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Abstract

The ability to recognize analogies is funda-
mental to human cognition. Existing bench-
marks to test word analogy does not reveal the
underneath process of analogical reasoning of
neural models. Holding the belief that mod-
els capable of reasoning should be right for
the right reasons, we propose a first-of-its-kind
Explainable Knowledge-intensive Analogical
Reasoning benchmark (E—KAR). Our bench-
mark consists of 1,665 problems sourced from
the Civil Service Exams, which require inten-
sive background knowledge to solve. Besides,
we design a free-text explanation scheme to
explain how an analogy is drawn, and manu-
ally annotate E-KAR with 8,325 knowledge-
rich sentences of such explanations. Empiri-
cal results suggest that this benchmark is very
challenging to some state-of-the-art models
for both explanation generation and analogical
question answering tasks, which invites further
research in this area.!

1 Introduction

Analogy holds a vital place in human cognition,
driving the discovery of new insights and the jus-
tification of everyday reasoning (Johnson-Laird,
2006; Gentner and Smith, 2012; Bartha, 2013; Ben-
gio et al., 2021). Due to their unique value in many
fields such as creativity (Goel, 1997) and education
(Thagard, 1992), analogy and analogical reasoning
have become a focus in Al research. The grand
question is, are artificial neural networks also capa-
ble of recognizing analogies?

Relatively little attention has been paid in NLP
to answer this question. The problem of recogniz-
ing analogies is mainly benchmarked in the form
of (A:B::C:D) (Turney et al., 2003; Mikolov et al.,
2013b; Gladkova et al., 2016; Li et al., 2018a) and
targeted for testing the ability of pre-trained word
embeddings. Given a tuple of terms as query (e.g.,
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Figure 1: An example in E-KAR. The explanations in
E-KAR explain the structure-mapping process for ana-
logical reasoning, where source structures are drawn
from the query and mapped onto each candidate answer
for decision-making.

tea:teapot:teacup) and a list of candidate an-
swers as in Figure 1, a model needs to find the most
analogous candidate to the query, which is C in the
example since it matches the relations inherent in
the query better than others.

Most methods (Mikolov et al., 2013a; Levy and
Goldberg, 2014; Pennington et al., 2014) hold a
connectionist assumption (Feldman and Ballard,
1982) of linear analogy (Ethayarajh et al., 2019),
that the relation between two words can be esti-
mated by vector arithmetic of word embeddings.
For example, king — man + woman = quéen.



However, current benchmarks focus on the recog-
nition of binary analogies such as syntactic, mor-
phological and direct semantic (e.g., is_a and syn-
onym_of) relations. And the analogical reasoning
procedure behind them is far beyond the scope of
this line of research.

However, how to explain and rationalize analog-
ical reasoning remains to be the major challenge.
Psychological literature (Gick and Holyoak, 1983;
Gentner, 1983; Minnameier, 2010) suggests that
analogical reasoning follows the structure-mapping
process. That is, a target (the domain where a prob-
lem must be solved, i.e., candidates) and a source
(the domain where the analogy is drawn, i.e., the
query) are matched, and the relevant features of the
source have to be mapped onto the target. In Figure
1, source structures are drawn from the query and
mapped onto candidates, where A, B, D all fail at
certain structures. We argue that such a process
can be verbalized into natural language to explain
analogical reasoning.

Moving from simply recognizing analogies to
exploring human-like reasoning for neural mod-
els, we emphasize the importance of a new kind
of analogical reasoning benchmark. To fill in this
blank, we propose a first-of-its-kind benchmark
for Explainable Knowledge-intensive Analogical
Reasoning (E—-KAR). We collect 1,665 analogi-
cal reasoning problems sourced from the pub-
licly available Civil Service Examinations of
China, which are challenging and knowledge-rich
multiple-choice problems designed by domain ex-
perts. To justify the reasoning process, we follow
the aforementioned guidelines from psychologi-
cal theories and manually annotate explanations
for each query and candidate answers in E—~KAR.
Since the annotation requires intensive involvement
of knowledge and reasoning, we carefully design
a double-check procedure for quality control. In
summary, the contributions of this paper include:

* We advance the traditional setting of
word analogy recognition by introducing
a knowledge-intensive analogical reasoning
benchmark (E-KAR), which is first-of-its-
kind and challenging.

* To justify the analogical reasoning process,
we design free-text explanations according to
theories on human cognition, and manually
annotate them.

* We define two tasks in E-KAR, i.e., analogi-
cal QA and explanation generation, and report

the performance of some state-of-the-art neu-
ral models. We discuss the potentials of this
benchmark and hope it facilitates future re-
search on analogical reasoning.

2 Related Work

Word Analogy Recognition in NLP Bench-
marks for word analogy recognition (Turney et al.,
2003; Mikolov et al., 2013b; Gladkova et al., 2016;
Li et al., 2018a) examine mostly linear relations
between words (Ethayarajh et al., 2019). Such
analogies can often be effectively solved by vec-
tor arithmetic for neural word embeddings, such
as Word2Vec (Mikolov et al., 2013a) and GloVe
(Pennington et al., 2014). Recent studies (Brown
et al., 2020; Ushio et al., 2021) also test such ability
of pre-trained language models (PLMs) (Radford
et al., 2019; Devlin et al., 2019; Brown et al., 2020)
on these benchmarks. An exceptional benchmark
is Li et al. (2020), where they build a knowledge-
enhanced analogy benchmark that leverages word
sense definitions in a commonsense knowledge
base (Ma and Shih, 2018). However, these bench-
marks are mainly set up for evaluating learned rep-
resentations, and few of them ever investigated the
analogical reasoning skills for neural models. Thus,
the goal of this work largely differs from this line of
research, as we aim to build a knowledge-intensive
benchmark to teach neural models analogical rea-
soning for correct thinking.

Reasoning Benchmarks from Examinations
There are abundant benchmarks derived from hu-
man examinations to facilitate the study of machine
reasoning (Clark et al., 2016; Schoenick et al.,
2017). For example, RACE (Lai et al., 2017) is
collected from the English exams for middle and
high school students, focusing on skills of passage
summarization and attitude analysis. ARC (Clark
et al., 2018) contains natural, grade-school science
questions authored for human tests. MCQA (Guo
et al., 2017), GeoSQA (Huang et al., 2019) and
GCRC (Tan et al., 2021) are sourced from national
college entrance exams of China, measuring a com-
prehensive set of reasoning abilities. LogiQA (Liu
etal., 2020a) consists of logical reading comprehen-
sion problems from Civil Service Exams of China,
which is also our source of analogical problems.
ReClor (Yu et al., 2020) and LR-LSAT (Wang et al.,
2021), collected from Law School Admission Test,
aim for testing logical reasoning abilities. In our
work, we focus on analogical reasoning skills for



machines and additionally equip E-KAR with an-
notated explanations to rationalize reasoning.

Explainable NLP Datasets One of the most
prominent objectives in machine reasoning is giv-
ing reasons or explanations for a prediction. In
current datasets for explainable NLP, such reasons
can be categorized into three classes (Wiegreffe and
Marasovié, 2021): 1) highlights explanations (Cam-
buru et al., 2018; Yang et al., 2018; Thorne et al.,
2018; Kwiatkowski et al., 2019), which are subsets
of the input elements to explain a prediction, e.g.,
words or sentences; 2) free-text explanations (Cam-
buru et al., 2018; Zellers et al., 2019; Aggarwal
et al., 2021) that are textual explanations for justifi-
cation; 3) structured explanations (Mihaylov et al.,
2018; Khot et al., 2020; Clark et al., 2020; Jhamtani
and Clark, 2020; Geva et al., 2021), which are not
fully free-text and generally follow certain struc-
tures such as a chain of facts. The explanations can
be utilized to augment (Rajani et al., 2019), super-
vise (Camburu et al., 2020) and evaluate (DeYoung
et al., 2020) the predictions of neural models. In
this work, we phrase analogical reasoning itself as
an instance of machine reasoning tasks, advanc-
ing the research on analogical reasoning from the
perspectives of data collection.

3 Explainable Analogical Reasoning

In this work, we consider a classic setting of analog-
ical reasoning within NLP: recognizing word/term
analogies.” This task can be formulated as multiple-
choice question-answering. Given a query tuple
Q@ with k£ (two or three) terms, and m candidate
answer tuples A = {4;}", the goal is to find the
most analogous one in the candidates to the query.

We advocate that reasoning is about giving rea-
sons explaining a prediction. In order to teach
machines to analogize as humans do, we draw in-
spiration from theories in cognitive psychology to
design the forms of explanations.

3.1 Analogical Reasoning: A Psychological
Perspective

Before designing suitable forms of explanations,
we introduce some important theories from cog-
nitive psychology for a better understanding of
analogical reasoning. In the psychological litera-
ture, analogical reasoning is described as a schema-
induction (Gick and Holyoak, 1983) or structure-

2Here, “term” corresponds to “word” in previous analogy
benchmarks, but allows for multiple words.

mapping (Gentner, 1983) process. Peirce (1896)
claimed that analogy is a combination of abductive
and inductive reasoning. Minnameier (2010) fur-
ther developed the inferential process of analogy
into three steps, which we take as the guidelines
for designing explanations:

1. A possibly suitable structure in the source
domain is abduced from the target domain,
which might also work for the target problem;

2. The specific concepts of the source structure
have to be replaced by suitable target concepts
(by an inductive inference);

3. The validity of the transformation is judged
w.r.t. solving the target problem.

Take Figure 1 for example. Source structures can
be abduced that both term 2 (teapot) and term 3
(teacup) belong to a concept, and term 1 (tea)
can be transported from term 2 to term 3. The
mapping naturally reveals the validity, for example,
candidate A is wrong because passengers do
not follow a unidirectional transportation (i.e., from
bus to taxi) but a bidirectional one.

3.2 Explanations for Analogical Reasoning

Following the above guidelines, the explanations
for the analogical reasoning task should also in-
clude three parts: /) description of suitable struc-
tures for the query; 2) how the structure is mapped
into candidates; and 3) reasons to justify whether
the mapping is correct, such as commonsense
knowledge. To this end, we define free-text ex-
planation for analogical reasoning, which is one
of the most expressive and commonly-used expla-
nations (Wiegreffe and Marasovi¢, 2021). We en-
sure the free-text explanations to be self-contained,
knowledge-rich, and sufficient to solve the problem
as a substitute for the original input.

Specifically, for each query (Q)) and candidate
(A;), we define free-text explanations g and £4,.
Following the guidelines in § 3.1, £ should de-
scribe the best suitable inherent structure in a query.
&4, should decide the correctness of candidate A;
and provide facts as support evidence. Note that the
decision should be drawn by mapping candidate
terms into the structure expressed in &g correspond-
ingly, which is analogous to template-filling.

4 The E-KAR Benchmark

Previous benchmarks consider recognizing word
analogies as testbeds for evaluating pre-trained



Dataset Data Size # of Terms # of Corpus "' 1 n=2 n=3 n>4 All
(train / val / test) in Cand. Cand. P (3.9%)  (59.3%)  (14.0%)  (22.8%) | (100%)
SAT 0/37/337 2 5 Ency. 88.39  95.70 85.14 73.26 88.83
Google 0/50/500 2 4 ~Thes. ~ 99.57 86.04  42.69  38.69 | 69.71
BATS 0/199/1,799 2 4 Both 100 96.15 85.73 73.33 89.64
E-KAR  1,174/171/320  2(647%) 4
3(35.3%)

Table 1: Comparison between E—KAR and previous
analogy benchmarks: data sizes in different splits, num-
ber of terms in a query or candidate answer, and num-
ber of candidates for multiple-choices.

word embeddings. In this work, we take a step for-
ward and build a new kind of benchmark E-KAR
to facilitate the study of analogical reasoning.

4.1 Dataset Collection

We build our dataset upon the publicly available
questions of Civil Service Exams of China (CSE),
which is a comprehensive test for candidates’ crit-
ical thinking and problem-solving abilities. CSE
consists of problems that test various types of rea-
soning skills, such as graphical reasoning, logical
reasoning and comprehension (Liu et al., 2020b),
analogical reasoning, etc.

We collect in total 1,665 analogical reasoning
problems from CSE over the years. One of the
prominent features in CSE problems is the inten-
sive involvement of commonsense, encyclopedic,
and idiom knowledge. For example, one needs
to be aware of the commonsense that “the tide
is caused by both Lunar gravity and Solar
gravity”. More importantly, one needs to know
a negated fact in order to reject a candidate, such as
the fact that “husband is not a job” or “a car
is not made of tires”. We keep mainly those
requiring knowledge and logical reasoning skills.
The rest is manually removed, such as ones testing
mathematics, morphology, and phonics, as well as
the problems with terms larger than three.

Each problem consists of a query term tuple and
four candidate answer tuples of terms, as shown in
Figure 1. The dataset is randomly split into training,
development, and test set at the ratio of 7:1:2. We
compare E-KAR with previous benchmarks in Ta-
ble 1, including SAT (Turney et al., 2003), Google
(Mikolov et al., 2013b) and BATS (Gladkova et al.,
2016). There are 35.3% problems with three terms
in E-KAR, whereas previous ones only consist of
two, making E-KAR more challenging.

Table 2: Proportion of terms with various number of
Chinese characters (n) in the dataset, as well as their
coverage (%) in different corpora (encyclopedia and
thesaurus).

Corpus with Background Knowledge We fur-
ther build a corpus to aid the understanding of terms
like idioms and rare ones that current neural net-
works struggle to comprehend. The corpus is built
upon an encyclopedia® and a thesaurus*, which are
both one of the largest and most widely-used Chi-
nese sources of their kind. Detailed statistics of
coverage are reported in Table 2. Overall, the cor-
pus covers 89.64% of all terms in E-KAR, showing
its richness for knowledge coverage.

4.2 Manual Annotation of Explanations

We work with a private company for annotating the
explanations defined in § 3.2. Before annotation
starts, we conduct a training session for all annota-
tors to fully understand the requirements and pick
the capable ones based on a selection test. The se-
lected workers are allocated into two teams, a team
of explanation constructors and a team of checkers,
where the checkers achieves better scores in the
test. All of them are paid above the local minimum
wage. The annotation consists of two stages: /) the
construction stage for writing explanations, and 2)
the double-check stage for quality control.

Construction During annotation, each problem
is assigned to a constructor to build five sentences
of explanations: one for query and four for can-
didate answers. The explanations are required to
be: /) fluent and factually correct, 2) able to solve
the problem on their own, and 3) knowledge-rich.
To reduce the labeling difficulty, we offer them
sentences from the retrieved corpus for reference,
while allowing them to use the search engine for
querying the Internet.

First-round Checking Afterward, a problem
with five annotated explanations is fed to a checker
for a first-round checking. The checker decides

Baidu Encyclopedia (https://www.baike.baidu.com).
#Xinhua Chinese Dictionary (https://www.zdic.net).



Z=Q,ABCD

Both “teapot” and “teacup™
are containers for holding
“tea”'. After the “tea” ... &

Q) tea':teapot’:teacup’®

A) passengers':bus?:taxi’

B) magazine':bookshelf?:
reading room?
alents':school’:enterprise’

D) textbooks':bookstore?:
printing factory?

“Passengers” do not need to
be transported into “taxi”
after taking a “bus”. ... A

(a) Analogical QA. (b) Explanation Generation.

Figure 2: Examples of two shared tasks.

whether to accept an explanation sentence accord-
ing to the criteria in the construction stage. The
rejected ones are sent back to the construction team
for revision along with reasons to reject, which
serves to re-train the construction team. The pro-
cess repeats until a batch reaches 90% accuracy.
Then, a second-round checking initiates.

Second-round Checking A verified batch is pre-
sented to authors for double-checking. Authors
conduct random inspections, and unqualified an-
notations are sent back with reasons to the check
team to fine-tune their checking criteria, which in
turn regularize the construction team. The process
also repeats until a batch reaches 95% accuracy.

In the end, the authors manually calibrate every
explanation and acquire 1,665 analogical problems
and a total number of 8,325 (5x1,665) free-text
explanations, with an average of 31.9 characters
per sentence.

4.3 Shared Tasks in E-KAR

We define two shared tasks, explanation genera-
tion (EG) and multiple-choice question-answering
(QA) for teaching models how to analogize. We
denote input as X = (Q, A), output as ), and ex-
planations as £. Thus, the tasks can be formulated
as Prg(€|X) and Pga (Y| X). Figure 2 shows the
examples of input and output.

Task 1: Analogical QA As introduced in § 3,
the analogical QA is be formulated as Pga (V| X).
The QA task requires an understanding of the rela-
tionship between the query and each of the candi-
dates to find the correct answer. For evaluation, we
directly use the accuracy of multiple-choice QA.
Note that all candidates may be related to the
query tuple from certain perspectives, the challenge
lies in finding the most related one. That is, we
have to identify the inherent connections and rela-
tions between terms in the query and candidates,
considering properties such as linguistic features,

meaning, and order of terms, commonsense knowl-
edge, etc. For example, the error for candidate D
in Figure 1 can be attributed to the incorrect term
order, though three terms follow a similar common-
sense relationship as seen in the query. Hence, the
best choice is C.

Task 2: Explanation Generation This task
aims to produce the intermediate reasoning pro-
cess of analogical reasoning as seen in Figure 2(b),
formulated as Prg (E|X). Such explanations serve
as training supervisions to explain and improve
model predictions. As defined in § 3.2, we aim to
generate £ and & 4, for each query and candidate
answer, where the former serves as the abduced
source structures to be mapped onto the latter. The
generated text can be evaluated with text genera-
tion metrics such as ROUGE (Lin, 2004), Mover-
Score (Zhao et al., 2019), BERTScore (Zhang et al.,
2020) and BLEURT (Sellam et al., 2020). However,
great challenges remain for automatically evaluat-
ing semantic-rich text (Celikyilmaz et al., 2020).

5 Methods

We evaluate some of the state-of-the-art neural
models on both tasks of E-KAR. The implementa-
tion details are reported in Appendix A.

5.1 Baselines for Analogical QA

Pre-trained Methods As pre-trained-only base-
lines, we adopt three static word embeddings that
have shown their effectiveness in previous analogy
tasks: Word2Vec (Mikolov et al., 2013a), GloVe
(Pennington et al., 2014) and FastText (Bojanowski
et al., 2017). We also test contextualized embed-
dings from PLMs, including BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019). The av-
eraged token representation is taken as the term
representation. A query or a candidate is calcu-
lated as the sum of the representations of each term
pair, which is represented as the embedding vector
differences (Hakami and Bollegala, 2017; Ushio
et al., 2021). The candidate with the highest cosine
similarity to the query is chosen as the predicted
answer.

Fine-tuned Methods We also set up fine-tuned
baselines with PLMs (BERT and RoBERTa). Since
previous benchmarks do not have a training set, we
only fine-tune the models on their development
set. The query and candidates are respectively
verbalized into text using simple prompts such as



“A:B::C:D::E:F”. Each candidate is concatenated
with the query into one sentence, which is fed into
a PLM for contextualized representation learning.
Then, averaged hidden states are fed to an MLP
layer and a softmax layer for classification. Be-
sides, the semantics of terms in the problem can be
enriched with background knowledge K from the
corpus. Given a term, we retrieve the first knowl-
edge sentence from the corpus, and concatenate it
to the original input. The parameters are fine-tuned
during training.

Human Evaluation We also ask three under-
graduate and graduate students to solve the ran-
domly sampled 200 problems without any hints,
and report the averaged score of them as human
performance.

5.2 Baselines for Explanation Generation

We formulate the EG task in a sequence-to-
sequence (Seq2Seq) paradigm. Although the ex-
planation is individually specific to each query and
candidate, the generator has to take into account
the whole problem for generating with the best
source structure (as in § 3.1) and thus finding the
most analogous candidate. Thus, we feed into the
model the concatenation of the query and all candi-
dates, and the model is trained to generate different
explanations by changing the prefixes, e.g., “Gen-
erate: (Q/A;”. The Seq2Seq model is instantiated
with state-of-the-art pre-trained language models
for Seq2Seq tasks, including BART (Lewis et al.,
2020) and T5 (Raffel et al., 2020).

6 Results and Analysis

In this section, we wish to answer three questions:
Q1) Can models do knowledge-intensive analogical
QA? Q2) Can models generate rational reasons for
analogical thinking? Q3) How do different hints
help humans solve analogical problems?

Categorization of Problems We first manually
categorize the relational types of problems in
E-KAR according to a pre-defined schema. Note
that, unlike free text, we are unable to induce a
comprehensive set of relations that covers all candi-
dates due to the complexity of CSE problems. As
a result, we carefully assign at least one relation
to each query. To facilitate analysis, we also try to
assign relations to each candidate and query in the
development and test set, ending up covering 76%
of the candidates and 100% of the queries.

We refer to several sources of word analogy def-
initions and textbooks for analogy tests (listed in
Appendix B), and categorize the relations into five
meta-relations (as well as their coverage in the test
set) and several accompanying sub-relations:

1. Semantic (R1, 8.88%), the similarity or dif-
ference in the meaning of terms, including
synonym_of and antonym_of;

2. Extension (R2, 41.60%), the relation between
the extension of terms, including is_a, contra-
dictory_to, etc.;

3. Intension (R3, 34.83%), terms relate to
each other by inherent properties, including
made_of, has_function, etc.;

4. Grammar (R4, 7.74%), the grammatical re-
lations between terms, including subject-
predicate, head-modifier, etc.;

5. Association (RS, 6.95%), logical associa-
tion between terms, including result_of, suffi-
cient_to, etc.

Complete sub-relations are presented in Appendix
B, as well as their definitions and examples.

6.1 Can models do knowledge-intensive
analogical QA?

Table 3 reports the accuracy results of baseline
methods on previous analogy tasks and the QA
task in E-KAR. We find that contextualized word
embeddings from PLMs are not very competitive
against static word embeddings in previous analogy
tasks, which is consistent with the findings in Pe-
ters et al. (2018). In more knowledge-rich datasets
such as E-KAR, the opposite conclusion can be
made, with PLMs prevailing over static word em-
beddings. Also, humans achieve 77.8% accuracy
in E-KAR, indicating the challenge of this task as
well as showing that neural models still fall far
behind human performance.

Performance from contextualized representa-
tions can be improved in all tasks through fine-
tuning, especially for E-KAR, where accuracy in-
creases by roughly 5 to 6 points. When augmented
with knowledge from corpus through naive sen-
tence concatenation, however, the accuracy drops
considerably. This is probably because the first
sentence of a term in the corpus only describes
limited properties of the term itself, but analogical
reasoning requires the deep understanding of the
relationship between the terms. Also, with the con-
catenation of knowledge sentences, longer input
distracts a model from solving the problem. We



Method SAT Google BATS E-KAR
Pre-trained Word Embeddings
Word2Vec!  41.5 93.2 63.9 28.2
GloVe' 477 9.0 676 309
FastText! ~ 47.1  96.6 720 314
Pre-trained Language Models
BERT] 329 808 615 345
RoBERTaI 424 90.8 69.7 41.7
RoBERTa;( 454 934 72.2 44.6
Fine-tuned Language Models
BERT, 38.9 86.6 68.0 41.8
RoBERTa,  47.7 93.8 75.2 46.9
RoBERTa;  51.6 96.9 78.2 50.1
+K - - - 442
e - - - 950
Humans - - - 77.8

Table 3: Accuracy results on previous analogy tasks
and the QA task in E-KAR. Method' is not tuned.
PLM; or PLM; denote base or large version respec-
tively. Method + K and £ denote the input is concate-
nated with retrieved knowledge and gold explanations
respectively.

believe a more delicate way of knowledge injection
in this task is worth investigating in the future. No-
tably, gold explanations help boost the accuracy of
a RoBERTa model from 50.1% to 95.0%, showing
good quality.

Error Analysis We further conduct an error anal-
ysis based on the results in E-KAR predicted by
fine-tuned ROBERTa (large). The erroneous ones
are classified based on the manually annotated
meta-relations and sub-relations of gueries, which
are fine-grained analysis tools for a model’s pre-
dictions. Figure 3(a) shows that the model per-
form evenly bad on all meta-relations, with R2
(Extension) being the most error-prone one (only
40.3% accuracy) and R3 (Intension) being the least
one (56.8% accuracy). Figure 3(b) presents the
error rate of finer-grained sub-relations with more
than 10 cases. We find that, consistent with Figure
3(a), the three most error-prone sub-relations is_a,
part_of and juxtaposition_of all belong to R2 (Ex-
tension). Besides, the model seems to do well in
linguistic knowledge, with verb-object achieving
only 33.3% error rate. These findings may shed
light on future directions for knowledge-injection
and reasoning with language models.

6.2 Can models generate rational reasons for
analogical thinking?

We report the automatic evaluation results of gener-
ated explanations in Table 4. However, such results

False is a

M True
part_of
b2.20 juxtaposition_of
cause_effect
14.3%
antonym_of
o2t [2.9%] synonym_of
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& ) ) %, %
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(a) Meta-relations distribu-(b) Sub-relations in a sorted or-
tions and their error ratios.  der of error rate.

Figure 3: Error analysis of different query relations.
The results are predicted by a fine-tuned RoBERTa

(large).

Method RG2. Mover. BERT. BLRT.
T5s 30.80  64.55 76.33 60.34
BART, 33.04 64.30 70.78 62.16
BART, 3449 6440 71.26 63.15

Table 4: Results of different explanation generation
models w.r.t. ROUGE-2, MoverScore, BERTScore and
BLEURT.

hardly mean anything due to the incapability to
evaluate semantic-rich text of current automatic
metrics. Therefore, we also randomly select 100
sentences generated by a BART (large) for man-
ual inspection. Interestingly, we find the generated
explanations do not contain much of the negated
facts, which are important to refute a candidate,
as mentioned in § 4.1. For explanations of re-
futed candidates, we find ~90% gold ones contain
negated facts for deciding correctness. However,
the number drops to ~23% in the generated ones.
An interesting conclusion can be drawn that cur-
rent generative models do not seem to know how to
generate a negated fact which is still truthful, such
as “feeling can not guide psychological
reaction.” since feeling is a reaction.

The fact also questions the astonishing perfor-
mance boost (from 50.1% to 95.0%) in QA by gold
explanations, as it could be biased towards surface-
level negation. To debias this, we conduct a simple
ablation study by directly removing the clauses
containing the negation word “/N”(not) in the test
set, and still achieve 90.9% in QA accuracy. These
findings point to the potential of a high quality ana-
logical reasoning system given correct generated
explanations.

To sum up, the errors for generated explanations
can be roughly categorized into three classes: 1) in-
capable of generating negated facts; 2) generating



Q) e (oxygen): BE (ozone)

A) | E (salt):FAH (sodium chloride)

B) | W& (sulfuric acid):Bi (sulfur)

C) | A2 (graphite): % NI’A (diamond)

D) | AZKIK (lime water): FE A5 (calcium hydrox-
ide)

5(5 FAEMREE H B E T & 4H AL - Both oxygen
and ozone are made of only the oxygen element.

| 7522 REGEESM—M - Ozone is a kind of oxygen.
el | BULPREMEZNS BMELTAZ HH
—FRICZ AL - Sodium chloride is the main com-
ponent of salt. Neither salt nor sodium chloride is
made of only one element.

| &F | EAEEEEA—Fh . Sodium chloride is a kind of
salt.

Table 5: Case study of explanations, where £ is gold
explanation and £* is generated by a BART (large).

factually incorrect statements; 3) biasing towards
common patterns, such as “term 1 and term 2
have similar meanings” and “term 1lisaterm
2”. For example, in Table 5, both generated £¢ and
Ex are factually incorrect, and BART fails to gen-
erate the negated fact that “both are not exclusively
made of one component.”

6.3 How do different hints help humans solve
analogical problems?

We acknowledge the limitation of automatic eval-
uation for explanation generation and knowledge
retrieval. Therefore, we hope to figure out how
background knowledge and different explanations
help humans solve analogical problems.

We ask three graduate and undergraduate stu-
dents as participants to complete randomly sam-
pled 150 analogical problems. The participants
are exposed with three settings of hints (i.e., 50
problems per setting): 1) retrieved knowledge, 2)
generated explanations by a BART (large), and 3)
gold explanations. Participants are asked to rate
each hint based on the degree of difficulty it reduces
when thinking, including unhelpful (0), somewhat
helpful (1, answers can be drawn partly from hints),
and very helpful (2, answers can be largely drawn
from hints).>

According to Table 6, the gold explanations un-
doubtedly is the most helpful hint among them,
showing its good quality. The generated explana-
tions receives 50.7% votes of somewhat helpful (1)
and 14.7% votes of very helpful (2). The retrieved
knowledge achieves the worst performance in help-

SThey reach moderate inter-rater agreement with Fleiss’
K = 0.427.

Hint Helpfulness

Not (0) Some (1) Very (2)
Retrieved KC 45.4% 45.3% 9.3%
Expl. (Generated)  34.6% 50.7% 14.7%
Expl. (Gold) 0.0% 5.3% 94.7%

Table 6: Human evaluation on the helpfulness of differ-
ent hints for solving problems in E-KAR.

fulness, which can be attributed to the fact that the
retrieval is purely off-the-shelf. Still, more than
a half cases of retrieved knowledge (54.6%) are
decided to be helpful to different extent.

7 Conclusion

In this work, we propose a first-of-its-kind bench-
mark E-KAR for explainable analogical reason-
ing, which sets a concrete playground and eval-
uation benchmark to boost the development of
human-like analogical reasoning algorithms. The
E-KAR benchmark is featured by its rich coverage
in knowledge and well-designed free-text explana-
tions to rationalize analogical reasoning process.

However, there are still many open questions
that need to be addressed. For example, humans
solve the analogical problems in a trial-and-error
manner, but the annotated explanations in E-KAR
are mostly post-hoc and reflect only the final step
of the reasoning. Such explanations cannot offer
supervision for intermediate reasoning, though it
is an interesting question whether an intelligent
model should be deeply supervised at every step
(Tafjord et al., 2021). Furthermore, E-KAR only
presents one feasible explanation for each problem,
whereas there may be several.

This benchmark also invites analogical reason-
ing models that can effectively interact with extra
knowledge as well as better metrics for evaluat-
ing free-text explanations. It remains to be a great
challenge to generate factually correct explanations
as well as negated facts. Especially, the latter is
relatively under-explored in the research commu-
nity but of much importance. Finally, whether the
analogical QA system can correctly exploit expla-
nations and background knowledge is also worth
investigating, which may intersect with researches
on debiasing (Tang et al., 2020; Niu et al., 2021).

We hope this dataset to be a valuable supplement
to future research on natural language reasoning,
especially for researches on analogical reasoning
and explainable NLP.



Ethical Considerations

This paper proposes a new kind of analogical
benchmark with explanations to rationalize models’
predictions. The dataset is collected from Civil Ser-
vice Exams of China, which is publicly available
and has been used in other public datasets before,
such as LogiQA (Liu et al., 2020a). The annotated
explanations for each problem in our dataset are
crowd-sourced by working with a private company.
The construction team remains anonymous to the
authors, and the annotation quality is guaranteed
by the double-check strategy as mentioned in § 4.2.
We ensure that all annotators’ privacy rights are
respected in the annotation process. All annotators
have been paid above local minimum wage and
consented to use the datasets for research purposes
covered in our paper.
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A Implementation Details

The pre-trained word embeddings are provided by
Li et al. (2018b), and the checkpoints for PLMs by
HuggingFace (Wolf et al., 2020). Most of the pa-
rameters in the baseline models take the default val-
ues from HuggingFace’s Transformers library, and
we keep the best checkpoint on the validation set
for testing. The Chinese version of BERT (whole
word masking) and RoBERTa (whole word mask-
ing extended) are provided by Cui et al. (2020),
BART by Shao et al. (2021) and TS by Zhang et al.
(2021).

B Detailed Relation Definitions

For designing the relation taxonomy, we refer to a
number of sources for categorizing types of analogy
tests, including MAT®, Fibonicci’, Offcn Education
(in Chinese)® and Huatu Education (in Chinese)’,
etc.

The complete set of meta-relations and sub-
relations are presented in Table 7.

Shttp://www.west.net/Stewart/mat/analogies_types.htm

"https://www.fibonicci.com/verbal-reasoning/analogies-
examples/

8https://www.offcn.com

*https://www.huatu.com
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Relation Definition Example Coverage

R1: Semantic 8.88%
1) synonym_of The meanings of two terms are similar. clarity : transparency 4.48%
" 2)antonym_of The meaning of two terms are opposite or used to  harmony : conflict ~~~ 4.40%
express different concepts.
R2: Extension 41.60%
1) identical_to The meanings of two terms are identical. highway : road 3.34%
" isa One term is the hypernym of the other. =~ Earth: planet ~ 9.15%
" 3)partof One termis a part of the other. =~ steering wheel : sedan ~ 9.32%
" 4) juxtaposition_to ~ ~~ Two terms belong to the same hypernym or have ~ shoes : socks ~~ 1442%
the same properties or functions.
" 5) contradictory_to ~ Two term are contradictory to each other. ~ vowel : consonant ~ 0.79%
" 6) contrary_to Two propositions cannot both be true, but can both ~ black : white '~~~ 2.55%
be false.
~ 7)intersection_to The extension of the two terms intersects. ~~ solo: pianolude =~ 1.67%
" 8) utterly_different ~  The extensions of terms do not overlap. =~~~ apple:nuts ~ 035%
R3: Intension 34.83%
1) attribute_of One term is the attribute of the other. object : inertia 1.50%
" 2) probabilistic_attribute ~ One term is probably the attribute of the other. ~  shoes : highheels ~  0.09%
" 3) has_function One term has the function of the other.  ~~ calculator : calculate ~~ 4.57%
" &ymetaphor A term is the metaphor of the other, reflecting  pigeon: peace ~  1.06%
something abstract indirectly.
" 5)takes_place_in Aterm takes place in the other.  ~~ soldier: battlefield ~ 141%
6)located_in Atermislocatedintheother. ~~~~ Rhine: Europe ~ 1.50%
" Tymade_of One term is the raw material of the other. ~ door: wood ~ 3.69%
" 8)tool of One term is the tool of the other. =~~~ knives: murder ~ 035%
" 9)target of One term is the target of the other. ~~ health: exercise ~ 0.53%
" 10) corresponds_to~~ Terms generally correspond to each other. ~ ~ ~  post office : mail bank ~  ~ 20.14%
R4: Grammar 7.74 %
1) subject-predicate The originator of the action and the action itself. plane : take off 1.32%
" 2) verb-object The action and the object on which the action acts.  transfer: goods ~ 3.87%
" 3) head-modifier ~ The preceding term modifies the other. ~~~ affluence: living ~ 0.97%
* 4y subject-object The originator and receiver of an action. ~ dairy farmer : milk ~~ 1.58%
RS: Association 6.95%
1) result_of One term causes the other. lack of water : plants wither  3.87%
" 2)follow The terms have a chronological or other sequential ~ sign up : take the exam ~  1.79%
relationship, but one term does not cause the other.
" 3)sufficient_to One term is a sufficient condition for the other. ~  raining : wet ground ~~ 0.0%
" 4) necessary_to One term is a necessary condition for the other. =~ admission : graduation ~~ 1.32%

Table 7: Complete set of defined sub-relations with definitions, examples and coverage in the test set of E-KAR.
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