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Abstract
Graph neural networks (GNNs) demonstrate out-
standing performance in a broad range of appli-
cations. While the majority of GNN applications
assume that a graph structure is given, some recent
methods substantially expanded the applicability
of GNNs by showing that they may be effective
even when no graph structure is explicitly pro-
vided. The GNN parameters and a graph structure
are jointly learned. Previous studies adopt dif-
ferent experimentation setups, making it difficult
to compare their merits. In this paper, we pro-
pose a benchmarking strategy for graph structure
learning using a unified framework. Our frame-
work, called Unified Graph Structure Learning
(UGSL), reformulates existing models into a sin-
gle model. We conduct extensive analyses using
our proposed framework. Our results provide a
clear and concise understanding of the different
methods in this area as well as their strengths and
weaknesses.

1. Introduction
Graph Representation Learning (GRL) is a rapidly-growing
field applicable in domains where data can be represented
as a graph (Chami et al., 2022). The allure of GRL models
is both obvious and well deserved – there are many exam-
ples in the literature where graph structure information can
increase task performance (Abu-El-Haija et al., 2019). How-
ever, recent results show that the success of graph-aware
machine learning models, such as Graph Neural Networks
(GNNs), is limited by the quality of the input graph struc-
ture (Palowitch et al., 2022). In fact, when the graph struc-
ture does not provide an appropriate inductive bias for the
task, GRL methods can perform worse than similar models
without graph information (Chami et al., 2022).
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As a result, the field of Graph Structure Learning (GSL)
has emerged to investigate the design and creation of opti-
mal graph structures to aid in graph representation learning
tasks. The relational biases found through GSL typically
use multiple different sources of information and can offer
significant improvements over the kinds of ‘in vivo’ graph
structure found by measuring a single real-world process
(e.g., friend formation in a social network). To this end, GSL
has been found to be especially important in real-world set-
tings where the observed graph structure might be noisy,
incomplete, or even unavailable.

In this paper, we aim to provide the first holistic examination
of Graph Structure Learning. We propose a benchmarking
strategy for GSL using a unified framework, which we call
Unified Graph Structure Learning (UGSL). The framework
reformulates ten existing models into a single architecture,
allowing for the first comprehensive comparison of methods.
We implement a wide range of existing models in our frame-
work and conduct extensive analyses of the effectiveness of
different components in the framework. Our results provide
a clear and concise understanding of the different methods
in this area as well as their strengths and weaknesses.

Specifically, our contributions are: UGSL, our unified
framework for benchmarking GSL which encompasses over
ten existing methods and four thousand different architec-
tures in the same model. GSL benchmarking study, the
results of our GSL Benchmarking study, a first-of-its-kind
effort that compared over four thousand architectures across
six different datasets in twenty-two different settings, giving
insights into the general effectiveness of the components
and architectures. Open source code, upon the acceptance
of our paper, we will open-source our code. This will al-
low other researchers to reproduce our results, build on our
work, and develop their own GSL models. We believe that
open-sourcing our code will accelerate the development of
GSL research and lead to new and innovative applications.

2. Preliminaries
2.1. Notation

Lowercase letters (e.g., n) denote scalars. Bold uppercase
(e.g., A) denotes matrices. Calligraphic letters (e.g., X )
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denote sets. Sans-serif (e.g., MyFunc) denotes functions.
I is the identity matrix. For a matrix M , we represent
its ith row as Mi and the element at the ith row and jth

column as Mij . Further, � denotes Hadamard product, ◦
denotes function composition, Cos is cosine similarity of
the input vectors, σ denotes element-wise non-linearity, > a
transposition operation, and || as a concatenation operation.
We let |M| represent the number of elements in M and
||M ||F indicate the Frobenius norm of matrix M . Finally,
[n] = {1, 2, . . . , n}.

Let graph G = (X,A) with n nodes, feature matrix X ∈
Rn×d, and adjacency matrix A ∈ Rn×n. Let in-degree
diagonal matrix

←−
D with

←−
Dii counting the in-degrees of node

i ∈ [n], and
−→
Dii counting its out-degree. Let G = X × A

denote the space of graphs with n nodes. Let G(0) ∈ G be
an input graph G(0) = (X(0),A(0)) with feature matrix
X(0) ∈ X ⊆ Rn×d0 and adjacency matrix A(0) ∈ A ⊆
Rn×n. In most-cases, X(0) = X (and d0 = d).

2.2. Problem Formulation

The Graph Structured Learning (GSL) Problem is de-
fined as follows: Given G(0) and a task T find an adjacency
matrix A which provides the best graph inductive bias for
T . Our proposed method UGSL captures functions of the
form: f : G → G, where f denotes a graph generator model.
Specifically, we are interested in methods that (iteratively)
output graph structures as:

(X(`),A(`)) = f(θ`,`)(X(`−1),A(`−1)) for ` ∈ [L]

with f(θ) = f(θL,L) ◦ · · · ◦ f(θ2,2) ◦ f(θ1,1)

Here, f(θ`,`) represents the `-th graph generator model with
parameters θl. A variety of methods fit this framework.
A class of these methods does not process an adjacency
matrix as input. As such, they can be written as f(θ) :
X → X ×A. Another class does not output node features,
i.e., f(θ) : X × A → A. Nonetheless, we only consider
f with A ∈ range(f). Specifically, methods that output
an adjacency matrix. Here, we are interested in methods
where the adjacency matrix produced by f is utilized in a
downstream model, which can be trained in a supervised,
unsupervised, or self-supervised, end-to-end manner.

3. UGSL: A Unified Framework for Graph
Structure Learning Models

The objective of this section is to present a comprehensive
unified framework for models designed for graph structure
learning. We first describe our proposed unified framework
using UGSL layers, a general layer for graph structure learn-
ing. The `-th UGSL layer defines function f(`,θ

`) as:
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Figure 1: Overview of the `-th GSL layer, f(`,θ
`).

f(`,θ
`) = Encoder(θ

`
E) ◦ Processor(θ

`
P)

◦ Sparsifier(θ
`
S) ◦ EdgeScorer(θ

`
ES), (1)

the composition of 4 trainable modules. Multiple UGSL
layers can be combined to create a UGSL model as in Equa-
tion 1. Next, we summarize the role of each module. Then,
we show that many methods can be cast into the UGSL
framework by specifying these modules (??) .

* Input: Each UGSL layer ` takes as input the output graph
of the (`− 1)-th layer G(`−1) = (X(`−1),A(`−1)), and the
input graph G(0) = (X(0),A(0))

* EdgeScorer (w. parameters θES) scores every node-pair,
producing output ∈ Rn×n.

A(ES,`) = EdgeScorer(G(0), G(`−1); θES) (2)

* Sparsifier (w. parameters θS) Sparsifies the graph, e.g., via
top-k or thresholding:

A(S,`) = Sparsifier(G(0), G(`−1),A(ES,`); θS) (3)

* Processor (w. parameters θP) takes the output of the spar-
sifier and output a processed graph as:

A(P,`) = Processor(G(0), G(`−1),A(S,`); θP) (4)

* Encoder (w. parameters θE) generates updated node em-
beddings A(E,`) as:

(A(E,`),X(`)) = Encoder(G(0), G(`−1),A(P,`); θE) (5)

* Output: The above modules are invoked for ` ∈ [L] giving
final UGSL output of:

G(L) = (A(E,L),X(L)). (6)

4. Experimental Design
This section explores the key components of different UGSL
modules and experiments with them across various datasets.
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Edge scorer Formula Description

FP A
(ES,`)
ij = V

(ES)
ij Each possible edge in the graph

has a separate parameter learned di-
rectly. Initialization V

(ES)
ij =

Cos(X
(0)
i ,X

(0)
j ) (cosine similar-

ity of features) is significantly better
than random.

ATT A
(ES,`)
ij = 1

m

∑m
p=1 Cos(X

(l−1)
i � V (ES)

p ,X
(l−1)
j � V (ES)

p ) Learning a multi-head version of a
weighted cosine similarity.

MLP A
(ES,`)
ij = Cos(MLP(X

(l−1)
i ),MLP(X

(l−1)
j )) A cosine similarity function on the

output of an MLP model on the in-
put.

Table 1: An overview of different edge scorers.
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Figure 2: Edge scorers.

Base model. A base model is a UGSL model used as a
reference for comparisons. The objective of such a model
is to be minimal and have popular components. Our base
model uses only raw features in the input, has an MLP as
edge scorer, k-nearest neighbors as sparsifier, no processor,
and a GCN as an encoder. The base model is trained with a
supervised classification loss. The components of the base
model will be explained as we explore different options. In
the rest of this section, we explain different components of
the framework and experiment with them. For analyzing
different components, we consider the base model and only
change the corresponding component to be able to measure
the effectiveness of one component at a time.

Edge scorer. Most edge scorers in the literature are vari-
ants of one of the following: Full parameterization (FP),
Attentive (ATT), and multilayer perceptron (MLP). Table 1
shows a summary of edge scorers. Figure 2 compares the
edge scorers across the datasets. MLP and FP outperform
ATT across the six datasets. FP is the general winner of the
three. However, as FP learns one single parameter for each
edge, it does not scale to large graphs and is not applica-
ble to an inductive setup with a growing graph at inference
time. MLP performs competitively with FP on most of the
datasets and has the advantage that it can scale to larger
datasets and to the inductive setup.

Sparsifier. Sparsifiers take a dense graph generated by
the edge scorer and return a sparse version of that. Here,
we experiment with the following sparsifiers: k-nearest
neighbors (kNN), dilated k-nearest neighbors (d-kNN), ε-
nearest neighbors (εNN), and the concrete relaxation of the
Bernoulli distribution (Bernoulli). Table 2 contains a sum-

Sparsifier Description

kNN Define N(i) = arg sortj A
(ES,`)
ij . Then, for each

node, keep the top k edges with the highest weights.
d-kNN Dilated convolutions (Yu & Koltun, 2015) were intro-

duced in the context of graph learning by (Li et al.,
2019) to build graphs for very deep graph networks.
We adapt dilated nearest neighbor operator to GSL. d-
kNN adds a dilation with the rate d to kNN to increase
the receptive field of each node.

εNN Only keeping the edges with weights greater than ε.
Bernoulli Applying a relaxation of Bernoulli and then keeping

the edges with weights greater than ε.

Table 2: An overview of different sparsifiers.
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Figure 3: Sparsifiers.

mary of these methods. In the case of εNN, since the graph
is not fixed and the weights are being learned, the number
of edges whose weight surpasses ε may be large, and so run-
ning εNN on accelerators may cause out-of-memory (OOM)
error. To avoid this issue, we tried εNN on an extensive
memory setup. The results comparing the sparsifiers are
summarized in Figure 3. The relaxation of Bernoulli does
not generalize well to the test set due to its large fluctuation
of loss at train time. The kNN variants outperform εNN on
our datasets. Among the kNN variants, dilated kNN works
slightly better than the other variants.

Processor. Many works in the literature have explored the
use of different forms of processing on the output of sparsi-
fiers. These processing techniques can be broadly classified
into three categories: (1) applying non-linearities on the
edge weights (e.g., to remove negative weights), (2) sym-
metrizing the output of sparsifiers, and (3) applying both
non-linearity and symmetriz functions. The processors we
used are listed in Table 3 and the results of applying these
processors are shown in Figure 4. According to the results,
except in the case of Citeseer, both activation and sym-
metrization help improve the results, and their combination
performs best in several of the datasets.

Encoder. We experiment with GCN (Kipf & Welling,
2017) and GIN (Xu et al., 2019) as encoder layers that can
incorporate the learned graphs. As a baseline, we also add
an MLP model that ignores the generated graph and only
uses the features to make predictions. The results comparing
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Processor Formula Description

symmetrize A
(P,`)
ij =

A
(S,`)
ij

+A
(S,`)
ji

2 Making a symmetric version from the output of sparsifier.

activation A
(P,`)
ij = σ(A

(S,`)
ij ) A non-linear function σ is applied on the output of sparsifier.

activation-symmetrize A
(P,`)
ij =

σ(A
(S,`)
ij

)+σ(A
(S,`)
ji

)

2 First applying a non-linear transformation and then symmetrizing the output.

Table 3: An overview of different processors.
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Figure 4: Processors.

the encoders are shown in Figure 5. On some of the datasets,
the GNN variants GCN and GIN outperform MLP by a large
margin. In some other datasets, MLP performs on par with
the UGSL models. On those with a strong MLP baseline,
GIN outperforms GCN, which shows the importance of
self-loops in these classification tasks.
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A. Experimental Design
Datasets. To benchmark using our proposed UGSL framework, we experiment across six different datasets from various
domains. The first class of datasets consists of the three established benchmarks in the GNN literature namely Cora, Citeseer,
and Pubmed (Sen et al., 2008). Another dataset is Amazon Photos (or Photos for brevity) (Shchur et al., 2018) which
is a segment of the Amazon co-purchase graph (McAuley et al., 2015). The other two datasets are used extensively for
classification with no structure known in advance. One is an Image classification dataset Imagenet-20 (or Imagenet for
brevity), a subset of Imagenet containing only 20 classes (totalling 10,000 train examples). We used pre-trained Vision
Transformer feature extractor (Dosovitskiy et al., 2021). The last dataset is a text classification dataset Stackoverflow (Xu
et al., 2017).

Implementation. The framework and all components are implemented in Tensorflow using the TF-GNN library for
learning with graphs.

A.1. Input and Loss Components

A.1.1. INPUT.

To make our proposed framework applicable to a wide range of applications and conduct coherent experiments on multiple
datasets, we assume A(0) is an empty matrix. When a non-empty A(0) is required (e.g., for computing positional encodings),
we create a kNN graph from the raw features X . For X(0), many models assume X(0) = X , i.e., the input embeddings are
simply the given node features. However, in some architectures, X(0) is defined differently to contain information from the
input adjacency matrix A(0) too. Here, we explore two approaches one based on positional encodings of Weisfeiler-Lehman
(WL) absolute role of the nodes (Zhang et al., 2020) and another based on positional encodings of top k eigenvectors of the
graph Laplacian (Zhang et al., 2020). We explain the two variants in Table 4 and compare their results in Figure 6(a). As the
results show, adding WL and spectral roles to the raw features does not yield more effective results compared to using raw
features across the six datasets. This is even valid on datasets with less expressive raw features (e.g., bag-of-words in Cora
and Citeseer).

A.1.2. LOSS FUNCTIONS AND REGULARIZERS

In our framework, we experiment with a supervised classification loss, four different regularizers, and two unsupervised
loss functions. See Table 5 for a summary of descriptions. Figure 6(b) compares the regularizers. The results show that
the log-barrier regularizer alone does not achieve effective results and this is mainly because this regularizer alone only
encourages a denser adjacency matrix. The sparse-connect regularizer outperforms the rest of the regularizers with a small
margin almost on all datasets. Figure 6(c) compares the two unsupervised losses in the UGSL framework. The contrastive
loss is the most effective across most of the datasets. The unsupervised losses are one of those components that increased
the performance of the base model the most which might mainly be because of the supervision starvation problem studied in
the GSL literature (Fatemi et al., 2021).

A.2. Random Search Over All Components

In this section, we perform a random search over all components of the UGSL framework, including their combinations and
hyperparameters. For each dataset, we run 30,000 trials.

Best results obtained. The trials with the best validation accuracy are reported in Table 6, along with the corresponding
test accuracy and the components in the architecture of the corresponding model. The results show that combining different
combinations from different models further improves the base model. As we are running many trials for each dataset, we
excluded the sparsifiers with ε variants to be able to run all trials on accelerators. We can see that the best-performing

Positional encoding Explanation

WL role Positional encoding based on the Weisfeiler-Lehman absolute role (Shervashidze et al., 2011).
Spectral role Positional encoding based on the top k eigenvectors of the graph laplacian.

Table 4: An Overview of Different Positional Encodings.
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Name Formula Description

Supervised loss
∑
i CE(labeli, predi) The supervision from the classification task as a categorical cross-entropy (CE represents the

cross-entropy loss and the sum is over labeled nodes).
Closeness ||A(0) −A||2F Discourages deviating from the initial graph.
Smoothness

∑
i,j Aijdist(vi, vj) Discourages connecting (or putting a high weight on) pairs of nodes with dissimilar initial

features.
sparse-connect ||A||2F Discourages large edge weights.
Log-Barrier −1T log(A1) Discourages low-degree nodes, with an infinite penalty for singleton nodes.
Denoising Auto-
Encoder

∑
i,j∈F CE(Xij ,GNNDAE(X̃,A)) Selects a subset of the node features F , adds noise to them to create X̃ , and then trains a

separate GNN to denoise X̃ based on the learned graph.

Contrastive 1
2n

(∑n
i log

(
exp(sim(XL

i ,Y
L
i )/τ)

)
∑n
j=1

(
exp(sim(XL

i
,Y L
j

)/τ)
) +

log

(
exp(sim(Y Li ,X

L
i )/τ)

)
∑n
j=1

(
exp(sim(Y L

i
,XL
j

)/τ)
) )

Let G1 = (X,A) and G2 = (X, combine(A(0),A)) (A is the learned structure and
A(0) is the initial – I if no initial structure). The combine function is a slow-moving weighted
sum of the original and the learned graphs. Then, Let G̃1 and G̃2 be variants of G1 and G2 with
noise added to the graph and features. The two views are fed into a GNN followed by an MLP

to obtain node features X(L) and Y (L), on which the loss is computed.

Table 5: A summary of loss functions (supervised and unsupervised) and regularizers.
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(b) Regularizers.
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Figure 6: my caption

components vary across datasets. However, there are some general trends. For example, using raw features in the input with
no positional encoding is frequently used in the top-performing models. Also, the ATT edge scorer is accompanied by a
GIN encoder in the architectures where it participated.

Top-performing components. To get more insights from the different trials, in addition to the best results reported above,
we analyze the top 5% performing trials for each component and visualize their results. Figures 7 to 12 show the box charts
for different components across for Pubmed, Photo, Imagenet, and Stackoverflow (the rest in the appendix).
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Dataset Val Accuracy Test Accuracy Input Features Edge scorer Sparsifier Processor Encoder Regularizers Unsupervised Losses

Cora (base) 68.20 65.30 features MLP kNN none GCN none none
Cora (best) 70.80 72.30 features FP d-kNN activation GCN none denoising and contrastive

Citeseer (base) 69.20 67.30 features MLP kNN none GCN none none
Citeseer (best) 72.00 71.20 features FP kNN activation-sym GCN closeness none
Pubmed (base) 72.60 69.60 features MLP kNN none GCN none none
Pubmed (best) 80.80 76.00 features MLP d-kNN activation GIN sparse-connect contrastive
Photo (base) 80.81 79.87 features MLP kNN none GCN none none
Photo (best) 92.55 89.84 spectral ATT d-kNN activation GIN sparse-connect denoising and contrastive

Imagenet (base) 96.80 94.25 features MLP kNN none GCN none none
Imagenet (best) 96.95 94.25 features FP kNN activation GIN smoothness none

Stackoverflow (base) 76.28 75.86 features MLP kNN none GCN none none
Stackoverflow (best) 77.48 77.82 features ATT kNN none GIN sparse-connect none

Table 6: Comparison of best random search models vs. base models
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Figure 7: Results of the top 5% performing UGSL models in a random search on Pubmed.
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Figure 8: Results of the top 5% performing UGSL models in a random search on Photo.
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Figure 9: Results of the top 5% performing UGSL models in a random search on Imagenet.
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Figure 10: Results of the top 5% performing UGSL models in a random search on Stackoverflow.
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Figure 11: Results of the top 5% performing UGSL models in a random search on Cora.
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Figure 12: Results of the top 5% performing UGSL models in a random search on Citeseer.
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