
reasoning quality. Hence, we want to explore the
graph perturbation sensitivity further. Here, we per-
form a controlled structural perturbation analysis.
Starting from the ground-truth graph, we introduce
common types of errors: edge deletion (ED), where
key connections are removed; false edge injection
(FE), where spurious edges are added; and edge
direction reversal (DR), which flips the cause-and-
effect direction of existing edges. As shown in Fig-
ure 4, we evaluate three types of structural noise:
Edge Deletion, False Edge Injection, and Direction
Reversal, each applied with increasing numbers
of errors (1-4). we find that while the model is
relatively robust to minor edge deletion, it is sig-
nificantly more sensitive to misleading or reversed
causal links. In particular, direction reversal leads
to the steepest performance drop, indicating that in-
correct directional flow severely disrupts reasoning
chains. These results emphasize the importance
of accurate graph construction and motivate future
research in validating or refining LLM-generated
causal graphs before inference.

5.5 Structure Discovery Reliability

A key component of our framework is the ability to
automatically construct causal graphs from natural
language using a prompted large language model
(LLM). While our downstream performance sug-
gests that these structures are often useful, we seek
to evaluate the accuracy and reliability of LLM-

Table 3: Structure discovery performance across models,
noise levels, and prompt designs. Reported: Edge-level
Precision / Recall / F1 (%).

Condition Precision Recall F1 Score
GPT-4 (clean, structured prompt) 87.1 83.5 85.2
GPT-4 (value perturbed) 81.3 78.9 80.1
GPT-4 (confounding + masking) 76.2 72.1 74.1
GPT-4 (clean, natural prompt) 82.5 774 79.8
LLaMA-2 (clean, structured prompt) 65.4 60.7 62.9
LLaMA-2 (value perturbed) 60.4 57.6 58.9
LLaMA-2 (confounding + masking) 52.3 49.6 50.9

extracted graphs directly. To this end, we select
1000 NoisyCausal examples with known ground-
truth graphs and prompt the LLM to extract rele-
vant variables and causal edges. We compare the
predicted graphs to the ground truth using edge-
level Precision, Recall, and F1 score.

We evaluate performance across three axes: (1)
different noise levels (clean vs. perturbed vs.
masked/confounded), (2) prompt styles (structured
vs. natural language), and (3) model types (GPT-4
vs. LLaMA). Results in Table 3 show that GPT-4
achieves high accuracy in clean settings (F1 > 85)
and remains robust under moderate noise, while
smaller models like LLaMA degrade significantly.
Structured prompts yield better extraction quality
than open-ended instructions. These findings sug-
gest that LLMs can recover causal structure with
reasonable fidelity, but remain sensitive to input
noise and prompt formulation—highlighting the
need for better prompt calibration, graph valida-
tion, or hybrid symbolic support.

5.6 Error Typology Analysis

To gain deeper insights into the types of failures
exhibited by our model, we conduct a qualitative
and quantitative analysis of model errors across
the NoisyCausal benchmark. Specifically, we man-
ually inspect a representative subset of incorrect
predictions and categorize them into distinct er-
ror types based on their underlying cause. This
analysis allows us to better understand how dif-
ferent forms of reasoning breakdown occur and
how they relate to specific challenges introduced
by structured noise. We define the following error
categories: E1. Variable Identification Failure:
The model fails to recognize or track a key variable
mentioned in the prompt (e.g., overlooks a latent
confounder or misidentifies the target outcome);
E2. Causal Path Misinterpretation: The model
identifies variables but incorrectly infers the causal
direction or reasoning chain (e.g., infers recovery
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— medicine instead of medicine — recovery); E3.
Numerical Reasoning Error: The model iden-
tifies the structure correctly but fails to compute
or compare probabilities accurately, often due to
surface-level heuristics; E4. Distractor Overfit-
ting: The model is misled by irrelevant or spurious
variables introduced as structured noise, such as
"people who drink tea recover faster”; ES. Ques-
tion Misalignment: The model misunderstands the
logical intent of the question, especially in counter-
factual or interventional settings.

We randomly sample 100 error cases from the
validation set across all six noise types and assign
each error to one of the five categories. The results
are summarized in Figure 5

The most common failure mode involves incor-
rect causal path interpretation (E2), especially in
the presence of swapped edges or latent confound-
ing. This highlights the need for stronger graph
validation or constraint mechanisms. A substantial
portion of errors are also due to distractor over-
fitting (E4), suggesting that LLMs still struggle to
distinguish spurious associations even when guided
by structure. Interestingly, numerical reasoning er-
rors (E3) are not limited to statistical estimation,
but also occur when conflicting cues (e.g., base
rates vs conditional probabilities) are present.

These findings underscore the multifaceted na-
ture of causal reasoning errors and suggest that
future improvements should not only target graph
construction accuracy, but also incorporate better
reasoning supervision, distractor suppression, and
probabilistic calibration.

5.7 Belief-Inconsistent Perturbation

We design a new experiment to evaluate model
robustness when exposed to misleading but struc-
turally irrelevant contextual beliefs. Specifically,
we introduce Belief-Inconsistent Perturbation

Table 4: Performance under Belief-Inconsistent Perturbation
(BIP). Accuracy (%) on original and belief-perturbed ques-
tions.

Model Original + BIP
GPT-3.5 57.9 51.2
GPT-4 62.8 56.7
Causal CoT 73.4 69.1
Ours (Graph-Guided) 80.7 79.5

(BIP), where the prompt includes incorrect or
commonly held misconceptions that contradict the
underlying causal graph, while the actual vari-
able relationships and numerical values remain
unchanged. For example, the scenario may state
“Many people believe that taking medicine in-
creases the chance of infection,” even though the
true causal direction is Infection — Medicine.
We inject such statements into 1000 clean Noisy-
Causal instances and compare performance with
the original versions. As shown in Table 4, models
relying on surface-level reasoning (e.g., GPT-3.5,
GPT-4) show notable accuracy drops (up to 6%),
suggesting vulnerability to belief-level cues. In con-
trast, our graph-guided model degrades minimally,
demonstrating that structural grounding improves
resistance to contextual bias.

6 Conclusion

We introduced NoisyCausal, a benchmark for eval-
vating LLMSs’ causal reasoning under structured
noise. Each instance is grounded in a causal graph
and perturbed with distractors, confounders, or in-
consistent information to assess robustness and rea-
soning fidelity. To address this challenge, we pro-
posed a modular graph-guided framework that ex-
tracts variables and constructs causal graphs from
natural language, reformulating the task into struc-
tured prompts for more interpretable and noise-
resilient inference. Experiments show our method
consistently outperforms standard prompting and
generalizes well to external datasets like Cladder.
Ablation studies highlight the importance of ac-
curate structure and prompt design. Looking for-
ward, NoisyCausal can support future research in
causally aware LLMs, including extensions to real-
world and multimodal tasks, and improvements in
efficiency via lightweight reasoning agents. Our
findings demonstrate the value of combining sym-
bolic structure with language-based reasoning for
robust and faithful Al



7 Limitations

While our framework shows strong performance
under noisy conditions, several limitations remain.
First, it relies on LLM-based variable extraction
and graph construction, which may introduce cas-
cading errors. Future work could incorporate con-
fidence estimation or correction mechanisms to
improve stability. Second, the current modular
design lacks end-to-end optimization. Joint train-
ing of variable extractors and graph builders, or
lightweight finetuning strategies, may enhance ro-
bustness in low-resource settings. Third, although
NoisyCausal includes diverse synthetic noise, real-
world generalization remains untested. Future
benchmarks with real or multimodal data (e.g., ta-
bles, images) are needed to evaluate broader ap-
plicability. Finally, our method assumes a recov-
erable structure from the input. Open-domain or
discourse-level tasks may require stronger integra-
tion with causal discovery or contrastive learning
to infer latent structure.

Al Disclosure We used ChatGPT solely for gram-
mar correction and language polishing. All re-
search content, literature analysis, and writing were
conducted independently by the authors.
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A Dataset Composition and Annotation.

Each NoisyCausal instance includes: (1) a natural
language background and reasoning question, (2) a
corresponding causal graph G (optionally provided
to models), (3) both clean and noisy variable as-
signments, (4) the correct answer computed from
the SCM, and (5) metadata describing the applied
noise types and severity. These components allow
NoisyCausal to support robust benchmarking of
causal reasoning across structured noise conditions,
enabling diagnostic insights into model behavior
under uncertainty.

B Example of different noise injection

To supplement the formal definitions of structured
noise in the main text, Table 5 presents concrete
examples illustrating each perturbation type used
in the NoisyCausal benchmark. For clarity, all ex-
amples are based on a common question template,
with only one modification applied per instance.
The modified elements are highlighted in red to
isolate the injected noise.

Beyond showcasing what is perturbed, we also
annotate which part of the causal reasoning pipeline
is likely to be affected—such as conditional depen-
dencies, causal directions, variable observability, or
question alignment. These annotations help clarify
how each type of noise challenges specific reason-
ing skills, including structure tracking, probabilis-
tic reasoning, confounder adjustment, and counter-
factual inference.

This appendix serves as a reference to under-
stand better how different noise patterns are in-
stantiated in our dataset and how they may induce
distinct failure modes in language-based causal rea-
soning models.

C Faliure Cases With Graph
Perturbation

Table 6 illustrates representative failure cases in
causal reasoning arising from incorrect or incom-
plete causal graph structures. While the numeri-
cal calculations may appear sound in both exam-
ples, the underlying assumptions encoded in the
graph are flawed—Ieading to misinterpretation of
the causal mechanisms.

In the first case, the model incorrectly assumes
that taking medicine (X) causes infection status (
Z), inverting the actual causal direction. Although
the resulting infection rate appears numerically cor-
rect, this structure violates causal semantics and
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will fail to generalize to interventions or counter-
factual queries. In the second case, the model omits
a critical confounder (S)—student ability—which
influences both the treatment (tutoring, T) and the
outcome (exam pass, E). Without adjusting for this
hidden variable, the estimated treatment effect con-
flates correlation with causation, yielding biased
results.

These examples demonstrate that correct causal
reasoning depends not only on correct math, but
on correctly structured causal assumptions. They
further underscore the importance of evaluating
both the output and the underlying causal model in
language-based reasoning systems.



Noise Type Modified Question (red = perturbed) What is Perturbed Potential Impact
VP: Value Perturbation There is a disease. Numerical value of  Underestimates true ef-
Now we know that 10% people get infected. P(C | B) changed fect of treatment, weaken-

70% people will take medicine if they are infected.
30% people will take medicine even if they are not infected.
80% people will recover in three days if they take medicine.

40% people will recover in three days if they don’t take medicine.

Question: What’s the ratio of people that are still infected?

from 90% to 80%

ing causal inference.

IV: Irrelevant Variable In-
jection

There is a disease.

Now we know that 10% people get infected.

70% people will take medicine if they are infected.

30% people will take medicine even if they are not infected.
90% people will recover in three days if they take medicine.

40% people will recover in three days if they don’t take medicine.

Also, 90% of people who live in sunny areas recover faster.
Question: What’s the ratio of people that are still infected?

Injection of irrelevant but
highly correlated variable

Model may confuse cor-
relation with causation,
leading to spurious infer-
ence.

CS: Causal Swap

There is a disease.

Now we know that 10% people get infected.

People who recover are more likely to have taken medicine.
70% people will take medicine if they are infected.

30% people will take medicine even if they are not infected.
90% people will recover in three days if they take medicine.

40% people will recover in three days if they don’t take medicine.

Question: What’s the ratio of people that are still infected?

Causal direction reversed
(C — B instead of
B — O)

Misleads the model to re-
verse causal flow, impact-
ing reasoning fidelity.

PM: Partial Masking

There is a disease.

Now we know that 10% people get infected.

(Missing) 70% people will take medicine if they are infected.
30% people will take medicine even if they are not infected.
90% people will recover in three days if they take medicine.

40% people will recover in three days if they don’t take medicine.

Question: What’s the ratio of people that are still infected?

Removal of conditional
dependency P(B | A)

Model must reason under
uncertainty or fail grace-
fully.

CI: Confounder Injection

There is a disease.

Now we know that 10% people get infected.

70% people will take medicine if they are infected.

30% people will take medicine even if they are not infected.
90% people will recover in three days if they take medicine.

40% people will recover in three days if they don’t take medicine.

Also, people with strong immune systems tend to both recover
more quickly and are less likely to take medicine.
Question: What’s the ratio of people that are still infected?

Latent confounder
Z added (Z — B,
Z — C)

Introduces backdoor path,
potentially biases causal
reasoning.

QP: Question Perturba-
tion

There is a disease.

Now we know that 10% people get infected.

70% people will take medicine if they are infected.

30% people will take medicine even if they are not infected.
90% people will recover in three days if they take medicine.

40% people will recover in three days if they don’t take medicine.

Question: If people did not get infected but still took medicine,
will they definitely recover?

Question contradicts
causal structure

Forces model to answer
counterfactual inconsis-
tent with given SCM.

Table 5: Illustration of six structured noise types in NoisyCausal. Modified questions include targeted perturbations
(highlighted in red) that affect different components of causal reasoning, such as structure, semantics, or inference
assumptions.
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Table 6: Failure Cases in Causal Reasoning Due to Incorrect Graph Structures

Error Type Original Question and Reasoning Error Incorrect Correct
Causal Causal
Graph Graph
Graph Pertur- 10% of people are infected. 70% of infected take medicine; X —Z Z—X
bation (X — 30% of uninfected also take medicine. 90% recoverin 3 days Z —Y Z—-Y
Z) if treated; 40% recover otherwise. X=Y X=Y
Question: What is the infection rate?
Incorrect reasoning:
I.P(X=1)=07-014+0.3-09=0.34
2. P(Z=1|X =1) = 2191 ~ 0.2059
3. P(Z =1]X =0) = 2201 ~ 0.0455
4. Final: P(Z = 1) ~ 0.2059 - 0.34 4+ 0.0455 - 0.66 ~ 0.10
Flaw: Wrong causal direction (X causes Z), leads to incorrect
inversion logic.
Correct Answer : 0.025
Graph 25% of students received tutoring. 80% of them passed; 50% T —E S—E
Perturba- passed without it. 40% of students have strong ability and T—E
tion(Delete  always pass, regardless of tutoring.
Edge S — E) Question: What is the pass rate?

Incorrect reasoning:

Enumerate combinations:

S=1,T=1: 0.4 - 0.25 - 0.8 = 0.08

S=1,T=0: 0.4-0.75 -1 = 0.30

S=0,T=1: 0.6 - 0.25- 0.8 = 0.12

S=0,T=0: 0.6 - 0.75 - 0.5 = 0.225

Total: P(E = 1) = 0.08 + 0.30 + 0.12 4 0.225 = 0.725
Flaw: S is a confounder for both T and E, and not controlling
for it leads to misleading observational estimates.

Correct Answer: 0.745
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