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ABSTRACT

A recently released Temporal Graph Benchmark is analyzed in the context of
Dynamic Link Property Prediction. We outline our observations and propose a
trivial optimization-free baseline of "recently popular nodes" outperforming other
methods on medium and large-size datasets in the Temporal Graph Benchmark.
We propose two measures based on Wasserstein distance which can quantify the
strength of short-term and long-term global dynamics of datasets. By analyzing our
unexpectedly strong baseline, we show how standard negative sampling evaluation
can be unsuitable for datasets with strong temporal dynamics. We also show
how simple negative-sampling can lead to model degeneration during training,
resulting in impossible to rank, fully saturated predictions of temporal graph
networks. We propose improved negative sampling schemes for both training
and evaluation and prove their usefulness. We conduct a comparison with a
model trained non-contrastively without negative sampling. Our results provide a
challenging baseline and indicate that temporal graph network architectures need
deep rethinking for usage in problems with significant global dynamics, such as
social media, cryptocurrency markets or e-commerce. We open-source the code
for baselines, measures and proposed negative sampling schemes.

1 INTRODUCTION AND RELATED WORK

Temporal Graphs (TGs) are ubiquitous in data generated by social networks, e-commerce stores,
video streaming platforms, financial activities and other digital behaviors. They are an extension of
static graphs to a dynamic temporal landscape, making it possible to capture evolution of graphs.
A number of machine learning methods on TGs have been developed recently (Rossi et al.,|2020)),
(Trivedi et al., [2019), (Wang et al., [2022), (Wang et al., 2021), (Cong et al., 2023)). However, their
reliable benchmarking is still on open issue. [Poursafaei et al.|(2022) discovered that TG benchmarking
methods do not reliably extrapolate to real-world scenarios. Huang et al.|(2023)) identified further
problems: small size of datasets, inflated performance estimations due to insufficient metrics.

Temporal Graph Benchmark (TGB) by Huang et al.| (2023) is a collection of challenging and
diverse benchmark datasets for realistic evaluation of machine learning models on TGs along with a
well designed evaluation methodology. It incorporates datasets with orders of magnitude more nodes,
edges and temporal steps compared to previously available ones. We build upon the Temporal Graph
Benchmark to further improve TG model benchmarking methods.

Dynamic Link Property Prediction is a problem defined on TGs aiming to predict a property
(usually existence) of a link between a pair of nodes at a future timestamp. In our work we focus on
this problem, as we believe it is of fundamental nature for quantifying the behavior of models.

Negative sampling is a method commonly used to train and evaluate TG methods. |Poursafaei et al.
(2022) identify weaknesses in widely used uniform random sampling and propose to sample historical
negatives - past edges absent in the current time step for TGs. TGB also employ this strategy in their
evaluation protocol.

Datasets we use for our experiments include: tgbl-wiki (small) a network of editors editing
Wikipedia pages, t gbl-review (small) a network of users rating Amazon products, tgbl-coin
(medium) a network of cryptocurrency transactions, tgbl-comment (large) a network of Reddit
users replying to other users. For further details on datasets we refer to|Huang et al.|(2023). Since
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Table 1: Percentage of perfect 1.0 scores for top K destination nodes with most interactions in
previous N interactions. Values improved by RP-NS are underscored. * denotes our contribution.

K N TGN DyRep TGN+RP-NS*  DyRep+RP-NS*

comment coin comment coin comment coin comment coin

50 5000 90.10% 61.87% 43.35% 5.83% 2.08% 847% 0% 7.83%
100 5000 86.46% 57.57% 43.99% 5.39% 2.18% 7.52% 0% 5.58%
1000 5000 69.55% 23.15% 45.34% 4.00% 3.05% 2.82% 0% 1.11%

50 20000  92.0% = 62.40% 43.90% 5.90% 2.19% 8.40% 0% 7.94%
100 20000  88.40% 58.42% 44.60% 5.23% 2.27% 7.54% 0% 5.85%
1000 20000 71.67% 32.86% 45.87% 5.15% 3.14% 3.85% 0% 1.42%

50 100000 87.00% 62.79% 42.37% 5.98% 2.10% 8.56% 0% 8.07%
100 100000 84.75% 59.88% 44.05% 5.24% 2.38% 7.73% 0% 5.94%
1000 100000 71.10% 39.82% 46.89% 5.68% 3.55% 4.47% 0% 1.66%

publication of TGB benchmark, tgbl-wiki and tgbl-review have been modified. We report
results on both versions: v/ originally reported in [Huang et al. (2023) and v2 from [TGB Website
(2023). All dynamic link property prediction problems on these datasets involve predicting the
existence of an edge.

Our contributions: We build upon the latest available version of TGB as of the time of writing
(0.8.0), to further analyze and improve training and evaluation methods for TGs. We identify
a strikingly simple and effective baseline that shows inadequacies of current training and evalua-
tion protocols. We propose improved negative sampling protocols for training and evaluation and
demonstrate their effectiveness. We identify weaknesses in existing TG models on a class of datasets
with strong global dynamics. We introduce efficient measures of global dynamics strength for TGs
allowing a better understanding of how temporal a TG dataset is. We conduct a comparison with a
non-contrastive method and report its superiority.

Replicability: Our anonymized code is available at: github.com/temporal-graphs-negative-
sampling/TGB

2  OBSERVATIONS OF PERFECTLY SATURATED SCORES

By analyzing predictions of TGN (Rossi et al.,[2020) and DyRep (Trivedi et al.}|2019) models we
find that recently globally popular destination nodes have frequently oversaturated scores (perfectly
equal to 1.0). We define the class formally, as top K destination nodes with the most interactions,
in the previous N interactions in the temporal graph. We report exact percentages of oversaturated
scores for different K and NV in Table[]l

Perfect 1.0 scores cannot be distinguished and their relative ranking is uninformative. Additionally,
the identified class of oversaturated nodes may inspire a good baseline model. Before we address
these observations, we will measure the degree of informativeness of recent popularity in datasets.

3 MEASURES OF GLOBAL TEMPORAL DYNAMICS IN DATASETS

We wish to measure how much information recent global node popularity provides for future edges in
a temporal graph dataset, a type of autocorrelation on temporal graphs. As a reasonable simplification,
we model a dataset’s destination nodes as the result of a discrete stochastic process, where at every
timestep 7;, K samples are independently drawn from some categorical distribution P[T;]. For
efficiency purposes, and to ensure an equal comparison we set K for each dataset, so that it is
divided into exactly N timesteps 7;. The normalized counts of destination nodes at time step T;
yield Q[T;], which serves as an empirical approximation of the underlying categorical distribution’s
probability mass function (PMF). To compare these PMFs at different time steps T; we employ the
W1 Wasserstein Metric, also known as the Earth Mover’s Distance.


https://github.com/temporal-graphs-negative-sampling/TGB
https://github.com/temporal-graphs-negative-sampling/TGB
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Figure 1: Short-horizon measure of global temporal dynamics Wy, with N = 100 timesteps.

tg\-wiki: Wiong: 2.01e-05 res tgbl-review: Wipng: 4.24€-07 tgbl-comment: Wigng: 3.31e-07 .,

tgbl-coin: Wiong: 2.01e-07

Figure 2: Long-range measure of global temporal dynamics Wj,,4 with N = 100 timesteps.

3.1 A SHORT-HORIZON MEASURE OF GLOBAL DYNAMICS IN DATASETS

To measure how much the most recent historical information can inform future timesteps in a dataset’s
evolution, we can calculate the distances of neighboring timesteps sequentially. We propose the
following measure, where 1 denotes the Earth Mover’s Distance:

1=

[

1
Wshort = N

The lower this value, the more informative are historical global node popularities for the immediately
next timestep. We report the measure’s results, as well as plot all the individual distances for all
datasets in Figure [3.I] It can be observed that tgbl-wiki has the highest measure, implying
that global temporal correlations are low. This can likely be attributed to a lack of major social
effects on Wikipedia, compared to the remaining three datasets: tgbl—-comment, tgbl-coin
and tgbl-review, where user behaviors are more likely to be driven by trends, hype cycles or
seasonality.

3.2 A LONG-RANGE MEASURE OF GLOBAL DYNAMICS IN DATASETS

The Wyt measure captures only short-term effects. We may also be interested in a longer time-
range of influence. We can extend W, to a mid and long-term context with:

N i—1

VVlong = w : ZZWI(Q[Tz]’Q[E])

i=0 j=0
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A 'low Wigng value indicates strong medium-term or even long-term stability of the node frequency
distribution. We report results, as well as plot heat maps of long-term distances in Figure[3.1} From
an inspection of the heat maps, it becomes apparent, that tgbl-comment and tgbl-review data
generating processes follow a very smooth long-horizon evolution. The behavior of tgbl-wiki is
chaotic with no obvious patterns, tgbl-coin forms a checkered pattern — possibly some abrupt
switching between different dominant modes of behavior with sudden reversals.

4 UNEXPECTEDLY STRONG BASELINE FOR DYNAMIC LINK PROPERTY
PREDICTION

Based on the observation that recently globally popular destination nodes can be good candidates,
we construct an extremely simple and efficient baseline, we call PopTrack (Popularity Tracking).
The algorithm works sequentially in batches on a time-ordered temporal graph dataset. It maintains
a time-decayed vector P of occurrence counters for all destination nodes. Its hyperparameters are:
batchsize and decay factor \. For prediction, the state of P from the previous batch is taken as node
scores. Afterwards, the counter is incremented with all destination nodes from the current batch and
multiplicative decay A is applied to all entries in P. The baseline is a type of exponential smoothing
of destination node popularity, its pseudocode is shown in Algorithm 1}

Algorithm 1: PopTrack: A temporal popularity baseline for dynamic link property prediction

Data: dataloader - temporally ordered sequence of batches, A - decay factor,
(1) P := Vectinum_nodes](0);
(2) foreach source_nodes, destination_nodes € dataloader do
A3 predictions < TopK (P);
@ foreach dst € destination_nodes do
S) | Pldst] < Pldst] + 1;

6) | P+P-X\

4.1 PERFORMANCE OF THE POPTRACK BASELINE

We test Algorithm [T] on all dynamic link property prediction datasets, except for tgb1-f1light,
which is broken in TGB version 0. 8 . 0 at the time of writing. We hold the batchsize fixed at 200
and perform a grid search for optimal X for each dataset on its validation set. Our method is fully
deterministic.

We establish new state-of-the-art results on tgbl—comment (A = 0.96), tgbl-coin (A = 0.94)
and tgbl-review-v1l (A = 0.999), take the 2nd place for tgbl-review-v2 (A = 0.999). Our
baseline outperforms a surprisingly large and diverse number of neural temporal graph models, as
well as the EdgeBank heuristics. We only note negative results on tgbl-wiki (A = 0.38) datasets,
which are outliers with very high W, and Wi, measures, indicating weak global temporal
dynamic effects. We report detailed results in Table 2] Our results imply that existing TG models fail
to learn global temporal dynamics.

The baseline’s runtime is below 10 minutes on all datasets on a single CPU, with negligible memory
usage (only needing to store a single number for each node), in stark contrast to neural approaches
requiring days of training on powerful GPUs (Huang et al., 2023).

4.2 ANALYSIS AND INTUITION

We have shown that a simply tracking recent global popularity of destination nodes is a very strong
baseline on many dynamic link prediction tasks. The strength of the baseline is somewhat surprising,
especially given the immense expressive power of neural approaches it outperforms. This can be
caused either by inadequacy of existing graph models to capture rapidly changing, global temporal
dynamics, the way they are trained, or a mix of both.
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Table 2: Results for dynamic link property prediction task on various datasets from |Huang et al.
(2023)) and TGB Website|(2023)). Best results are underlined and bold, second best are bold. * denotes
our contribution.

Method tgbl-coin tgbl-comment
Validation MRR Test MRR Validation MRR Test MRR
DyRep (Trivedi et al.;[2019) 0.507 £0.029 0.434 +0.038 0.291 £ 0.028 0.289 £ 0.033
TGN (Rossti et al.,2020) 0.594 +0.023 0.583 4+ 0.050 0.356 + 0.019 0.379 £ 0.021
EdgeBank;., (Poursafaei et al.,2022) 0.492 0.580 0.1244 0.1494
EdgeBank, (Poursafaei et al.,[2022) 0.315 0.359 0.1087 0.1285
PopTrack* 0.715 0.725 0.6903 0.729
Method tgbl-review-v1 tgbl-review-v2
Validation MRR Test MRR Validation MRR Test MRR
GraphMixer (Cong et al.}[2023)) 0411 £0.025 0.514 £0.020 0.428 £ 0.019  0.521 + 0.015
TGAT (Xu et al.,[2020) - - 0.324 £0.006 0.355 +0.012
TGN (Rossi et al.,2020) 0.465 = 0.010 0.532 +0.020 0.313 £0.012 0.349 4 0.020
NAT (Luo & Li,[2022) - - 0.302 £0.011  0.341 £ 0.020
DyGFormer (Yul [2023) - - 0.219 £0.017 0.224 £ 0.015
DyRep (Trivedi et al.||2019) 0.356 £0.016 0.367 +£0.013 0.216 £0.031 0.220 4+ 0.030
CAWN (Wang et al.| [2022) 0.201 £0.002 0.194 4+ 0.004 0.200 £+ 0.001  0.193 £ 0.001
TCL (Wang et al.||[2021)) 0.194 £0.012 0.200 + 0.010  0.199 £ 0.007  0.193 4+ 0.009
EdgeBank:., (Poursafaei et al.||2022) 0.0894 0.0836 0.024 0.025
EdgeBank, (Poursafaei et al.||2022) 0.0786 0.0795 0.023 0.023
PopTrack* 0.470 0.549 0.341 0.414
Method tgbl-wiki-v1 tgbl-wiki-v2
Validation MRR Test MRR Validation MRR Test MRR
GraphMixer (Cong et al.[[2023)) 0.707 £0.014 0.701 £0.014 0.113 £0.003 0.118 £ 0.002
TGAT (Xu et al.,[2020) - - 0.131 £0.008 0.141 + 0.007
TGN (Rossti et al.,|2020) 0.737 £ 0.004 0.721 = 0.004 0.435 +0.069 0.396 + 0.060
NAT (Luo & Li,[2022) - - 0.773 £ 0.011  0.749 + 0.010
DyGFormer (Yu,2023) - - 0.816 + 0.005 0.798 + 0.004
DyRep (Trivedi et al.[|2019) 0.411 £0.015 0.366 +0.014 0.072 £0.009 0.050 4+ 0.017
CAWN (Wang et al.| [2022) 0.794 + 0.014 0.791 = 0.015 0.743 £ 0.004 0.711 £ 0.006
TCL (Wang et al.||2021)) 0.734 £0.007 0.712 £ 0.007 0.198 £0.016  0.207 4+ 0.025
EdgeBank:., (Poursafaei et al.||2022) 0.641 0.641 0.600 0.571
EdgeBank, (Poursafaei et al.,[2022) 0.551 0.538 0.527 0.495
PopTrack* 0.538 0.512 0.105 0.097

The performance of our baseline compared to other methods strongly correlates with the measures
of global dynamics W}, and Wi,,ge. The sources of global dynamics are easy to pinpoint by
analyzing the data generating processes of the datasets themselves. For instance, t gbl-comment
dataset consists of edges generated by (source) Reddit users responding to (destination) Reddit users’
posts. The nature of Reddit and other social networks is such that highly engaging content is pushed
to the top of the website (or particular subreddits), where it further benefits from high observability,
in a self-reinforcing cycle. The active lifetime of a piece of content is usually measured in hours or
days at most. After this period, the content loses visibility, becomes harder to discover and harder to
engage with.

The phenomenon of short-lived, self-reinforcing popularity is present in other areas of digital social
life such as X (Twitter), Facebook, and even e-commerce stores (fast fashion trends), cryptocurrency
trading activities (hype cycles). It is worth noting that users may have different tastes and interests
and be exposed to different subsets of currently popular information with varying dynamics. E.g. a
person interested in /r/Mathemat ics subreddit, may be exposed to lower-paced content, than
someone tracking /r/worldnews. A global baseline is unable to track those local effects, but it’s
an interesting avenue for future research.
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5 TOWARDS A MORE RELIABLE EVALUATION METHOD FOR DYNAMIC LINK
PREDICTION

We revisit the problem hinted at by results in Table |1} If up to 90% scores for the recent top 50
destination nodes are perfect 1.0 in a TGN model, they cannot be ordered meaningfully. Our simple
baseline PopTrack, despite achieving a very high MRR, disregards the source node context, returning
the same predictions for all nodes at a given timestep. This might imply that the evaluation protocol
in|Huang et al.|(2023) is insufficient to reflect real-world usefulness of models. The ability to both
accurately rank recently popular destination nodes, as well as to vary predictions depending on the
source node, seem to be reasonable requirements for a good temporal graph model.

5.1 THE CURRENT EVALUATION METHOD

The evaluation protocol proposed in [Huang et al.| (2023)) consists of sampling 20 negative edges for
validation and testing. The authors introduce two methods of choosing negative edges: historical
and random, where historical are edges previously observed in the training set, but not at the current
timestep, and random are just random. Both methods are utilized equally. We call this original metric
M RRnaive .

In datasets with strong non-stationary dynamics, there is a high probability that most of the negative
examples are stale (they do not belong to the class of recently popular destination nodes), while only
the positive sample is fresh, thus hard negative candidates are rarely observed.

5.2 AN IMPROVED EVALUATION METHOD

To bring evaluation results closer to real-world usefulness, we propose an improved evaluation
method, by sampling from top N recently popular items according to PopTrack model in addition to
the original method proposed by |Huang et al.[(2023). Sampling e.g. 20 items from top 1000 recently
most-popular destination nodes, 5 items from historical edges and 5 random edges would constitute
a reasonable blend of methods. The combined approach remediates the lack of hard candidates, but
still ensures that easy candidates are scored correctly. Since results for the original M RR,, ;.. are
already known, in our research we focus on benchmarking with pure fop N part. With thoroughness
in mind, we perform a full MRR evaluation on all top 20, top 100 and top 500 recently most popular
candidates without sampling, denoted as M RR;,p20, M RRiop100 and M RRy,p500 respectively.
Similarly to|/Huang et al.| (2023)) we generate fixed lists of negative samples, to ensure reproducibility
and consistency when comparing across models.

We perform the evaluations on the 2 largest datasets with all heuristic models (EdgeBank variants
and ours) and the two most popular graph neural models: DyRep and TGN. Full evaluation quickly
becomes expensive, so we limit our analysis to two models and maximal N = 500. We report results
in Table |3} On all M RR;,, N metrics, our PopTrack baseline performs poorly — as intended — proving
that the metrics behave differently than M RR,,4iv.- Both EdgeBank methods perform decently
well, but performance of TGN and DyRep models is very lacking. While they were somewhat
good in discriminating hard candidates from easy ones, they fail to rank hard candidates properly.
Compared to EdgeBank baselines, their performance drops more significantly as IV, the number of
top candidates, grows. This implies that M RR,, ;. is a poor approximation of full MRR.

6 AN IMPROVED NEGATIVE SAMPLING SCHEME FOR TRAINING

Having improved the evaluation metric, we will now propose improvements to the training protocol.
Score oversaturation problems observed in Table|l|likely arise due to the sparsity of hard negative
candidates during training. The model training protocol employed in|{Huang et al.| (2023)) involves
uniformly randomly sampling a single negative edge with no temporal awareness.

6.1 NEGATIVE SAMPLES IN NON-STATIONARY ENVIRONMENTS

For temporal graphs, the topic of negative sampling is largely unexplored, with the most recent
findings by |Poursafaei et al.|(2022)). The authors introduce the historical way of negative sampling,
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which is already utilized by the TGB Benchmark in [Huang et al.[(2023)) and as we have demonstrated
is insufficient to achieve good results.

Temporal graphs with non-stationary node popularity distributions pose an additional challenge,
which is not captured by prior methods. Node popularity distribution evolves over time and it becomes
necessary to track these shifts to generate high quality hard negative samples. To remedy this issue,
we propose an improved negative sampling scheme for dynamic link property prediction on temporal
graphs called Recently Popular Negative Sampling (RP-NS).

6.2 METHOD

We introduce Recently Popular Negative Sampling (RP-NS) based on PopTrack. Instead of sampling
negative destination nodes uniformly, we sample 90% of candidates from a popularity distribution
given by our simple baseline, to the power of % (both numbers chosen empirically). The remaining
10% of candidates are sampled uniformly, to ensure that the model sees both hard and easy candidates
during training.

6.3 RESULTS

Results of TGN and DyRep training on tgbl-coin and tgbl-comment with our RP-NS scheme
are reported in Table 3] We report both the original M RR,,,;,. metric as well as our additional
hard candidate metrics. We observe not only comparable or better results for M RR,,4;v¢, but also
significantly improved results for M RR;,,n for both models on both datasets. Degradation of
MRR;,,n as N grows is still substantial for both neural models and may require changes to their
architectures to be remediated fully.

Table 3: Comparison of models trained naively and with Recently Popular Negative Sampling
(RP-NS) under naive and topN evaluation schemes. * denotes our contribution.

Method tgbl-coin tgbl-comment
Val MRR,qive Test MRRqive Val MRR,qive Test MRRqive

DyRep (Trivedi et al.][2019) 0.507 0.434 0.291 0.289
DyRep (Trivedi et al.|2019) + RP-NS* 0.469 0.469 0.390 0.404
TGN (Rosst et al.[|2020) 0.594 0.583 0.356 0.379
TGN (Rossti et al.|2020) + RP-NS* 0.592 0.546 0.441 0.393
EdgeBanky,, (Poursafaei et al.|[2022) 0.492 0.580 0.1244 0.1494
EdgeBank., (Poursafaei et al.|[2022) 0.315 0.359 0.1087 0.1285
PopTrack* 0.715 0.725 0.6903 0.729
EMDE (Dabrowski et al.{|2021) (non-contrastive)* 0.703 0.674 0.455 0.426

) Val MRRop20*  Test MRRyop20*  Val MRRyopo0*  Test M RRyop20™
DyRep (Trivedi et al.[[2019) 0.224 0.226 0.128 0.126
DyRep (Trivedi et al.|[2019) + RP-NS* 0.175 0.150 0.233 0.236
TGN (Rosst et al.|[2020) 0.103 0.103 0.086 0.088
TGN (Rosst et al.|[2020) + RP-NS* 0.510 0.453 0.336 0.329
EdgeBanky,, (Poursafaei et al.|[2022) 0.487 0.535 0.213 0.211
EdgeBank, (Poursataei et al.|2022) 0.509 0.554 0.212 0.211
PopTrack* 0.117 0.113 0.066 0.065
EMDE (Dabrowski et al.{|2021) (non-contrastive)* 0.630 0.601 0.364 0.3391

i Val MRRop100*  Test MRRyop100*  Val MRRyop100*  Test M RRyop1o0™
DyRep (Trivedi et al.][2019) 0.088 0.081 0.029 0.029
DyRep (Trivedi et al.|[2019) + RP-NS* 0.089 0.064 0.097 0.096
TGN (Rosst et al.|[2020) 0.027 0.027 0.019 0.019
TGN (Rosst et al.|[2020) + RP-NS* 0.341 0.277 0.150 0.118
EdgeBank,,, (Poursataei et al.|[2022) 0.374 0414 0.110 0.113
EdgeBank, (Poursataei et al.|2022) 0.391 0.423 0.106 0.109
PopTrack* 0.092 0.088 0.032 0.031
EMDE (Dabrowski et al.{|2021) (non-contrastive)* 0.557 0.525 0.248 0.225

) Val MRRyops00*  Test MRRyops00®  Val MRRyops00*  Test M RRyop500™
DyRep (Trivedi et al.|[2019) 0.018 0.018 0.006 0.006
DyRep (Trivedi et al.|[2019) + RP-NS* 0.045 0.029 0.042 0.040
TGN (Rosst et al.|[2020) 0.010 0.009 0.004 0.004
TGN (Rosst et al.|2020) + RP-NS* 0.147 0.081 0.058 0.030
EdgeBank,,, (Poursataei et al.|[2022) 0.302 0.324 0.057 0.061
EdgeBank, (Poursataei et al.|2022) 0.314 0.334 0.054 0.057
PopTrack* 0.088 0.083 0.026 0.025
EMDE (Dabrowski et al.{|2021) (non-contrastive)* 0.491 0.468 0.199 0.180

Val MRR,;* Test MRR ;1 * Val MRR,;* Test MRR 1 *

EMDE (Dabrowski et al.[|2021) (non-contrastive)* 0.407 0.390 0.134 0.1210
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We also compare the level of scores oversaturation, which have initially motivated us to investigate the
problems. Results for models trained with the improved scheme are reported in Table[T] Comparing
the results to the values without RP-NS, we can see that the number of oversaturated scores drops
significantly across models and datasets. The improvements are very notable, but a small level of
oversaturation persists - an opportunity for future work on improving model architectures.

7 ALTERNATIVES TO NEGATIVE SAMPLING

The number of nodes in the benchmark datasets is very large (up to 1 million), so both training and
evaluation with negative sampling seem justified. Nonetheless, we can see from the rapid degradation
of MRR,,~ as N grows, that such evaluations may be a poor proxy for a full M RR calculation.
Methods which can be trained non-contrastively at scale exist. Efficient Manifold Density Estimator
(EMDE) (Dabrowski et al.,|2021)) is one such model, combining the idea of Count-Sketches with
locality-sensitive hashes computed on static node embeddings. It approximates an extremely wide
Softmax output with multiple independent ones, like a Bloom Filter approximates one-hot encoding.

7.1 EXPERIMENT RESULTS

We train EMDE, generating embeddings with Cleora (Rychalska et al., 2021), an unsupervised node
embedding method, with 6 iterations on the training set, resulting in 70 locality-sensitive hashes and
20 random hashes of cardinality 512. This results in initial node representations of depth 90 and
width 512. To create temporal input to a neural network, for every source node we aggregate its
incoming edges from historic batches with a rolling decay factor of 0.7, and apply the same procedure
to outgoing edges, obtaining 2 sketches which are flattened and concatenated. Targets are initial
representations of the destination nodes (interpreted as single-element Bloom Filters) without any
temporal aggregation. The neural network has a hidden size of 4000 and consists of 6 layers with
LeakyReL U activations and Layer Normalization applied post-norm. Total number of parameters
of the network is ~ 750M, majority taken up by in/out projection matrices. We train with AdamW
optimizer for 3 epochs with 1le—4 learning rate and a batch size of 512.

We report results in Table[3] We note that not only does EMDE outperform the other methods on both
datasets, but its lead grows as N grows for M RR;,,n evaluation. Thanks to a static representation
of target candidates, it is the only method for which we are able to efficiently perform (within hours)
a full M RR,; evaluation on all possible destination nodes. For TGN or DyRep, a full evaluation
in the TGB setup would take more than a calendar year. We observe that for EMDE the results
of M RR;ops500 and M RR t,,;; do not differ much, despite maximum values of N being well over
500, 000 for both datasets. While unknown, it seems unlikely that the same would hold for TGN and
DyRep, given how sharply their scores decline as [N grows.

8 LIMITATIONS

We were unable to perform experiments on tgb1—-f1ight which is broken at the time of writing in
TGB version 0. 8. 0, pending an unresolved Github issue. Due to extreme compute requirements of
graph methods, we limited our experiments with models trained from scratch to the most popular
ones: TGN and DyRep and two most challenging datasets: tgbl-comment and tgbl-coin.
Calculation of M RRy,,; for any of the neural graph models is prohibitively expensive, because
candidate representations need to be dynamically built for all evaluation timestamps and all candidates.
Nonetheless, we believe that our observations are valid for a broader class of datasets and neural
architectures. We invite the research community to extend our experiments to other temporal graph
network architectures.

9 CONCLUSION

Our results prove an insufficiency of prior metrics for TG models, being easily beaten by PopTrack
— our simple baseline on datasets with strong global temporal effects. Measures W0t and Wigpg
allow a quick estimation of temporal graph datasets’ autocorrelation. Improved MRR metrics we
propose are more robust and better capture the true performance of models. We show that negative
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sampling during training of TG models is a subtle problem and propose improvements which deliver
improved results for the new metrics. Most importantly, we show that existing TG models trained
with negative sampling have problems with capturing global temporal dynamics on strongly dynamic
datasets, and their evaluation on negative examples may be an insufficient proxy for a full evaluation.
A comparison with a fundamentally different approach trained non-contrastively shows it to be more
suitable for real-world scenarios. We hope that our contributions will allow more robust and reliable
evaluation of TG models and inspire new model architectures.
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