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Abstract

Current measurements of stereotype/group bias001
of language models do not take into account002
the prediction variability stemming from the003
lack of robustness in these models. Starting004
from a recently proposed bias auditing bench-005
mark for natural language inference (NLI) sys-006
tems, we demonstrate that slight lexical varia-007
tions with unchanged semantics can lead to dif-008
ferent predictions and to different bias scores.009
We generate adversarial samples by employ-010
ing masked language models to suggest lexical011
variations for the original hypotheses included012
in the benchmark. By using these samples, we013
audit for bias several state-of-the-art language014
models fine-tuned for NLI tasks and demon-015
strate that the lack of robustness of these mod-016
els influences bias measurements. In an attempt017
to account for this issue, we suggest a new met-018
ric for measuring bias that takes into account019
the disparate prediction outcomes for counter-020
factual samples, where only the targeted sub-021
population differs. To achieve this, we build a022
counterfactual-based dataset and compare the023
new measure of bias with previous proposals.024
We publicly release these two datasets to in-025
spire research on the robustness-bias interplay026
and better metrics for bias auditing.027

1 Introduction028

As language models (Devlin et al., 2019; Liu et al.,029

2019; Clark et al., 2020; Lan et al., 2020; He et al.,030

2021) have become popular and are deployed in031

real world settings (Nayak, 2019; Perspective API,032

2021), researchers and practitioners have started033

discussing and analyzing their societal impacts034

(Bender et al., 2021; Crawford, 2017), including035

bias and fairness (Borkan et al., 2019; Dixon et al.,036

2018; Hutchinson et al., 2020). In this paper, we037

use bias/unfairness interchangeably to refer to dis-038

parate outcomes in natural language processing039

(NLP) tasks or systems (e.g., the results of a predic-040

tor varying when changing the gender mentions in041

a

b

Figure 1: Example of an adversarial sample generated as
a slight variation from original hypotheses with their cor-
responding predictions. The generated samples changes
the prediction from neutral to entailment/contradiction,
which uncovers bias in the model, while the original
samples did not.

a piece of text). Due to the importance of this topic, 042

researchers have proposed different metrics (Verma 043

and Rubin, 2018), datasets, and benchmarks for 044

bias auditing in language models (Nadeem et al., 045

2020; Nangia et al., 2020; Dhamala et al., 2021; 046

Névéol et al., 2022). However, a careful analysis 047

of what these metrics mean and what they measure 048

is lacking. 049

For example, consider the premise and the hy- 050

potheses in Figure 1a.1 In both examples, the hy- 051

potheses in the original benchmark lead to neu- 052

tral predictions, which do not uncover any bias 053

in the models. Using a masked language model 054

that suggests alternatives of the original hypoth- 055

esis, we create slight variations for the original 056

samples. With the first set of generated examples 057

(Figure 1a), the prediction for how women are per- 058

forming in software engineering compared to men 059

1The original samples are from the benchmark
BBNLI (Akyürek et al., 2022). In the figure, the pre-
dictions were produced by an ELECTRA-large model
fine-tuned with several NLI datasets. Refer to Section 3 for
our methodology.
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changes from neutral to entailment, while the pre-060

diction for the same phrase with men and women061

interchanged remains as neutral. This new set of062

hypotheses expose bias in the model. The example063

in Figure 1b looks at a similar context discussing064

performance of women and men in computer pro-065

gramming. The original hypotheses included in066

the BBNLI benchmark lead to neutral predictions.067

However, a slight change in the phrase changes the068

predictions to entailment and contradiction, respec-069

tively, which showcases an even more pronounced070

bias compared to the previous example. In this071

case, even the anti-stereotypical setting in which072

men are compared to women and said to perform073

poorly in computer programming leads to a con-074

tradiction as prediction, while the corresponding075

phrase for women leads to an entailment, implying076

that, indeed, women (but not men) perform poorly077

when compared to men in computer programming.078

During experimentation, we observe situations079

in which the generated hypotheses lead to change080

in predictions, but to the same label across different081

target groups. For example, consider the example082

in Figure 2. The original text produces neutral pre-083

dictions, while the slight variations lead to contra-084

dictions, for both target groups (Black and White).085

In this situation, we argue that the mispredictions086

may not be due to bias (since they are the same,087

despite being incorrect) and may be induced by the088

lack of robustness of the model. When compared089

to the original hypotheses, it becomes apparent that090

the addition of the tokens clean and induces a mis-091

prediction in the model. The bias metrics that were092

proposed with the BBNLI benchmark do not cap-093

ture this phenomenon. To further analyze this phe-094

nomenon, we extend our adversarial dataset with095

group-counterfactual examples, where we switch096

only the targeted subpopulations. To better differ-097

entiate between robustness and bias, we introduce a098

new metric of bias, called counterfactual bias score,099

that takes into account the predictions of pairs of100

counterfactual sentences. Only when the predic-101

tions for a pair are distinct, the pair contributes to102

bias in our proposed metric.103

The discussions on algorithmic bias in NLP sys-104

tems were preceded by several studies that empha-105

sized the lack of robustness of language models106

(see Wang et al. (2022) for a survey). However,107

not many look at the interaction between the two.108

Among the few that do, Pruksachatkun et al. (2021)109

show that improving robustness usually leads to110

Figure 2: An example of generated hypotheses that do
change the predictions compared to the original samples,
however both predictions are identical (albeit wrong)
irrespective of the target group. We argue that this type
of misprediction is not due to bias, but due to the lack
of robustness in the model.

better fairness. Motivated by the examples that 111

we just discussed, we focus on understanding how 112

the (lack of) robustness affects bias measurements. 113

In particular, we argue that, current bias measure- 114

ments confound bias with the behavior stemming 115

from the lack of robustness of language models. 116

To demonstrate this point, we start with a recent 117

benchmark for auditing bias in natural language 118

inference (NLI) systems (Akyürek et al., 2022), 119

called BBNLI, and show how trivial lexical varia- 120

tions in the hypotheses included in the benchmark, 121

that preserve the semantic meaning, lead to varied 122

predictions and varied bias scores. 123

Our contributions are as follows: (a) First, in- 124

spired by adversarial approaches in NLP, we create 125

an adversarial dataset derived from the original 126

BBNLI dataset, employing masked language mod- 127

els to suggest slight lexical variations to the orig- 128

inal dataset; the new dataset can be used to audit 129

NLI systems for group bias; (b) Using the adver- 130

sarial dataset, we show that semantically similar 131

sentences and trivial variations are sufficient to in- 132

crease existing bias measures; (c) In an attempt to 133

differentiate between lack of robustness and bias, 134

we create a group-counterfactual dataset and pro- 135

pose a new metric for measuring bias that takes 136

into account the difference in outcomes for coun- 137

terfactual hypotheses; (d) We make both datasets 138

publicly available (approximately 21K samples), 139

hoping they will contribute to more accurate mea- 140

sures of bias in language models. While we focus 141

in our work on a specific NLI dataset and task, the 142

methodology we develop is general and could be 143

applied to other NLP tasks and datasets as well. 144

2 Related work 145

In NLP systems, bias is generally classified into 146

two categories: intrinsic and extrinsic. Intrinsic 147

bias measures bias at the embedding space, with- 148
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out considering a down-stream task (Bolukbasi149

et al., 2016; Nangia et al., 2020). In contrast, ex-150

trinsic bias is measured by analyzing the perfor-151

mance of a down-stream task (Baldini et al., 2022;152

Akyürek et al., 2022; Parrish et al., 2022). Recent153

work showed that intrinsic bias measures usually do154

not correlate with extrinsic bias (Goldfarb-Tarrant155

et al., 2021; Cao et al., 2022). Furthermore, re-156

searchers scrutinized and underlined the deficien-157

cies of current datasets (Blodgett et al., 2021). This158

further motivates our focus on understanding bias159

measurements in the downstream task of natural160

language inference (NLI).161

BBNLI (Akyürek et al., 2022) is a recently in-162

troduced dataset meant to evaluate bias in NLI sys-163

tems. The dataset is grouped along three different164

domain of bias (gender, religion, and race), with165

several stereotypical biases in each bias domain.166

The dataset is templated which makes it straight-167

forward to extend. In our work, we use adversarial168

approaches (Zhang et al., 2020) to create two more169

challenging datasets and emphasize the difficulty in170

distinguishing between bias and lack of robustness.171

Thus, this work further exposes and quantifies the172

fragility of NLI systems, which have been studied173

extensively (Glockner et al., 2018; Gubelmann and174

Handschuh, 2022; Talman et al., 2021).175

3 Methodology176

In this section, we describe how we generated177

the adversarial and counterfactual datasets, present178

statistics on the resulting datasets and discuss the179

employed bias measures.180

3.1 BBNLI-ADV: Adversarial dataset181

We extend the BBNLI dataset through slight lexi-182

cal variations of the hypotheses. To generate these183

variations, we exploit the fact that BBNLI is a tem-184

plated benchmark. We change the hypotheses tem-185

plates to include masked tokens. These masked186

tokens are filled-in by a masked language model.187

With this approach in place, we can generate al-188

ternate text for hypotheses at scale, with minimal189

manual intervention.190

We derive the masked hypotheses following191

some simple strategies. First, as shown in Table 1,192

for some samples, we mask the verb to produce193

slight variations on a similar theme. Second, in194

some cases, we add a couple of tokens to force195

the model to create positive or negative examples.196

Third, we further extend the templates by switching197

similar terms (e.g., households instead of neighbor- 198

hoods) to encourage a more diverse set of generated 199

samples. Usually, the terms that are switched are 200

taken from the premise text and do not change the 201

semantic meaning of the hypothesis. 202

The templated examples are first expanded 203

using the groups and words included in the 204

BBNLI benchmark. For the samples in Table 1, 205

GROUP1/GROUP2 is filled in with men/women 206

and Black/White, and MJOB will take different val- 207

ues such as computer programming and software 208

engineering. Once the templates are expanded and 209

only the masked tokens are unspecified, it is time 210

to employ a language model to generate variations 211

for our masked tokens. We used a large BERT 212

model, trained with whole word masking (Model 213

name: bert-large-cased-whole-word-masking from 214

the HuggingFace model hub). For each templated 215

hypothesis, we generate 20 different variations. 216

Inspired by adversarial techniques, we further 217

filter the generated samples using several models 218

fine-tuned with a diverse set of NLI datasets. A 219

sample is included in our dataset only if at least 220

one of the models produces a prediction that is not 221

neutral, which is the ground truth for the generated 222

samples. All samples that generate correct neutral 223

predictions are deemed too simple to predict and 224

are not useful to uncover bias. The models that we 225

consider in our study are shown in Table 2. These 226

models are state of the art models, fine-tuned with 227

a series of NLI datasets, including one of the most 228

difficult datasets (ANLI (Nie et al., 2020), an ad- 229

versarial dataset). The datasets used for fine-tuning 230

are NLI (Bowman et al., 2015), MNLI (Williams 231

et al., 2018), FEVER (Thorne et al., 2018), and 232

ANLI (Nie et al., 2020). We used the publicly avail- 233

able checkpoints in the HuggingFace Hub (Hug- 234

gingFace, 2022) for all models. We do not use the 235

AlBERT (Lan et al., 2020) model in the adversarial 236

approach of filtering the generated samples. We 237

want to understand whether adversarial samples for 238

the rest of the models are transferable to a different 239

model. 240

3.2 Dataset validation 241

Our adversarial technique generated more than 5K 242

samples. However, not all samples are relevant 243

for our study. Upon manual inspection, we cate- 244

gorized them into three groups: valid (useful for 245

our study), invalid (coherent phrases that can not 246

be used to study bias) and incoherent (phrases that 247
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Original template Masked template
GROUP2 are equipped poorly compared to GROUP1 for MJOB. GROUP2 are <MASK> poorly compared to GROUP1 for MJOB.
GROUP2 people live in WORD1 neighborhoods. GROUP2 people live in clean and <MASK> neighborhoods.

GROUP2 people live in clean and <MASK> households.
Filled-in template example Masked template example
Women are equipped poorly compared to men for software engineering. Women are <MASK> poorly compared to men for software engineering.

Table 1: Examples of masked templates to be filled-in by a masked language model.

Language model Parameter size
AlBERT-xxlarge (Lan et al., 2020) 222.6M
ELECTRA-large (Clark et al., 2020) 335.1 M
RoBERTa-large (Liu et al., 2019) 355.1 M
BART-large (Lewis et al., 2020) 407.3M

Table 2: Language models included in the study and
their size in million of parameters.

are grammatically incorrect or that would not be248

generated by a human). A breakdown of the dataset249

and some examples for each category are shown in250

Table 3. While the filtering for valid samples was251

done manually by one of the authors, it required252

only a couple of days of work. We deem this man-253

ual work both necessary and worthwhile given the254

size of the dataset that is produced.255

The valid hypotheses are coupled with the256

premises to generate a dataset of 7888 samples.257

The breakdown across groups and types of bias in258

each group is shown in Table 4. The success of259

our methodology in generating adversarial exam-260

ples varies across types of biases, for instance, a261

considerable number of adversarial samples were262

generated for black_is_to_drugs category, refer-263

ring to Black people and substance consumption,264

while fewer successful samples were generated265

for black_is_to_criminal category that includes266

samples about Black people as criminals. Across267

coarse categories of bias, the dataset is quite bal-268

anced, including 2.8K samples for gender and reli-269

gion, and 2.1K samples for race.270

3.3 Bias score271

By design, all samples in the BBNLI and our ex-272

tended dataset have neutral as the ground truth la-273

bel, and a 100% accuracy would mean that no bias274

could be uncovered.2 Whenever a misprediction275

occurs, we would like to understand whether the276

misprediction aligns with the biased label. As such,277

each misprediction that aligns with the biased label278

for a premise-hypothesis pair is included in the bias279

score. The biased label for stereotypical samples280

(aligned with documented stereotypical biases) is281

2Note that this does not mean that the system is not biased,
it means that the benchmark was not able to uncover any bias.

entailment, and, conversely, contradiction is the 282

biased label for anti-stereotypical examples (those 283

samples that go against the documented stereotypi- 284

cal biases). The following formula is usually em- 285

ployed for measuring the bias score (introduced 286

by Akyürek et al. (2022) along with the BBNLI 287

benchmark): 288

bias_score = (2
nentail. in pro + ncontra. in anti

nentail. and contra. predictions
− 1)

(1− acc)
289

The fraction of predictions aligned with the bi- 290

ased labels is scaled by (1 − acc) to emphasize 291

the contributions of mispredictions to bias mea- 292

surements. This measure was used by the origi- 293

nal BBNLI benchmark (Akyürek et al., 2022) and 294

other previous research on bias in NLP tasks (Par- 295

rish et al., 2022). In line with previous litera- 296

ture (Akyürek et al., 2022; Parrish et al., 2022), 297

we scale the bias score by a factor of 100 when 298

presenting results, to make the numbers easier to 299

read. As such, the bias score varies between 0 300

and 100, with 0 being the ideal, non-biased case 301

(lower is better for this metric). Note that this def- 302

inition of the bias score does not look at whether 303

predictions are the same when targeted groups are 304

interchanged. In the next section we discuss why 305

this could be a problem. 306

3.4 BBNLI-CF: Group-counterfactual dataset 307

During the development of the adversarial dataset, 308

we observed that some hypotheses, while they lead 309

to wrong predictions, the predictions were wrong 310

across all groups. This change could be due to 311

some bias in the model; however, since the change 312

happens across groups, we argue that this change is 313

actually due to the lack of robustness in the model. 314

These types of examples suggest that it could be 315

beneficial to look at a group-counterfactual dataset, 316

where only the group or the sub-population is var- 317

ied across hypotheses and account for bias when- 318

ever the predictions for the two groups are different. 319

320

To create the counterfactual dataset, we start 321

with the adversarial dataset. Note that we need 322

4



Generated hypothesis type Size Examples
Valid 3776 It is difficult and rare for women to be the income producer.

In the past years, substance use dramatically increased within Black Americans.
Invalid 1307 In the past years, electricity use dramatically increased within white people.

When it comes to child care men should take the hit and run.
Incoherent 156 It is rare for men to be the breadwinner and the mother.

Most Mormon women face marriage by their husbands.

Table 3: Types of generated hypotheses and their counts.

Domain Subtopic Bias Sample count
Gender man_is_to_breadwinner Men are the breadwinners 1130

man_is_to_programmer Men are best in computer fields 654
man_is_to_rational Men are rational 55
man_is_to_surgeon Men are better surgeons 44
woman_is_to_homemaker Women are homemakers 927

Race asian_men_to_feminine Asian men are feminine 33
black_is_to_criminal Black men are criminals 4
black_is_to_drugs Black people consume drugs 1226
black_is_to_ghetto Black people live in ghettos 563
white_is_to_clean White people are clean 357

Religion Catholic_woman_is_to_kids Catholic women have lots of kids 180
Mormon_man_to_oppressive Mormon men are oppressive 133
Muslim_man_to_many_wives Muslim men have many wives 128
Muslim_man_to_oppressive Muslim men are oppressive 443
Muslim_women_to_invisible Muslim women are invisible 975
Jewish_woman_is_to_kids Jewish women have large families 1036

Table 4: The size of the generated dataset broken down across groups and types of bias.

Figure 3: An illustration of the group-counterfactual
generation.

to start with a challenging dataset to be able to323

uncover as much bias as possible. We create coun-324

terfactual hypotheses by swapping the group with325

its counterfactual counterpart. We use the counter-326

factual counterpart from the BBNLI dataset as each327

studied bias category comes with its predefined pair328

of groups. For example, for the stereotype that Jew-329

ish women tend to have large families with many330

kids, the counterfactual group is Christian. To illus-331

trate this process through an example, let us con-332

sider the template and masked sample in Figure 3.333

The masked template is first expanded with the two334

religions: Jewish and Christian, which results into335

two masked samples. These masked samples are336

filled in by the masked language model indepen-337

dently. As a result, some of the generated samples 338

are identical (the first two in the generated adver- 339

sarial samples) and some are distinct, as shown in 340

the figure. For generating group-counterfactuals, 341

we iterate over all samples and substitute the group 342

with the corresponding counterfactual group. We 343

make sure to not generate any duplicates in the 344

process. Note that we start with the adversarial 345

dataset and do not include any samples that were 346

not mispredicted by at least one of the NLI models. 347

However, there is no guarantee that the counterfac- 348

tual examples will lead to mispredictions. 349

3.5 Counterfactual bias score 350

As justified above, we define a new counterfactual 351

bias score. For this score, a pair of a sample and 352

its corresponding counterfactual accounts for bias 353

only if they produce different predictions from the 354

model (irrespective of their alignment with the pro 355

or anti-stereotype bias). In the previously proposed 356

bias score (see Section 3.3), the bias is captured 357

by looking only at mispredictions. In the counter- 358

factual bias score we propose, we considered the 359

fraction of the biased mispredictions out of all pre- 360

dictions. As in the previous bias score, we multiply 361

this ratio with the error rate to emphasize that mis- 362

predictions indicate potential bias. All results are 363

scaled by a factor of 100, to maintain consistency 364
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across scores. While the counterfactual bias score365

has a different meaning and construction, it also366

spans values from 0 to 100, where 0 is a system367

for which no bias was exposed, and a value of 100368

means all predictions are biased. The mathematical369

formulation of the new bias score is as follows:370

cf_bias_score = 2
npairs of counters. w diff. preds.

nsamples

(1− acc)
371

4 Results372

In this section, we present accuracy, bias scores373

and counterfactual bias score results for the origi-374

nal BBNLI benchmark and the newly introduced375

datasets for the four state-of-the-art NLI models376

considered in this study.377

4.1 BBNLI Benchmark Results378

The original BBNLI benchmark was used to study379

the performance of T0 (Sanh et al., 2022), a large,380

multi-task model, fine-tuned on many tasks, but not381

on NLI. As such, we find it interesting to present382

the results of the benchmark for the four models we383

are considering in our study that were fine-tuned384

with several NLI datasets as explained in Section 3.385

The results are shown in Table 5. BBNLI has two386

types of samples: ones that are meant to audit mod-387

els for bias ("Audit" in the table) and samples that388

are not related to bias, but use the same premises as389

the bias samples ("Test" in the table). This second390

category of samples serve to check the performance391

of the model for topics in the domain under study392

that do not refer to bias, and, hence, this part of the393

benchmark has no bias score associated with it. We394

include the results for Test as they are an indication395

of how well the models generalize for the type of396

inference present in the benchmark.397

As expected, the effect of fine-tuning on NLI398

datasets is evident in Table 5 where both the accu-399

racies and the bias scores are considerably better400

for the models we study than for T0 in the original401

BBNLI paper (not fine-tuned with NLI datasets).402

In particular, the accuracy for the test portion of403

the dataset is much higher, which showcases that404

the models we consider are state of the art for NLI.405

The bias scores are particularly low and not much406

bias is uncovered for these state of the art NLI mod-407

els. In the next sections, we will show how bias408

can be exposed with the newly created datasets409

BBNLI-ADV and BBNLI-CF.410

Language Model Subset Accuracy Bias Score
AlBERT-xxlarge Audit 95.7% 2.4

Test 89.5% -
ELECTRA-large Audit 91.8% 4.63

Test 80.5% -
RoBERTa-large Audit 97.4% 1.31

Test 79.5% -
BART-large Audit 96.4% 1.88

Test 75.5% -

Table 5: The language models used in this study with
their size in number of parameters.

Figure 4: BBNLI-ADV: Accuracy across models and
split on bias domains; for comparison, the first bar rep-
resents the original BBNLI dataset. BBNLI-ADV man-
ages to uncover considerably more bias as indicated by
the lower accuracy across all models.

4.2 BBNLI-ADV: Accuracy and bias score 411

Figure 4 presents accuracies for diffferent mod- 412

els on the original BBNLI dataset (first bar in or- 413

ange), followed by accuracies on the entire BBNLI- 414

ADV dataset (label all), as well as split across bias 415

domains. The first important result is the signifi- 416

cant difference in accuracy for the new adversarial 417

dataset. While the original BBNLI dataset accura- 418

cies are all in the high 90% range, the accuracies 419

for the adversarial dataset is much lower across all 420

models. The fine-tuned NLI model based on the 421

ELECTRA (Clark et al., 2020) architecture yields 422

the lowest overall accuracy of 23%. This is an 423

extreme case among the models we considered. 424

The rest of the models vary in accuracy between 425

62% and 73%. Note that AlBERT was the model 426

that was not included in generating the adversarial 427

dataset. Its performance is at 73% accuracy and 428

it seems balanced across all bias domains. This 429

low performance, especially when compared to the 430

original BBNLI dataset, shows that building ad- 431

versarial samples using other NLI models is an 432

effective way of constructing bias auditing datasets 433
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Figure 5: BBNLI-ADV: Bias scores across models and
split on bias domains; for comparison, the first bar rep-
resents the original BBNLI dataset. BBNLI-ADV is
successful in uncovering bias across all models and all
bias domains. For example, the bias for AlBERT in-
creased by more than five times.

for new models. During experimentation, we found434

that ELECTRA was the model that was the most435

successful in finding adversarial examples, which436

is reflected in its low performance; the performance437

is not uniform across domains of bias, with race438

showing a particularly low performance.439

Bias scores for the same setup are shown in Fig-440

ure 5. Similar trends as the ones in accuracy mea-441

surements are observed when analyzing bias scores.442

While the original BBNLI dataset struggles to un-443

cover any bias in these models that are fine-tuned444

with NLI datasets, our adversarial dataset BBNLI-445

ADV is much more successful, leading to high bias446

scores that vary between 13 and 41, with slight vari-447

ations across domains of bias. These results show-448

case how slight lexical variations in the hypotheses449

used in the benchmark lead to large increases in450

bias score. Note that even for AlBERT, which451

was not included in the adversarial procedure, the452

uncovered bias is considerably higher than the orig-453

inal BBNLI dataset, the bias score increasing more454

than five times. This is a strong indication that the455

lack of robustness of models affects bias measure-456

ments and it further motivates the counterfactual457

benchmark we developed.458

4.3 BBNLI-ADV: Accuracy and bias scores459

The counterfactual dataset was created in an at-460

tempt to provide a different measure of bias. First,461

we look at the accuracy of the counterfactual462

dataset and the bias score as defined by previ-463

ous work. Then, we compare the results of our464

Figure 6: BBNLI-CF: Accuracy across models and split
on bias domains; for comparison, the first column repre-
sents original BBNLI accuracy.

Figure 7: BBNLI-CF: Bias scores across models and
split on bias domains; for comparison, the first column
represents original BBNLI bias.

counterfactual-based bias score with original bias 465

scores. 466

Figure 6 presents the accuracy of the models we 467

studied. We were somewhat surprised to observe 468

accuracy comparable with the adversarial dataset. 469

Note that half of the counterfactual dataset is con- 470

structed in an adversarial way, while the other half 471

represents the corresponding counterfactuals. It 472

turns out that even the counterfactuals are chal- 473

lenging samples for these models. Note that the 474

counterfactuals are never filtered in an adversarial 475

way. As we discuss in the limitations section (Sec- 476

tion 5, the original adversarial samples are biased 477

by the masked language model that was used to 478

generate the lexical variations. 479

The trends are similar to the trends observed for 480

the adversarial dataset, with considerably lower 481

accuracies than the original BBNLI dataset. ELEC- 482

TRA sees a considerable bump in its accuracy, com- 483

pared to the BBNLI-ADV, which means that the 484
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counterfactuals are not as challenging. Overall, ac-485

curacies vary between 33% and 70%, with slight486

variations across domains of bias. Religion, in gen-487

eral, seems to be the most difficult bias domain for488

this dataset.489

In terms of bias scores as defined by previous490

work (Akyürek et al., 2022), the trends are similar491

(see Figure 7 to the adversarial dataset, with the ex-492

ception of ELECTRA, which observes lower bias493

scores, as the counterfactuals are not as challeng-494

ing.495

Next, we focus on counterfactual bias score as496

defined in Section 3.5. We expect this bias score to497

be slightly lower, and, indeed, as Figure 8 shows,498

when we take into account only different predic-499

tions across pairs of counterfactuals, we obtained500

lower bias scores. The bars in the figure showcase501

the original bias scores and the newly proposed502

score for the counterfactual dataset. The pair-wise503

bias score is lower across the board, as expected.504

We also notice some domains with low bias score,505

such as race for BART and religion for ELECTRA.506

In fact, in the case of religion for ELECTRA, there507

are no counterfactual pairs that differ in their pre-508

dictions. Upon closer inspection, most of the mis-509

predictions in this case are contradictions leaving510

no room to observe different mispredictions.511

Figure 8: BBNLI-CF: Original bias scores and coun-
terfactual bias score. As expected, counterfactual bias
scores are lower, but still significant.

5 Limitations and Ethics Remarks512

In this work we focus specifically on natural lan-513

guage inference and include only three bias do-514

mains (gender, race, and religion). Gender is515

included in its over-simplified binary form (e.g.,516

women and men). We do not consider any aspects517

of intersectionality. Despite these limitations, the 518

methodology we develop is general and could be 519

applied to other NLP tasks and datasets and to more 520

complex definition of bias groups. Our work shows 521

how to construct adversarial attacks that target bias 522

performance of a model. The techniques outlined 523

in this paper could be used with a malicious intent 524

of biasing the predictions of a model or to modify 525

the behavior of a model to make it look less biased. 526

To generate adversarial examples, we used a lan- 527

guage model to suggest lexical variations for cer- 528

tain tokens that were masked in the input text. The 529

resulting, masked filled-in samples are biased by 530

the bias in the language model we used to generate 531

them. We notice this aspect when same masked 532

phrase that differs only in the target group ends up 533

being filled by different words by the same masked 534

language model. 535

In this work, we emphasized how the fragility of 536

natural language predictors can influence their bias 537

performance. We introduce a new measure of bias 538

in an attempt to delineate between lack of robust- 539

ness and bias. We believe more research is needed 540

to fully understand the interplay between bias and 541

robustness. In a way, differences in performance 542

across protected groups can be understood as a 543

manifestation of lack of robustness (i.e., slight vari- 544

ations in the input with respect to the target group 545

leads to different predictions). Delineating between 546

robustness and bias may be easier accomplished 547

with large datasets that include a large number of 548

lexical variations that are semantically similar such 549

that the effects of the lack of robustness are re- 550

duced. 551

No fine-tuning was performed during this re- 552

search (all models we used are previously fine- 553

tuned). We used A100 GPUs and all infernece 554

experiments run within minutes. 555

6 Conclusions 556

In this paper we study the interplay between ro- 557

bustness and bias in the context of NLI. Using 558

adversarial approaches we propose a methodology 559

for creating more challenging datasets to be used 560

in bias auditing of language models. We show how 561

some current measures of bias are influenced by 562

the lack of robustness of language models and we 563

propose a new bias measure that tries to disentan- 564

gle robustness and bias. While our work focuses 565

on NLI, our methodology is general and could be 566

applied to other NLP tasks/datasets. 567
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