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ABSTRACT

In-context learning (ICL) operates by showing language models (LMs) examples
of input-output pairs for desired tasks, i.e., demonstrations. The standard approach
for ICL is to prompt the LM with concatenated demonstrations followed by the
test input. This approach suffers from some issues. First, concatenation offers
almost no control over the contribution of each demo to the model prediction.
This can be sub-optimal when some demonstrations are not very relevant to the
test example. Second, due to the input length limit of transformer models, it can
be infeasible to fit many examples into the context, especially when dealing with
long-input tasks. In this work, we explore Demonstration Ensembling (DENSE)
as an alternative to simple concatenation. DENSE predicts outputs using subsets
(i.e., buckets) of the demonstrations and then combines the output probabilities
resulting from each subset to produce the final prediction. We study different en-
sembling methods using GPT-j (Wang & Komatsuzaki, 2021) and experiment on
7 different language tasks. Our experiments show max ensembling to outperform
concatenation by an average of 3.8 points.

1 INTRODUCTION

Large-scale language model (LM) pre-training on large corpora is currently dominating the NLP
scene. One impressive aspect of such large language models (LLMs) is their capability to do in-
context learning (Brown et al., 2020) by conditioning the model on a few examples (i.e., demonstra-
tions) of the desired task and then asking the LM to predict the label for a given input.

The standard approach for feeding in-context demonstrations (demos, for short) to the LM is by
concatenating the task examples (Brown et al., 2020; Min et al., 2022c; Lu et al., 2022). While
simple, concatenation suffers from a few drawbacks. First, it provides no control over each demo’s
contribution to the model’s output, which is left to the attention weights to decide. Second, the con-
catenation of demos can easily use up the context window of transformer-based models, especially
when we have access to many demonstrations or when dealing with lengthy inputs. Lastly, it has
been shown that LLMs are sensitive to the ordering of the demonstrations Zhao et al. (2021); Lu
et al. (2022), and a long chain of concatenated demos can indeed exacerbate this problem.

In this work, we explore an alternative to the concatenation approach, which is to prompt the model
with demonstrations in an ensembling approach. In particular, we partition the examples into non-
empty subsets or buckets and then combine the predictions obtained from each bucket to obtain the
final prediction. We investigate three different ensembling methods to combine the predictions from
different buckets including a clustering-based approach to partition the examples. Experiments on 7
different language tasks show that ensembling can outperform the standard concatenation approach.

2 RELATED WORK

This work is related to work that aims to improve few-shot learning with LLMs (Min et al., 2022b;
Rubin et al., 2022; Lu et al., 2022). For instance, Perez et al. (2021) try to find optimal prompts us-
ing techniques such as cross-validation and minimum description length. Min et al. (2022a) applied
demonstration ensembling for text classification in a limited setting. This paper, on the other hand,
explores the more generalized ensembling setting with different bucket sizes and different types of
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Figure 1: In-context learning with six demonstrations. Left: The standard concat-based approach
for feeding the examples (Brown et al., 2020). Right: Ensembling with three buckets of size two
each. For a given label y, the probability p̃i(y|x) is computed using the i-th bucket. All probabilities
are ensembled to give the final probability p(y|x).

tasks. Wang et al. (2022) explore rationale-augmented ensembles, where different in-context demon-
strations are augmented with LM-generated rationales. Different from our work, the ensembling is
done over the rationales in the examples, while we ensemble the examples themselves. Qin & Eisner
(2021) trained mixtures of soft prompts for knowledge extraction from language models. Khalifa
et al. (2022) explored demonstration ensembling to in-context learn to rerank document paths for
multi-hop QA.

3 DEMONSTRATION ENSEMBLING

We assume a list of n demonstrations D = ⟨(x1, y1), .., (xn, yn)⟩, where xi and yi are the demon-
stration input and ground-truth output or label, respectively. We now formalize our approach for
demonstration ensembling.

3.1 BUCKET ALLOCATION

DENSE allocates the n demos in D to b non-empty buckets {B0,B1, ...,Bb−1}. More precisely, if
each bucket has γ demos, then Bi is assigned the demos Dγi:γ(i+1)−1. We predict a set of probabili-
ties of a label y by separately conditioning the LM on the different buckets along with the test input
x. Formally, for bucket Bi, we predict p̃i(y|x) as:

p̃i(y|x) = PLM (y|Bi, x)

The aggregate probability of the label y is proportional to the output of an ensembling operator Φ
that combines different bucket probabilities:

P (y|x) ∝ Φ(y|p̃0(y|x), . . . , p̃B−1(y|x), x) (1)

Where Φ is a function that takes in the probabilities p̃0(y|x), . . . , p̃B−1(y|x) and the test example x,
and computes a (possibly unnormalized) probability of the output label y. For brevity, we will just
use Φ(y|x) from now on.

3.2 ENSEMBLING METHOD

We assume each bucket Bi has a normalized importance weight wi assigned to it where
∑b

i=0 wi =
1. One form of Φ is the product operator in which P (y|x) corresponds to a product-of-experts
Hinton (2002):

ΦPoE(y|x) =
b∏

i=0

p̃i(y|x)wi (2)

In addition, we can explore a mixture-of-experts formulation:

ΦMoE(y|x) =
b∑

i=0

wip̃i(y|x) (3)

We also explore max ensembling, which uses the most confident prediction probability across dif-
ferent buckets:

Φmax(y|x) = max
j

wj p̃j(y|x) (4)
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Figure 2: 6-shot (Left) and 10-shot (Right) performance of different ensembling methods and con-
catenation. Metrics are averaged over three seeds of demos, 7 datasets, and different numbers of
buckets. (Un)weighted indicates whether we use similarity with the input examples to weigh the
contribution of each ensemble. Similar-together bins and Diverse buckets are achieved through
k-means clustering as explained in 3.4

3.3 BUCKET WEIGHTING

Inspired by recent work (Gao et al., 2021; Liu et al., 2022) that has shown that demonstrations more
similar to the input perform better than distant ones, we weigh each bucket using the average of the
similarity of its examples with the input x:

wi =
1

|Bi|
∑

(xj ,yj)∈Bi

cos(xe
j , x

e) (5)

where cos is the cosine similarity and xe is the embedding of the x.

3.4 CLUSTERING DEMONSTRATIONS

While the bucket construction approach explained in §3.1 constructs buckets arbitrarily based on the
order of the demos in D, one heuristic is to use similarity information between demos to construct
buckets. We experiment with k-means clustering (Hartigan & Wong, 1979) to construct buckets.
More precisely, we apply k-means over vector representations of the demonstrations to obtain b
clusters and then use each cluster as a bucket.1 Each bucket can operate as a semantically coherent
expert. We refer to this approach as similar-together bucket allocation.

As opposed to maximizing the similarity between the demos within a given bucket, instead, we can
maximize dissimilarity to achieve diverse buckets. To do that, we use K-means to cluster demos
into ⌊n/b⌋ clusters, each with b demos.2 Then, we construct b buckets by picking a unique demo
from each cluster.3 Having diverse buckets might result in a prediction that is less biased towards a
certain category of demonstrations. We refer to this approach as diverse bucket allocation.

Besides yielding better bucket allocation, clustering makes bucket assignment invariant with respect
to the demonstration order in D. As a result, it can greatly reduce the sensitivity to the order of the
demos studied in previous work (Zhao et al., 2021; Lu et al., 2022).

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

Data. We experiment with 7 tasks in total. Details on the datasets, metrics used, and the number
of evaluation examples can be found in Appendix A.

1Note that in this case, not all buckets will have the same number of demos.
2We assume n is always divisible by b for simplicity.
3Here, we use a constrained version of k-means (Bradley et al., 2000) to make sure we get exactly b demos

in each k-means cluster.
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Figure 3: 6-shot (Left) and 10-shot (Right) performance with different bucket count b. We show
performance with weighted MoE, PoE, and Max ensembling. Performance is averaged over 7 tasks
and over 3 different seeds of demos.

Models. For all the experiments, we use GPT-j (6B) (Wang & Komatsuzaki, 2021). To compute
embeddings of examples for similarity calculations, we use a fine-tuned 6-layer MiniLM (Wang
et al., 2020).4 Our experimental setup is detailed in Appendix B.

Number of demonstrations and bucket count. We experiment with number of examples n =
6, 10. For n = 6, we use ensembling with bucket counts b = 2, 3, 6, and for n = 10, we set
b = 2, 5, 10. We note that the concat method in Brown et al. (2020) is a special case of ensembling
with b = 1.

4.2 COMPARING ENSEMBLING METHODS

Figure 2 compares the performance of the concat approach against various ensembling methods and
in the 6- and 10-shot cases. We observe that unweighted (i.e. wi =

1
b for all i), PoE, MoE, and max

ensembling outperform the concat baseline with max ensembling performing best and better than
the baseline by 0.8 average points. Weighing the buckets boosts the ensembling performance in all
cases and max still maintains the best performance being 3.8 average points higher than concatena-
tion. Lastly, we study the effect of bucket allocation based on clustering the demonstrations, where
we no boost in the few-shot performance is observed when clustering the demonstrations into buck-
ets. However, we observe that in the 10-shot case, diverse always outperforms similar-together
allocation, which is unlike the 6-shot setting. This is likely because having more demos allows for
more diverse buckets. We leave it to future work to explore different methods of bucket allocation.
Figure 4 in Appendix C shows per-task improvement obtained by ensembling.

4.3 BUCKETS COUNT

Here we study what role the bucket count b plays in the performance of ensembling. Figure 3 shows
the effect of changing the bucket count on the performance. Interestingly, the performance improves
as b increases for max ensembling, which mostly holds for both 6- and 10-shot. We do not, however,
observe a similar trend for either MoE or PoE.

5 CONCLUSION

In this work, we explore an alternative to the popular in-context learning paradigm where examples
are concatenated and provided to a language model. We show through experiments on 7 language
tasks that ensembling — where examples are partitioned into buckets and a final prediction is made
by combining predictions from each bucket — yields better performance over concatenation. In
particular, we find that max ensembling performs best compared to product-of-experts and mixture-
of-experts. In addition, we analyze the effect of varying different aspects of ensembling such as the
number of buckets and bucket construction strategies.

4https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2.
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A DATASETS

Dataset Task Metric # Eval
Glue-SST2 (Socher et al., 2013) sentiment analysis Macro F1 872

Medical questions pairs (McCreery et al., 2020) paraphrase detection Macro F1 610
Climate Fever (Diggelmann et al., 2020) fact verification Macro F1 307

SICK (Marelli et al., 2014) NLI Macro F1 495
Hate speech18 De Gibert et al. (2018) hate speech detection Macro F1 2141

TweetEval-stance (feminism) (Barbieri et al., 2020) stance detection Macro F1 67
OpenbookQA Mihaylov et al. (2018) question answering Accuracy 500

Table 1: Datasets, tasks, metrics, and the number of evaluation examples for each dataset.

B EXPERIMENTAL SETUP

We run few-shot inference using fp16 half-precision. All experiments are run on a workstation with 4
Nvidia A100 GPUs with a batch size of 16. We use the GPT-j checkpoint provided by Huggingface.5
For clustering, we use the K-means implementation provided by sklearn.6 For constrained K-means,
we use this implementation.7

C DETAILED RESULTS

Figure 4 shows average improvement obtained by different weighted ensembling approaches over
the concatenation approach.

Figure 4: Average few-shot performance improvement resulting from different ensembling methods
shown per task. The improvement is aggregated over a different number of examples 6, 10, different
numbers of buckets, and different seeds.

5https://huggingface.co/EleutherAI/gpt-j-6B/tree/float16
6https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

KMeans.html
7https://github.com/joshlk/k-means-constrained
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