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Abstract

Conventional electromagnetic wave simulators often have long simulation times,
so are not suitable for computational imaging and photonic inverse problems (e.g.
end-to-end design, iterative reconstruction) that require evaluating the forward
model many times. Electromagnetic wave simulators based on neural networks
promise speed improvements of several orders-of-magnitude, but standard super-
vised training approaches have difficulty fitting the true physics. Physics-informed
approaches help, but existing residual-based methods use only local information
and must be used in conjunction with standard supervised loss. In this work, we
introduce Time Reversal Consistency (TReC), a new physics-based training method
based on the time reversibility of Maxwell’s equations. TReC uses a time-reversed,
differentiable finite-difference simulator to compare neural network predictions
with a known initial condition. TReC provides both global physics guidance and
supervision in a single function. When trained only on randomized scatterers,
we find that networks trained with TReC generalize well to a range of arbitrary
structured media. We validate the method on the inverse design of a set of angle-to-
angle couplers, addressing almost two magnitudes more parameters than previous
methods, and find that the design quality corresponds closely with designs based
on a conventional simulator while requiring 5% of the design time.

1 Introduction and Background
Electromagnetic (EM) wave simulators based on Maxwell’s equations provide a detailed quanti-
tative understanding of light-matter interactions. Understanding and shaping these interactions is
fundamental to various fields, from computational microscopy [1] to photonics [2] and radar [3].
Traditional simulation methods like the finite difference time domain (FDTD) [4] method are accurate
but computationally demanding, with their compute and runtime requirements growing quickly with
the system’s spatial size. This is especially limiting for EM wave inverse problems, which require
hundreds or thousands of consecutive simulations to solve an iterative optimization, along with an
intensive gradient calculation process for each. There is therefore a pressing need for faster, more
efficiently differentiable EM wave simulators.

Neural network (NN)-based simulators, also called neural simulators, have the potential to provide
fast EM field predictions for a given source and refractive index (RI) configuration, along with
gradient information by backpropagation. Building a scalable, accurate neural EM wave simulator,
however, has proven challenging. The problem is most commonly approached with supervised
direct prediction (SDP) [5, 6, 7, 8, 9, 10], in which the network is trained via standard supervised
learning to directly predict a final, converged EM field from the RI configuration. While fast, this
method requires an amount of ground-truth training data which scales in most cases exponentially
[11] with the number of input parameters. Here, the number of input parameters refers to the number
of pixels with different RI values that are modeled within the spatial area simulated. For instance,
a 20 input-parameter SDP network has been found to require a pregenerated dataset of 750,000
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Figure 1: Time Reversal Consistency (TReC) training method. Parameterized refractive index
(RI), with source location in red, are input into an attentional U-Net. Green arrows indicate 3x3
convolutions and red indicate 3x3 convolutions with a subsequent attentional layer, with 2x2 down-
sampling/upsampling indicated by arrow direction and black skip connections. Channel dimensions
are noted in the blue boxes. The network outputs predictions of Ez , Hx, and Hy complex-fields
(Re(Ez) shown) for timestep N. These are differentiably propagated backward in time to timestep 0
and compared to the known initial condition to form the loss function, LTReC .

examples [6] to be suitable for inverse design applications, while a 1,000 input-parameter network has
been projected to require an intractable one billion examples [11]. Additionally, gradients produced
by backpropagation through SDP methods tend to be low quality, often necessitating the use of a
problem-specific auxiliary adjoint neural network [5] which requires its own distinct training dataset.

Physics-informed loss functions [5, 12, 7] have been used to improve network fitting by minimizing
a wave equation-based residual. While these provide a meaningful fitting benefit compared to
pure supervised learning, they are based on spatially local residuals, which do not capture nonlocal
physically-relevant correspondences, contributing to a loss landscape which is challenging to optimize.
When used alone, NNs trained with these residuals have difficulty converging to accurate solutions.
As such, physics-informed loss functions are generally only used as a form of regularizer added to a
supervised loss.

In this work, we introduce Time Reversal Consistency (TReC), a new physics-based training method
for direct prediction networks based on the time reversibility of Maxwell’s equations. Unlike physics-
informed loss functions based on local residual minimization, TReC combines both global physics
guidance and direct supervision, comparing network outputs through a differentiable simulation to
the known initial conditions of a simulation. We find that using TReC alone, trained on systems
with randomized input parameters, allows efficient, highly accurate training of NNs for complex,
highly-scattering systems with thousands of input parameters. We additionally find that, when trained
purely on random media, the TReC network generalizes well to structured media. Instead of using an
auxiliary adjoint network to calculate gradients, we find that gradients calculated by backpropagation
through a TReC NN trained purely on randomized media are suitable for inverse problems. To
demonstrate this, we show inverse design of 1000-parameter angle-to-angle coupling devices, which
we believe to be nearly two orders-of-magnitude more parameters than the state of the art of 20 [6].
Instead of requiring 1 billion independent training simulations to create a NN capable of this, TReC
produces results close to those provided by FDTD with only 700,000 training simulations.

2 Results
2.1 Time reversal consistency

We developed TReC, diagrammed in Fig. 1, which works by taking the prediction of a direct predic-
tion neural network tasked with predicting the final state of an N-timestep simulation, then applying
a differentiable time-reversed simulator N times to this prediction, producing a corresponding state at
timestep 0. Because the EM state at time 0 is known–and in most situations zero everywhere–this
reversed prediction can then be directly compared to the initial state in a loss function, then backprop-
agated through the entire physical interaction and NN, capturing global physical dependencies. For a
time-reversed FDTD step f−1, EM field prediction at time N ŷN , known EM initial condition y0,
and Mean Squared Error (MSE) loss function, the TReC loss function can be stated as

LTReC(y0, f
−N (ŷN )) = MSE(E0, Ê0) +MSE(H0, Ĥ0) (1)

where each y contains corresponding E and H fields. y0 = E0 = H0 = 0 in most practical cases.
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Figure 2: (a-d) RIs for four different objects: random, monolithic, microsphere, and Cal logo, with
masks inset indicating microsphere and logo locations. (e-h) Real part of NN prediction of Ez for
each object (i-l) Real part of FDTD ground truth of Ez for each object (m-p) Absolute difference
map between prediction and ground truth, with MSE inset.

2.2 Architecture and training
While any network architecture can be used with TReC, we here use a 4-level convolutional U-net,
with 3x3 kernels for each layer, two-layer residual blocks at each down and up-sampling level, for
a total of 16 layers, and 4-head attentional layers [13] on the innermost two blocks for both the
downsampling and upsampling side. The NN takes a grid of RIs as input and outputs 6 total channels,
which form the real and imaginary parts of the Ez , Hx, and Hy fields.

Training is accomplished using a purpose-built differentiable time-reversed FDTD simulator built in
the Python library Pytorch [10]. For demonstration, we consider a 100x100 region of rectangular
voxels, each with side length of 45 nm, with an included 100x10 volumetric scatterer left-illuminated
by a plane wave of 450 nm blue light, with periodic boundary conditions connecting the top and
bottom edges. We choose the number of timesteps N = 120. Each of the 1000 scatterer voxels is
taken to be an independent parameter indicating the refractive index at that point with range [1, 3]. For
training, a batch of random scatterers are just-in-time generated by drawing parameters from U(1, 3).
This batch of random scatterers is then fed through the NN, and LTReC is applied to the output
using the differentiable FDTD simulator to compute f−N . Network weights are updated through
backpropagation, and the process is repeated until satisfactory convergence. We use the Adam
optimizer with learning rate 1× 10−4 and a batch size of 20. Validation and accuracy quantification
is performed by comparing network outputs at time N to a corresponding N-step forward FDTD
simulation, using MSE. All training is performed on a single Nvidia A6000 GPU.

2.3 Relationship between TReC loss and supervised loss
While providing physics guidance, TReC also has a close relationship with supervised loss functions.
This is due to the linearity of Maxwell’s equations and energy conservation. Intuitively, the NN
prediction ŷN can be decomposed into the exact field yN and an error field eN . Applying the
time-reversed simulator N times exactly cancels yN but, assuming nonabsorptive materials, leaves
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Figure 3: Angle-to-angle coupler designs. (a-d) Re(Ez) field for the TReC designs with design
angles of -45, -10, 30, and 60 degrees, respectively. The design loss, the MSE between the output
wavefront profile and the ideal wavefront profile, is inset, as well as runtime. (e-h) Re(Ez) field of
FDTD-based designs for the same angles, with MSE design loss and runtime inset.

the same amount of energy in e0 as eN . Neglecting the influence of nonuniform permittivities,
which have a linear reweighting effect which we find empirically has minor impact on fitting when
incorporated into the loss, this e0 energy corresponds mathematically with LTReC , and it can be
shown that the energy of eN corresponds with a simple MSE-based supervised loss Lsup. As such,
LTReC ∝ Lsup. A derivation of this property is provided in Appendix A.1.

2.4 Generalization to structured media
While we train the TReC NN solely on randomized systems, we find that the NN generalizes well to a
range of arbitrary structured scenerios. To demonstrate this, we first train the NN to full convergence,
taking about 8 hours on a single Nvidia A6000 GPU and reaching a validation MSE of 0.00119 after
seeing 700,000 total examples. We then test the NN on a range of arbitrary parameter configurations,
shown in Fig. 2. We find strong performance for random scatterers (the validation dataset), monolithic
media, microspheres embedded in scattering media, and scattering logos in monolithic media.

2.5 Inverse design of 1000-parameter angle-to-angle couplers
A primary application of TReC is in inverse problems, such as those found across computational
imaging and photonic inverse design. To demonstrate TReC’s efficacy and correspondence with
FDTD in such applications, we consider the design of four angle-to-angle couplers, with each
coupling a given plane wave to a chosen, arbitrary angle. We accomplish the designs by comparing
a device’s Ez field profile directly above the right surface with the desired output field profile via
MSE, then updating the device RIs via backpropagation and an Adam optimizer with a learning
rate of 1× 10−4. We start from the randomized 1000-parameter scatterer used in previous sections,
left-illuminated by a normally-incident 450 nm blue plane wave, and accomplish the designs by
continuously tuning the RI for each parameter. RIs are constrained via a proximal step to lie in the
range [1, 3]. For the designs, we use, alternately, the noise-trained NN described in the previous
section and the ground-truth FDTD simulator, backpropagating through each to calculate gradients
for the input parameters. With results shown in Fig. 3, we use FDTD to compare the designs produced
after 1000 iterations for angle-to-angle gratings with design angles of -45, -10, 30, and 60 degrees,
respectively. RIs for each design are included in Appendix A.2. We find that the TReC designs
perform with a design loss within 11% of the FDTD-based designs, while requiring only 5% of the
total design time.

3 Conclusion
We introduced TReC, a new method for physics-guided training of neural EM wave simulators.
TReC provides both global physics guidance and supervision, strong generalization capacity when
trained on randomized systems, and high quality parameter gradients suitable for many-parameter
inverse design tasks. TReC provides a practical path to many-parameter neural EM wave simulators
for inverse problems, with applications ranging from real-time reconstructive imaging to freeform
photonic design.
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A Appendix

A.1 Derivation of TReC loss, supervised loss correspondence

To demonstrate the correspondence of TReC, evaluated at timestep 0, to a supervised loss evaluated
at timestep N, we consider decomposing the EM prediction at time N via linearity ŷN = yN + eN
into exact EM field yN and remaining error EM field eN . Neglecting nonuniform permittivities and
constants, the error field has a total energy UeN

UeN ∝
∫
A

(
(EŷN − EyN )2 + (HŷN −HyN )2

)
dA ∝

MSE(EyN ,EŷN ) +MSE(HyN ,HŷN ) = Lsup

(2)

proportional to the MSE-based supervised loss Lsup. Similarly, supposing y0 = 0, the time-reversed
error field e0 = f−N (ŷN ) = 0+ f−N (eN ) = ŷ0 has energy

Ue0 ∝
∫
A

(
(Eŷ0)

2 + (Hŷ0)
2
)
dA ∝ MSE(0,Eŷ0) +MSE(0,Hŷ0) = LTReC (3)

Applying the time-reversed simulator N times will by construction exactly cancel the EM field of yN .
In the absence of absorptive materials or boundaries, however, the energy of eN will be retained over
this process. As such Ue0 = UeN , Uy0 = 0 and therefore

Lsup ∝ LTReC (4)

A.2 Angle-to-angle coupler refractive indices

Figure 4: Refractive index configurations for each angle to angle coupler design, as described in
Section 2.5. (a-d) Refractive indices for the TReC designs with design angles of -45, -10, 30, and 60
degrees, respectively. (e-h) Refractive indices of the FDTD-based designs for the same angles.
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