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Abstract

Large Language Models (LLMs) have demon-001
strated remarkable performance on Machine002
Translation (MT) among various natural lan-003
guages. However, many LLMs are English-004
dominant and only support some high-resource005
languages, they will fail on the non-English-006
Centric translation task. In this work, we pro-007
pose a Multilingual Instruction Tuning (MIT)008
method to improve the LLMs on non-English-009
Centric translation. We design a multilingual010
instruction method which leverage the English011
sentence as reference to help LLMs understand012
the source sentence. In order to solve the prob-013
lem of difficulty in obtaining multilingual paral-014
lel corpora of low-resource languages, we train015
a to-English LLM to generate English reference016
so that our MIT method only needs bilingual017
data. We experiment on BLOOM and LLaMA2018
foundations and extensive experiments show019
that MIT outperforms the baselines and some020
large-scale language models like ChatGPT and021
Google Translate. We further demonstrate the022
importance of English reference in both train-023
ing and inference processes.024

1 Introduction025

Large language models (LLMs) have shown re-026

markable achievement across various NLP tasks027

(Brown et al., 2020; Ouyang et al., 2022; Zhang028

et al., 2022). For machine translation, generative029

LLMs achieve a competitive translation quality,030

especially on these high-resource language pairs031

(Hendy et al., 2023; Vilar et al., 2022). The models032

can be prompted to do so by designing a prompt033

such as "Translate the following sentence from034

French to English".035

However, most of the existing LLMs are English-036

dominant. They only support several high-resource037

natural languages. For example, LLaMA (Touvron038

et al., 2023) covers 20 languages, BLOOM (Work-039

shop et al., 2022) supports 46 languages, and GLM040

(Du et al., 2022; Zeng et al., 2022) only supports041

French:
Le tigre fait partie de la même famille (genre Panthera) que les lions, les 
léopards et les jaguars. Ces quatre félins sont les seuls capables de rugir.
Chinese:

Standard: 老虎与狮、豹和美洲虎属于同一类型（豹属）。这四
种大猫是仅有的会吼叫的猫科动物。

ChatGPT: 老虎属于与狮子、豹和美洲豹同属一科（豹属）。这
四种大型猫科动物是唯一能够咆哮的动物。

Figure 1: The results of standard output and ChatGPT
output on French-to-Chinese translation. The general
meaning of the translation is correct. However, Chat-
GPT makes logical mistakes in the red part. The red part
of standard answer is "the only catamount that roars",
but the ChatGPT translation is "the only animal that
roars".

English and Chinese. So they still fall short for non- 042

English-Centric language translation. Even these 043

very large models such as GPT-3.5 cannot rival the 044

traditional supervised encoder-decoder state-of-the- 045

art (SoTA) models (Hendy et al., 2023; Zhang et al., 046

2023a; Jiao et al., 2023). Obviously, a large popu- 047

lation in the world cannot be benefited. As shown 048

in Figure 1, even ChatGPT (OpenAI, 2022) will 049

make some mistakes on non-English translation 050

directions. 051

To equip LLMs with much more multilingual 052

ability, we propose a Multilingual Instruction Tun- 053

ing (MIT) method to fine-tune LLMs. Our method 054

focuses on non-English translation task. We design 055

a multilingual instruction which includes the source 056

language, target language and English to fine-tune 057

LLMs. In this way, these English-dominant mod- 058

els can better understand the translation sentence 059

based on the English reference, and transfer the 060

knowledge from English to other languages. 061

Specifically, our MIT method is consisting of 062

three steps. First, we train a to-English LLM to 063

generate English sentence based on the source sen- 064

tence. In the second step, we design a multilingual 065

instruction (X-En-Y, where X represents the source 066
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language and Y represents the target language)067

based on parallel sentences to train a non-English-068

Centric translation model. Finally, we leverage069

the to-English model to generate English reference070

and then predict target sentence based on the non-071

English-Centric model. We evaluate our method072

on both low-resource and high-resource language073

pairs based on BLOOM and LLaMA two founda-074

tions. Our MIT method achieves better results on075

all test set and even outperforms ChatGPT.076

In summary, this paper makes the following con-077

tributions:078

• We propose a Multilingual Instruction Tuning079

(MIT) method to fine-tune the LLMs on non-080

English machine translation task. We add the081

English sentence to instruction as reference in082

order to transfer knowledge from English to083

other languages. MIT method improves the084

capability of low-resource translation.085

• We solve the problem of difficulty in obtain-086

ing multilingual parallel sentences of low-087

resource languages. Our framework only uses088

1K bilingual sentences of source and target089

languages. We train LLMs to generate other090

languages’ instruction to build the multilin-091

gual instruction instead of leveraging multilin-092

gual parallel data.093

• Our method supports both BLOOM and094

LLaMA2 foundations. Extensive experiments095

show that our method has a significant im-096

provement over all test pairs and even outper-097

forms ChatGPT and Google Translate.098

2 Background099

2.1 Machine Translation for Low-Resource100

Languages101

With the development of large-scale language mod-102

eling techniques, LLMs have achieved remarkable103

improvements in machine translation (Kim et al.,104

2021; Costa-jussà et al., 2022). They have opened105

up new possibilities for building more effective106

translation systems (Brown et al., 2020; Chowdh-107

ery et al., 2023; Sanh et al., 2022). However, due108

to the unbalanced training resources, most of these109

models focus on high-resource languages. Low-110

resource machine translation have attracted a lot111

of attention (Haddow et al., 2022; Ramesh et al.,112

2022). While most of these focus on translations on113

English-Centric languages (between English and114

other languages). Fan et al. (2021) emphasizes the 115

importance on improving translation among non- 116

English languages. 117

2.2 Cross-Lingual Method for LLMs on 118

Machine Translation 119

Large language models (LLMs) can be prompted 120

to perform very high-quality machine translation. 121

It is assumed that the model is pretrained on 122

enough training data in both source and target 123

languages. However, most LLMs is trained pri- 124

marily on English data. When it comes to low- 125

resource languages, the model struggles to out- 126

put high quality translations (Koehn and Knowles, 127

2017). Ghazvininejad et al. (2023) proposed a 128

method for incorporating dictionary knowledge 129

into prompting-based MT (DIPMT). Their prompt 130

is designed as follows: 131

Translate the following sentence to English:
<source-sentence>
In this context, the word <word X in
source-language> means <word X in target-
language>; the word <word Y in source-
language> means <word Y in target-
language>.
The full translation to English is:

132

Lu et al. (2023) proposed a novel frame- 133

work, Chain-of-Dictionary (CoD), which augments 134

LLMs with prior knowledge with the chains of mul- 135

tilingual dictionaries for a subset of input words to 136

elicit translation abilities for LLMs: 137

Translate the following text from <source-
language> into <target-language>:
<source-sentence>
<word X in source-language> means
<word X in target-language> means <word
X in auxiliary-language 1> means <word
X in auxiliary-language 2>.

138

Nearly all the existing LLMs have a strong 139

capability on English and get weaker on other 140

languages. Most of the methods concentrate on 141

English-Centric machine translation and prompting 142

method, ignore the non-English-Centric translation. 143

In this paper, we will improve the LLMs’ ability on 144

non-English-Centric translation through our multi- 145

lingual instruction tuning method with the help of 146

a small amount of bilingual data. 147
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French:
Ravi de vous rencontrer.
English:

Nice to meet you.

To-English
LLM

French:
Les reportages télévisés ont montré de la fumée blanche 
s'échappant de l'usine.
Reference:
Television news reports showed white smoke billowing 
from the factory.
Chinese:

电视新闻报道显示工厂冒出了白烟。

To-Chinese
LLM

French:
La météo annonce qu'il pleuvra demain.
Reference:
The weather forecast says it will rain tomorrow.
Chinese:

Instruction

Tuning The… tomorrow.

English Reference

Instruction

Tuning

天气预报上说明天
会下雨。

Inference

Multilingual Instruction Tuning Process Inference Process

Figure 2: The main framework of our proposed method. Multilingual Instruction Tuning (MIT) process contains two
parts. First, we train a to-English LLM based on the bilingual instruction. Then we generate English reference and
combine them with the bilingual sentence as the multilingual instruction. The inference process leverage to-English
LLM generate the English reference and transfer it with the source sentence to Multilingual Instruction Tuned
model to generate the corresponding translation.

3 Methodology148

In this section, we introduce the details of our Mul-149

tilingual Instruction Tuning (MIT) method. We150

first introduce the format of instruction. Then we151

show the two components of MIT: to-English trans-152

lation model in Section 3.2 aims to generate En-153

glish reference for training and inference processes.154

MIT method in Section 3.3 trains the LLMs with155

multilingual instruction. Finally, we introduce the156

way to predict target sentence in Section 3.4. The157

framework of our method is shown in Figure 2.158

3.1 Instruction Design159

Due to the strong capabilities of existing large160

language models on English, we still choose the161

English instruction for training. We have experi-162

mented with various forms of instruction, and the163

results show that the simplest form of prompt has164

the best effect. The complex instruction, such as165

“Translate the following sentence from French to166

Chinese.”, may affect translation abilities of LLMs.167

The format of our instruction is as follows:168

Human:
<source-language>: <source-sentence>
Reference: <English-sentence>
<target-language>:
Assistant:
<target-sentence>

169

We leverage the parallel sentences of <source- 170

language> and <target-language> to generate the 171

instruction for non-English-Centric translation. As 172

for the English reference, we train a model to gen- 173

erate based on the <source-sentence>. As shown 174

in Figure 2, the orange part denotes the instruction 175

of Human, and the blue part denotes the instruction 176

of Assistant. 177

3.2 To-English Translation Model 178

To-English translation model aims to generate the 179

English instruction as reference in our multilin- 180

gual instruction. Let Ls and Le represent source 181

language and English, Ss represents the source sen- 182

tence. We leverage bilingual parallel sentence with 183

the format in Section 3.1 to train this model, just 184

as shown in Figure 1. The formulation can be ex- 185

pressed as follows: 186

Se = argmax
SE

pθ(SE |Ls, Le, Ss) (1) 187

where Se denotes the English sentence, p denotes 188

the probability of the generation model and θ de- 189

notes the parameter. We evaluate the impact of the 190

quality of generated English sentences on subse- 191

quent training and inference. 192

3.3 Multilingual Instruction Tuning 193

After achieving the to-English model, we further 194

propose the Multilingual Instruction Tuning (MIT) 195

method to train the non-English translation model. 196

3



model fr de es id ro ru ja th avg

chrF++

BigTranslate-13B(Yang et al., 2023) 17.6 17.1 17.5 12.3 17.3 15.7 13.6 2.8 14.2
BayLing-13B(Zhang et al., 2023b) 20.5 19.9 19.5 17.6 21.0 17.4 6.6 3.1 15.7
ChatGPT(OpenAI, 2022) 24.4 24.4 22.5 24.0 23.9 22.7 20.8 18.3 22.6
Google Translate 32.6 31.8 28.9 32.7 28.9 28.9 28.6 23.6 29.5
BLOOMZ-7B(Muennighoff et al., 2022)+BIT 45.8 43.8 48.5 52.3 38.2 31.7 32.9 12.2 38.2
Atom-7B(LLaMA2 based)+BIT 21.8 21.8 20.6 21.2 21.2 21.0 18.6 12.3 19.8
BLOOMZ-7B+MIT 52.5 45.5 50.0 52.5 40.9 35.1 35.1 13.0 40.6
Atom-7B+MIT 23.9 22.0 23.9 25.6 23.0 22.7 19.2 12.8 21.6

spBLEU

BigTranslate-13B(Yang et al., 2023) 18.8 18.6 18.5 12.4 18.3 16.9 13.5 1.3 14.8
BayLing-13B(Zhang et al., 2023b) 22.1 21.6 21.2 16.0 21.7 18.4 5.8 1.6 16.1
ChatGPT(OpenAI, 2022) 29.6 29.0 26.5 28.6 28.6 27.2 24.8 17.5 26.5
Google Translate 37.5 37.1 32.9 37.4 33.9 33.2 32.7 26.5 33.9
BLOOMZ-7B(Muennighoff et al., 2022)+BIT 52.5 48.9 55.0 58.7 41.2 35.3 36.2 11.0 42.4
Atom-7B(LLaMA2 based)+BIT 22.7 22.2 20.2 21.0 21.0 20.9 17.8 9.4 19.4
BLOOMZ-7B+MIT 58.7 50.3 56.2 59.3 44.4 38.4 38.4 11.8 44.7
Atom-7B+MIT 24.2 22.8 24.0 25.0 22.1 22.5 18.9 11.2 21.3

Table 1: Main results of MIT method in chrF++ and spBLEU for MT on the FLORES-200 dataset. We experiment
on the to-Chinese translation task based on two foundations (BLOOM and LLaMA2). "BIT" denotes the bilingual
instruction tuning method which we leverage as the baseline. The "underline" signifies the better score between
MIT and BIT methods. The "bold" indicates the best score among all the test set of each language pairs.

Specifically, we want to use the strong capability197

of large language models’ ability in English to help198

the LLMs understand sentences in other languages,199

so as to achieve a better performance on the non-200

English translation task. To do this, based on the201

original bilingual parallel instruction, we add the202

English reference to build the multilingual instruc-203

tion. However, we only use the bilingual sentence204

Ss and St of the source and target language, Ls and205

Lt. We leverage the to-English translation model206

in Section 3.2 to generate the corresponding En-207

glish sentence Se of the source sentence. With this208

approach, we get multilingual instruction and then209

use them for the training step, just as shown in the210

left part of Figure 2. Formally, the MIT method is211

determined as:212

St = argmax
ST

pθ(St|Ls, Lt, Ss, Se) (2)213

3.4 Inference214

After the Multilingual Instruction Tuning Process,215

we finally leverage the two LLMs in Section 3.2216

and 3.3 to predict the target sentence. Specifically,217

we first generate the English reference based on218

the source sentence using the to-English translation219

model. Then we combine the source sentence and220

English reference to non-English-Centric transla- 221

tion and infer the target sentence. The inference 222

process is similar to the form of Eq. 2. However, 223

compared with the training process, the quality of 224

English reference has a greater impact on the infer- 225

ence process. We will prove this in Section 4.5. 226

4 Experiments 227

4.1 Settings 228

Datasets. To assess the effectiveness of our pro- 229

posed model on machine translation, we con- 230

duct evaluations usings the devtest subset of the 231

FLORES-200 dataset (Costa-jussà et al., 2022). 232

For each language, it contains 1012 parallel sen- 233

tences encompassing various fields and topics. We 234

choose 8 language pairs for to-Chinese transla- 235

tion and 5 language pairs for to-French transla- 236

tion, which contains both high-resource and low- 237

resource languages, to evaluate our method. 238

Implementation Settings. We select two rep- 239

resentative and common open source large lan- 240

guage models as our foundation models for our 241

study: BLOOMZ (Muennighoff et al., 2022) and 242

Atom1. Specifically, we choose BLOOMZ-7b-mt 243

1https://github.com/FlagAlpha/Llama2-Chinese
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model
de-fr es-fr id-fr ru-fr th-fr avg

chrF++ spBLEU chrF++ spBLEU chrF++ spBLEU chrF++ spBLEU chrF++ spBLEU chrF++ spBLEU

BigTranslate-13B(Yang et al., 2023) 44.5 26.2 47.5 28.2 38.0 19.3 38.8 20.6 13.4 1.5 36.4 19.2
BayLing-13B(Zhang et al., 2023b) 52.1 32.3 49.4 28.7 42.7 22.0 49.4 29.1 26.8 8.2 44.1 24.1
ChatGPT(OpenAI, 2022) 61.4 44.5 56.1 36.3 57.7 40.0 57.3 38.5 47.7 25.6 56.0 37.0
Google Translate 63.2 47.1 57.3 39.1 62.0 45.3 58.7 41.4 52.6 32.3 58.8 41.0
BLOOMZ-7B(Muennighoff et al., 2022)+BIT 61.9 48.6 62.3 48.8 66.4 53.2 53.3 38.3 27.0 10.2 54.2 39.8
Atom-7B(LLaMA2 based)+BIT 48.9 28.4 46.7 25.8 45.8 24.5 46.1 25.2 24.7 7.6 42.4 22.3
BLOOMZ-7B+MIT 65.0 51.7 64.9 51.5 67.5 54.9 65.5 52.1 31.7 11.8 58.9 44.4
Atom-7B+MIT 51.5 31.3 47.0 26.2 51.0 30.7 50.0 35.4 26.3 11.0 45.2 26.9

Table 2: Results of MIT method in chrF++ and spBLEU for MT on the FLORES-200 dataset. We experiment on
the to-French translation task based on two foundations (BLOOM and LLaMA2).

2 which finetunes BLOOM(Workshop et al., 2022)244

& mT5(Xue et al., 2021) on cross-lingual tasks. As245

for the Atom, we experiment on the Atom-7B scale246

model, which is based on the LLaMA2 (Touvron247

et al., 2023) All training processes are conducted248

on 4 A100 GPUs with 40GB of RAM.249

Baselines. For our foundation models, we leverage250

the bilingual instructions of the source and target251

languages to tune them as our baselines. Besides,252

we compare our method with BigTranslate3 (Yang253

et al., 2023), which is a multilingual translation254

model that enhances the LLaMA with multilingual255

translation capability on more than 100 languages.256

Besides, BayLing4 (Zhang et al., 2023b) has a good257

multilingual capability, we choose its 13B version258

to compare. Meanwhile, we evaluate the perfor-259

mance of ChatGPT (OpenAI, 2022) (we use gpt-260

3.5-turbo API) and Google Translate.261

4.2 Main Results262

Table 1 presents the results in chrF++ and spBLEU263

on FLORES-200 dataset for translating from 8264

source languages to Chinese. Our method is based265

on two 7B foundations, BLOOM and LLaMA2.266

We compare our method with the bilingual in-267

struction tuned (BIT) model and some large scale268

language models on both high-resource and low-269

resource languages. Compared with the BIT base-270

line, the results show that our MIT method achieves271

better results on both two foundations among all272

the language pairs. Compared with the baseline,273

our method improves 2.4% and 1.8% of chrF++ on274

average, and the improvement is more significant275

on high-resource languages.276

As depicted in Table 1, compared with the large277

scale language models, our BLOOM based model278

achieves better results (achieving improvements of279

18.0% and 18.2 on the two score over ChatGPT),280

2https://huggingface.co/bigscience/
bloomz-7b1-mt

3https://github.com/ZNLP/BigTranslate
4https://github.com/ictnlp/BayLing

and surpasses the results ChatGPT 7 languages. 281

We only perform worse than ChatGPT on the very 282

low resource language Thai. The results show that 283

both large scale models have similar performance 284

among all the languages on non-English transla- 285

tion task. However, our BLOOM based method 286

achieves a remarkable score on the high-resource 287

languages. 288

As illustrated in Table 1, our MIT method im- 289

prove the performance of the LLaMA2 based 290

model. However, it cannot achieve the score of 291

the BLOOM based model. We think this may 292

be caused by the number of supported languages. 293

BLOOM have a larger language set including Chi- 294

nese, while LLaMA2 doesn’t. So, when it comes 295

to the to-Chinese translation, the LLaMA2 based 296

model has a lower than the BLOOM based model. 297

4.3 Translation to High-Resource Language 298

The results in Section 4.2 show the significant im- 299

provement on to low-resource translation. In this 300

section, we demonstrate the robustness of our ap- 301

proach on to high-resource translation compared 302

with the baselines and some state-of-the-art trans- 303

lation models. We report the results on to-French 304

translation in Table 2. The results show that MIT 305

method achieves better scores on both foundations 306

(with 4.7% and 4.6% improvements of chrF++ and 307

spBLEU on average accuracy). The results prove 308

that MIT efficiently improves the translation ability 309

on both low-resource and high-resource languages. 310

Compared with the high-resource translation, Ta- 311

ble 2 shows that the BLOOM based model does not 312

have such a big advantage over large scale models 313

such as ChatGPT, Google Translate and LLaMA2 314

based model. However, it still achieves the best 315

average score. Under the high-resources condition, 316

Google Translate achieves the best performance on 317

th-fr translation. Meanwhile, ChatGPT and Google 318

Translate have a relatively stable performance on 319

all experimental data, and the score gap is small 320
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Figure 3: The relationship between the quality English
reference in training process and the inference score.
We evaluate the different quality of standard English
reference and other kind of reference using the chrf++
score.

between each language pair. These experiments321

prove that the languages that the foundation model322

supports plays an important role on translation.323

4.4 The Impact of MIT on Training324

4.4.1 The impact of reference quality on325

training326

To explore how instruction tuning affect the model,327

we generate different quality of English reference328

for MIT. We first experiment on three language329

pairs (fr-zh, de-zh, ru-zh), which contains both330

high-resource and low-resource language pairs. As331

shown Figure 3(a), with the increase of the En-332

glish reference quality, the scores of the prediction333

change very little in all the experimented language334

pairs.335

Besides, we continuously experiment on three336

different settings: (1) The original English refer-337

ence of MIT. (2) We shuffle the order of the original338

English reference. (3) We leverage German as ref-339

erence. As shown if Figure 3(b), these two new340

settings decrease model performance a little, espe-341

cially the German reference. These results indicate342

that The MIT does not teach the model new knowl-343

edge (when the given reference is wrong in setting344

(2), it can performer well), but transfer the knowl-345

edge through the reference (the performance of346

the model will decrease on references of a weaker347

language in setting (3)).348

4.4.2 MIT improves the model’s basic ability349

To evaluate what improvements MIT has brought350

during the training phase, we generate the instruc-351

tion with the blank reference for our instruction352

tuned model. We compare the results with the bilin-353

gual instruction tuned model. Our model has no354

additional information for inference with the blank355

reference. As shown in Figure 4, with the same in-356

model score

Bad English reference (46.2) 45.3
Bilingual baseline 45.8
Bad English reference (68.6) 49.7
No English reference 51.0
Our method 52.5
Parallel English reference 54.8

Table 3: Results of different quality of English refer-
ence on inference. We evaluate two bad references
with its chrF++ score. We leverage the bilingual in-
struction trained BLOOMZ as the baseline. We use
source-language-only instruction and the parallel En-
glish instruction as the upper and lower limits of our
MIT model.

ference setting, our model achieves a better average 357

score of all the languages. For the high-resource 358

language pairs, our MIT method can effectively en- 359

hance the basic capabilities of the model. However, 360

our approach has limitations in this regard for low- 361

resource languages. We think this may cause by 362

the foundation model is weak on the low-resource, 363

so it is hard to improve it. We will explore this 364

issue in subsequent work. 365

4.5 How Does English Reference Affect 366

Inference 367

To evaluate the impact of the English reference in 368

inference, we generate difference quality of En- 369

glish sentence for instruction to do reference. We 370

experiment on French to Chinese translation. The 371

results is shown in Figure 5. As we can see, the 372

translation accuracy is directly proportional to the 373

quality of the English reference. Although there is 374

a drop in accuracy in the middle part of the figure, 375

they fluctuate on references of similar quality. 376

Besides, we evaluate the parallel English refer- 377

ence of the input French sentence. Figure 5 shows 378

the upper limit of the improvement brought by 379

English reference, and our model is gradually ap- 380

proaching this upper limit. Meanwhile, we evaluate 381

the MIT trained model with a bilingual instruction 382

on reference. We regard this as the lower limit of 383

the model. Table 3 shows that the lower limit of 384

our model is better than the baseline, which prove 385

that we improve the translation ability through MIT. 386

Compared with the lower limit, the bad English ref- 387

erence will bring noise and affect the translation. 388

This section shows the importance of English refer- 389

ence and proves the effectiveness of our method. 390
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Figure 5: The results of the impact of reference on in-
ference. The primary axis represents the chrF++ score
of the English reference, and the secondary axis repre-
sents the chrF++ score of the Chinese translation. We
plotted the trend line of the secondary axis relative to
the primary axis.

4.6 Case Study391

To further understand the improvement of our pro-392

posed method, we provide a case study that con-393

tains the standard answer ang the outputs gener-394

ated by the baselines and our method. As depicted395

in Figure 6, the standard translation contains two396

pieces of information, one is an introduction to397

animal classification and the other is saying that398

"who is the only catamount that roars". For the399

BigTranslate model, some of the information was400

not translated into Chinese, and secondly, it missed401

the second part information (just as shown in red402

part of Figure 6). BayLing, ChatGPT and our bilin-403

gual tuned baseline make the same mistake, their404

translation is "who is the only animal that roars",405

which expands the scope (catamount to animal). In406

this case, only Google Translate and our method407

give the right translation. This indicates that our408

proposed MIT can help the model to better under-409

stand sentences and their logical information on the410

French:
Le tigre fait partie de la même famille (genre Panthera) que les lions, les 
léopards et les jaguars. Ces quatre félins sont les seuls capables de rugir.
Chinese:

Standard: 老虎与狮、豹和美洲虎属于同一类型（豹属）。这四
种大猫是仅有的会吼叫的猫科动物。

Bilingual Baseline: 豹属于同一物种（豹属），包括狮子、花豹
和美洲虎。这四种猫科动物是仅有的会吼叫的。

BLOOMZ-MIT: 老虎、狮子、豹子和美洲虎属于同一类型（豹
属）。这四种动物是仅有的能发出吼声的猫科动物。

ChatGPT: 老虎属于与狮子、豹和美洲豹同属一科（豹属）。这
四种大型猫科动物是唯一能够咆哮的动物。

BigTranslate: 老虎属于豹科（Panthera），也就是与狮子、豹和
鬣狗等动物的同一科。 (…)

BayLing: 老虎属于与狮子、豹和猎豹一样的家族（属于 Panthera 
科）。这四种猫科动物是唯一能够咆哮的动物。 

Google Translate:老虎与狮子、豹子和美洲虎属于同一科（豹
属）。这四只猫科动物是唯一能够咆哮的猫科动物。

Figure 6: The results of the case study. We choose
French to Chinese translation task. It contains the input
instruction and the outputs of the standard translation,
baselines and our proposed method.

non-English translation task. And this capability 411

is essential to the translation task, because under- 412

stand the sentence is the first step of translation. 413

This observation further validates the effectiveness 414

of MIT. 415

4.7 MIT Works Well on Large Scale Models 416

In this section, we apply the MIT inference pro- 417

cess to ChatGPT. We want to explore whether our 418

method can narrow the gap between ChatGPT and 419

BLOOM based model in low-resource translation. 420

We generate English reference using ChatGPT to 421

build the bilingual prompt for inference. As shown 422

of the blue and green part in Figure 7, our method 423

achieves better results compared with the baseline. 424

These results demonstrate the effectiveness of our 425

method on large scale language models. 426
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Figure 7: The results of our method on ChatGPT. The
blue part represents the baseline of ChatGPT. The green
part indicates the improvements of adding the English
reference compared with the baseline. The orange part
represents the gap between adding reference model and
English to Chinese translation score.

However, the improvement is limited. We con-427

ducted the English to Chinese translation to explore428

the limitation. As shown in Figure 7, what limits429

the performance of ChatGPT on Chinese-Centric430

translation is its lack of Chinese capabilities. We431

think the English to Chinese translation is the upper432

limit of the Chinese-Centric translation. So, this is433

a major problem of LLMs on low-resource tasks.434

5 Related Work435

5.1 Instruction Tuning436

In recent years, LLMs have undergone rapid devel-437

opment. One of the major issue with LLMs is the438

mismatch between the training object and the users’439

object (Radford et al., 2019; Brown et al., 2020;440

Fedus et al., 2022; Rae et al., 2021; Thoppilan et al.,441

2022) . Instruction tuning method is proposed to442

address this mismatch, which is an efficient tech-443

nique to make the LLMs perform complex and444

diverse tasks in the unified form. Generally, to-445

days’ LLMs, such as ChatGPT (OpenAI, 2022),446

use instruction tuning via supervised learning in447

the second training step (Sanh et al., 2022; Wei448

et al., 2022; Mishra et al., 2021). These propri-449

etary instructions they used are collected from real450

human users. Instruction tuning bridges the gap be-451

tween training and users. The instructions serve to452

constrain the model’s outputs to align with the de-453

sired response and provides a channel for humans454

to intervene with the model’s behaviors (Zhang455

et al., 2023c). The LLMs can rapidly adapt to a456

specific domain with the help of Instruction tuning. 457

5.2 Multilingual Generalization 458

Training a universal translation system between 459

multiple languages has shown enormous improve- 460

ment for translating low-resource languages (Gu 461

et al., 2020; Arivazhagan et al., 2019). Most studies 462

focus on the unbalanced problem of each language 463

in multilingual translation. Some works explore 464

how to design the shared and language-dependent 465

model parameters (Wang et al., 2018; Lin et al., 466

2021; Xie et al., 2021; Wang and Zhang, 2022). 467

Other studies work on how to train the multilingual 468

translation model more effectively and efficiently 469

when the training data are quite unbalanced across 470

languages (Zhou et al., 2021; Huang et al., 2022). 471

Recently, with the emergence of Large Language 472

Models (LLMs), nontraining-based cross-lingual 473

learning has gained more attention (Brown et al., 474

2020; Ahuja et al., 2023; Winata et al., 2022; Zeng 475

et al., 2023; Huang et al., 2023). 476

Compared to their work, we propose the multi- 477

lingual instruction tuning (MIT) method to improve 478

the LLMs on non-English translation, which only 479

need cross-lingual parallel data. 480

6 Conclusion 481

In this work, we proposed multilingual instruc- 482

tion tuning (MIT) method for non-English machine 483

translation. Specifically, MIT method consists of 484

a to-English translation model and a multilingual 485

instruction translation model. We leverage the to- 486

English model to generate English instruction as 487

reference to guide the non-English translation. The 488

experiments show that our method outperforms 489

the baselines on all the language pairs. Besides, 490

our BLOOM based model achieves a better perfor- 491

mance than the large scale language models, such 492

as ChatGPT and Google Translate. The extensive 493

experiment shows the contributions of MIT on both 494

training and inference processes. 495

7 Limitations 496

In this work, we focus on the non-English-Centric 497

translation. The results prove that the low resource 498

language capability of the foundation model is still 499

a main reason that limits the further improvement 500

of the model which is proved in Section 4.7. There- 501

fore, improving the foundation model on other lan- 502

guage remains an urgent issue that needs to be 503

addressed in the future. 504
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