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ABSTRACT

We introduce DNABERT-S, a tailored genome model that develops species-aware
embeddings to naturally cluster and segregate DNA sequences of different species
in the embedding space. Differentiating species from genomic sequences (i.e.,
DNA and RNA) is vital yet challenging, since many real-world species remain
uncharacterized, lacking known genomes for reference. Embedding-based methods
are therefore used to differentiate species in an unsupervised manner. DNABERT-S
builds upon a pre-trained genome foundation model named DNABERT-2. To
encourage effective embeddings to error-prone long-read DNA sequences, we
introduce Manifold Instance Mixup (MI-Mix), a contrastive objective that mixes
the hidden representations of DNA sequences at randomly selected layers and trains
the model to recognize and differentiate these mixed proportions at the output layer.
We further enhance it with the proposed Curriculum Contrastive Learning (C2LR)
strategy. Empirical results on 23 diverse datasets show DNABERT-S’s effectiveness,
especially in realistic label-scarce scenarios. For example, it identifies twice more
species from a mixture of unlabeled genomic sequences, doubles the Adjusted Rand
Index (ARI) in species clustering, and outperforms the top baseline’s performance
in 10-shot species classification with just a 2-shot training. 1

1 INTRODUCTION
Accurate differentiation of species from genomic sequences is a critical task in biology and ecology,
supporting efforts in biodiversity conservation, epidemiology, understanding evolutionary processes,
and exploring the roles of microbiomes in health and disease. Traditional methods for species identi-
fication rely heavily on well-characterized reference genomes for comparative analysis. Thus, they
are limited due to the vast and largely unexplored genetic diversity present in natural environments.

A prime example is metagenomics binning. Metagenomics binning (Kang et al., 2015; 2019; Nissen
et al., 2021; Meyer et al., 2022; Lamurias et al., 2023) is a pivotal process in microbiome research,
aiming to group DNA sequences by species from complex mixtures containing DNA from potentially
thousands of distinct, often uncharacterized species. In this context, effective DNA embeddings that
can accurately segregate and cluster DNA sequences are more suitable than the methods that rely on
known reference genomes for comparison and alignment.

Despite the critical role of DNA embeddings in various scenarios, there is a notable deficiency in
the development of effective methods. Current approaches to achieving DNA embeddings include:
1) Descriptive textual features (Kang et al., 2015; 2019; Nissen et al., 2021), 2) Pre-trained Kmer
embeddings (Ng, 2017; Ren et al., 2022; Han et al., 2022), and 3) Genome foundation models (Ji
et al., 2021; Nguyen et al., 2023; Zhou et al., 2023). The first two methods, while straightforward,
often fail to capture complex semantic relationships inherent in genomic data. Genome foundation
models (Ji et al., 2021; Nguyen et al., 2023; Zhou et al., 2023), despite their successes in various
genomic tasks through model fine-tuning, generally fail to develop embeddings that can discriminate
certain properties like species. This is largely due to a mismatch between their pre-training objectives
(Radford et al., 2019; Devlin et al., 2018) and the specific application scenarios. Our empirical
analysis, as detailed in Table 1, reveals that in many scenarios, existing genome foundation models
even underperform simple textual features.

In this work, we introduce DNABERT-S, a specialized genome model that harnesses the capabilities
of genome foundation models to generate species-aware DNA embeddings. As depicted in Figure 1,

1Model, codes, and data will be publicly available.
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Figure 1: TSNE visualization of the DNA embeddings generated by different methods on a CAMI2
(Meyer et al., 2022) dataset with 50 different species. Each point represents an individual DNA
sequence, with the color coding indicating the species affiliation. Notably, DNABERT-S demonstrates
a pronounced ability to cluster and segregate different species within the embedding space.

DNABERT-S distinguishes itself from other methods by its ability to effectively cluster and separate
different species within the embedding space. This enhanced performance stems from the proposed
Manifold Instance Mixup (MI-Mix) loss and Curriculum Contrastive Learning (C2LR) strategy.
Contrastive learning enables the model to discern between similar and dissimilar DNA sequences,
and curriculum learning incrementally presents more challenging training samples, fostering better
learning and generalization. The training of DNABERT-S includes two phases. In the first phase, we
adopt a Weighted SimCLR Chen et al. (2020); Zhou et al. (2022) training objective to encourage the
model to group DNA sequences from the same species and separate DNA sequences from distinct
species. In the second phase, we introduce Manifold Instance Mixup (MI-Mix), which mixes anchor
instances at a randomly selected layer to create more challenging anchors for contrastive training.

To rigorously evaluate the models, we assemble a comprehensive benchmark that includes thousands
of species, capturing the diversity of natural microbial communities. This benchmark incorporates
complex samples from CAMI2 (Meyer et al., 2022), a leading metagenomics binning benchmark,
and extensive reference genomes from Genbank (Benson et al., 2012). Thus, it includes both natural
yet error-prone long-read sequences and well-curated yet potentially biased reference genomes.

We evaluate the embedding quality from entirely unsupervised problems to classification tasks with
abundant labels. Experimental results indicate the effective performance of DNABERT-S. Compared
to the strongest existing method, DNABERT-S doubles its performance in the clustering task and
achieves better performance with only 20% of labeled data in the classification task (e.g., 2-shot v.s.
10-shot). Notably, in metagenomics binning, DNABERT-S is able to recover over 40% and 80% of
species with an F1 score of over 0.5 respectively from synthetics and more realistic datasets, which is
also one time more than the strongest baseline. We also show that a simple K-Nearest-Neighbors
species classifier, which is trained on DNABERT-S embeddings of a small portion of each target
genome, can slightly outperform a well-established traditional method MMseqs2 (Steinegger &
Söding, 2017) that relies on the entire reference genomes of target species for classification.

Our contribution can be summarized as follows: 1) We demonstrate the effectiveness of genome
foundation models in learning DNA embeddings, opening new avenues for various genomics research
problems; 2) We introduce DNABERT-S, a model that develops distinctly better embeddings for
species differentiation; 3) We propose the Curriculum Contrastive Learning (C2LR) strategy with the
Manifold Instance Mixup (MI-Mix) loss; 4) We publish a large-scale evaluation benchmark.

2 BACKGROUND
This study aims to build a species-aware DNA embedding model that maps each DNA sequence
as a fixed-size numerical vector in an embedding space, where sequences from distinct species are
naturally clustered and segregated. A DNA sequence is essentially a sentence composed of four
unique characters: A, T, C, and G.

Existing works highly rely on descriptive textual features (Kang et al., 2015; 2019; Nissen et al.,
2021) and pre-trained K-mer embeddings (Ng, 2017; Ren et al., 2022; Han et al., 2022) to compute
DNA embeddings. A representative descriptive textual feature is Tetra-Nucleotide Frequency (TNF),
a 256-dimensional vector where each position represents the frequency of each unique 4-mer (e.g.,
TTCA, AACG) in the input DNA sequence. Despite its simplicity and effectiveness, this method
is limited since it singly relies on the 4-mer frequency and is not trainable to better fit downstream
applications. Besides, our empirical analysis also suggests that a naive trainable model based on TNF,
such as a Variational AutoEnoder (Kingma & Welling, 2013) with TNF as input, results in worse
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Figure 2: Overview of DNABERT-S’s training process. We construct training data from massive
reference genomes and train DNABERT-S with the proposed Curriculum Contrastive Learning
(C2LR) strategy that progressively provides more challenging contrastive anchors to the model in
two different phases. We propose the Manifold Instance Mixup (MI-Mix) objective that mixes the
intermediate hidden states of different inputs to construct more challenging contrastive anchor.

embeddings compared to TNF. With the success of Word2Vec (Mikolov et al., 2013), pre-trained
Kmer embeddings have gained popularity in computing DNA embeddings for various applications
(Ng, 2017; Ren et al., 2022; Han et al., 2022). However, the emergence of deep learning advancements
such as ELMo and BERT (Peters et al., 2018; Devlin et al., 2018) highlights the limitations of static
word embeddings compared to contextual embeddings produced by foundation models.

Recently, genome foundation models such as DNABERT-2 and HyenaDNA have demonstrated their
effectiveness in genome analysis (Ji et al., 2021; Dalla-Torre et al., 2023; Nguyen et al., 2023; Zhou
et al., 2023). However, these models do not naturally develop discriminative embeddings, largely due
to the discrepancy between their language-modeling training objectives and the goal of segregating
sequences in the embedding space (Li et al., 2020). To leverage the power and potential of genome
foundation models, we tailor a contrastive learning method (Reimers & Gurevych, 2019; Gao et al.,
2021; Chen et al., 2020; Lee et al., 2020) for DNA embedding learning by introducing the curriculum
contrastive learning (C2LR) strategy with the Manifold Instance Mixup (MI-Mix) training objective.

3 MODEL

The proposed Curriculum Contrastive Learning (C2LR) splits the training process into two phases,
gradually creating more challenging anchors. In phase I, we apply an effective contrastive learning
method named Weighted SimCLR based on SimCLR and Hard-Negative sampling strategy (Sec.
3.1). In phase II, we propose the Manifold Instance Mixup method which creates more challenging
anchors by mixing intermediate hidden states of inputs in a randomly selected hidden layer of the
model (Sec. 3.2). Implementation details of DNABERT-S are presented in Sec. 3.3.

Notation: Let xi be an input sample. Given a batch {(xi, xi+)}Bi=1, where B is the batch size and
(xi, xi+) represents a pair of similar samples (a.k.a., positive pair). In our setting, a positive pair
(xi, xi+) represents two non-overlapping DNA sequences from the same genome. Let f(⋅) define
the embedding model, which takes xi as input and computes fixed-size embedding f(xi).
3.1 WEIGHTED SIMCLR
SimCLR (Chen et al., 2020) is a simple and effective framework for contrastive learning. For an
anchor xi in batch {(xi, xi+)}Bi=1, SimCLR treats all the other 2B − 2 samples in the same batch
as negative samples. It encourages the model to increase the anchor’s similarity with its positive
sample xi+ and reduces its similarity with the negative samples. It treats all negative samples equally.
However, recent works (Zhang et al., 2021) have suggested that hard negatives that are closer to the
anchor in the representation space offer more informative learning contrasts. Therefore, Weighted
SimCLR (Zhang et al., 2021) gives higher weights to negative samples that are closer to the anchor. To
align with subsequent sections, we introduce the virtual labels. The label for (xi, xi+) is vi ∈ {0, 1}B ,
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where vi,i = 1 indicates positive samples, and vi,j≠i = 0 indicates negative samples. The Weighted
SimCLR loss for xi is defined as:

ℓ(f(xi), vi) = −
B

∑
n=1

vi,n log
exp (s (f(xi), f(xn+)) /τ)

∑j≠i αij exp (s (f(xi), f(xj)) /τ)
, (1)

where τ denotes the temperature and s(⋅, ⋅) denotes the cosine similarity between two inputs. Weights
αij denotes the relative importance of xj for optimizing the contrastive loss of anchor xi among all
the 2B − 2 negative samples. A negative sample that is closer to the anchor receives a higher weight.
We set αii+ = 1 and compute αij as:

αij =
exp (s (f(xi), f(xj)) /τ)

1
2B−2

∑k≠i,i+ exp (s (f(xi), f(xk)) /τ)
.

For each positive pair (xi, xi+), Weighted SimCLR respectively takes xi and xi+ as the contrastive
anchors to calculate the contrastive loss. It defines the loss ℓ(f(xi+), vi) for xi+ by exchanging the
roles of instances {xi}Bi=1 and {xi+}Bi=1 in Eq. (1) respectively. Therefore, the Weighted SimCLR
loss on the entire batch is defined as:

L =
1

2B

B

∑
i=1

(ℓ(f(xi), vi) + ℓ(f(xi+), vi)). (2)

3.2 CURRICULUM CONTRASTIVE LEARNING (C2LR)
In this part, we introduce our curriculum contrastive learning (C2LR) method. Curriculum learning
is an effective training method that first presents easy training batches and then progresses to more
challenging ones (Hacohen & Weinshall, 2019). Recent studies have successfully applied this
technique to both positive pairs (Ye et al., 2021; Roy & Etemad, 2023) and negative pairs (Chu et al.,
2021) in contrastive learning. We take this approach a step further by applying it to contrastive
anchors, effectively using it for both types of pairs at the same time.

As shown in Figure 2, our C2LR method includes two training phases, with anchors becoming
progressively more challenging. In phase I, we use the Weighted SimCLR introduced in Sec. 3.1. In
phase II, we propose the Manifold Instance Mixup (MI-Mix) method to mix up anchor instances in a
random hidden layer, motivated by the instance mixup (i-Mix) method (Lee et al., 2020).

The i-Mix method mixes anchors at the input layer to create more challenging positive and negative
pairs. It only uses the samples from {xi}Bi=1 as anchors and only considers the positive and negative
samples from {xi+}Bi=1. Otherwise, it nearly doubles the memory or training time compared to the
Weighted SimCLR method in Sec. 3.1 (see Appendix D for details). To perform mixup within the
anchor space, i-Mix first shuffles {(xi, vi)}Bi=1 to generate {(x̂i, v̂i)}Bi=1, i.e. a random permutation
of {(xi, vi)}Bi=1. Then for each anchor (xi, vi), i-Mix mixes it with (x̂i, v̂i) through weighted sum.
The mixing weight λi is drawn from Beta(α, α), where α is a hyperparameter.

Despite i-Mix’s effectiveness on continuous data such as images and speeches, directly mixing DNA
sequences may avoid biological plausibility. Thus, we proposed to instead mix hidden representations
of DNA sequences at a deeper layer, which essentially combines more abstract, higher-level features
of the sequences. We call it Manifold Instance Mixup, inspired by Verma et al. (2019). Concretely,
we denote the model f(⋅) as f(x) = fm(gm(x)). Here, gm(⋅) maps input data to the intermediate
hidden states at layer m, and fm(⋅) maps these intermediate hidden states to the output f(x).

The Manifold Instance Mixup includes four steps. First, we uniformly select a random layer
m from a set of eligible layers S in the model, like one of the encoder layers in DNABERT-
S. Second, for a batch of anchors {(xi, vi)}Bi=1, we process them up to layer m, resulting in a
batch of intermediate hidden states {(gm(xi), vi)}Bi=1. Third, we shuffle {(gm(xi), vi)}Bi=1 to get
{(gm(x̂i), v̂i)}Bi=1 and mix them up. This produces the mixed hidden states hm

i for each (gm(xi), vi),
where hm

i = λigm(xi) + (1 − λi)gm(x̂i), and v
mix
i = λivi + (1 − λi)v̂i. Fourth, we feed {hm

i }Bi=1
through the remaining layers to get the last hidden states {fm(hm

i )}Bi=1. Loss on i-th anchor (xi, vi)
is defined as:

ℓ̂(fm(hm
i ), vmix

i ) = −
B

∑
n=1

v
mix
i,n log

exp (s (fm(hm
i ), f(xn+)) /τ)

∑B
j=1 αij+ exp (s (fm(hm

i ), f(xj+)) /τ)
,
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where weights αii+ = 1 and αij+ is computed as:

αij+ =
exp (s (fm(hm

i ), f(xj+)) /τ)
1

B−1
∑B

k=1,k≠i exp (s (fm(hm
i ), f(xk+)) /τ)

.

The Manifold Instance Mixup loss is defined as follows:

L̂ =
1

B

B

∑
i=1

ℓ̂(fm(hm
i ), vmix

i ). (3)

3.3 IMPLEMENTATION

In the C2LR method, we set temperature τ as 0.05 and hyperparameter α as 1.0. We train the model
for one epoch in phase I using loss Eq. (2) and for two epochs in phase II using loss Eq. (3). We use
mean pooling of the last hidden states of all the tokens as the DNA embedding. We employ the Adam
optimizer (Kingma & Ba, 2014), with a learning rate of 3e − 6 and batch size of 48. We save the
model every 10000 training steps and select the best one based on the validation loss in the validation
dataset. We use the pre-trained DNABERT-2 (Zhou et al., 2023) as the starting point of contrastive
training. We also conduct parallel experiments with HyenaDNA (Nguyen et al., 2023). In Sec. 5.6,
we show that DNABERT-2 outperforms HyenaDNA after the same contrastive training. The training
of DNABERT-S takes approximately 48 hours on 8 NVIDIA A100 80GB GPUs.

4 DATA

In this section, we introduce the dataset we used for DNABERT-S training and evaluation.

Training Each training sample of DNABERT-S is a pair of non-overlapping DNA sequences
extracted from the same species. We focus on microbe species since the genetic diversity within this
group provides a rich substrate for examining the nuances of species differentiation. The dataset is
constructed with the reference genomes from GenBank (Benson et al., 2012). We obtained 47923
pairs from 17636 viral genomes, 1 million pairs from 5011 fungi genomes, and 1 million pairs from
6402 bacteria genomes. We randomly selected 2 million pairs from the entire 2047923 pairs of DNA
sequences to construct the training data. The rest pairs are treated as validation data. All the DNA
sequences are 10000 bp in length.

Evaluation Our evaluation spans 14 long-read datasets from the Critical Assessment of
Metagenome Interpretation (CAMI) II (Meyer et al., 2022) challenge benchmark and 9 synthetic
datasets from reference genomes. CAMI2 is one of the most comprehensive and rigorous benchmarks
for metagenomics research. The datasets in CAMI2 are designed to mimic realistic microbiome
environments and include a vast array of both new and known genomes, as well as plasmids and
viruses. It aligns our study with real-world ecological and biological scenarios, providing a robust and
contextually relevant evaluation for the DNA embedding models. We utilize 7 datasets of long-read
contigs respectively from the Marine and Plant-associated environments, where each dataset
consists of 150k-200k DNA sequences belonging to about 100 − 750 different species sampled
from 1680 microbial genomes and 599 circular elements. We also create 9 Synthetic datasets by
randomly extracting DNA sequences from fungi and viral reference genomes that do not overlap with
our training data. Table 5 in Appendix B shows the statistics of the datasets we used for evaluation.

5 EXPERIMENTS

We evaluate the model in a series of tasks, including: 1) metagenomics binning that identifies species
from a mixture of sequences from an unknown number of species; 2) species clustering given the
number of species; 3) species classification with a few labeled samples; and 4) long-read classification
given reference genomes. The CAMI2 datasets are highly imbalanced, while clustering algorithms
and few-shot classification are often sensitive to unbalanced data. Therefore, for the clustering and
classification tasks, we filtered the datasets to eliminate species with fewer than 100 sequences and
only kept 100 random sequences for each species, resulting in a set of perfectly balanced datasets.
For the metagenomics binning problem, to mimic real-world scenarios, we do not balance the data.
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Instead, following Kang et al. (2015), we only keep DNA sequences longer than 2500bp and filter
out species with fewer than 10 sequences. Furthermore, we validate the absence of data leakage issue
in our evaluation datasets. Please refer to Appendix F for details.

In this section, we present experimental design and empirical results. We introduce baselines in
Sec. 5.1 and respectively present the results of clustering in Sec. 5.2, metagenomics binning in
Sec. 5.3, and classification in Sec. 5.4. In Sec. 5.5, we present ablation studies on C2LR and
the proposed Manifold Instance Mixup training objective. Comparison with an alignment-based
method for species classification is presented in Appendix C.4. We also provide empirical analysis
on results with error bars (Appendix C.3), scenarios with abundant training data (Appendix C.4),
results on non-microbe species (Appendix C.5), different input lengths (Appendix C.6), reduced
feature dimensions (Appendix C.7), various other types of tasks (e.g., genomics function prediction)
and varying backbone models (Appendix C.8). For all tasks involving randomness, we perform 5
independent runs with different random seeds for each model and report the averaged results.

5.1 BASELINES

We compare our model with four lines of work to examine its effectiveness. TNF, TNF-K, and
TNF-VAE are the most widely used DNA embedding methods in metagenomics binning tools
(Kang et al., 2015; 2019; Nissen et al., 2021). TNF represents Tetra-Nucleotide Frequency, which
uses the appearance frequency of each unique 4-mer (44 = 256 in total) in a DNA sequence as its
embedding. TNF-K (Nissen et al., 2021) reduces TNF to 103-dimension with a linear kernel, which
utilizes DNA characteristics to reduce the correlations among different dimensions of the original
TNF feature. TNF-VAE trains a Variational Autoencoder (Kingma & Welling, 2013) using TNF
as input to extract features. DNA2Vec (Ng, 2017) learns pre-trained K-mer embedding. We set
K = 4 to make it directly comparable with TNF and use the average of the 4-mer embeddings as the
DNA embedding. DNABERT-2 (Zhou et al., 2023), HyenaDNA (Nguyen et al., 2023), and NT-v2
(Nucleotide Transformer-v2) (Dalla-Torre et al., 2023) are representative genome foundation models.
We use the average of the last hidden states as the DNA embedding. For evaluations, we utilized the
respective pre-trained models from Huggingface ModelHub, specifically zhihan1996/DNABERT-2-
117M, LongSafari/hyenadna-medium-450k-seqlen-hf, and InstaDeepAI/nucleotide-transformer-v2-
100m-multi-species. DNA-Mutate, DNA-Dropout, and DNA-Double are variants of DNABERT-S,
with the same hyperparameters but different positive pair construction strategies in contrastive training.
DNA-Mutate views the same DNA sequence before and after random mutation (i.e., swap and delete
5% of nucleotides) as a positive pair. DNA-Dropout passes the same DNA sequence through the
embedding model (with a dropout rate 0.1) twice and views the two distinct embeddings as a positive
pair. DNA-Double views a DNA sequence and its reverse complementary (e.g., AATTC v.s. TTAAG)
as a positive pair. Hyena-Sim and DNA-Sim are variants of HyenaDNA and DNABERT-2, fine-tuned
using the Weighted SimCLR loss for 3 epochs with the same training set used for DNABERT-S. For
all the models mentioned above, including DNABERT-S, we provide a detailed comparison of the
number of parameters, embedding dimension, inference time, and inference memory in Appendix
E. We also compare the proposed curriculum contrastive learning framework and MI-Mix training
objective with well-established contrastive learning methods, including Weight SimCLR (Zhang
et al., 2021), i-Mix (Lee et al., 2020) and Supervised Contrastive Learning (SupCon) (Khosla
et al., 2021). Results on different training objectives are presented in Sec. 5.5.

5.2 CLUSTERING

In this task, we evaluate the embedding quality by how well a standard clustering algorithm can
distinguish and cluster different species based on the embedding. To reduce the effects of other
factors, we assume the number of species is known in this task. For each dataset, we compute the
embedding of each DNA sequence and perform K-means clustering by setting the num_clusters
as the number of species that exist in this dataset. We employ the Adjusted Rand Index (ARI) as
the evaluation metric. ARI is a measure of the similarity between two data clusterings, adjusted for
chance, providing a normalized index that ranges from −1 to 1; the higher, the better.

Table 1 shows the models’ performance on clustering. As shown in the table, DNABERT-S consis-
tently achieves the best performance on all the datasets and doubles the performance of the strongest
existing method on average. Among all the baselines, TNF and its variant TNF-K achieve the best
performance, explaining their wide usage in metagenomics binning. Yet, TNF’s performance is
heavily limited since it is not learnable. TNF-VAE represents a naive algorithm that enables learning
with TNF, yet it leads to big performance degradation, potentially resulting from the large gap
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Table 1: Models’ performance on K-Means clustering measured by Adjusted Rand Index (ARI).
DNABERT-S doubles the ARI of the strongest baseline on average.

Model Synthetic Marine Plant Ave.
0 1 0 1 2 3 4 0 1 2 3 4

TNF 38.75 37.76 25.65 25.31 26.05 20.67 23.47 25.80 24.23 24.81 22.72 22.39 26.47
TNF-K 36.26 35.66 25.99 25.00 26.27 21.15 23.27 25.60 25.58 26.45 22.59 21.76 26.30
TNF-VAE 25.94 24.60 16.28 16.52 16.27 12.92 15.02 18.40 16.51 17.53 14.08 14.38 17.37
DNA2Vec 24.68 23.34 16.07 15.99 16.18 12.62 14.51 20.13 19.77 20.25 17.24 16.37 18.10
HyenaDNA 20.04 18.99 16.54 16.64 16.47 13.35 14.85 24.06 25.33 26.18 21.01 21.16 19.55
NT-v2 8.69 9.63 4.92 4.74 5.02 3.68 4.31 7.00 6.32 6.37 5.54 5.42 5.97
DNABERT-2 15.73 16.74 13.24 13.53 12.99 10.41 11.87 15.70 16.28 16.32 13.99 13.66 14.21

DNA-Dropout 16.64 16.08 11.89 11.77 11.89 9.85 10.31 16.18 15.41 16.95 13.53 13.85 13.70
DNA-Double 35.11 34.14 27.05 27.23 26.56 21.47 24.39 22.35 21.35 23.03 19.44 19.06 25.10
DNA-Mutate 16.55 16.24 11.40 11.53 11.34 9.03 10.02 14.27 14.13 16.22 12.01 11.68 12.87

Hyena-Sim 57.58 55.19 42.92 42.68 42.24 36.16 40.09 41.42 40.36 40.46 36.87 38.25 42.85
DNA-Sim 69.33 68.37 53.18 51.94 51.91 46.60 49.69 49.05 50.33 49.68 48.57 49.83 50.08

DNABERT-S 68.21 66.33 53.98 52.56 51.99 46.39 50.49 51.43 51.56 51.11 50.44 51.15 53.80

between its training objective and the specific downstream application. Similarly, pre-trained Kmer
embeddings from DNA2Vec also fail to effectively cluster different species.

Existing genome foundation models training with language modeling objectives, such as HyenaDNA
and DNABERT-2, despite their good performance on labeled datasets, also fail to generate rep-
resentative embedding without fine-tuning. The phenomenon that pre-trained foundation models
underperform descriptive textual features in generating embedding for clustering and retrieval is also
observed in the field of natural language processing (Reimers & Gurevych, 2019).

Furthermore, by comparing the DNA-Dropout and DNA-Mutate with DNABERT-2, we found that
those popular unsupervised positive pair methods used in contrastive learning in NLP, such as
sentence swap/deletion and dropout, do not benefit DNA embedding learning. The DNA-Double,
which utilizes the unique double-strain characteristics of DNA sequences, empowers DNABERT-2 to
achieve a similar level of performance as TNF. Comparison between DNABERT-S and these variants
indicates the importance of appropriate training data construction.

5.3 METAGENOMICS BINNING

Metagenomics binning is a crucial process in microbial ecology, involving the categorization of
DNA sequences into groups that represent individual species. State-of-the-art metagenomics binning
method (Kang et al., 2015; 2019; Nissen et al., 2021) always formulate this problem as a clustering
problem with an unknown number of clusters based on the feature of each DNA sequence. The DNA
sequence feature is computed by combining sequence-based DNA embedding with various other
features and the clustering algorithms are often complicated and strongly correlated with the features
they utilize. In our evaluation, to create a fair environment for DNA embedding benchmarking,
instead of relying on any existing tool, we implement the modified K-medoid clustering algorithm
proposed in Kang et al. (2015) for metagenomics binning due to its simplicity and effectiveness.
Algorithm 1 describes the metagenomics binning algorithm. Following Kang et al. (2015; 2019), we
formulate this problem as identifying non-overlapping clusters of DNA sequences from the entire
dataset, where each cluster of sequence is considered as an identified species. We iteratively identify
the densest point in the embedding space and take all the sequences that are close (determined by a
learned threshold) to it as the group of the sequences that belong to the same species. The embeddings
of the taken sequences are removed from the embedding space. The iteration ends as there are no
regions that contain enough number sequences within the threshold. This algorithm, evaluates how
well the embedding method clusters and aggregates different species within the embedding space.
We then compare the predicted clusters with the true labels to count the number of species that have
been successfully identified. A species is considered to be successfully identified if the F1 score of
this species is over 0.5. We compare different models by the number of species they identify with
different levels of F1 scores (e.g., 0.5 − 0.6, 0.8 − 0.9). We only use the DNA embeddings as the
feature of each DNA sequence.

Figure 3 shows the models’ performance on 6 metagenomics binning datasets. As shown in the figure,
similar to our observation in clustering, DNABERT-S identifies twice the number of species with
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an F1 score of over 0.5 compared to the strongest baseline, showing its great capability in tackling
important real-world biology challenges. Notably, DNABERT-S identifies a large number of species
with an F1 score over 0.9. indicating its capability to accurately segregate different species in the
embedding space, aligning with our observation in Figure 1. In the Synthetic datasets, where the
sequences are error-less (extracted from reference genome) and the number of sequences in each
species is more balanced, DNABERT-S recovers over 80% of the species with an F1 score of over
0.5 purely based on the DNA sequences themselves. In more realistic datasets such as Marine and
Plant, where noise (e.g., error from sequences) exists in DNA sequence and species size is highly
imbalanced, DNABERT-S is still able to recover 40% of the species with an F1 score of over 0.5.

Figure 3: Metagenomics Binning Results. The bin size represents the number of unique species
identified by each model and different colors represent the F1 score of the identified species. With
high F1 scores, DNABERT-S identifies many more species than the baselines.

5.4 CLASSIFICATION

In this task, we evaluate the embedding quality by how well a simple model can classify different
species based on a few labeled embeddings. We conduct experiments with a linear regression model
and a non-linear multi-layer perceptron (MLP) to examine the embeddings’ linear and non-linear
descriptiveness. We present results on linear classification in this section. The results in non-linear
settings are consistent with those in linear ones. Due to space limits, we present them in Table 6 and
7 in the Appendix C.2. As shown in Table 5, all the datasets we use for classification consist of 100
DNA sequence for each species. We first compute the embedding of each DNA sequence with each
model. In each evaluation run, we independently select 80 embeddings from each species to form the
test set. For the rest DNA sequences, we respectively sample 1, 2, 5, 10, and 20 embeddings from
each species to form the training set. A Logistic Regression model is trained on the training set and
evaluated on the test set. We use the macro F1 score as the evaluation metric.

Figure 4 shows the models’ performance on 6 datasets. The results for the remaining 6 datasets
are consistent and are presented in Appendix C.1. We also provide detailed results for all baselines
on all 12 datasets in Table 14. As shown in the figure, DNABERT-S consistently achieves the best
performance. DNABERT-S achieves better performance than the strongest baseline with only 20%
of training data. For example, with only 2 training samples per category, DNABERT-S achieves
higher F1 scores than the strongest baseline with 10 training samples. With the same amount of
training samples, DNABERT-S outperforms the baselines by a large gap. Notably, in the Synthetic
datasets, where none of the species are seen during the contrastive training, a linear model trained
with DNABERT-S embeddings achieves an F1 score of over 0.8 in 200 classes classification with
only 5 labeled samples in each species, showing DNABERT-S’s capability in generalizing well on
unseen data. To further validate the generalizability of DNABERT-S on more distinct datasets, we
compile three datasets, including genomes from invertebrate, protozoa, and mammalian species, that

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

are largely different from the training species (microbial genomes) of DNABERT-S. As illustrated in
Sec. C.5, DNABERT-S also achieves good performance in these datasets.

(a) Synthetic 0 (b) Marine 0 (c) Plant 0

(d) Synthetic 1 (e) Marine 1 (f) Plant 1

Figure 4: Model’s performance of species classification with varying numbers of training samples on
6 datasets. Results on other 6 datasets are consistent and are presented in Figure 5.

5.5 ABLATION STUDY

In this section, we present our ablation studies on DNABERT-S. We perform the ablation study on
CAMI2 datasets with both clustering and classification. To validate the effectiveness of curriculum
learning, we compare DNABERT-S with three of its variants, each of which is trained purely with the
Weight SimCLR (Zhang et al., 2021), i-Mix (Lee et al., 2020), SupCon (Khosla et al., 2021), and our
proposed Manifold Instance Mixup (MI-Mix) loss. To examine the effectiveness of MI-Mix, we also
compare it with a variant trained with the curriculum contrastive method that replaces MI-Mix with
i-Mix in the second phase. All the variants are trained with the same data and hyperparameters.

Table 2: Ablation study on the Curriculum Con-
trastive Learning (C2LR) and Manifold Instance
Mixup (MI-Mix). -: Performance difference to W.
SimCLR + MI-Mix.

Training Objective Clustering Classification

W. SimCLR + MI-Mix 51.11 60.88
W. SimCLR + i-Mix −3.46 −3.56
only W. SimCLR −1.13 −1.17
only MI-Mix −0.66 −0.42
only i-Mix −5.25 −4.76
only SupCon −6.75 −3.83

As shown in Table 2, our curriculum learn-
ing strategy that combines Weighted SimCLR
and MI-Mix achieves the best performance.
Our method outperforms both variants that are
trained purely with Weighted SimCLR and MI-
Mix loss, showing the effectiveness of our pro-
posed curriculum contrastive learning strategy.
Moreover, the comparison among the four vari-
ants that are trained with a single loss function,
including Weight SimCLR, i-Mix, and SupCon,
indicates the effectiveness of MI-Mix in learning
DNA embeddings.

5.6 SELECTION OF BACKBONE MODEL

This subsection delineates a comparative analysis of existing genome foundation models in the context
of DNA embedding generation. We evaluated four renowned models: DNABERT (Ji et al., 2021),
DNABERT-2 (Zhou et al., 2023), Nucleotide Transformer (Dalla-Torre et al., 2023), and HyenaDNA
(Nguyen et al., 2023). Notably, DNABERT and the Nucleotide Transformer exhibit strict input
sequence length limitations of 512 and 6144 (V1) or 12288 (V2) base pairs, respectively. Conversely,
DNABERT-2 and HyenaDNA do not impose such constraints. Considering the potentially extensive
length of genome sequences in metagenomics binning, our preliminary experiments focused solely
on DNABERT-2 and HyenaDNA.
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We train both models on our pre-training datasets with the same set of hyperparameters for 3 epoch.
We save checkpoints periodically and select the best checkpoint based on the models’ validation loss
on the validation set. Since HyenaDNA, in general, requires larger learning rates than DNABERT-2,
we train it with three different learning rates (3e− 4, 3e− 5, and 3e− 6) and select the one that works
best. For DNABERT-2, we only train it once with a learning rate of 3e − 6. To avoid the impact of
other factors, such as the schedule of curriculum learning, we train both models with the Weighted
SimCLR loss only in the entire training process. We evaluate the models before and after contrastive
training on our evaluation benchmark.

Table 3 presents the performance of both pre-trained DNABERT-2 and HyenaDNA, with and without
contrastive training, in K-means clustering evaluations. DNABERT-2, despite underperforming
without contrastive training, demonstrated superior performance compared to HyenaDNA post-
training, highlighting its efficacy in learning effective DNA embeddings. Similar trends are observed
in few-shot species classification scenarios, as detailed in Table 4. While DNABERT-2 initially
exhibited subpar performance, it largely improved post-contrastive training, achieving the best results.
Thus, DNABERT-2 was chosen as the backbone model for DNABERT-S.

Table 3: Performance of DNABERT-2 and HyenaDNA on K-Means clustering measured by Adjusted
Rand Index (ARI). ∆: the model’s performance improvement after contrastive training,

Synthetic Marine Plant Ave.
Dataset ID 0 1 0 1 2 3 4 0 1 2 3 4

DNABERT-2 w/o 15.73 16.74 13.24 13.53 12.99 10.41 11.87 15.70 16.28 16.32 13.99 13.66 14.21
DNABERT-2 w/ 69.33 68.37 53.18 51.94 51.91 46.60 49.69 49.05 50.33 49.68 48.57 49.83 50.08
∆ 53.61 51.63 39.94 38.41 38.93 36.19 37.82 33.35 34.05 33.36 34.57 36.17 39.00

HyenaDNA w/o 20.04 18.99 16.54 16.64 16.47 13.35 14.85 24.06 25.33 26.18 21.01 21.16 19.55
HyenaDNA w/ 57.58 55.19 42.92 42.68 42.24 36.17 40.10 41.42 40.36 40.46 36.87 38.25 42.85
∆ 37.54 36.20 26.38 26.04 25.77 22.82 25.24 17.36 15.03 14.28 15.86 17.09 23.30

Table 4: Performance of DNABERT-2 and HyenaDNA on few-shot classification measured by Macro
F1 score. ∆: the model’s performance improvement after contrastive training,

Synthetic Marine Plant Ave.
Num Shots 1 2 5 10 1 2 5 10 1 2 5 10

DNABERT-2 w/o 24.43 34.81 48.93 58.58 19.50 28.45 40.64 48.98 21.04 28.16 38.50 45.46 36.46
DNABERT-2 w/ 72.02 78.63 84.55 86.99 48.23 57.90 64.80 67.94 44.97 52.35 60.35 64.63 65.28
∆ 47.60 43.83 35.62 28.41 28.73 29.45 24.16 18.96 23.92 24.20 21.85 19.17 28.82

HyenaDNA w/o 30.13 41.18 54.86 64.03 23.92 33.94 47.47 55.50 28.15 36.97 48.20 55.24 43.30
HyenaDNA w/ 59.58 67.79 74.62 78.53 43.60 53.70 62.00 65.55 43.46 52.12 59.40 62.80 60.26
∆ 29.45 26.62 19.76 14.50 19.68 19.76 14.52 10.05 15.31 15.15 11.20 7.55 16.96

6 CONCLUSION

We introduce DNABERT-S, a model tailored for species-aware DNA embeddings, which is empow-
ered by the proposed Manifold Instance Mixup (MI-Mix) training objective and the Curriculum
Contrastive Learning (C2LR) strategy. We perform extensive experiments on 23 datasets across thou-
sands of different species and a variety of challenging tasks, including species clustering, classification,
and metagenomics binning, to demonstrate the DNABERT-S’s capability of species differentiation.
Furthermore, we conduct a series of experiments on the training objective, backbone model selection,
impacts of sequence length, and feature dimension to provide empirical insights for DNA embedding
learning. We also compare DNABERT-S with traditional technique like MMSeq2 in the problem of
species differentiation and demonstrate DNABERT-S can achieves slightly better performance with
less amount of labeled samples. We envision DNABERT-S to potentially change the way genomic
problems are approached from an embedding perspective. The primary limitation of DNABERT-S
lies in its high computational demands, a common trait among deep learning models, when compared
to more traditional, lightweight methods like Tetranucleotide Frequencies (TNF).
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A ALGORITHM FOR METAGENOMICS BINNING

Algorithm 1 describes the unsupervised clustering algorithm we used for metagenomics binning,
where s(Ei, Ej) represents the cosine similarity of two vectors Ei and Ej . Selection of threshold
γ. As shown in Algorithm 1, the threshold γ is the most important hyperparameter that greatly
impacts the final binning results. A high threshold results in small and dense clusters while a low
threshold results in large yet sparse clusters. Since different models generate embeddings with distinct
distributions, a fixed threshold (e.g., 0.9) could be too high for one model yet too low for another one.
In practice, massive hyperparameter searches are needed to determine the best threshold for each
model on different datasets. Due to the large size of our experiments and the various types of models
we used, an automatic way is needed to fairly choose the threshold for each model on each dataset.
For each metagenomics binning dataset, we use the dataset from the same source (e.g., Marine) as
it with ID 0 to compute a threshold for each model on it, Specifically, we generate embeddings for
each DNA sequence in the dataset and compute the similarities between each DNA sequence and its
species center (i.e., the average of all the DNA sequence belongs to this species). The 70 percentile
of all the similarities is used as the threshold. Other hyperparameters. We set minimum bin size
m = 10, number of steps Z = 1000, and number of iterations T = 3. We also experimented with
T = 3, 4, 5 and 60, 70, 80, 90 percentile of all the similarities is used as the threshold γ, and found
that the results are robust to these hyperparameters.

Algorithm 1 Modified K-Medoid Clustering

1: Input: threshold γ, minimum bin size m, embeddings E ∈ RN×d, number of steps Z, number
of iterations T

2: Initialize: predictions p ∈ RN
, pi = −1 for i = 1, . . . , N , similarity matrix S = EE

⊤ with
Sij = 0 if Sij < γ, density vector d ∈ RN with di = ∑N

j=1 Sij

3: for step z = 1 to Z do
4: Select seed index s = argmaxs′ ds′ and corresponding seed Es

5: for iteration t = 1 to T do
6: Find neighborhood indices I of Es where s(Ei, Es) > γ and pi = −1 for each i ∈ I
7: Update seed: Es ←

1
∣I∣ ∑i∈I Ei

8: end for
9: Set pi ← z, di ← 0 for each i ∈ I

10: Set dx ← dx −∑i∈I Sxi for each x ∈ [1, 2, . . . , N]
11: end for
12: for step z = 1 to Z do
13: Find indices I where pi = z for each i ∈ I
14: if ∣I∣ < m then
15: Set pi ← −1 for each i ∈ I
16: end if
17: end for

Return: predictions p

B DATA STATISTICS OF EVALUATION BENCHMARK

This section details the comprehensive statistics of the 18 datasets utilized for evaluating various DNA
embedding models, as summarized in Table 5. For tasks involving clustering and classification, each
dataset encompasses between 93 to 499 distinct species. From each species, 100 DNA sequences are
sampled. These sequences vary in length, ranging from 2,000 to 20,000 base pairs. In the case of
metagenomics binning, the datasets exhibit an unbalanced distribution of sequences across different
species. Specifically, the number of sequences per species varies significantly, ranging from as few as
10 to as many as 4,599.

Our benchmark contains assets from GenBank (Benson et al., 2012) (license: Creative Commons At-
tribution Non-Commercial License http://creativecommons.org/licenses/by-nc/
2.0/uk/) and CAMI2 (Meyer et al., 2022) (license: Creative Commons Attribution 4.0 Interna-
tional License http://creativecommons.org/licenses/by/4.0/). It is worth noting
that both GenBank and CAMI2 preprocess the RNA sequences into DNA equivalents by replacing
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U with T. Thus, although we did not explicitly analyze RNA sequences, many RNA viruses are
considered in both model training and evaluation.

Table 5: Data statistics of the datasets for the DNA embedding evaluation. This table presents the
sampling source, ID, number of sequences, number of sequences, and the minimum / maximum /
medium values of the sequence lengths and number of sequences in each species. We use the same
set of balanced datasets for clustering and classification and another set of datasets for metagenomics
binning.

Tasks Source ID Species Sequences Sequence Length Num. Per Species
Marine 0 326 32600 2k / 20k / 7.6k 100 / 100 / 100

Unsupervised Marine 1 375 37500 2k / 20k / 8.2k 100 / 100 / 100
Clustering Marine 2 361 36100 2k / 20k / 8.5k 100 / 100 / 100
& Marine 3 499 49900 2k / 20k / 6.8k 100 / 100 / 100
Few-Shot Marine 4 360 36000 2k / 20k / 7.1k 100 / 100 / 100
Classification Plant 0 108 10800 2k / 20k / 6.6k 100 / 100 / 100

Plant 1 100 10000 2k / 20k / 6.4k 100 / 100 / 100
Plant 2 93 9300 2k / 20k / 6.2k 100 / 100 / 100
Plant 3 129 12900 2k / 20k / 5.5k 100 / 100 / 100
Plant 4 129 12900 2k / 20k / 5.7k 100 / 100 / 100

(Microbe) Synthetic 0 200 20000 10k / 10k / 10k 100 / 100 / 100
Synthetic 1 200 20000 10k / 10k / 10k 100 / 100 / 100

(Mammalian, Synthetic 2 210 21000 10k / 10k / 10k 100 / 100 / 100
Invertebrate, Synthetic 3 210 21000 10k / 10k / 10k 100 / 100 / 100
Protozoa) Synthetic 4 210 21000 10k / 10k / 10k 100 / 100 / 100

Synthetic 5 323 37278 10k / 10k / 10k 31 / 200 / 111
Synthetic 6 249 28206 10k / 10k / 10k 30 / 199 / 114

Metagenomics Marine 5 515 119465 2.5k / 20k / 4.3k 10 / 841 / 201
Binning Marine 6 527 125194 2.5k / 20k / 4.4k 10 / 915 / 223
(Microbe) Plant 5 181 71642 2.5k / 20k / 3.7k 10 / 4293 / 190

Plant 6 196 68426 2.5k / 20k / 3.7k 10 / 4599 / 116

Classification Synthetic 7 200 95309 10k / 10k / 10k 452 / 600 / 600
(Microbe) Synthetic 8 200 95475 10k / 10k / 10k 442 / 600 / 600

C MORE EXPERIMENTAL RESULTS

In this section, we provide additional experimental analysis. In Sec. C.1, we present the performance
of the models on species classification using a linear regression model across 6 additional datasets
not covered in Sec. 5.4. In Sec. C.2, we present the results of our investigation into the non-linear
descriptiveness of embeddings by conducting experiments using logistic regression or a non-linear
multi-layer perceptron (MLP). In Sec. C.3, we present detailed results on species clustering and
few-shot classification on DNABERT-S and the most competitive baseline models. In Sec. C.4, we
validate the effectiveness of DNABERT-S in situations where abundant labeled data is available by
comparing it with MMseqs2 (Steinegger & Söding, 2017). In Sec. C.5, we show the performance
of DNABERT-S to distinguish genomics sequences from species that are largely different from the
ones in the training set. In Sec. C.6, we delve into the influence of DNA sequence length on the
performance of DNABERT-S. In Sec. C.7, we investigate how changes in embedding dimensions
affect the performance of DNABERT-S. In Sec. C.8, we evaluate the impact of species-aware
embedding on other types of genomics analysis tasks, like genomics function prediction tasks.

C.1 REMAINING RESULTS ON SPECIES CLASSIFICATION

In this section, we present the performance of the models on species classification using a linear
regression model across 6 additional datasets not covered in Sec. 5.4. As shown in Figure 5, the
results are consistent with those shown in Figure 4. We also provide detailed results for all baselines
on all 12 datasets for completeness in Table 14.
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(a) Marine 2 (b) Marine 3 (c) Marine 4

(d) Plant 2 (e) Plant 3 (f) Plant 4

Figure 5: Results of species classification using linear regression on other 6 datasets.

C.2 RESULTS COMPARISON WITH LINEAR AND NON-LINEAR CLASSIFIERS

In this section, we present the results of our investigation into the non-linear descriptiveness of em-
beddings by conducting experiments using logistic regression or a non-linear multi-layer perceptron
(MLP). Table 6 and 7 show the results for three datasets: “Marine 0”, “Plant 0”, and “Synthetic 0”.
The results demonstrate that DNABERT-S consistently achieves the best performance.

Table 6: DNABERT-S’s performance of species classification with varying numbers of training
samples on datasets “Marine 0” and “Plant 0”: Beyond using logistic regression (LR), we also train
a multi-layer perceptron (MLP) with non-linear activation function (ReLU). The term "Difference"
denotes the performance gap between "DNABERT-S" and the "best-baseline". The results show
that DNABERT-S embedding consistently outperforms the best-existing baseline in both linear and
non-linear discriminativity.

Marine 0 Plant 0

Dataset ID 1 2 5 10 20 1 2 5 10 20

LR: best-baseline 27.65 38.81 52.4 58.86 63.29 28.15 36.97 48.2 55.24 60.04
LR: DNABERT-S 50.25 59.41 66.07 68.92 70.75 47.83 55.83 63.01 67.12 69.82
LR: Difference 22.60 20.60 13.67 10.06 7.46 19.68 18.86 14.81 11.88 9.78
MLP: best-baseline 26.07 38.59 53.86 60.27 63.07 27.39 36.19 47.5 54.03 59.13
MLP: DNABERT-S 48.55 59.25 66.09 68.95 69.99 45.31 55.34 63.25 67.25 70.00
MLP: Difference 22.48 20.66 12.23 8.68 6.92 17.92 19.15 15.75 13.22 10.87

C.3 RESULTS WITH ERROR BARS

In this section, we present detailed results on species clustering and few-shot classification on
DNABERT-S and the most competitive baseline models. Table 8, 9, and 10 respectively show the
models’ mean and std on each setting across 5 random seeds. As shown in the tables, DNABERT-S
consistently outperforms the baselines with small variances.

C.4 COMPARISON WITH ALIGNMENT-BASED METHOD

While previous experiments have highlighted DNABERT-S’s exceptional performance in scenarios
with limited or no labeled data, this section focuses on its effectiveness in situations where abun-
dant labeled data is available. Specifically, we aim to understand the embedding-based species
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Table 7: DNABERT-S’s performance of species classification with varying numbers of training
samples on dataset “Synthetic 0”: Beyond using logistic regression (LR), we also train a multi-layer
perceptron (MLP) with non-linear activation function (ReLU). The term "Difference" denotes the
performance gap between "DNABERT-S" and the "best-baseline". The results show that DNABERT-S
embedding consistently outperforms the best-existing baseline in both linear and non-linear discrimi-
nativity.

Synthetic 0

Dataset ID 1 2 5 10 20

LR: best-baseline 44.07 56.11 68.69 75.34 79.54
LR: DNABERT-S 71.36 77.93 83.37 85.81 87.77
LR: Difference 27.29 21.82 14.68 10.47 8.23
MLP: best-baseline 40.28 54.95 69.59 76.54 81.33
MLP: DNABERT-S 68.96 77.47 83.44 85.86 87.77
MLP: Difference 28.68 22.52 13.85 9.32 6.44

Table 8: Performance of models with error bars on “Synthetic 0” dataset. We evaluate models using
K-Means clustering (Sec. 5.2) and 1/2/5/10/20-shot classification (Sec. 5.4).

Synthetic 0

ARI 1 2 5 10 20

TNF 38.18 ± 1.27 44.30 ± 0.97 56.13 ± 1.10 68.68 ± 0.73 75.24 ± 0.37 79.48 ± 0.07
TNF-K 36.11 ± 0.09 39.51 ± 0.35 50.26 ± 0.89 62.43 ± 0.41 68.53 ± 0.50 72.95 ± 0.36
HyenaDNA 20.10 ± 0.50 30.03 ± 0.49 41.21 ± 0.92 54.42 ± 0.73 63.79 ± 0.59 70.53 ± 0.25
DNA-Double 34.91 ± 0.90 34.61 ± 0.91 46.79 ± 0.39 59.92 ± 0.53 67.45 ± 0.20 73.64 ± 0.25
DNABERT-S 66.94 ± 2.07 71.54 ± 0.51 77.77 ± 0.68 83.12 ± 0.18 85.63 ± 0.18 87.68 ± 0.15

Table 9: Performance of models with error bars on “Marine 0” dataset. We evaluate models using
K-Means clustering (Sec. 5.2) and 1/2/5/10/20-shot classification (Sec. 5.4).

Marine 0

ARI 1 2 5 10 20

TNF 24.78 ± 0.23 27.89 ± 0.95 38.69 ± 0.04 52.36 ± 0.26 58.95 ± 0.05 62.69 ± 0.10
TNF-K 25.44 ± 0.50 22.82 ± 0.35 30.06 ± 0.61 40.50 ± 0.14 45.20 ± 0.25 49.35 ± 0.15
HyenaDNA 16.31 ± 0.07 23.89 ± 0.83 33.59 ± 0.01 47.50 ± 0.39 55.61 ± 0.18 61.75 ± 0.13
DNA-Double 26.82 ± 0.45 26.87 ± 1.16 36.98 ± 0.21 49.86 ± 0.12 57.93 ± 0.26 63.33 ± 0.06
DNABERT-S 53.91 ± 0.22 50.37 ± 0.74 59.71 ± 0.11 66.03 ± 0.11 69.00 ± 0.19 70.75 ± 0.13

Table 10: Performance of models with error bars on “Plant 0” dataset. We evaluate models using
K-Means clustering (Sec. 5.2) and 1/2/5/10/20-shot classification (Sec. 5.4).

Plant 0

ARI 1 2 5 10 20

TNF 26.10 ± 0.70 24.07 ± 0.40 32.04 ± 1.00 43.35 ± 0.24 48.92 ± 0.27 53.29 ± 0.39
TNF-K 25.83 ± 0.67 22.82 ± 0.35 30.06 ± 0.61 40.50 ± 0.14 45.20 ± 0.25 49.35 ± 0.15
HyenaDNA 24.61 ± 0.77 28.45 ± 0.30 36.46 ± 0.61 48.56 ± 0.30 55.13 ± 0.53 59.80 ± 0.27
DNA-Double 22.10 ± 0.46 24.80 ± 0.56 32.91 ± 0.52 44.82 ± 0.18 52.77 ± 0.48 59.35 ± 0.37
DNABERT-S 51.15 ± 1.13 48.39 ± 1.33 55.92 ± 0.83 62.97 ± 0.36 67.14 ± 0.41 69.64 ± 0.15
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differentiation method in scenarios where reference genomes of the species to classify are available.
We compare embedding-based methods with MMseqs2 (Steinegger & Söding, 2017), a leading
alignment-based species classification tool.

For a fair comparison with MMseqs2, which relies on the reference genomes of each species when
performing classification, we construct two datasets, each consisting of 200 distinct species. To
mimic real-world setups, instead of classifying segment of reference genomes, we simulate 600
long-reads with PBSIM2 (Ono et al., 2021) from each selected species, 100 as the test set and 500
as the training set. For the embedding-based methods, such as DNABERT-S and TNF, we generate
embedding for all these sequences and use K-Neareast-Neighbor (KNN) classifier with n equals to
5 for species classification. We respectively use 100, 200, 300, 400, and 500 sequences from each
species to construct the training set. For the MMseqs2, we respectively use the reference genome and
the simulated long-read sequences as the reference for alignment-based classification.

(a) Synthetic 7 (b) Synthetic 7

Figure 6: Results on species classification when reference genomes are available.

Figure 6 the results of the models on the datasets. As shown in the figure, DNABERT-S starts
to outperforms MMseqs2 with 200-300 labeled sequence from each species with a simple KNN
classier, while TNF achieves comparable performance as MMseqs2 with about 500 labels sequence
per species. These results indicate the potential of embedding-based methods to replace traditional
alignment-based method in species classification in data abundant scenarios. Yet a fact that cannot
be ignored is that DNABERT-S is much more computational cost than MMseqs2. As a comparison,
MMseqs2 requires about 30 seconds on a single CPU to make predictions while DNABERT-S
requires about 1 hour on 2 NVIDIA A100 GPUs to do the same thing. Therefore, there is a long way
to go to fully replace alignment-based methods in high-throughput genomics analysis.

C.5 RESULTS ON NON-MICROBE SPECIES

Since DNABERT-S is trained on microbe species (e.g., viruses, fungi, and bacteria), a natural question
is whether it can distinguish genomics sequences from species that are largely different from the
ones in the training set. To answer this question, we construct 3 synthetic datasets (ID: 2, 3, and
4) that include genomes from invertebrate, protozoa, and mammalian species. We randomly select
70 species from each category to achieve 210 species in total. We perform the same clustering and
few-shot classification as presented in Table 1 and Figure 4.

As shown in Table 11, DNABERT-S consistently outperforms baselines across all the datasets and
evaluation scenarios, indicating DNABERT-S’s transferability and robustness on species that are
significantly different from its training set. However, the improvements over the baselines are less
significant, and the absolute scores, such as ARI in clustering and F1 in classification, are also
lower than those in microbe datasets. On the one hand, there are higher genetic similarities among
mammals compared to the often more significant genetic diversity found in microbes, making it more
challenging to distinguish different mammalian species. On the other hand, due to the significant
distinction between microbe and mammalian/protozoa species, some of the differentiation rules
and markers learned from microbe genomes may not be applicable to genomes of species in other
categories, which also suggests the needs of in-domain species-aware training.

C.6 IMPACT OF SEQUENCE LENGTH

This section delves into the influence of DNA sequence length on final model performance, examined
from both training and evaluation standpoints.
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Table 11: Performance of models on non-microbe species. We evaluate models on each dataset using
K-Means clustering (Sec. 5.2) and 1/5/20-shot classification (Sec. 5.4).

Synthetic:2 Synthetic:3 Synthetic:4

Dataset ID ARI 1 5 20 ARI 1 5 20 ARI 1 5 20

TNF 20.70 26.28 45.71 56.24 19.11 25.05 42.69 52.27 21.49 25.94 44.96 54.60
TNF-K 18.63 22.42 40.07 50.75 16.91 20.38 36.48 46.74 19.30 21.38 39.23 48.94
HyenaDNA 11.20 17.29 34.77 48.76 10.86 16.50 32.69 45.26 11.58 17.30 35.38 47.86
DNABERT-2 9.18 15.91 33.75 49.00 8.99 15.28 31.03 45.17 9.79 15.38 33.75 47.78
DNA-Double 13.01 16.04 30.56 42.11 12.80 15.91 28.82 39.28 14.15 16.20 31.22 42.25
DNABERT-S 32.70 33.21 49.78 59.01 29.44 29.78 45.65 54.63 33.60 32.58 49.67 57.97

C.6.1 VARYING SEQUENCE LENGTH IN TRAINING

Training with longer DNA sequences increases the need for more memory and computing power. It
also means we can only use smaller batches of data at a time. Therefore, the length of the sequences
is an important factor in contrastive training as it affects how much it costs to train the model. To
see how different sequence lengths affect training, we did three experiments using the same data.
Our training data has sequences that are 10000bp long. For experiments with shorter sequences S,
we only used the first S nucleotides of each DNA sequence. We tested sequence lengths of 500bp,
2000bp, and 10000bp, training only with Weighted SimCLR loss and starting from the pre-trained
DNABERT-2 model.

Figure 7 shows the results for the three models, along with the pre-trained DNABERT-2 without
contrastive training and the strongest baseline, TNF. The findings reveal that sequence length signifi-
cantly influences the model’s performance. Training even on short sequences, such as 500bp, leads to
substantial improvements. The model trained with 500bp sequences performs nearly as well as TNF.
When we increase the input sequence length from 500bp to 2000bp, there’s a marked improvement
in performance. A similar trend is observed when increasing the sequence length from 2000bp to
10000bp. These results highlight the importance of sequence length in training an effective model.
Therefore, we decided to train our model with 10000bp sequences, despite the higher computational
requirements.

Figure 7: Performance of DNABERT-S in clustering and classification with different sequence lengths
used in contrastive training.

C.6.2 VARYING SEQUENCE LENGTH IN EVALUATION

In this part, we assess how the length of DNA sequences in evaluation impacts performance. We
use two synthetic datasets for clustering and classification tasks. Each sequence in these datasets is
deliberately constructed to be 10000bp long. This allows us to create a test set where all sequences
have the same length. We test sequence lengths ranging from 32bp (25) to 8192bp (213). For each
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test with different sequence lengths, we keep everything else the same, like how we split the data into
training and testing sets and the settings for logistic regression.

Figure 8 presents the performance of TNF and DNABERT-S with various sequence lengths. The
results show that both models significantly benefit from longer sequences. When the sequence length
is less than 256bp (28), both models perform poorly in clustering and classifying samples. However,
as the sequence length increases, starting from 512bp (29), DNABERT-S begins to outperform TNF.
The performance gap between the two models gets bigger as the sequence length increases. These
findings highlight the crucial role of sequence length in effectively differentiating between species.

Figure 8: Performance of DNABERT-S and TNF on clustering (upper) and classification (lower) with
different input sequence lengths during evaluation.

C.7 IMPACT OF EMBEDDING DIMENSION REDUCTION

This section investigates how changes in embedding dimensions affect the performance of DNABERT-
S, a key aspect influencing the scalability of DNA embeddings generated by the model. Initially,
DNA embeddings for all clustering and classification datasets are computed using the pre-trained
DNABERT-S. To reduce embedding dimensions, we use an average pooling layer with a consistent
kernel size and stride S. This process effectively averages S consecutive dimensions into one new
dimension. We test with S values of 96, 48, 24, 12, 6, 3, and 2, corresponding to reduced embedding
dimensions of 8, 16, 32, 64, 128, 256, and 384, respectively.

Figure 9 illustrates DNABERT-S’s performance with these varying feature dimensions, in comparison
to TNF. The results demonstrate that DNABERT-S’s embedding is quite resilient to dimension
compression. It maintains nearly the same performance level even when reduced to 256 dimensions
and only experiences a notable drop in performance when compressed to 32 dimensions. Notably,
DNABERT-S still surpasses the 256-dimensional TNF feature even when its own dimensionality
is reduced to just 16. This robustness to dimension reduction enhances its practical applicability in
various genomic contexts.

C.8 SPECIES-AWARE EMBEDDINGS ON GENOMICS FUNCTION PREDICTIONS

This section evaluates the impact of species-aware embedding on other types of genomics analysis
tasks. Specifically, we aim to understand how the species-aware embeddings perform compared to the
embedding generated by the genome foundation model without contrastive training on various types
of genomics function prediction tasks. We utilize the GUE benchmark (Zhou et al., 2023), which
comprises a comprehensive collection of 28 datasets covering 7 diverse tasks, such as epigenetic
marks prediction, promoter prediction, and transcription factor binding site prediction. Following
our established methodology, each model is respectively used to generate embeddings for each DNA
sequence, and a logistic regression model is trained for classification. The Matthews Correlation
Coefficient (MCC) serves as the evaluation metric. We perform experiments on both DNABERT-2
and HyenaDNA.

The results, as detailed in Table 12, show that after species-aware conservative training, DNABERT-S
underperforms DNABERT-2 on 19 of the 28 datasets, with an average loss of 2.12 in the MCC.
Similarly, on HyenaDNA, the one went through species-aware training underperforms the original one
on 18 out of 28 datasets. As a model honed for species-aware tasks, DNABERT-S may exhibit reduced
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Figure 9: DNABERT-S’s performance with varying embedding dimensions reduced by average
pooling. DNABERT-S is robust to feature dimension reduction, and it even outperforms TNF with
16-dimensional embedding.

generalizability compared to broader genome foundation models (e.g., DNABERT-2). However,
this specialized focus should not be viewed as a disadvantage. The intrinsic design of DNABERT-
S—to prioritize species-specific features—may naturally limit its applicability to a broader range of
tasks, a trade-off inherent to its specialized nature. For instance, when considering sequences from
different species with varying functions, DNABERT-S’s training objective emphasizes species-specific
similarities over functional commonalities, a choice that is deliberate for its targeted application.

D I-MIX FOR ORIGINAL CONTRASTIVE LEARNING

The Weighted SimCLR method treat each instance {xi}Bi=1 and {xi+}Bi=1 as anchors, with each anchor
associated with 2B − 2 negative samples. This section explains why integrating the i-Mix method
into Weighted SimCLR (Sec. 3.1) doubles memory or training time.

For clarity, we define xB+i = xi+ . We also expand the virtual labels vi, which are 2B-dimensional,
to identify the positive sample for each anchor. Here vi,̃i = 1 and vi,j≠ĩ = 0, ĩ = (B + i) mod 2B.

When the i-Mix method treats every sample from {xi}2Bi=1 as anchor, it begins by shuffling
{(xi, vi)}2Bi=1 to generate {(x̂i, v̂i)}2Bi=1. For each anchor (xi, vi), it uses a simple mixup method to
mix it up with (x̂i, v̂i) before encoder layers of the model, using mixup coefficient λi ∼ Beta(α, α).
This mixing results in:

(h0
i , v

mix
i ) = (λixi + (1 − λi)x̂i, λivi + (1 − λi)v̂i).

Moreover, for each anchor xi, if i-Mix considers all samples from {xj}2Bj=1\{xi} as either positive
or negative samples, the model f(⋅) must process both the initial data instances {xi}2Bi=1 and mixed
data instances {h0

i }2Bi=1 to generate their embeddings. Therefore, the i-Mix requires nearly twice more
memory or training time compared to the method in Sec. 3.1 if using the same batch size.
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Table 12: Performance of DNABERT-2 and HyenaDNA before and after species-aware contrastive
training on the GUE benchmark.

Epigenetic Marks Prediction

H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

DNABERT-2 66.87 38.92 43.39 31.79 30.16 23.68
DNABERT-S 69.02 37.45 41.91 32.76 27.86 22.16

HyenaDNA w/o 69.54 30.62 38.95 33.29 30.90 21.24
HyenaDNA w/ 69.67 32.06 38.61 32.29 30.32 23.21

Epigenetic Marks Prediction Promoter Detection

H3K79me3 H3K9ac H4 H4ac all notata tata
DNABERT-2 57.01 47.52 73.75 35.54 78.31 40.25 88.85
DNABERT-S 58.41 44.70 75.96 35.64 78.93 40.59 88.62

HyenaDNA w/o 52.33 44.27 72.93 29.37 77.06 53.73 86.25
HyenaDNA w/ 54.99 44.45 72.61 29.85 76.56 45.17 85.14

Transcription Factor Prediction (Human) Core Promoter Detection

0 1 2 3 4 all notata tata

DNABERT-2 62.67 68.58 54.44 35.67 62.89 57.33 46.18 61.48
DNABERT-S 60.34 65.28 47.75 30.54 59.45 56.52 39.05 61.87

HyenaDNA w/o 61.37 65.96 45.97 35.76 58.32 56.14 40.94 60.31
HyenaDNA w/ 59.10 65.02 45.47 36.68 53.20 55.52 42.29 60.30

Transcription Factor Prediction (Mouse) Virus Splice

0 1 2 3 4 Covid Reconstruct Ave.

DNABERT-2 37.08 69.56 67.71 42.26 34.80 54.50 24.85 51.28
DNABERT-S 31.38 71.13 56.71 39.85 28.94 49.84 23.87 49.16

HyenaDNA w/o 23.48 58.28 54.88 21.34 22.15 30.50 28.71 46.59
HyenaDNA w/ 21.24 53.88 55.54 23.86 18.66 31.08 22.11 45.67

E COMPARISON OF PARAMETERS, EMBEDDING DIMENSIONS, INFERENCE
TIME, AND MEMORY

In this section, we compare the number of parameters (million), embedding dimensions, inference
time (seconds), and inference memory (MB) for all models listed in Table 1. We show the results in
Table 13.

Table 13: Comparison of the number of parameters (million), embedding dimensions (million),
inference time (seconds), and memory (MB) for all models listed in Table 1. The symbol “-” denotes
that the inference time or memory is negligible.

Model Num. Params (M) Emb. Dim. Inf. Time (Sec.) Inf. Mem. (MB)

TNF 0 256 - -
TNF-K 0.026 768 - -
TNF-VAE 3 103 - -
DNA2Vec 0.026 100 - -
HyenaDNA 28.2 256 11.16 995
Hyena-Sim 28.2 256 11.16 995
NT-v2 97.9 512 19.16 1273
DNABERT-2 117 768 14.27 3991
DNA-Dropout 117 768 14.27 3991
DNA-Double 117 768 14.27 3991
DNA-Mutate 117 768 14.27 3991
DNA-Sim 117 768 14.27 3991
DNABERT-S 117 768 14.27 3991
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F ABSENCE OF DATA LEAKAGE

In this section, we consider data leakage to occur when the same species are present in both training
and evaluation datasets. We validate the absence of data leakage issues in our evaluation datasets.

Our experiments utilize two categories of data: synthetic and CAMI2 datasets. For synthetic data, the
data construction method ensures the absence of data leakage. We design the synthetic datasets to
exclude any species present in the training data, thereby preventing potential data leakage. For the
CAMI2 datasets, due to discrepancies in species annotations between CAMI2 and GenBank, direct
validation was challenging. Therefore, we perform an alignment-based estimation using minimap2
(Li, 2018). We align each evaluation dataset to the training data and considered sequences with over
90% alignment to the training sequences as present in the training data.

We compute the presence rate as number of presented sequences/total number of sequences. It’s
important to note that different species can share common or highly similar genome sequences, so a
non-zero presence rate is expected in real-world scenarios. As a reference, the two synthetic datasets
with non-overlapping species have presence rates of 6.88% and 8.92%. For the CAMI2 datasets, the
plant-associated ones have presence rates between 3.51% and 4.98%, which are even lower than the
synthetic datasets. The marine datasets have presence rates between 7.99% and 9.45%, comparable to
the synthetic ones. Based on these statistics, there is negligible species leakage between our training
and evaluation data.
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Table 14: Model’s performance on species classification using linear regression with varying numbers
of training samples on all the 12 datasets.

Model Synthetic 0 Marine 0 Plant 0

1 2 5 10 20 1 2 5 10 20 1 2 5 10 20

TNF 44.07 56.11 68.69 75.34 79.54 27.65 38.81 52.4 58.86 62.59 24.01 32.69 43.39 48.99 53.29
TNF-K 39.06 50.22 62.52 68.55 72.82 25.97 36.47 49.15 55.44 59.26 22.83 30.58 40.55 45.57 49.58
TNF-VAE 34.23 47.06 61.44 69.31 75.02 23.72 34.02 47.00 53.88 58.59 20.63 28.80 39.38 45.96 51.10
DNA2Vec 35.85 46.98 61.54 69.64 75.26 24.56 34.04 47.79 55.36 60.11 23.98 31.35 41.46 47.41 51.96
HyenaDNA 30.13 41.18 54.86 64.03 70.69 23.92 33.94 47.47 55.50 61.42 28.15 36.97 48.20 55.24 60.04
DNABERT-2 24.43 34.81 48.93 58.58 65.98 19.50 28.45 40.64 48.98 55.67 21.04 28.16 38.50 45.46 51.99
DNA-Dropout 21.09 29.39 40.80 48.38 54.44 15.42 21.47 30.99 38.05 44.06 19.05 24.78 33.12 38.99 44.30
DNA-Double 34.54 46.54 59.86 67.44 73.60 26.76 36.84 49.98 57.68 63.29 24.56 33.09 45.06 52.91 59.57
DNA-Mutate 21.27 29.92 41.78 50.31 57.20 15.70 21.74 31.86 39.32 45.95 18.16 24.40 33.58 40.23 46.09
Hyena-Sim 59.58 67.79 74.62 78.53 81.42 43.60 53.70 62.00 65.55 68.19 43.46 52.12 59.40 62.80 66.22
DNA-Sim 72.02 78.63 84.55 86.99 88.93 48.23 57.90 64.80 67.94 70.23 44.97 52.35 60.35 64.63 68.18
DNABERT-S 71.36 77.93 83.37 85.81 87.77 50.25 59.41 66.07 68.92 70.75 47.83 55.83 63.01 67.12 69.82

Model Synthetic 1 Marine 1 Plant 1

1 2 5 10 20 1 2 5 10 20 1 2 5 10 20

TNF 43.16 54.76 68.15 74.75 78.82 26.42 38.30 51.65 57.82 60.94 24.21 33.42 44.14 50.05 54.74
TNF-K 37.69 48.42 61.66 68.15 72.30 24.43 35.61 47.97 54.25 57.92 23.45 31.42 41.34 47.00 51.08
TNF-VAE 33.87 46.13 60.72 68.70 74.20 22.93 33.27 45.89 52.89 57.41 20.43 29.19 39.88 46.91 52.02
DNA2Vec 35.00 46.13 61.20 69.44 74.55 24.17 33.63 47.06 54.29 58.45 24.03 31.81 41.93 48.29 52.97
HyenaDNA 29.56 40.52 55.49 64.09 70.10 23.27 33.17 47.45 55.70 61.42 29.93 39.06 49.09 55.59 60.73
DNABERT-2 23.87 34.01 48.29 57.24 64.39 19.06 27.41 40.19 48.69 55.52 22.02 29.70 40.11 47.59 53.34
DNA-Dropout 20.42 27.69 39.47 46.76 53.15 14.82 21.02 30.54 37.88 44.06 19.42 25.55 34.35 40.38 45.58
DNA-Double 33.82 44.25 57.85 66.31 72.54 26.41 36.51 49.72 57.24 62.80 23.93 33.28 45.28 53.16 59.45
DNA-Mutate 21.09 29.04 41.47 49.50 56.18 14.95 21.24 31.54 39.21 45.69 18.65 25.02 34.22 40.38 45.58
Hyena-Sim 57.58 66.16 74.08 77.74 80.49 42.86 53.40 61.51 65.27 67.65 46.35 54.27 60.39 63.79 66.66
DNA-Sim 70.54 77.96 83.78 86.41 88.38 47.71 56.62 63.68 67.09 69.35 46.85 54.57 61.50 65.19 68.63
DNABERT-S 69.30 77.13 82.88 85.35 87.06 49.42 58.12 64.94 67.85 69.95 49.82 57.62 64.14 67.24 69.81

Model Marine 2 Marine 3 Marine 4

1 2 5 10 20 1 2 5 10 20 1 2 5 10 20

TNF 27.63 39.37 51.84 57.51 60.41 22.11 31.74 43.71 50.26 54.31 24.28 35.58 48.86 54.81 58.49
TNF-K 25.97 36.80 48.90 54.59 57.82 20.71 29.26 40.49 46.72 50.73 23.03 33.31 45.48 51.36 55.06
TNF-VAE 24.10 34.20 46.27 52.85 56.98 19.23 27.58 38.88 45.90 50.74 21.20 31.16 43.00 49.83 54.51
DNA2Vec 24.37 33.77 46.83 54.06 58.12 20.41 28.16 40.03 47.09 51.77 22.43 31.17 44.49 51.45 56.07
HyenaDNA 23.09 32.63 46.30 53.86 59.36 19.88 28.11 40.94 48.68 54.70 20.72 30.42 44.16 52.09 58.20
DNABERT-2 18.11 26.57 39.05 47.18 53.46 16.04 22.95 34.17 42.03 48.92 17.23 25.27 37.72 45.97 52.73
DNA-Dropout 14.93 21.06 30.01 37.00 42.79 12.55 17.61 25.63 31.77 37.30 13.40 18.94 28.23 34.69 40.79
DNA-Double 25.81 35.94 48.36 55.96 61.02 22.47 30.78 43.11 50.84 56.48 24.06 34.41 47.32 54.76 60.24
DNA-Mutate 14.88 20.85 30.70 38.07 44.09 12.57 17.50 26.18 32.84 38.90 13.97 19.56 29.13 36.23 42.60
Hyena-Sim 42.75 52.24 59.92 63.25 65.65 37.91 46.51 54.87 58.80 61.40 40.18 49.99 58.34 61.98 64.83
DNA-Sim 48.29 56.24 62.81 65.75 67.84 41.18 49.82 57.59 61.19 63.63 43.72 53.90 60.89 64.40 66.63
DNABERT-S 50.01 58.01 64.06 66.49 68.46 42.77 51.23 58.68 61.93 64.12 45.50 55.12 62.13 65.36 67.51

Model Plant 2 Plant 3 Plant 4

1 2 5 10 20 1 2 5 10 20 1 2 5 10 20

TNF 23.83 32.52 42.16 48.19 52.96 20.85 30.49 41.50 49.03 54.45 21.18 30.01 41.71 49.21 54.43
TNF-K 23.36 30.48 39.10 44.83 49.13 20.31 28.90 39.32 45.85 50.69 20.49 28.59 39.21 46.13 50.61
TNF-VAE 19.86 28.90 39.24 45.67 51.14 18.42 26.50 37.51 44.62 51.14 18.46 26.85 38.17 45.50 51.26
DNA2Vec 24.10 31.57 41.04 47.42 52.14 21.49 29.63 40.20 47.19 52.53 21.92 29.43 40.22 47.70 52.56
HyenaDNA 30.44 39.57 48.93 55.71 60.47 26.22 34.83 46.07 52.96 59.12 26.23 34.46 46.17 53.64 59.10
DNABERT-2 22.36 29.75 40.32 47.50 53.33 18.75 25.90 36.95 44.80 51.66 19.42 25.95 36.98 44.96 51.33
DNA-Dropout 19.35 26.29 34.47 40.20 45.38 16.50 22.20 30.57 36.74 42.07 16.55 22.62 30.52 37.32 42.62
DNA-Double 24.72 34.16 45.32 53.45 59.63 22.24 31.03 43.23 51.30 58.74 22.35 30.85 42.68 51.68 58.47
DNA-Mutate 18.76 25.74 34.48 41.57 46.82 15.94 21.69 30.22 36.80 42.93 15.78 21.58 30.78 37.57 43.55
Hyena-Sim 45.45 52.78 60.04 63.88 67.19 41.27 50.02 58.21 62.80 66.03 42.14 50.28 58.68 63.51 66.41
DNA-Sim 45.84 52.76 61.10 65.40 68.90 45.10 54.04 62.46 66.80 70.46 44.91 53.08 61.72 66.24 69.28
DNABERT-S 49.02 56.28 63.85 67.83 70.55 47.85 56.90 64.60 68.52 71.60 48.03 56.11 64.42 68.25 70.98
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