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Abstract

The ability to recognize analogies is funda-001
mental to human cognition. Existing bench-002
marks to test word analogy does not reveal the003
underneath process of analogical reasoning of004
neural models. Holding the belief that mod-005
els capable of reasoning should be right for006
the right reasons, we propose a first-of-its-kind007
Explainable Knowledge-intensive Analogical008
Reasoning benchmark (E-KAR). Our bench-009
mark consists of 1,665 problems sourced from010
the Civil Service Exams, which require inten-011
sive background knowledge to solve. Besides,012
we design a free-text explanation scheme to013
explain how an analogy is drawn, and manu-014
ally annotate E-KAR with 8,325 knowledge-015
rich sentences of such explanations. Empiri-016
cal results suggest that this benchmark is very017
challenging to some state-of-the-art models018
for both explanation generation and analogical019
question answering tasks, which invites further020
research in this area.1021

1 Introduction022

Analogy holds a vital place in human cognition,023

driving the discovery of new insights and the jus-024

tification of everyday reasoning (Johnson-Laird,025

2006; Gentner and Smith, 2012; Bartha, 2013; Ben-026

gio et al., 2021). Due to their unique value in many027

fields such as creativity (Goel, 1997) and education028

(Thagard, 1992), analogy and analogical reasoning029

have become a focus in AI research. The grand030

question is, are artificial neural networks also capa-031

ble of recognizing analogies?032

Relatively little attention has been paid in NLP033

to answer this question. The problem of recogniz-034

ing analogies is mainly benchmarked in the form035

of (A:B::C:D) (Turney et al., 2003; Mikolov et al.,036

2013b; Gladkova et al., 2016; Li et al., 2018a) and037

targeted for testing the ability of pre-trained word038

embeddings. Given a tuple of terms as query (e.g.,039

1Data will be released upon the publication of this paper.

Both “teapot”  and “teacup”  are containers for 
holding “tea” . After the “tea”  is brewed in the 
“teapot” , it is transported into the “teacup” .

2 3
1 1

2 3

tea :teapot :teacup1 2 3Q)

textbooks :bookstore :printing factory1 2 3D)

bookstore2 printing factory3
transport textbooks1

bookstore2 printing factory3
organizationis_a is_a

After “textbooks” are printed in the “printing factory”, they are sold 
in a “bookstore”. But the terms order is inconsistent with the query.

passengers :bus :taxi1 2 3A)

bus2 taxi3
transportation for passengers1

is_a is_a bus2 taxi3

transport passengers1

“Passengers” do not need to be transported into “taxi” after taking a 
“bus”. “Taxi” and “bus” are different ways of transportation.

magazine :bookshelf :reading room1 2 3B)

bookshelf2 reading room3
?is_a is_a

The “bookshelf” is in the “reading room”.

talents :school :enterprise1 2 3C)

school2 enterprise3

organization for talents1

is_a is_a school2 enterprise3
transport talents1

Both “school” and “enterprise” are organizations. After “talents” 
are educated in “school”, they are transported into “enterprise”.

teapot2 teacup3

Container for holding tea1
is_a is_a

Structure-mapping

teapot2 teacup3
transport tea1Source 

Structures

Explanation  
(free-text)

Figure 1: An example in E-KAR. The explanations in
E-KAR explain the structure-mapping process for ana-
logical reasoning, where source structures are drawn
from the query and mapped onto each candidate answer
for decision-making.

tea:teapot:teacup) and a list of candidate an- 040

swers as in Figure 1, a model needs to find the most 041

analogous candidate to the query, which is C in the 042

example since it matches the relations inherent in 043

the query better than others. 044

Most methods (Mikolov et al., 2013a; Levy and 045

Goldberg, 2014; Pennington et al., 2014) hold a 046

connectionist assumption (Feldman and Ballard, 047

1982) of linear analogy (Ethayarajh et al., 2019), 048

that the relation between two words can be esti- 049

mated by vector arithmetic of word embeddings. 050

For example, ~king − ~man + ~woman = ~queen. 051
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However, current benchmarks focus on the recog-052

nition of binary analogies such as syntactic, mor-053

phological and direct semantic (e.g., is_a and syn-054

onym_of ) relations. And the analogical reasoning055

procedure behind them is far beyond the scope of056

this line of research.057

However, how to explain and rationalize analog-058

ical reasoning remains to be the major challenge.059

Psychological literature (Gick and Holyoak, 1983;060

Gentner, 1983; Minnameier, 2010) suggests that061

analogical reasoning follows the structure-mapping062

process. That is, a target (the domain where a prob-063

lem must be solved, i.e., candidates) and a source064

(the domain where the analogy is drawn, i.e., the065

query) are matched, and the relevant features of the066

source have to be mapped onto the target. In Figure067

1, source structures are drawn from the query and068

mapped onto candidates, where A, B, D all fail at069

certain structures. We argue that such a process070

can be verbalized into natural language to explain071

analogical reasoning.072

Moving from simply recognizing analogies to073

exploring human-like reasoning for neural mod-074

els, we emphasize the importance of a new kind075

of analogical reasoning benchmark. To fill in this076

blank, we propose a first-of-its-kind benchmark077

for Explainable Knowledge-intensive Analogical078

Reasoning (E-KAR). We collect 1,665 analogi-079

cal reasoning problems sourced from the pub-080

licly available Civil Service Examinations of081

China, which are challenging and knowledge-rich082

multiple-choice problems designed by domain ex-083

perts. To justify the reasoning process, we follow084

the aforementioned guidelines from psychologi-085

cal theories and manually annotate explanations086

for each query and candidate answers in E-KAR.087

Since the annotation requires intensive involvement088

of knowledge and reasoning, we carefully design089

a double-check procedure for quality control. In090

summary, the contributions of this paper include:091

• We advance the traditional setting of092

word analogy recognition by introducing093

a knowledge-intensive analogical reasoning094

benchmark (E-KAR), which is first-of-its-095

kind and challenging.096

• To justify the analogical reasoning process,097

we design free-text explanations according to098

theories on human cognition, and manually099

annotate them.100

• We define two tasks in E-KAR, i.e., analogi-101

cal QA and explanation generation, and report102

the performance of some state-of-the-art neu- 103

ral models. We discuss the potentials of this 104

benchmark and hope it facilitates future re- 105

search on analogical reasoning. 106

2 Related Work 107

Word Analogy Recognition in NLP Bench- 108

marks for word analogy recognition (Turney et al., 109

2003; Mikolov et al., 2013b; Gladkova et al., 2016; 110

Li et al., 2018a) examine mostly linear relations 111

between words (Ethayarajh et al., 2019). Such 112

analogies can often be effectively solved by vec- 113

tor arithmetic for neural word embeddings, such 114

as Word2Vec (Mikolov et al., 2013a) and GloVe 115

(Pennington et al., 2014). Recent studies (Brown 116

et al., 2020; Ushio et al., 2021) also test such ability 117

of pre-trained language models (PLMs) (Radford 118

et al., 2019; Devlin et al., 2019; Brown et al., 2020) 119

on these benchmarks. An exceptional benchmark 120

is Li et al. (2020), where they build a knowledge- 121

enhanced analogy benchmark that leverages word 122

sense definitions in a commonsense knowledge 123

base (Ma and Shih, 2018). However, these bench- 124

marks are mainly set up for evaluating learned rep- 125

resentations, and few of them ever investigated the 126

analogical reasoning skills for neural models. Thus, 127

the goal of this work largely differs from this line of 128

research, as we aim to build a knowledge-intensive 129

benchmark to teach neural models analogical rea- 130

soning for correct thinking. 131

Reasoning Benchmarks from Examinations 132

There are abundant benchmarks derived from hu- 133

man examinations to facilitate the study of machine 134

reasoning (Clark et al., 2016; Schoenick et al., 135

2017). For example, RACE (Lai et al., 2017) is 136

collected from the English exams for middle and 137

high school students, focusing on skills of passage 138

summarization and attitude analysis. ARC (Clark 139

et al., 2018) contains natural, grade-school science 140

questions authored for human tests. MCQA (Guo 141

et al., 2017), GeoSQA (Huang et al., 2019) and 142

GCRC (Tan et al., 2021) are sourced from national 143

college entrance exams of China, measuring a com- 144

prehensive set of reasoning abilities. LogiQA (Liu 145

et al., 2020a) consists of logical reading comprehen- 146

sion problems from Civil Service Exams of China, 147

which is also our source of analogical problems. 148

ReClor (Yu et al., 2020) and LR-LSAT (Wang et al., 149

2021), collected from Law School Admission Test, 150

aim for testing logical reasoning abilities. In our 151

work, we focus on analogical reasoning skills for 152
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machines and additionally equip E-KAR with an-153

notated explanations to rationalize reasoning.154

Explainable NLP Datasets One of the most155

prominent objectives in machine reasoning is giv-156

ing reasons or explanations for a prediction. In157

current datasets for explainable NLP, such reasons158

can be categorized into three classes (Wiegreffe and159

Marasović, 2021): 1) highlights explanations (Cam-160

buru et al., 2018; Yang et al., 2018; Thorne et al.,161

2018; Kwiatkowski et al., 2019), which are subsets162

of the input elements to explain a prediction, e.g.,163

words or sentences; 2) free-text explanations (Cam-164

buru et al., 2018; Zellers et al., 2019; Aggarwal165

et al., 2021) that are textual explanations for justifi-166

cation; 3) structured explanations (Mihaylov et al.,167

2018; Khot et al., 2020; Clark et al., 2020; Jhamtani168

and Clark, 2020; Geva et al., 2021), which are not169

fully free-text and generally follow certain struc-170

tures such as a chain of facts. The explanations can171

be utilized to augment (Rajani et al., 2019), super-172

vise (Camburu et al., 2020) and evaluate (DeYoung173

et al., 2020) the predictions of neural models. In174

this work, we phrase analogical reasoning itself as175

an instance of machine reasoning tasks, advanc-176

ing the research on analogical reasoning from the177

perspectives of data collection.178

3 Explainable Analogical Reasoning179

In this work, we consider a classic setting of analog-180

ical reasoning within NLP: recognizing word/term181

analogies.2 This task can be formulated as multiple-182

choice question-answering. Given a query tuple183

Q with k (two or three) terms, and m candidate184

answer tuples A = {Ai}mi=1, the goal is to find the185

most analogous one in the candidates to the query.186

We advocate that reasoning is about giving rea-187

sons explaining a prediction. In order to teach188

machines to analogize as humans do, we draw in-189

spiration from theories in cognitive psychology to190

design the forms of explanations.191

3.1 Analogical Reasoning: A Psychological192

Perspective193

Before designing suitable forms of explanations,194

we introduce some important theories from cog-195

nitive psychology for a better understanding of196

analogical reasoning. In the psychological litera-197

ture, analogical reasoning is described as a schema-198

induction (Gick and Holyoak, 1983) or structure-199

2Here, “term” corresponds to “word” in previous analogy
benchmarks, but allows for multiple words.

mapping (Gentner, 1983) process. Peirce (1896) 200

claimed that analogy is a combination of abductive 201

and inductive reasoning. Minnameier (2010) fur- 202

ther developed the inferential process of analogy 203

into three steps, which we take as the guidelines 204

for designing explanations: 205

1. A possibly suitable structure in the source 206

domain is abduced from the target domain, 207

which might also work for the target problem; 208

2. The specific concepts of the source structure 209

have to be replaced by suitable target concepts 210

(by an inductive inference); 211

3. The validity of the transformation is judged 212

w.r.t. solving the target problem. 213

Take Figure 1 for example. Source structures can 214

be abduced that both term 2 (teapot) and term 3 215

(teacup) belong to a concept, and term 1 (tea) 216

can be transported from term 2 to term 3. The 217

mapping naturally reveals the validity, for example, 218

candidate A is wrong because passengers do 219

not follow a unidirectional transportation (i.e., from 220

bus to taxi) but a bidirectional one. 221

3.2 Explanations for Analogical Reasoning 222

Following the above guidelines, the explanations 223

for the analogical reasoning task should also in- 224

clude three parts: 1) description of suitable struc- 225

tures for the query; 2) how the structure is mapped 226

into candidates; and 3) reasons to justify whether 227

the mapping is correct, such as commonsense 228

knowledge. To this end, we define free-text ex- 229

planation for analogical reasoning, which is one 230

of the most expressive and commonly-used expla- 231

nations (Wiegreffe and Marasović, 2021). We en- 232

sure the free-text explanations to be self-contained, 233

knowledge-rich, and sufficient to solve the problem 234

as a substitute for the original input. 235

Specifically, for each query (Q) and candidate 236

(Ai), we define free-text explanations EQ and EAi . 237

Following the guidelines in § 3.1, EQ should de- 238

scribe the best suitable inherent structure in a query. 239

EAi should decide the correctness of candidate Ai 240

and provide facts as support evidence. Note that the 241

decision should be drawn by mapping candidate 242

terms into the structure expressed in EQ correspond- 243

ingly, which is analogous to template-filling. 244

4 The E-KAR Benchmark 245

Previous benchmarks consider recognizing word 246

analogies as testbeds for evaluating pre-trained 247

3



Dataset Data Size # of Terms # of
(train / val / test) in Cand. Cand.

SAT 0 / 37 / 337 2 5
Google 0 / 50 / 500 2 4
BATS 0 / 199 / 1,799 2 4

E-KAR 1,174 / 171 / 320 2(64.7%), 43(35.3%)

Table 1: Comparison between E-KAR and previous
analogy benchmarks: data sizes in different splits, num-
ber of terms in a query or candidate answer, and num-
ber of candidates for multiple-choices.

word embeddings. In this work, we take a step for-248

ward and build a new kind of benchmark E-KAR249

to facilitate the study of analogical reasoning.250

4.1 Dataset Collection251

We build our dataset upon the publicly available252

questions of Civil Service Exams of China (CSE),253

which is a comprehensive test for candidates’ crit-254

ical thinking and problem-solving abilities. CSE255

consists of problems that test various types of rea-256

soning skills, such as graphical reasoning, logical257

reasoning and comprehension (Liu et al., 2020b),258

analogical reasoning, etc.259

We collect in total 1,665 analogical reasoning260

problems from CSE over the years. One of the261

prominent features in CSE problems is the inten-262

sive involvement of commonsense, encyclopedic,263

and idiom knowledge. For example, one needs264

to be aware of the commonsense that “the tide265

is caused by both Lunar gravity and Solar266

gravity”. More importantly, one needs to know267

a negated fact in order to reject a candidate, such as268

the fact that “husband is not a job” or “a car269

is not made of tires”. We keep mainly those270

requiring knowledge and logical reasoning skills.271

The rest is manually removed, such as ones testing272

mathematics, morphology, and phonics, as well as273

the problems with terms larger than three.274

Each problem consists of a query term tuple and275

four candidate answer tuples of terms, as shown in276

Figure 1. The dataset is randomly split into training,277

development, and test set at the ratio of 7:1:2. We278

compare E-KAR with previous benchmarks in Ta-279

ble 1, including SAT (Turney et al., 2003), Google280

(Mikolov et al., 2013b) and BATS (Gladkova et al.,281

2016). There are 35.3% problems with three terms282

in E-KAR, whereas previous ones only consist of283

two, making E-KAR more challenging.284

Corpus n = 1 n = 2 n = 3 n ≥ 4 All
(3.9%) (59.3%) (14.0%) (22.8%) (100%)

Ency. 88.39 95.70 85.14 73.26 88.83
Thes. 99.57 86.04 42.69 38.69 69.71
Both 100 96.15 85.73 73.33 89.64

Table 2: Proportion of terms with various number of
Chinese characters (n) in the dataset, as well as their
coverage (%) in different corpora (encyclopedia and
thesaurus).

Corpus with Background Knowledge We fur- 285

ther build a corpus to aid the understanding of terms 286

like idioms and rare ones that current neural net- 287

works struggle to comprehend. The corpus is built 288

upon an encyclopedia3 and a thesaurus4, which are 289

both one of the largest and most widely-used Chi- 290

nese sources of their kind. Detailed statistics of 291

coverage are reported in Table 2. Overall, the cor- 292

pus covers 89.64% of all terms in E-KAR, showing 293

its richness for knowledge coverage. 294

4.2 Manual Annotation of Explanations 295

We work with a private company for annotating the 296

explanations defined in § 3.2. Before annotation 297

starts, we conduct a training session for all annota- 298

tors to fully understand the requirements and pick 299

the capable ones based on a selection test. The se- 300

lected workers are allocated into two teams, a team 301

of explanation constructors and a team of checkers, 302

where the checkers achieves better scores in the 303

test. All of them are paid above the local minimum 304

wage. The annotation consists of two stages: 1) the 305

construction stage for writing explanations, and 2) 306

the double-check stage for quality control. 307

Construction During annotation, each problem 308

is assigned to a constructor to build five sentences 309

of explanations: one for query and four for can- 310

didate answers. The explanations are required to 311

be: 1) fluent and factually correct, 2) able to solve 312

the problem on their own, and 3) knowledge-rich. 313

To reduce the labeling difficulty, we offer them 314

sentences from the retrieved corpus for reference, 315

while allowing them to use the search engine for 316

querying the Internet. 317

First-round Checking Afterward, a problem 318

with five annotated explanations is fed to a checker 319

for a first-round checking. The checker decides 320

3Baidu Encyclopedia (https://www.baike.baidu.com).
4Xinhua Chinese Dictionary (https://www.zdic.net).
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tea :teapot :teacup1 2 3Q)

textbooks :bookstore : 
printing factory

1 2
3

D)

passengers :bus :taxi1 2 3A)
magazine :bookshelf : 
reading room

1 2
3

B)

talents :school :enterprise1 2 3C)

Both “teapot”  and “teacup”  
are containers for holding 
“tea” . After the “tea”  …

2 3

1 1

“Passengers” do not need to 
be transported into “taxi” 
after taking a “bus”. …

 = Q,A,B,C,D𝒳

EG
ℰQ

ℰA

(a) Analogical QA.
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1 2
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D)
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1 2
3

B)
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Both “teapot”  and “teacup”  
are containers for holding 
“tea” . After the “tea”  …

2 3

1 1

“Passengers” do not need to 
be transported into “taxi” 
after taking a “bus”. …

 = Q,A,B,C,D𝒳

EG
ℰQ

ℰA

(b) Explanation Generation.

Figure 2: Examples of two shared tasks.

whether to accept an explanation sentence accord-321

ing to the criteria in the construction stage. The322

rejected ones are sent back to the construction team323

for revision along with reasons to reject, which324

serves to re-train the construction team. The pro-325

cess repeats until a batch reaches 90% accuracy.326

Then, a second-round checking initiates.327

Second-round Checking A verified batch is pre-328

sented to authors for double-checking. Authors329

conduct random inspections, and unqualified an-330

notations are sent back with reasons to the check331

team to fine-tune their checking criteria, which in332

turn regularize the construction team. The process333

also repeats until a batch reaches 95% accuracy.334

In the end, the authors manually calibrate every335

explanation and acquire 1,665 analogical problems336

and a total number of 8,325 (5×1,665) free-text337

explanations, with an average of 31.9 characters338

per sentence.339

4.3 Shared Tasks in E-KAR340

We define two shared tasks, explanation genera-341

tion (EG) and multiple-choice question-answering342

(QA) for teaching models how to analogize. We343

denote input as X = (Q,A), output as Y , and ex-344

planations as E . Thus, the tasks can be formulated345

as PEG(E|X ) and PQA(Y|X ). Figure 2 shows the346

examples of input and output.347

Task 1: Analogical QA As introduced in § 3,348

the analogical QA is be formulated as PQA(Y|X ).349

The QA task requires an understanding of the rela-350

tionship between the query and each of the candi-351

dates to find the correct answer. For evaluation, we352

directly use the accuracy of multiple-choice QA.353

Note that all candidates may be related to the354

query tuple from certain perspectives, the challenge355

lies in finding the most related one. That is, we356

have to identify the inherent connections and rela-357

tions between terms in the query and candidates,358

considering properties such as linguistic features,359

meaning, and order of terms, commonsense knowl- 360

edge, etc. For example, the error for candidate D 361

in Figure 1 can be attributed to the incorrect term 362

order, though three terms follow a similar common- 363

sense relationship as seen in the query. Hence, the 364

best choice is C. 365

Task 2: Explanation Generation This task 366

aims to produce the intermediate reasoning pro- 367

cess of analogical reasoning as seen in Figure 2(b), 368

formulated as PEG(E|X ). Such explanations serve 369

as training supervisions to explain and improve 370

model predictions. As defined in § 3.2, we aim to 371

generate EQ and EAi for each query and candidate 372

answer, where the former serves as the abduced 373

source structures to be mapped onto the latter. The 374

generated text can be evaluated with text genera- 375

tion metrics such as ROUGE (Lin, 2004), Mover- 376

Score (Zhao et al., 2019), BERTScore (Zhang et al., 377

2020) and BLEURT (Sellam et al., 2020). However, 378

great challenges remain for automatically evaluat- 379

ing semantic-rich text (Celikyilmaz et al., 2020). 380

5 Methods 381

We evaluate some of the state-of-the-art neural 382

models on both tasks of E-KAR. The implementa- 383

tion details are reported in Appendix A. 384

5.1 Baselines for Analogical QA 385

Pre-trained Methods As pre-trained-only base- 386

lines, we adopt three static word embeddings that 387

have shown their effectiveness in previous analogy 388

tasks: Word2Vec (Mikolov et al., 2013a), GloVe 389

(Pennington et al., 2014) and FastText (Bojanowski 390

et al., 2017). We also test contextualized embed- 391

dings from PLMs, including BERT (Devlin et al., 392

2019) and RoBERTa (Liu et al., 2019). The av- 393

eraged token representation is taken as the term 394

representation. A query or a candidate is calcu- 395

lated as the sum of the representations of each term 396

pair, which is represented as the embedding vector 397

differences (Hakami and Bollegala, 2017; Ushio 398

et al., 2021). The candidate with the highest cosine 399

similarity to the query is chosen as the predicted 400

answer. 401

Fine-tuned Methods We also set up fine-tuned 402

baselines with PLMs (BERT and RoBERTa). Since 403

previous benchmarks do not have a training set, we 404

only fine-tune the models on their development 405

set. The query and candidates are respectively 406

verbalized into text using simple prompts such as 407
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“A:B::C:D::E:F”. Each candidate is concatenated408

with the query into one sentence, which is fed into409

a PLM for contextualized representation learning.410

Then, averaged hidden states are fed to an MLP411

layer and a softmax layer for classification. Be-412

sides, the semantics of terms in the problem can be413

enriched with background knowledge K from the414

corpus. Given a term, we retrieve the first knowl-415

edge sentence from the corpus, and concatenate it416

to the original input. The parameters are fine-tuned417

during training.418

Human Evaluation We also ask three under-419

graduate and graduate students to solve the ran-420

domly sampled 200 problems without any hints,421

and report the averaged score of them as human422

performance.423

5.2 Baselines for Explanation Generation424

We formulate the EG task in a sequence-to-425

sequence (Seq2Seq) paradigm. Although the ex-426

planation is individually specific to each query and427

candidate, the generator has to take into account428

the whole problem for generating with the best429

source structure (as in § 3.1) and thus finding the430

most analogous candidate. Thus, we feed into the431

model the concatenation of the query and all candi-432

dates, and the model is trained to generate different433

explanations by changing the prefixes, e.g., “Gen-434

erate: Q/Ai”. The Seq2Seq model is instantiated435

with state-of-the-art pre-trained language models436

for Seq2Seq tasks, including BART (Lewis et al.,437

2020) and T5 (Raffel et al., 2020).438

6 Results and Analysis439

In this section, we wish to answer three questions:440

Q1) Can models do knowledge-intensive analogical441

QA? Q2) Can models generate rational reasons for442

analogical thinking? Q3) How do different hints443

help humans solve analogical problems?444

Categorization of Problems We first manually445

categorize the relational types of problems in446

E-KAR according to a pre-defined schema. Note447

that, unlike free text, we are unable to induce a448

comprehensive set of relations that covers all candi-449

dates due to the complexity of CSE problems. As450

a result, we carefully assign at least one relation451

to each query. To facilitate analysis, we also try to452

assign relations to each candidate and query in the453

development and test set, ending up covering 76%454

of the candidates and 100% of the queries.455

We refer to several sources of word analogy def- 456

initions and textbooks for analogy tests (listed in 457

Appendix B), and categorize the relations into five 458

meta-relations (as well as their coverage in the test 459

set) and several accompanying sub-relations: 460

1. Semantic (R1, 8.88%), the similarity or dif- 461

ference in the meaning of terms, including 462

synonym_of and antonym_of ; 463

2. Extension (R2, 41.60%), the relation between 464

the extension of terms, including is_a, contra- 465

dictory_to, etc.; 466

3. Intension (R3, 34.83%), terms relate to 467

each other by inherent properties, including 468

made_of, has_function, etc.; 469

4. Grammar (R4, 7.74%), the grammatical re- 470

lations between terms, including subject- 471

predicate, head-modifier, etc.; 472

5. Association (R5, 6.95%), logical associa- 473

tion between terms, including result_of, suffi- 474

cient_to, etc. 475

Complete sub-relations are presented in Appendix 476

B, as well as their definitions and examples. 477

6.1 Can models do knowledge-intensive 478

analogical QA? 479

Table 3 reports the accuracy results of baseline 480

methods on previous analogy tasks and the QA 481

task in E-KAR. We find that contextualized word 482

embeddings from PLMs are not very competitive 483

against static word embeddings in previous analogy 484

tasks, which is consistent with the findings in Pe- 485

ters et al. (2018). In more knowledge-rich datasets 486

such as E-KAR, the opposite conclusion can be 487

made, with PLMs prevailing over static word em- 488

beddings. Also, humans achieve 77.8% accuracy 489

in E-KAR, indicating the challenge of this task as 490

well as showing that neural models still fall far 491

behind human performance. 492

Performance from contextualized representa- 493

tions can be improved in all tasks through fine- 494

tuning, especially for E-KAR, where accuracy in- 495

creases by roughly 5 to 6 points. When augmented 496

with knowledge from corpus through naïve sen- 497

tence concatenation, however, the accuracy drops 498

considerably. This is probably because the first 499

sentence of a term in the corpus only describes 500

limited properties of the term itself, but analogical 501

reasoning requires the deep understanding of the 502

relationship between the terms. Also, with the con- 503

catenation of knowledge sentences, longer input 504

distracts a model from solving the problem. We 505
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Method SAT Google BATS E-KAR

Pre-trained Word Embeddings
Word2Vec† 41.5 93.2 63.9 28.2
GloVe† 47.7 96.0 67.6 30.9
FastText† 47.1 96.6 72.0 31.4

Pre-trained Language Models
BERT†

b 32.9 80.8 61.5 34.5
RoBERTa†b 42.4 90.8 69.7 41.7
RoBERTa†l 45.4 93.4 72.2 44.6

Fine-tuned Language Models
BERTb 38.9 86.6 68.0 41.8
RoBERTab 47.7 93.8 75.2 46.9
RoBERTal 51.6 96.9 78.2 50.1

+ K - - - 44.2
+ E - - - 95.0

Humans - - - 77.8

Table 3: Accuracy results on previous analogy tasks
and the QA task in E-KAR. Method† is not tuned.
PLMb or PLMl denote base or large version respec-
tively. Method + K and E denote the input is concate-
nated with retrieved knowledge and gold explanations
respectively.

believe a more delicate way of knowledge injection506

in this task is worth investigating in the future. No-507

tably, gold explanations help boost the accuracy of508

a RoBERTa model from 50.1% to 95.0%, showing509

good quality.510

Error Analysis We further conduct an error anal-511

ysis based on the results in E-KAR predicted by512

fine-tuned RoBERTa (large). The erroneous ones513

are classified based on the manually annotated514

meta-relations and sub-relations of queries, which515

are fine-grained analysis tools for a model’s pre-516

dictions. Figure 3(a) shows that the model per-517

form evenly bad on all meta-relations, with R2518

(Extension) being the most error-prone one (only519

40.3% accuracy) and R3 (Intension) being the least520

one (56.8% accuracy). Figure 3(b) presents the521

error rate of finer-grained sub-relations with more522

than 10 cases. We find that, consistent with Figure523

3(a), the three most error-prone sub-relations is_a,524

part_of and juxtaposition_of all belong to R2 (Ex-525

tension). Besides, the model seems to do well in526

linguistic knowledge, with verb-object achieving527

only 33.3% error rate. These findings may shed528

light on future directions for knowledge-injection529

and reasoning with language models.530

6.2 Can models generate rational reasons for531

analogical thinking?532

We report the automatic evaluation results of gener-533

ated explanations in Table 4. However, such results534

R1: Sem
antic

R2: Extension
R3: Intension
R4: Gram

m
ar

R5: Association

5.2%
3.3%

16.9%
21.2%

4.6%

4.2%2.9%

22.2%

14.3%

5.2%

True
False

(a) Meta-relations distribu-
tions and their error ratios.

is_a

part_of

juxtaposition_of

cause_effect

antonym_of

synonym_of

...

correspond_to

verb-object

0 20 40 60 80

33.3

39.3

0.0

46.7

46.7

50.0

51.7

63.3

72.0

(b) Sub-relations in a sorted or-
der of error rate.

Figure 3: Error analysis of different query relations.
The results are predicted by a fine-tuned RoBERTa
(large).

Method RG2. Mover. BERT. BLRT.

T5b 30.80 64.55 76.33 60.34
BARTb 33.04 64.30 70.78 62.16
BARTl 34.49 64.40 71.26 63.15

Table 4: Results of different explanation generation
models w.r.t. ROUGE-2, MoverScore, BERTScore and
BLEURT.

hardly mean anything due to the incapability to 535

evaluate semantic-rich text of current automatic 536

metrics. Therefore, we also randomly select 100 537

sentences generated by a BART (large) for man- 538

ual inspection. Interestingly, we find the generated 539

explanations do not contain much of the negated 540

facts, which are important to refute a candidate, 541

as mentioned in § 4.1. For explanations of re- 542

futed candidates, we find ∼90% gold ones contain 543

negated facts for deciding correctness. However, 544

the number drops to ∼23% in the generated ones. 545

An interesting conclusion can be drawn that cur- 546

rent generative models do not seem to know how to 547

generate a negated fact which is still truthful, such 548

as “feeling can not guide psychological 549

reaction.” since feeling is a reaction. 550

The fact also questions the astonishing perfor- 551

mance boost (from 50.1% to 95.0%) in QA by gold 552

explanations, as it could be biased towards surface- 553

level negation. To debias this, we conduct a simple 554

ablation study by directly removing the clauses 555

containing the negation word “不”(not) in the test 556

set, and still achieve 90.9% in QA accuracy. These 557

findings point to the potential of a high quality ana- 558

logical reasoning system given correct generated 559

explanations. 560

To sum up, the errors for generated explanations 561

can be roughly categorized into three classes: 1) in- 562

capable of generating negated facts; 2) generating 563
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Q) 氧气 (oxygen):臭氧 (ozone)
A) 盐 (salt):氯化钠 (sodium chloride)
B) 硫酸 (sulfuric acid):硫 (sulfur)
C) 石墨 (graphite):金刚石 (diamond)
D) 石灰水 (lime water):氢氧化钙 (calcium hydrox-

ide)

E†Q 氧气和臭氧都只由氧元素组成。Both oxygen
and ozone are made of only the oxygen element.

E‡Q 臭氧是氧气的一种。Ozone is a kind of oxygen.
E†A 氯化钠是盐的主要成分，盐和氯化钠不是只由

一种元素组成。Sodium chloride is the main com-
ponent of salt. Neither salt nor sodium chloride is
made of only one element.

E‡A 氯化钠是盐的一种。Sodium chloride is a kind of
salt.

Table 5: Case study of explanations, where E† is gold
explanation and E‡ is generated by a BART (large).

factually incorrect statements; 3) biasing towards564

common patterns, such as “term 1 and term 2565

have similar meanings” and “term 1 is a term566

2”. For example, in Table 5, both generated EQ and567

EA are factually incorrect, and BART fails to gen-568

erate the negated fact that “both are not exclusively569

made of one component.”570

6.3 How do different hints help humans solve571

analogical problems?572

We acknowledge the limitation of automatic eval-573

uation for explanation generation and knowledge574

retrieval. Therefore, we hope to figure out how575

background knowledge and different explanations576

help humans solve analogical problems.577

We ask three graduate and undergraduate stu-578

dents as participants to complete randomly sam-579

pled 150 analogical problems. The participants580

are exposed with three settings of hints (i.e., 50581

problems per setting): 1) retrieved knowledge, 2)582

generated explanations by a BART (large), and 3)583

gold explanations. Participants are asked to rate584

each hint based on the degree of difficulty it reduces585

when thinking, including unhelpful (0), somewhat586

helpful (1, answers can be drawn partly from hints),587

and very helpful (2, answers can be largely drawn588

from hints).5589

According to Table 6, the gold explanations un-590

doubtedly is the most helpful hint among them,591

showing its good quality. The generated explana-592

tions receives 50.7% votes of somewhat helpful (1)593

and 14.7% votes of very helpful (2). The retrieved594

knowledge achieves the worst performance in help-595

5They reach moderate inter-rater agreement with Fleiss’
κ = 0.427.

Hint Helpfulness

Not (0) Some (1) Very (2)

Retrieved K 45.4% 45.3% 9.3%
Expl. (Generated) 34.6% 50.7% 14.7%
Expl. (Gold) 0.0% 5.3% 94.7%

Table 6: Human evaluation on the helpfulness of differ-
ent hints for solving problems in E-KAR.

fulness, which can be attributed to the fact that the 596

retrieval is purely off-the-shelf. Still, more than 597

a half cases of retrieved knowledge (54.6%) are 598

decided to be helpful to different extent. 599

7 Conclusion 600

In this work, we propose a first-of-its-kind bench- 601

mark E-KAR for explainable analogical reason- 602

ing, which sets a concrete playground and eval- 603

uation benchmark to boost the development of 604

human-like analogical reasoning algorithms. The 605

E-KAR benchmark is featured by its rich coverage 606

in knowledge and well-designed free-text explana- 607

tions to rationalize analogical reasoning process. 608

However, there are still many open questions 609

that need to be addressed. For example, humans 610

solve the analogical problems in a trial-and-error 611

manner, but the annotated explanations in E-KAR 612

are mostly post-hoc and reflect only the final step 613

of the reasoning. Such explanations cannot offer 614

supervision for intermediate reasoning, though it 615

is an interesting question whether an intelligent 616

model should be deeply supervised at every step 617

(Tafjord et al., 2021). Furthermore, E-KAR only 618

presents one feasible explanation for each problem, 619

whereas there may be several. 620

This benchmark also invites analogical reason- 621

ing models that can effectively interact with extra 622

knowledge as well as better metrics for evaluat- 623

ing free-text explanations. It remains to be a great 624

challenge to generate factually correct explanations 625

as well as negated facts. Especially, the latter is 626

relatively under-explored in the research commu- 627

nity but of much importance. Finally, whether the 628

analogical QA system can correctly exploit expla- 629

nations and background knowledge is also worth 630

investigating, which may intersect with researches 631

on debiasing (Tang et al., 2020; Niu et al., 2021). 632

We hope this dataset to be a valuable supplement 633

to future research on natural language reasoning, 634

especially for researches on analogical reasoning 635

and explainable NLP. 636
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Ethical Considerations637

This paper proposes a new kind of analogical638

benchmark with explanations to rationalize models’639

predictions. The dataset is collected from Civil Ser-640

vice Exams of China, which is publicly available641

and has been used in other public datasets before,642

such as LogiQA (Liu et al., 2020a). The annotated643

explanations for each problem in our dataset are644

crowd-sourced by working with a private company.645

The construction team remains anonymous to the646

authors, and the annotation quality is guaranteed647

by the double-check strategy as mentioned in § 4.2.648

We ensure that all annotators’ privacy rights are649

respected in the annotation process. All annotators650

have been paid above local minimum wage and651

consented to use the datasets for research purposes652

covered in our paper.653
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A Implementation Details1048

The pre-trained word embeddings are provided by1049

Li et al. (2018b), and the checkpoints for PLMs by1050

HuggingFace (Wolf et al., 2020). Most of the pa-1051

rameters in the baseline models take the default val-1052

ues from HuggingFace’s Transformers library, and1053

we keep the best checkpoint on the validation set1054

for testing. The Chinese version of BERT (whole1055

word masking) and RoBERTa (whole word mask-1056

ing extended) are provided by Cui et al. (2020),1057

BART by Shao et al. (2021) and T5 by Zhang et al.1058

(2021).1059

B Detailed Relation Definitions1060

For designing the relation taxonomy, we refer to a1061

number of sources for categorizing types of analogy1062

tests, including MAT6, Fibonicci7, Offcn Education1063

(in Chinese)8 and Huatu Education (in Chinese)9,1064

etc.1065

The complete set of meta-relations and sub-1066

relations are presented in Table 7.1067

6http://www.west.net/s̃tewart/mat/analogies_types.htm
7https://www.fibonicci.com/verbal-reasoning/analogies-

examples/
8https://www.offcn.com
9https://www.huatu.com
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Relation Definition Example Coverage

R1: Semantic 8.88%
1) synonym_of The meanings of two terms are similar. clarity : transparency 4.48%
2) antonym_of The meaning of two terms are opposite or used to

express different concepts.
harmony : conflict 4.40%

R2: Extension 41.60%
1) identical_to The meanings of two terms are identical. highway : road 3.34%
2) is_a One term is the hypernym of the other. Earth : planet 9.15%
3) part_of One term is a part of the other. steering wheel : sedan 9.32%
4) juxtaposition_to Two terms belong to the same hypernym or have

the same properties or functions.
shoes : socks 14.42%

5) contradictory_to Two term are contradictory to each other. vowel : consonant 0.79%
6) contrary_to Two propositions cannot both be true, but can both

be false.
black : white 2.55%

7) intersection_to The extension of the two terms intersects. solo : pianolude 1.67%
8) utterly_different The extensions of terms do not overlap. apple : nuts 0.35%

R3: Intension 34.83%
1) attribute_of One term is the attribute of the other. object : inertia 1.50%
2) probabilistic_attribute One term is probably the attribute of the other. shoes : high heels 0.09%
3) has_function One term has the function of the other. calculator : calculate 4.57%
4) metaphor A term is the metaphor of the other, reflecting

something abstract indirectly.
pigeon : peace 1.06%

5) takes_place_in A term takes place in the other. soldier : battlefield 1.41%
6) located_in A term is located in the other. Rhine : Europe 1.50%
7) made_of One term is the raw material of the other. door : wood 3.69%
8) tool_of One term is the tool of the other. knives : murder 0.35%
9) target_of One term is the target of the other. health : exercise 0.53%
10) corresponds_to Terms generally correspond to each other. post office : mail bank 20.14%

R4: Grammar 7.74%
1) subject-predicate The originator of the action and the action itself. plane : take off 1.32%
2) verb-object The action and the object on which the action acts. transfer : goods 3.87%
3) head-modifier The preceding term modifies the other. affluence : living 0.97%
4) subject-object The originator and receiver of an action. dairy farmer : milk 1.58%

R5: Association 6.95%
1) result_of One term causes the other. lack of water : plants wither 3.87%
2) follow The terms have a chronological or other sequential

relationship, but one term does not cause the other.
sign up : take the exam 1.79%

3) sufficient_to One term is a sufficient condition for the other. raining : wet ground 0.0%
4) necessary_to One term is a necessary condition for the other. admission : graduation 1.32%

Table 7: Complete set of defined sub-relations with definitions, examples and coverage in the test set of E-KAR.
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