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Abstract

Automatic classification of breast histopathological images is a challenging task, as subtle
changes in morphometric features can result in misclassifications. To increase broader
adoption and trust in deep-learning based solutions, we need methods that produce the right
results for the right reasons, while still maintaining high performance. To make progress
toward these goals, we propose a novel Local Residual Attention Network (LRAN), that
improves the predictive performance of a base-network by attending to class relevant regions
of an image. LRAN follows an encoder-decoder architecture with local attention enforced
on the skip connections between the encoder and decoder and global attention on the feature
maps of the base-network. Our experiments demonstrate that the inclusion of attention
mechanisms increases the classification accuracy by 5-8% points over the base-network. Our
LRAN with ReseNet-18 as the base-network produces a classification accuracy of 91.83%
on the ICIAR 2018 BreAst Cancer Histology (BACH 2018) dataset, which is comparable
to the performance on this dataset by a top-performing classification networks.

Keywords: Local Residual Attention, Breast Histopathology Classification

1. Introduction

Among all cancers that affect women, breast cancer is still the leading cause of death (Ah-
mad, 2019). According to the World Health Organization (WHO) report, in 2018, 15% of
all cancer-related deaths in women worldwide were due to breast cancer (wor, 2018). Early
detection of breast cancer improves the prognosis of recovery, which motivates the devel-
opment of more accurate screening and diagnostic techniques. Current screening methods
entail a human assessment of subtle morphological changes in breast biopsies and the assign-
ment of discrete Nottingham histologic grades (Elston and Ellis, 1991). Analyzing a tissue
slide for morphometric features of the disease is a strenuous and time-consuming process
that is subject to variation among pathologists, even highly experienced ones (Mittal et al.,
2019). The increasing incidence rate of breast cancer produces a higher diagnostic workload
that puts further pressure on pathologists (Williams et al., 2017), which may result in an
incorrect diagnosis.
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Recent breakthroughs in deep learning techniques have enabled their extensive use in
breast histopathological image classification (Chennamsetty et al., 2018; Araújo et al., 2017).
Many of these techniques achieve high predictive performance by incorporating an ensemble
of neural networks or by increasing the depth of the network. In real-world applications, and
especially in medical diagnostics, neural networks should not only consistently exhibit high
predictive performance, but also make right predictions for the right reasons. Incidentally, it
has been shown in the literature that attention mechanisms learn to focus on relevant regions
of an input to make informed decisions for different downstream tasks. Many such solutions
have benefited the field of natural language processing (NLP), and image processing.

Inspired by these advances, we propose a novel Local Residual Attention Network
(LRAN) to improve the predictive performance of a base-network for breast histopatho-
logical image classification. LRAN utilizes an attention network to captures class relevant
information on coarse and fine granularity. The attention network is implemented using an
encoder-decoder architecture that imposes fine grain local attention through the skip con-
nections and coarse grain global attention through the attention mask obtained from the
output of the decoder. The attention mask weighs the base-networks feature maps through
residual dot product attention to enhance class relevant features while diminishing other
non relevant features. We perform extensive study to investigate the effects of using an
attention mechanism on the accuracy of three different base-networks. We also investigate
the efficacy of using local attention along with global attention by visualizing the Class
Activation Maps and attention masks.
Key contributions of this paper:

• We propose a Local Residual Attention Network (LRAN), a end-to-end trainable
attention mechanism that improves the predictive performance of classification archi-
tectures by learning to look at regions of relevance.

• Along with global attention, we introduce local attention gates in the skip connections
of the attention network to improve local texture propagation and enhancement.

• We investigate the effect of attention mechanisms on classification networks’ Class Ac-
tivation Maps (CAMs). Our experiments show that attention mechanisms increase the
classification accuracy by 5-8% points over conventional classification architectures.

2. Related Works

Conventionally histopathological images are stored as high-resolution Whole Slide Images
(WSIs), which makes it is difficult to develop an end-to-end neural network for classifying
these images. Although there are solutions () that are end-to-end trainable, these solutions
lackMany existing solutions employ patch-based classification, in which the high-resolution
WSI is divided into multiple lower-resolution patches. One such approach is (Roy et al.,
2019), in which the authors train a patch-based classifier consisting of a hierarchical CNN
network and use a majority voting scheme to assimilate the classification output of each
patch and compute the final class for the image. They report an average patch-wise clas-
sification accuracy of 77.4% and image-wise classification accuracy of 87% on the ICIAR
2018 BreAst Cancer Histology dataset (BACH 2018) (Aresta et al., 2019). On the other
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Figure 1: Illustration Local Residual Attention Network. The input image is passed through
the base network and the attention network branch. Fine grain features are
captured by the local attention gates in the skip connections of the attention
network. The attention mask M(x) weighs the feature maps B(x) through the
global attention gate.

hand the top performing approach (Marami et al., 2018) of the BACH 2018 utilizes an
ensemble of networks trained on BACH 2018 data along with auxiliary data to produce
an accuracy of 94%. Such ensemble of networks use complex architectures to achieve high
predictive performance, but (Guo et al., 2017) show that complex architectures have high
uncertainty in their predictions, that is, these networks gives high confidence value even for
miss-classified results. It is crucial for neural networks that perform predictive analysis of
histopathology images to learn morphometric features of an image to aid in classification.

Attention-guided networks (Wang et al., 2017; Vaswani et al., 2017) have been widely
utilized for the purpose of directing a neural network to focus on relevant regions of the
input in natural language processing and computer vision problems. Self-attention networks
have gained prominence with the introduction of transformer architecture (Vaswani et al.,
2017), the network uses positional encoding along with key, value and queries to direct
the network to focus on relevant regions. Self-attention highly depends on effective posi-
tional encoding such as relative 2D position embeddings for vision tasks. Such positional
dependency, makes identifying relevant regions in pathology tasks hard due to presence
of morphological features which cannot be captured by relative positional encoding and
requires more effective information extraction mechanisms. (Yang et al., 2019) employs
a guided attention mechanism for breast histopathology image classification, in which the
proposed network uses guided Region of Interest (ROI) proposals to aid the classification
process. This network depends on segmentation masks to train the RoI proposal network
and achieves an accuracy of 93% on the BACH 2018 dataset. (Zhang et al., 2017) employs a
language model to explore descriptive image features in medical reports and uses this as an
integrated attention mechanism for an image model. (Sun et al., 2020) introduces secondary
shape streams in parallel with texture streams to capture shape-dependent texture for seg-
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mentation of medical images. These methods are dependent on the requirement of metadata
or rely on segmentation masks to improve the classification accuracy and interpretability.

This network depends on segmentation masks to train the RoI proposal network and
achieves an accuracy of 93% on the BACH 2018 dataset. (Zhang et al., 2017) employs a
language model to explore descriptive image features in medical reports and uses this as an
integrated attention mechanism for an image model. (Sun et al., 2020) introduces secondary
shape streams in parallel with texture streams to capture shape-dependent texture for seg-
mentation of medical images. These methods are dependent on the requirement of metadata
or rely on segmentation masks to improve the classification accuracy and interpretability.

3. Methods

The proposed method is constructed with two branches: (a) a base network branch and
(b) Local Residual Attention network branch. The base network branch, which could be
any traditional classification architecture acts as a feature extractor. The attention network
enhances or subdues certain regions in the feature maps of the base-network.

The LRAN, depicted in Figure 1, follows an encoder-decoder architecture. In the en-
coder path, each layer performs a convolutional operation followed by down-sampling to
reduce the feature map size. The consecutive down-sampling operation makes the encoder
propagate the most important features in order to obtain an encoded representation of the
input image. In the decoder path, each layer consists of an bi-linear up-sampling operation
followed by convolutional operation to reconstruct the features from the encoded represen-
tation. Skip connections are introduced between each layer of the encoder and the decoder
path to propagate high-frequency textural information in images.

Given an input image x, the base network outputs a set of feature maps represented by
B(x), and the attention network outputs a set of attention masks M(x) of the same size.
The attention mask M(x) identifies and propagates salient regions in the image to preserve
task-specific elements of the feature maps B(x) using dot product attention, as shown in
equation (1). Repeated application of the attention mask to B(x) can decay the value
of features learned in the initial layers and degrade good properties learned by the base
network branch. To preserve these properties, a residual connection of the base network is
made by adding the feature map to the dot product attention:

Hi,c(x) = Bi,c(x) ·Mi,c(x) + Bi,c(x), (1)

where i ∈ {1, ...,K} is the index of the spatial positions of the pixels in the image and
c ∈ {1, ..., C} is the index of the channels. The output of an attention network with K pixels
for every channel is normalized into a probability distribution consisting of K probabilities
per channel using a pixel-wise softmax function:

Mi,c(x) =
e(xi,c)∑K
j=1 e

(xj,c)
. (2)

The softmax operation in equation (2) normalizes each pixel value of the attention mask
M(x) to the interval (0, 1), with all the pixel values for each channel summing to 1. The
attention mask enhances the diagnostically relevant pixels of the feature map B(x) by
reducing the values of non-relevant pixels to zero.
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Figure 2: First column: Patches of source images from the BACH 2018 dataset, classified
as (a) and (b) In situ carcinoma, (C) Invasive carcinoma, and (d) Normal tissue.
Second, Third and fourth columns: Class Activation Maps (CAMs), superimposed
on the source images, that were output by ResNet and R-LRAN. Fifth column:
Regions of diagnostic relevance annotated by a pathologist

Along with attending to salient coarse grain information of an image, it is also crucial to
look at fine textural details before making a prediction. During consecutive down-sampling
in the encoder path coarse features are propagated while some fine grain informations are
lost. Adding a local residual attention gate on the skip connections propagates the fine
grain textural information from the encoder path to the decoder path to enforce better
object representation. Along with filtering the feature activation in the forward pass of the
network, the attention gates also degrade the gradients from the background regions and
prevent noise in the image from influencing the classification.

4. Experiments

4.1. Datasets

We trained our networks on the BreAst Cancer Histology (BACH 2018) image dataset (Aresta
et al., 2019). This dataset consists of 400 H&E stained breast histology microscopy images
divided into four classes: Normal, Benign, In situ carcinoma, and Invasive carcinoma with
100 images per class. In addition, the dataset includes 10 Whole Slide Images (WSIs), each
a digital representation of an entire tissue sample which are pixel-wise annotated for the
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four classes. The top performing methods in BACH 2018 challenge augment the original
dataset either by using images from other datasets (non-BACH) or extract more classifi-
cation images from the WSI dataset. Similarly we also utilized the pixel-wise annotations
to obtain more classification images to create a dataset with 16729 images for Normal, 479
images for Benign, 166 images for In situ carcinoma, and 4857 for Invasive carcinoma. We
used 90% of the images for training and the remaining for testing.

Figure 3: Classification accuracy (%) of different combinations of base networks (BN) with
a Residual Attention Network (RAN) and a Local Residual Attention Network
(LRAN), evaluated using the test dataset.

Figure 4: Confusion matrix and Receiver Operating Characteristics (ROC) curve of the
R-LRAN network, evaluated using the test dataset.

4.2. Implementation details

All networks were trained for 50 epochs with 24 images per batch. To mitigate the class
imbalance in the training data, we employed stratified sampling for each batch. All images
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Table 1: Classification accuracy of R-LRAN and other networks from the literature
Network Test Accuracy (%) Parameters Dataset Used
(Roy et al., 2019) 87.00 28,157 BACH 2018
(Kwok, 2018) 87.00 442,148 BACH 2018
(Chennamsetty et al., 2018) 87.5 12,332,740 BACH 2018
(Yan et al., 2020) 91.30 24,000,000 BACH 2018 + proprietary dataset
R-LRAN (this paper) 91.83 5,777,444 BACH 2018 + WSI
(Yang et al., 2019) 93.00 7,024,844 BACH 2018 with proprietary segmentation masks
(Marami et al., 2018) 94.00 23,885,392 BACH 2018 + WSI + BreakHis

Figure 5: In situ carcinoma images overlayed with attention mask of RAN and LRAN com-
pared against regions of diagnostic relevance annotated by a pathologist. LRAN
attends to more class relevant information when compared to RAN

in each batch were reshaped to size 256 × 256. The training loss was computed with a
cross-entropy function. The networks were optimized using the Adam optimizer with an
initial learning rate of 1e−4, which was reduced to 1e−5 after the 10th epoch and to 5e−6
after the 20th epoch.

4.3. LRAN improves the predictive performance of base-network

We evaluated the performance of 9 different networks: three base networks (without atten-
tion), SimpleNet, ResNet, and DenseNet, and combinations of each base network with the
two attention networks, RAN (global attention) and LRAN (global and local attention). We
use the performance of the three base networks as a baseline for evaluating improvements in
performance that result from incorporating the attention architectures. The base networks
were trained independently in order to isolate the effect of the attention mechanisms on
the networks classification accuracy. From Figure 3, it can be seen that the inclusion of an
attention network improves the classification accuracy of each base network by at least 5%.
This demonstrates the ability of attention mechanisms to enhance the performance of the
base-network. For complex architectures like ResNet-18 and DenseNet-18 LRAN had an
improved accuracy over RAN. We attribute this improvement in performance to the ability
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of LRAN to attend to local and global information. The combination of ResNet-18 as the
base-network and LRAN (R-LRAN) yielded the highest classification accuracy of all the
tested networks, 91.83%.

In Table 1, we compare the accuracy of R-LRAN, our best-performing network, to the
accuracy of other classification networks from the literature. (Yan et al., 2020) achieved an
accuracy of 91.3% with a hybrid CNN-RNN network that uses LSTM to improve attention
on the images. (Yang et al., 2019) achieved an accuracy of 93% using a guided attention
network trained on both the BACH 2018 dataset and segmentation masks that is not
publicly available. (Marami et al., 2018) uses an ensemble of network trained on images
from BACH 2018 and BreskHis(Spanhol et al., 2015) dataset to obtain an accuracy of 94%.
As Table 1 shows, the R-LRAN network achieved comparable classification accuracy to the
top performing models, without using extra memory footprint exhibited by the ensemble of
networks or addition segmentation masks like in (Yang et al., 2019). Figure 4(a) displays
the confusion matrix of R-LRAN. The classification accuracy was lowest for the In situ
carcinoma class, 74%, due to the low number of samples in this class relative to the other
classes. The Receiver Operating Characteristics (ROC) curve in Figure 4(b) shows that the
R-LRAN exhibits a high true positive rate and a low false positive rate, and that all four
classes have an Area Under the Curve (AUC) exceeding 0.96.

4.4. Improved visual interpretability with LRAN

Figure 2 shows that the inclusion of the LRAN attention network improves the Class Ac-
tivation Maps (CAMs) output of the ResNet architecture. For evaluating the efficacy of
the CAMs we got few images annotated by an expert pathologist on the regions they focus
during diagnostic classification. In situ carcinoma is a cancer type that is contained, with
a distinct boundary; the attention network was able to enhance the pixels near the bound-
aries while the remaining pixels were suppressed, as demonstrated by the attention mask in
Figures 2(a) and (b). The attention network’s enhancement of the feature map of the base
network is also evident in Figure 2(c), where the source image shows normal tissue, and
the attention network spreads the attention over the entire image (i.e., it does not identify
particular regions that are associated with cancer). Figure 5 shows that inclusion of local
attention along with global attention focuses on more class relevant details when compared
to using only global attention (RAN).

5. Conclusion

This paper presents a new method for breast histopathological image classification using
a combination of a base-network and a local residual attention network. The proposed
method improves the predictive performance of the base-network and generates feature-rich
Class Activation Maps (CAMs) that can be used to interpret the classification results and
identify diagnostically relevant regions in an image. With extensive experimentation, we
showed that the integration of an local residual attention network with a small base-network
improved the classification accuracy by 5-8% points. We also showed that local residual
attention masks were largely in agreement with the diagnostically relevant regions marked
by an expert pathologist. Finally towards future work, we hypothesise that a pre-trained
attention network can be used to learn semantic segmentation effectively with few examples.
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Eloy, António Polónia, and Aurélio Campilho. Classification of breast cancer histology
images using convolutional neural networks. PloS one, 12(6):e0177544, 2017.
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Appendix A. BACH dataset K-Fold cross validation

To further investigate the effectiveness of our proposed method we performed K-Fold cross
validation on the entire curated dataset (Section 4.1). We divided the dataset into 5 folds
and followed the implementation explained in section 4.2. Table 3 demonstrates the abil-
ity of LRAN to improve the classification accuracy of Resnet on all the different folds of
validation.

Table 2: K Fold classification accuracy of Resnet and Resnet with LRAN
Method Fold1 Fold 2 Fold 3 Fold 4 Fold 5

Resnet 88.17 89.92 89.65 90.00 90.35
Resnet + LRAN 92.40 92.25 92.84 92.45 92.18
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Figure 6: Additional example for benign images: LRAN is able to focus on regions of
benign cells to direct the base network

A.1. Miss-classified images of BACH dataset using Resnet-LRAN

Figure 10 shows examples where LRAN missclassified an image. The first image from top
belongs to in-situ carcinoma class, but was classified as benign. The CAM shows that
the model did not identify the defining boundary of in-situ carcinoma. Likewise the second
image belongs to invasive carcinoma class but was categorized as benign, as the class specific
morphological features are not prominently spread across the image. The third image was
categorized as in-situ carcinoma when it belongs to the normal class, the definitive boundary
on the lower half of the image made LRAN to categorize it as in-situ carcinoma.

Appendix B. Qualitative Performance on Invasive Duct Carcinoma
dataset

To investigate the efficacy of LRAN we experimented on Invasive Duct Carcinoma (IDC)
images 1, a common sub-type of breast cancers. The dataset contains 194668 images for
training and 2000 images for testing, with IDC negative and IDC positive classes. We
followed the experimental setup given in Section 4.2. The performance on IDC duct car-
cinoma follows similar trends to BACH dataset with attention improving the accuracy of
base network and producing rich CAM.

1. https://www.kaggle.com/paultimothymooney/predicting-idc-in-breast-cancer-histology-images
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Figure 7: Additional example for in situ images: LRAN is able to focus on boundary
region of in situ carcinoma

Table 3: Classification accuracy of Resnet and Resnet with LRAN on IDC duct carcinoma

Method Test Accuracy

Resnet 88.25
Resnet + LRAN 90.90
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Figure 8: Additional example for invasive images: LRAN is able to focus on cells
spread over the image. In the first image the attention reduces the focus on the
fat globules, which is non cancerous.

Figure 9: Additional example for normal images: LRAN focuses on the entire image
to classify the images into normal class
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Figure 10: First column: Patches of source images from the BACH 2018 dataset Second
column: Class Activation Maps (CAMs), superimposed on the source images,
that were output by R-LRAN. First image is In-situ carcinoma but R-LRAN
classified as benign, second image is invasive carcinoma classified as benign, and
the third image is normal class which was classified as in-situ.
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Figure 11: Qualitative performance on IDC duct carcinoma benign class
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Figure 12: Qualitative performance on IDC duct carcinoma malignant class
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