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ABSTRACT

Sparse additive models have shown promising flexibility and interpretability in pro-
cessing time series data. However, existing methods usually assume the time series
data to be stationary and the innovation is sampled from a Gaussian distribution.
Both assumptions are too stringent for heavy-tailed and non-stationary time series
data that frequently arise in practice, such as finance and medical fields. To address
these problems, we propose an adaptive sparse Huber additive model for robust
forecasting in both non-Gaussian data and (non)stationary data. In theory, the
generalization bounds of our estimator are established for both stationary and non-
stationary time series data, which are independent of the widely used mixing condi-
tions in learning theory of dependent observations. Moreover, the error bound for
non-stationary time series contains a discrepancy measure for the shifts of the data
distributions over time. Such a discrepancy measure can be estimated empirically
and used as a penalty in our method. Experimental results on both synthetic and
real-world benchmark datasets validate the effectiveness of the proposed method.
The code is available at https://github.com/xianruizhong/SpHAM.

1 INTRODUCTION

Additive model has become one of the most powerful tools for time series analysis due to the
exemplary monograph (Stone, 1985; Hastie & Tibshirani, 1990) and companion software (Chambers
& Hastie, 1992). For the past two decades, the growing importance of algorithmic flexibility
and interpretability motivates the development of various additive models along with theoretical
explorations (Huang & Yang, 2004; Wang & Yang, 2007; Chu & Glymour, 2008; Song & Yang, 2010;
Yang et al., 2018; Chen et al., 2017; Liu et al., 2020; Chen et al., 2021a) and practical applications
(Dominici et al., 2002; Wang & Brown, 2011; Ravindra et al., 2019; Bussmann et al., 2020; Wang
et al., 2020). Although these aforementioned works have shown promising behaviours, the proposed
methods in these works require some stringent assumptions on the stochastic process, e.g., various
mixing conditions (Doukhan, 1994), stationary distribution and Gaussian innovation.

A number of attempts have been made to relax such stringent assumptions. For the purpose of dealing
with non-Gaussian innovation, Qiu et al. (2015) develop an elliptical vector autoregressive model
for estimating heavy-tailed stationary processes with parametric convergence analysis that reduces
the influence of non-Gaussian innovation. Moreover, under stationarity and decaying β-mixing
condition, Wong et al. (2020) derive nonasymptotic estimation error of lasso without assuming
special parametric form of the data generating process. Stationarity and various mixing conditions
are commonly adopted in many previous studies, see, e.g., (Mohri & Rostamizadeh, 2009; 2010;
Kock & Callot, 2015; Wong et al., 2020). In practice, the mixing and stationary conditions are too
stringent and not always valid (Baillie, 1996; Kuznetsov & Mohri, 2020a). To relax the mixing and
stationary conditions, Adams & Nobel (2010) prove asymptotic guarantees for stationary ergodic
∗Corresponding authors.
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sequences. Agarwal & Duchi (2013) establish generalization bounds for asymptotically stationary
(mixing) processes in the case of stable on-line learning algorithms. Kuznetsov & Mohri (2014)
establish learning guarantees for fully non-stationary and mixing processes. Recently, Kuznetsov &
Mohri (2020a) provide data-dependent generalization risk bounds for non-stationary and non-mixing
stochastic processes.

However, the exploration of additive models for both robust and non-stationary time series forecasting
is still very limited. In this paper, we propose a class of sparse Huber additive models with theoretical
guarantees. Our main contributions are summarized as follows:

• Algorithm design and theoretical guarantees: In Section 3.1, we first propose a novel sparse
Huber additive model (SpHAM) with Huber loss, sparsity-inducing `2,1-norm regularizer
and additive data-dependent hypothesis space. This proposed method works for stationary
time series and can achieve robust forecasting and satisfactory inference (e.g., Granger
causal discovery) simultaneously. In theory, Section 3.2 establishes the upper bound of the
function approximation error of SpHAM by developing error decomposition technique (Wu
et al., 2006; Chen et al., 2021b) and employing sequential Rademacher complexity (Rakhlin
et al., 2010; 2015; Kuznetsov & Mohri, 2020a). With properly selected scale parameters, the
theoretical findings indicate that: a) For stationary time series, the function approximation
consistency with convergence rate O(T−

1
2 ) can be pursued, even if the innovation is non-

Gaussian distribution (see Theorem 1 and Corollary 1 for more details). Moreover, this
consistency analysis appears to be novel because no explicit data dependence assumptions
are not imposed here, e.g., various mixing conditions used in (Doukhan, 1994; Mohri &
Rostamizadeh, 2010; Zou et al., 2009; Wong et al., 2020); b) For non-stationary time series,
the function approximation error is bounded by a discrepancy measure, which characterizes
the drifts of the data distributions along with time (see Theorem 2 for more details). By
penalizing such a discrepancy measure, Section 3.3 further proposes an adaptive SpHAM
for non-stationary time series and provides its theoretical upper bound correspondingly (see
Theorem 3 for more details).

• Optimization and empirical evaluations: The proposed SpHAM and adaptive SpHAM can
be implemented efficiently by Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
(Beck & Teboulle, 2009). Experimental results on both synthetic and real-world benchmark
CauseMe (Runge et al., 2019) validate the effectiveness of the proposed method.

Related works: There exist some interesting studies towards sparse additive model for time series
analysis from both theoretical and practical viewpoints; see, e.g., Chu & Glymour (2008); Song &
Yang (2010); Yang et al. (2018). Although they show promising interpretability and modeling capacity,
all of them require Gaussian innovation, stationarity and various mixing conditions. Moreover, these
assumptions are not always valid in heavy-tailed and non-stationary time series data. In contrast to
these previous additive models, we are seeking to formulate our method and investigate its asymptotic
properties without resorting to such strict assumptions.

Robust forecasting is a vibrant area of research in time series analysis (Qiu et al., 2015; Wong et al.,
2020). As one of the triumphs and milestones of robust statistics, the success stories of Huber
algorithms are mainly on robust prediction tasks with i.i.d datasets (Huber, 1964; Huber & Ronchetti,
2009; Loh, 2017; Feng & Wu, 2020), and their extensions to time series prediction are fairly sparse.
To our best knowledge, this is the first work that considers Huber additive models for non-stationary
and dependent time series data.

Our theoretical analyses are inspired from the successful usage of sequential Rademacher complexity
in Kuznetsov & Mohri (2020b;a). The generalization risk bounds are established in their works
for a general scenario of non-stationary and non-mixing stochastic processes. However, it should
be mentioned that we are chiefly concerned about the function approximation analysis, which is
essentially different from theirs and is very crucial for Huber algorithms, since the convergence
of generalization risk cannot imply the convergence of function approximation (Sun et al., 2019;
Feng & Wu, 2020; He & Tao, 2020). Moreover, the development of analysis techniques (e.g., error
decomposition and sequential Rademacher complexity) for assessing our method may shed light on
other robust models for nonstationary time series analysis.

To better highlight the novelty of our method, Table 1 summarizes the algorithmic properties of our
method and other related works, e.g., Sparse additive models for time series (TS-SpAM) (Yang et al.,
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Table 1: The properties of related methods
TS-SpAM DBF R-Dantzig Ours

Hypothesis space Additive Kernel-based Linear Additive
Spline-based Kernel-based

Loss Squared Squared Quantile-based Huber
Mixing condition Yes No Yes No

Stationarity Yes No Yes No
Robustness No No Yes Yes

Sparsity Yes No Yes Yes

2018), Discrepancy-based Forecasting (DBF) (Kuznetsov & Mohri, 2020a) and Robust Dantzig-
selector-type estimator (R-Dantzig) (Qiu et al., 2015).

The remainder of this paper is organized as follows. Section 2 recalls the background of additive
models. Section 3 mainly provides our methods and theoretical guarantees. We provide empirical
evaluations in Section 4. Finally, Section 5 concludes this paper. The source code package is available
at https://github.com/xianruizhong/SpHAM.

2 PRELIMINARY

Let {Zt}∞t=−∞ be a stochastic time series with time index t, where variable Zt = (Xt, Y t) takes
values in the compact input space X ⊂ Rp and the output space Y ⊂ R. We consider a common
nonparametric model

Y t = f∗(Xt) + εt, E(εt) = 0, (1)

where f∗(·) is the ground truth function, and the innovation εt is i.i.d. across time t ∈ Z. For the
sake of simplicity, we denote ρt and ρtX as the jointed distribution of (Xt, Y t) and the corresponding
marginal distribution with respect to Xt, respectively. This setup actually covers a large number of
scenarios commonly used in practice. For instance, the case Xt that contains p lagged values of Y t

(e.g., Xt = Y (t−p)×· · ·×Y (t−1)) corresponds to the p-order autoregressive models. Moreover, this
case can be viewed as a vector autoregressive model in the sense that input Xt includes the historical
information of multiple variables.

Although such a nonparametric model (1) makes very few assumptions on data generation, the related
nonparametric algorithms suffer so-called “curse of dimensionality”, see Fan & Gijbels (1996) for
further discussion. An effective strategy for solving this problem is additive model. Usually, the
additive structure is obtained by decomposing the input space X ∈ Rp into X = X1 × ... × Xp.
Under the assumption that the ground truth admits an additive structure f∗ =

∑p
j=1 f

∗
j , the additive

model can be defined by

Y t = f∗1 (Xt
1) + · · ·+ f∗p (Xt

p) + εt, (2)

where each component f∗j : Xj → R is a smooth function. In linear time series analysis, a weak
stationarity condition (i.e., the first two moments of time series are time invariant) is preferred (Han
et al., 2015; Qiu et al., 2015). In contrast, strict stationarity is primarily used to analyse the nonlinear
time series (Fan & Yao, 2005).
Definition 1. A stochastic process {Zt}∞t=−∞ is strictly stationary if (Z1, ..., Zt) and
(Z1+k, ..., Zt+k) have the same joint distributions for any t ∈ Z and k ∈ Z.

Note that, if not otherwise stated, the stationarity in this paper refers to strict stationarity. Suppose
that we are given T size time series data {(xt, yt)}Tt=1 ∈ ZT which are drawn from an additive
data-generating model (2). Under stationarity condition and zero-mean Gaussian innovation with
finite variance, the widely used methods that learn the ground truth f∗ usually integrate squared loss
and a smoothness- or sparsity-inducing regularizer Ω(·) into a structural risk minimization scheme:

min
f∈H

T∑
t=1

(yt −
p∑
j=1

fj(x
t
j))

2 + Ω(f),
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whereH := {f1 + ...+ fp : fj ∈ Hj , j = 1, ..., p} is an additive hypothesis space. Commonly, each
subspaceHj could be reproducing kernel Hilbert space (Chen et al., 2017; Kandasamy & Yu, 2016;
Raskutti et al., 2012), the orthogonal basis inducing space (Ravikumar et al., 2009; Meier et al., 2009;
Yang et al., 2018), or the composite function space with the neural network as a typical (Agarwal
et al., 2020; Bussmann et al., 2020).

However, when facing heavy-tailed innovation, these methods may have degraded performance due
to the amplification of the squared loss to large residuals. As one commonly used statistic in robust
learning community (Peng et al., 2019; Wang et al., 2017b; Feng & Wu, 2020), Huber loss is defined
as

`σ(f(xt)− yt) =

{
(f(xt)− yt)2, if |f(xt)− yt| < σ

2σ|f(xt)− yt| − σ2, if |f(xt)− yt| ≥ σ, (3)

where σ is a positive hyper-parameter. Note that in the previous studies (Huber & Ronchetti, 2009;
Loh, 2017), the hyper-parameter σ is set to be fixed according to the 95% asymptotic efficiency rule.
However, Huber regression with a fixed scale parameter may not be able to learn the ground truth
when the noise is asymmetric, as argued recently in Feng & Wu (2020); Sun et al. (2019). In this
paper, we choose the scale parameter σ by relating it to the moment condition of the noise distribution
and the sample size so that the resulting regression estimator can asymptotically converge to the
ground truth function.

3 METHOD

3.1 SPARSE HUBER ADDITIVE MODELS

In this paper, we choose reproducing kernel Hilbert space (RKHS) HKj , j = 1, .., p, to form the
the additive hypothesis space H, where each HKj is associated with a symmetric and positive
semi-definite Mercer kernel Kj : Xj ×Xj → R. An additive RKHS is defined as

HK = {f1 + ...+ fp : fj ∈ HKj , j = 1, ..., p} (4)

with kernel norm ‖f‖2K = inf{‖f‖2K1
+ ...+ ‖f‖2Kp}. By integrating the Huber loss (3), additive

RKHS and kernel norm inducing regularizer into a Tikhonov regularization scheme, the regularized
Huber additive model with kernel-norm can be formulated as

f̂η =

p∑
j=1

f̂η,j = arg min
f=

∑p
j=1 fj ,fj∈HKj

{
T∑
t=1

`σ(yt −
p∑
j=1

fj(x
t
j)) + η

p∑
j=1

τj‖fj‖2Kj}, (5)

where η is positive regularization parameter and τj is the weight for j-th kernel norm. The representer
theorem (Wahba, 1990) ensures that f̂η can be represented as

f̂η =

p∑
j=1

T∑
t=1

αηtjKj(x
t
j , ·), α

η
tj ∈ R.

To offer the method with sparsity, we consider the following sparsity-inducing penalty

Ω(f) := inf{
p∑
j=1

τj‖αj‖2 : f =

p∑
j=1

T∑
t=1

αtjKj(x
t
j , ·)}.

LetHZ be an additive data dependent hypothesis space defined by

HZ = {f =

p∑
j=1

T∑
t=1

αtjKj(x
t
j , ·) : αtj ∈ R}.

Then the SpHAM can be formulated as

f̂ = arg min
f∈HZ

{ 1

T

T∑
t=1

`σ(yt −
p∑
j=1

fj(x
t
j)) + λΩ(f)}.
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Denote Kt
j = (Kj(x

1
j , x

t
j), ...,Kj(x

T
j , x

t
j))
′ ∈ RT , α = (α′1, ..., α

′
p)
′ ∈ RTp and αj =

(α1j , ..., αTj)
′ ∈ RT , where α′j here refers to the transpose of αj for avoiding the confusion.

The SpHAM can be represented as

f̂ =

p∑
j=1

T∑
t=1

αλtjKj(x
t
j , ·) (6)

with

αλ = arg min
αj∈RT ,j=1,...,p

{ 1

T

T∑
t=1

`σ(yt −
p∑
j=1

(Kt
j)
′αj) + λ

p∑
j=1

τj‖αj‖2}. (7)

The optimization problem (7) can be solved by Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) (Beck & Teboulle, 2009). We provide the detailed optimization procedure in Appendix E.
Remark 1. Inspired by the studies on group additive models (Yin et al., 2012; Pan & Zhu, 2017;
Chen et al., 2017), the modeling capacity of our proposed method can be improved by embedding the
(Hierarchical) group structure. For instance, group SpHAM can be easily formulated by replacing
the direct decomposition {Xj}pj=1,Xj ∈ R with the subgroups decomposition {Xd}Dd=1, where each
Xd ⊂ X may cover more than one variable.

3.2 ASYMPTOTIC THEORY ANALYSIS

In this section, we provide the theoretical analyses of SpHAM, including the following:

• The function approximation errors of SpHAM for stationary time series data (Theorem 1;
Section 3.2.1) and non-stationary time series data (Theorem 2; Section 3.2.2);

• An adaptive SpHAM (inspired by above theoretical findings) and its function approximation
error for non-stationary time series (See Theorem 3; Section 3.2.3)

Due to space limitation, the high-level outline and detailed proofs are provided in the Appendix A-D.

3.2.1 FUNCTION APPROXIMATION ANALYSIS FOR STATIONARY TIME SERIES

Through this paper, the marginal distribution w.r.t Y t is assumed to be almost everywhere supported
on [−M,M ] for some M ≥ 0.
Assumption 1. Assume that |Y t|, ∀t ∈ Z, is bounded and there exists a constant c > 0 such that
E|Y t|1+c <∞, ∀t ∈ Z.

The moment condition in Assumption 1 is rather weak in the sense that the response variable Y t
possesses infinite variance. The same condition also applies to the distributions of the innovation εt,
implying that heavy-tailed innovation is allowed.

Assumption 2. Let κ = supx∈X
√
Kj(x, x) <∞,∀j = 1, ..., p.

Assumption 2 only requires that the kernel is bounded under compact X , which holds for all Mercer
kernels (e.g., Gaussian kernel) and has been used in many learning theory literatures; see, e.g., (Wu
et al., 2006; Steinwart & Christmann, 2008; Wu & Zhou, 2008).

The following definitions are needed for Assumption 3. For any j = 1, ..., p, we define a kernel
integral operator LKj ,T+1 : L2(ρT+1

Xj )→ L2(ρT+1
Xj ) associated with the kernel Kj by

LKj ,T+1(f)(xT+1
j ) =

∫
Xj
Kj(x

T+1
j , uj)f(uj)dρ

T+1
Xj (uj).

Note thatLKj ,T+1 is a compact and positive operator onL2(ρT+1
Xj ). According to Mercer theorem, we

can find the corresponding normalized eigenpairs {(ζji , ψ
j
i )}i≥1 such that {ψji }i≥1 is an orthonormal

basis of L2(ρT+1
X ) and ζji → 0 as i→∞. Then for given r > 0, we defined the r-th power LrKj ,T+1

by
LrKj ,T+1(

∑
i≥1

βjiψ
j
i ) =

∑
i≥1

βji (ζ
j
i )rψji .
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Assumption 3. We assume that f∗j : Xj → R,∀j = 1, ..., p is a function of the form f∗j =

LrKj ,T+1(g∗j ),∀r ∈ (0, 1
2 ] with some g∗j ∈ L2(ρT+1

Xj ),∀h ∈ Z.

Assumption 3 is a natural extension from i.i.d setting (Assumption 1 in (Wu et al., 2006; Christmann
& Zhou, 2016; Chen & Wang, 2018)) to non-i.i.d time series. Indeed, this assumption stands in
most practical cases. For instance, if r = 0.5, the ground truth function f∗ needs to be a real-valued
function in the RKHSHK . The RKHS admits a large class of bounded and continuous real-valued
functions that are in Hilbert space. Moreover, this assumption has been widely used in learning
theory; please refer to (Smale & Zhou, 2003; Cucker & Zhou, 2007) for more discussions.
Theorem 1. Suppose that the process {Zt}∞t=−∞ is stationary. Let Assumptions 1-3 be true. By
taking σ = Tm, η = T−

1
4r and λ = T−

1
4r−m, we have for any 0 < δ < 1,

‖f̂ − f∗‖2
L2(ρT+1

X )
≤ C̃ log(1/δ)TΨ(m,c,r)

with confidence at least 1− δ, where C̃ is a positive constant independently of T, λ, η, δ and σ and

Ψ(m, c, r) =

{
max{− 1

2 ,m− 1,−cm+ 1
4r +m− 1}, if m ≤ 1− 1

4r

max{− 1
2 ,m− 1,−cm+ 1

2r + 2m− 2}, if m > 1− 1
4r .

Remark 2. In the stationary case, our bound appears to be novel for the following reasons: a) the
result is completely independent of the various mixing conditions which are widely used in the theory
analysis of non-i.i.d dependent time series (Mohri & Rostamizadeh, 2009; Yang et al., 2018; Mohri
& Rostamizadeh, 2010; Guo & Shi, 2011; Qiu et al., 2015); b) compared with Yang et al. (2018), the
innovation assumption is rather weak in the sense that the innovation possesses infinite variance and
thus admits a heavy-tailed distribution.
Corollary 1. Suppose that the process {Zt}∞t=−∞ is stationary. Let all the conditions in Theorem 1
be true. We then have for any 0 < δ < 1

‖f̂ − f∗‖2
L2(ρT+1

X )
≤ C̃ log(1/δ)TΨ(m,c)

with confidence at least 1− δ, where

Ψ(m, c) =

{
max{− 1

2 ,−cm+m− 1
2}, if m ≤ 1

2

max{m− 1,−cm+ +2m− 1}, if m > 1
2 .

Figure 1: The convergence rates under different σ and c.

Figure 1 summaries the convergence
rates in Corollary 1 by taking differ-
ent σ and c. If the innovation is Gaus-
sian distribution with finite variance
(i.e., Assumption 1 holds for any
c > 1), one can arbitrarily select a
σ = Tm (0 < m < 1

2 ) to obtain con-
vergence rates O(T−

1
2 ). Moreover,

we can see that the convergence rate
will decrease as m increases. Com-
bined with the conclusion in Lemma
1 (i.e., the equivalence relation be-
tween Huber loss based empirical
risk and MSE as σ → ∞), it in-
dicates that σ indeed plays a trade-
off role between algorithmic robust-
ness and variance-reduction. For the
weak moment condition (e.g., 0 <
c < 1), one may get slower conver-
gence rates (e.g., O(T (1−c)m− 1

2 ) or
O(T (2−c)m−1)), which also coincides with our intuitive understanding that small σ may be conducive
to robust forecasting. Note that our method will not converge when σ and c are both located in the
white area in Figure 1.
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As a comparison, due to the non-robustness of the squared loss, the most existing convergence
rates are established under the assumption that the innovation is Gaussian distribution with finite
variance (see, e.g., Yang et al. (2018); Han et al. (2015); Wang & Yang (2007); Kock & Callot
(2015)). However, from Theorem 1 and Corollary 1, the asymptotic convergence of SpHAM can
be obtained under weaker moment condition, which verifies the robustness of our method. Recall
the learning rate O(T

−2d
2d+1 ) derived in Yang et al. (2018), where d is the order of smoothness of

the component function fj , j = 1, ..., p. Relatively slow convergence rate O(T−
1
2 ) we obtained

indicates the sacrifice for the absence of mixing condition.

3.2.2 FUNCTION APPROXIMATION ANALYSIS FOR NON-STATIONARY TIME SERIES

In nonstationary time series setting, different Zts may follow different distributions. Thus c. For
given weights {st}Tt=1, we define the estimator f̂ s =

∑p
j=1 f̂

s
j as the minimizer of the following

weighted objective

Esλ(f̂ s) := min
f∈HZ

{
T∑
t=1

st`σ(yt −
p∑
j=1

fj(x
t
j)) + λΩ(f)}. (8)

Next, we introduce a discrepancy measure to characterize the discrepancy between the target distribu-
tion and the distributions of observations (Kuznetsov & Mohri, 2020a).

Definition 2. For any f ∈ HZ , the discrepancy measure with respect to Huber loss is defined as

disc(s) := sup
f∈HZ

{
E`σ(f(xT+1)− yT+1)−

T∑
t=1

stE`σ(f(xt)− yt)
}
.

The discrepancy measures the non-stationarity of the stochastic process {Zt}∞t=−∞ with respect to
both the loss function `σ and the hypothesis setHZ .

Theorem 2. Let Assumptions 1-3 be true. We assume that f∗j ∈ HKj ,∀j = 1, ..., p. By taking
σ = T

1
2c , λ = T−1 and η = T−

1
2 , we have for any 0 < δ < 1

‖f̂ s − f∗‖2
L2(ρT+1

X )
≤ disc(s) + Esλ(f̂ s) + C̃1‖s‖2T

1
2c + C̃2 log(1/δ)T−

1
2

with confidence at least 1− δ, where C̃1, C̃2 are two positive constants independently of T, λ, η, δ
and σ.

Note that there are several existing studies towards analyzing nonstationary and non-mixing time
series, see, e.g., Kuznetsov & Mohri (2020a). Different from them, the error bound we derived is
with respect to the function approximation rather than generalization risk, which is very crucial for
Huber regression problem, since the convergence of generalization risk cannot imply the convergence
of function approximation (Sun et al., 2019; Feng & Wu, 2020).

3.2.3 ADAPTIVE SPARSE HUBER ADDITIVE MODEL FOR NONSTATIONARY TIME SERIES

Theorem 2 illustrates that we shall minimize the following optimization problem for non-stationary
time series forecasting:

min
f∈HZ

{
T∑
t=1

st`σ(yt −
p∑
j=1

fj(x
t
j)) + disc(s) + λ1Ω(f) + λ2T

1
2c ‖s‖2},

where λ1 and λ2 are two positive regularization parameters, and c is a positive constant introduced
in Assumption 1. Although the discrepancy measure disc(s) is crucial for such an optimization
problem, we cannot obtain its exact value since we do not have access to the distributions of Zt, t ∈ Z.
Hence, we need to estimate the approximated discrepancy from given data. Inspired by Kuznetsov &
Mohri (2020a), one natural and necessary assumption is that there exists an underlying representation
relationship between distribution ρT+1 and distributions ρt, t = 1, ..., T .

7
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Assumption 4. Denote by a probability set q∗ = {q∗t }Tt=1 with
∑T
t=1 q

∗
t = 1. We assume that the

following term is sufficiently small:

disc(q∗) := sup
f∈HZ

[E`σ(f(xT+1)− yT+1)−
T∑
t=1

qtE`σ(f(xt)− yt)].

Note that the priori q∗ can be any distribution, which shall be given empirically according to the
trend of the time series. For instance, in a particular scenario of the distribution ρT+1 does not change
drastically compared with the distributions ρt, t = 1, ..., T , Kuznetsov & Mohri (2020a) have proven
that the Assumption 4 holds if the s∗ is an uniform distribution over last l > 0 observations, where l
is a hyper-parameter that can be tuned in practical applications.
Theorem 3. Let Assumption 4 and the conditions in Theorem 2 be true. We have for any 0 < δ < 1

‖f̂ s − f∗‖2
L2(ρT+1

X )
≤ sup

f∈HZ

T∑
t=1

(q∗t − st)`σ(f(xt)− yt) + Esλ(f̂ s)

+C̃1 log(1/δ)(‖q∗ − s‖2 + ‖s‖2T
1
2c ) + C̃2 log(1/δ)T−

1
2

with confidence at least 1− δ, where C̃1, C̃2 are two constants independently of T, λ, η, δ and σ.

Finally, the optimization problem of adaptive SpHAM can be formulated as following two stages:

Step A: finding the weight ŝ:

ŝ = arg min
s
{ sup
f∈HZ

T∑
t=1

(q∗t − st)`σ(f(xt)− yt) + λ1‖q∗ − s‖22 + λ2T
1
2c ‖s‖22} (9)

Step B: forecasting:

f̂ s(xT+1) =

p∑
j=1

T∑
t=1

αs
tjK(xtj , x

T+1
j ),

where

αs = arg min
αj∈RT ,j=1,...,p

{
T∑
t=1

ŝt`σ(yt −
p∑
j=1

(Kt
j)
′αj) + λ

p∑
j=1

τj‖αj‖2}. (10)

The optimization problems (9) can be solved by standard gradient descent method. Similarly to
the strategy for optimization problem (7), we use Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) (Beck & Teboulle, 2009) for Step B. We provide the detailed procedure in Appendix E.

4 EXPERIMENT

This section validates the effectiveness of SpHAM and adaptive SpHAM. In all experiments, the
Gaussian kernel Kj(u, v) = exp(−‖u−v‖

2
2

2d2 ), where j = 1, ..., p and bandwidth d > 0, is employed
for constructing the additive data dependent hypothesis space. Due to limited space, the evaluations
on real-world data are provided in Appendix F. We consider two synthetic examples as below:

Example A: Inspired by (Kuznetsov & Mohri, 2020a), a stationary time series is generated according
to the non-linear additive autoregressive model:

Y t =
3

2
sin(

π

2
Y t−2)− sin(

π

2
Y t−3) + 2εt,

where the innovation εts are i.i.d. drawn from Gaussian distributionN(0, 0.5) and Student distribution
with degree of freedom 2, respectively.

Example B: Inspired by (Kuznetsov & Mohri, 2020a), a time series with smooth drift is generated by

Y t =
t

400
sin(Y t−1) +

1

2
εt,

8
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where the distributions of noise εt are the same as above.

Hyper-parameter selection and evaluation criterions: Recall that SpHAM algorithm requires three
hyper-parameters: regularization parameter λ, bandwidth of kernel d and Huber parameter σ. We set
these parameters according to the suggestions in our Theorems. Based on the suggestion in Theorem
1-3, the selection of Huber parameter σ is σ = T

1
48 and the regularization parameter is λ = T−1.

Moreover, we set the bandwidth d = 0.5 and tune l ∈ {100, 150, 200, ..., 350}. The evaluation

criterions for forecasting used here contains Average Sample Error(ASE)= 1
N

√∑N
t=1(f̂(xt)− yt)2

and True Deviation (TD)= 1
N

√∑N
t=1(f̂(xt)− f∗(xt))2, where N is the number of test samples.

For each example, we generate time series with 4000 sample points. The samples at time t =
{1500, 1501, ..., 1899} are used as a training set, and the samples at next time t = {1900, ..., 1999}
are considered as the test data. The competitors include Simple Exponential Smoothing (SES) ,
TS-SpAM (Yang et al., 2018) and Vanilla Long Short-Term Memory (LSTM). The tuning parameters
of other competing methods such as LSTM and SES, are chosen according to their original python
packages. All the evaluations are repeated for 50 times. The average results for Examples A-B are
presented in Table 2.

From Table 2, the results on Example A verify that our SpHAM is competitive with other approaches
based on square loss under Gaussian noise, and performs better in presence of heavy-tailed t noise.
Moreover, the results on Example B shows the promising performance of our adaptive SpHAM for
non-stationary time series forecasting.

Table 2: The results on synthetic data.
Gaussian noise Student noise

Methods ASE (Std) TD (Std) ASE (Std) TD (Std)

Example A

SES 0.114(±.008) 0.098(±.005) 0.493(±.313) 0.105(±.009)
LSTM 0.063(±.005) 0.022(±.005) 0.538(±.342) 0.219(±.089)

TS-SpAM 0.070(±.007) 0.035(±.008) 0.505(±.332) 0.131(±.042)
SpHAM (ours) 0.076(±.005) 0.042(±.008) 0.492(±.333) 0.095(±.006)

Example B

SES 0.435(±.015) 0.424(±.015) 0.402(±.080) 0.366(±.017)
LSTM 0.120(±.125) 0.114(±.127) 0.247(±.125) 0.181(±.088)

TS-SpAM 0.114(±.022) 0.105(±.021) 0.173(±.125) 0.104(±.051)
SpHAM (ours) 0.115(±.028) 0.112(±.029) 0.179(±.116) 0.096(±.026)

Adaptive SpHAM (ours) 0.102(±.026) 0.096(±.026) 0.172(±.118) 0.085(±.024)

5 CONCLUSION

We propose an adaptive sparse Huber additive model by integrating Huber loss and `2,1-norm
regularizer into an additive data dependent hypothesis space. We theoretically explore the asymptotic
properties of our method for both non-Gaussian and (non)stationary time series. Experimental results
on both synthetic and real-world data validate the effectiveness of the proposed method.
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A PROOF SKETCH

This section sketches the proof focusing on the conceptual aspects. The full proofs are provided in
Appendix B-D.

Proposition 5 
(Error Decomposition) 

Proposition 2 
(Sample Error)

Proposition 3 
 (Hypothesis Error)

Theorem 1 
 (Approximation Error Bound)

Lemma 3 Lemma 4 Lemma 5 

Proposition 4 
 (Approximation Error)

Lemma 6 Lemma 1 Lemma 2 

Figure 2: The important ingredients for Theorem 1.

Figure 2 summaries the important ingredients for the proof of Theorem 1. Lemma 1 describes the
properties off̂ and Lemma 2 illustrates the relation between huber-based risk and MSE. Following
these two lemmas and previous works (Wang et al., 2017a; Feng & Wu, 2020), we then decompose
the function error into three important parts: sample error, hypothesis error and approximation error.
To bound the sample error, we need to employ the sequential Rademacher complexity (Kuznetsov &
Mohri, 2020a), which is the key to measuring the capacity of the data-dependent hypothesis space
for non-i.i.d data. Lemmas 3-4 give an important concentration inequality and the upper bound
of sequential Rademacher complexity, respectively. Finally, Theorem 1 is obtained by combining
Propositions 2-4. The proof of Theorems 2 is similar to the above process, except that we develop a
different error decomposition in Proposition 5. On the basis of Theorem 2, by applying an assumption
on data distribution, we derive Theorem 3.

The full proofs of Theorems 1-3 are provided in Sections C-E, respectively.

B PROOF OF THEOREM 1

We first illustrate two key properties of f̂ .

Lemma 1. Let Assumptions 1-2 be true. From the definition of f̂ in Eq. (6), there hold

‖f̂‖∞ ≤Mf̂ :=
2κ2M2

λT minj=1,...,p τj
.

and

Ω(f̂) =

p∑
j=1

τj‖αλj ‖2 ≤ κ−2Mf̂ =
2M2

λT minj=1,...,p τj
,

where M is a positive constant such that |Y t| ≤M,∀t ∈ Z.

Proof. Denote by EσT (f) :=
∑T
t=1 `σ(f(x(t))−y(t)) for notational convenience. From the definition

of f̂ , we know that
EσT (f̂) + λΩ(f̂) ≤ EσT (0).

It means that

Ω(f̂) =

p∑
j=1

τj‖αλj ‖2 ≤ λ−1EσT (0).

14
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From the definition of Huber loss (3), we obtain

EσT (0) =
1

T

T∑
t=1

`σ(y(t)) ≤ σ2, if |y(t)| ≤ σ, ∀t = 1, ..., T,

and

EσT (0) =
1

T

T∑
t=1

`σ(y(t)) = 2σ|y(t)| − σ2 ≤ 2σM − σ2, if |y(t)| > σ, ∀t = 1, ..., T.

Therefore,
p∑
j=1

τj‖αλj ‖2 ≤
2M2

λT minj=1,...,p τj
.

According to the property of RKHS, we conclude that

‖f̂‖∞ ≤ κ‖f̂‖K ≤ κ

√√√√ p∑
j=1

‖f̂j‖2Kj ≤ κ
2

p∑
j=1

‖αλj ‖2 ≤
2κ2M2

λT minj=1,...,p τj
.

This completes the proof by denoting Mf̂ = 2κ2M2

λT minj=1,...,p τj
.

Let H̄Z be a data-dependent hypothesis space constrained by sparsity-inducing regularizer Ω(·), i.e.,

H̄Z = {f(x) =

p∑
j=1

T∑
i=1

αijKj(x
(t)
j , xj) :

p∑
j=1

τj‖αj‖2 ≤
2M2

λT minj=1,..,p τj
}.

For any h ∈ Z, denote by EσT+1(f) := E`σ(f(xT+1)−yT+1) and ET+1(f) := E(f(xT+1)−yT+1)2,
respectively. In the following, we describe the relationship between EσT+1(f) and ET+1(f), ∀f ∈ H̄Z .
Note that a similar proof is given in (Feng & Wu, 2020) for the i.i.d case.
Lemma 2. Let Assumptions 1-2 be true. For any h ∈ Z and f ∈ H̄Z , there holds∣∣∣[EσT+1(f)− EσT+1(f∗)]− [ET+1(f)− ET+1(f∗)]

∣∣∣ ≤ Mc

σc
,

where both c and Mc = 23+c(Mf∗ +Mf̂ + 1)2E(|Y T+1|1+c) are positive constants.

Proof. For any σ > max{M +Mf̂ , 1}, we denote two events IY and IIY as follows

IY T+1 = {Y T+1 : |Y T+1| ≥ σ/2}
and

IIY T+1 = {Y T+1 : |Y T+1| < σ/2}.
Then, for any f ∈ H̄Z and ‖f∗‖∞ = Mf∗ <∞, we have∣∣∣[EσT+1(f)− EσT+1(f∗)]− [ET+1(f)− ET+1(f∗)]

∣∣∣
=

∣∣∣[ ∫
Z
`σ(f(xT+1)− yT+1)dρT+1 −

∫
Z
`σ(f∗(xT+1)− yT+1)dρT+1

]
− ‖f − f∗‖2

L2(ρ
T+1
X )

∣∣∣
=

∣∣∣[ ∫
X

∫
Y
`σ(f(xT+1)− yT+1)− `σ(f∗(xT+1)− yT+1)dρT+1

Y|X dρ
T+1
X

]
− ‖f − f∗‖2

L2(ρ
T+1
X )

∣∣∣
≤

∣∣∣ ∫
X

∫
I
Y T+1∪IIY T+1

`σ(f(xT+1)− yT+1)− `σ(f∗(xT+1)− yT+1)dρT+1
Y|X dρ

T+1
X

∣∣∣
+
∣∣∣ ∫
X

∫
I
Y T+1∪IIY T+1

(f(xT+1)− yT+1)2 − (f∗(xT+1)− yT+1)2dρT+1
Y|X dρ

T+1
X

∣∣∣
≤

∣∣∣ ∫
X

∫
I
Y T+1

`σ(f(xT+1)− yT+1)− `σ(f∗(xT+1)− yT+1)dρT+1
Y|X dρ

T+1
X

∣∣∣
+
∣∣∣ ∫
X

∫
I
Y T+1

(f(xT+1)− yT+1)2 − (f∗(xT+1)− yT+1)2dρT+1
Y|X dρ

T+1
X

∣∣∣.
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The last inequality is based on the fact that

|yT+1 − f(xT+1)| < |yT+1|+ ‖f‖∞ < σ, ∀(xT+1, yT+1) ∈ X × IIY T+1

and hence
`σ(f(xT+1)− yT+1) = (f(xT+1)− yT+1)2.

Recalling that the Huber loss is 2σ-Lipschitz continuous, then we get∣∣∣ ∫
X

∫
IY T+1

`σ(f(xT+1)− yT+1)− `σ(f∗(xT+1)− yT+1)dρT+1
Y|X dρ

T+1
X

∣∣∣
≤ 2σ

∣∣∣ ∫
X

∫
IY T+1

|f(x)− f∗(x)|dρT+1
Y|X dρ

T+1
X

∣∣∣
≤ 2σ‖f − f∗‖∞Prob{IY }.

According to Markov’s inequality, for any constant c > 0, we further have

Prob{IY T+1} = Prob{|Y T+1| ≥ σ/2} = Prob{|Y T+1|1+c ≥ (σ/2)1+c} ≤ 21+cE(|Y T+1|1+c)

σ1+c
.

Then we have ∣∣∣ ∫
X

∫
IY T+1

`σ(f(xT+1)− yT+1)− `σ(f∗(xT+1)− yT+1)dρT+1
Y|X dρ

T+1
X

∣∣∣
≤ 22+c‖f − f∗‖∞E(|Y T+1|1+c)

σc
.

Moreover, the second term in the right-hand side can be bounded by∣∣∣ ∫
X

∫
IY T+1

(f(xT+1)− yT+1)2 − (f∗(xT+1)− yT+1)2dρT+1
Y|X dρ

T+1
X

∣∣∣
≤ ‖f − f∗‖∞

∫
X

∫
IY T+1

|2yT+1 − f(xT+1)− f∗(xT+1)|dρT+1
Y|X dρ

T+1
X

≤ ‖f − f∗‖∞
[ ∫

IY T+1

2|yT+1|dρT+1
Y + (‖f‖∞ + ‖f∗‖∞)Prob(IY T+1)

]
.

According to Holder inequality, we have∫
IY T+1

|Y T+1|dρT+1
Y ≤ (Prob(IY T+1))

c
1+c (E|Y T+1|1+c)

1
1+c ≤ 2cE(|Y T+1|1+c)

σc
.

Then we can deduce that

‖f − f∗‖∞
[ ∫

IY T+1

2|yT+1|dρT+1
Y + (‖f‖∞ + ‖f∗‖∞)Prob(IY T+1)

]
≤ (22+c + 21+c)‖f − f∗‖∞E(|Y T+1|1+c)

σc
+

21+c(‖f‖∞ + ‖f∗‖∞)2E(|Y T+1|1+c)

σ1+c

Finally, there holds∣∣∣[ ∫
Z
`σ(f(xT+1)− Y T+1)−

∫
Z
`σ(f∗(xT+1)− Y T+1)

]
− ‖f − f∗‖2

L2(ρT+1
X )

∣∣∣ . Mc

σc

with
Mc = 23+c(Mf∗ +Mf̂ + 1)2E(|Y T+1|1+c).

This completes the proof.

Define a stepping-stone function with respect to the distribution ρT+1:

f∗η,T+1 =

p∑
j=1

f∗η,T+1,j = arg min
f∈HK

E`σ(f(xT+1)− Y T+1) + η

p∑
j=1

τj‖fj‖2Kj .

To establish the bound of function approximation for stationary time series setting, we make the
following error decomposition.
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Proposition 1. Let Assumptions 1-2 be true. For any f ∈ H̄Z , there holds

‖f − f∗‖2
L2(ρT+1

X )
≤ E1 + E2 + E3 +

2Mc

σc
,

where
E1 = {EσT+1(f)− EσT (f)}+ {EσT (f∗η,T+1)− EσT+1(f∗η,T+1)}

E2 = ET+1(f∗η,T+1)− ET+1(f∗) + η

p∑
j=1

τj‖f∗η,T+1,j‖2Kj

and

E3 = {EσT (f̂) + λΩ(f̂)− EσT (f̂η)− η
p∑
j=1

τj‖f̂η,j‖2Kj}.

Proof. According to Lemma 2, for any f ∈ H̄Z , we can make following error decomposition

‖f − f∗‖2
L2(ρ

T+1
X )

= ET+1(f)− ET+1(f∗) ≤ EσT+1(f)− EσT+1(f∗) +
Mc

σc

= {EσT+1(f)− EσT (f)}+ {EσT (f∗η,T+1)− EσT+1(f∗η,T+1)}︸ ︷︷ ︸
E1

+{EσT (f)− EσT (f∗η,T+1)}

+ EσT+1(f∗η,T+1)− EσT+1(f∗) +
Mc

σc

≤ E1 + ET+1(f∗η,T+1)− ET+1(f∗) + η

p∑
j=1

τj‖f∗η,T+1,j‖2Kj︸ ︷︷ ︸
E2

+{EσT (f) + λΩ(f)− EσT (f∗η,T+1)

− η
p∑
j=1

τj‖f∗η,T+1,j‖2Kj}+
2Mc

σc

≤ E1 + E2 + {EσT (f) + λΩ(f)− EσT (f̂η)− η
p∑
j=1

τj‖f̂η,j‖2Kj}︸ ︷︷ ︸
E3

+
2Mc

σc

≤ E1 + E2 + E3 +
2Mc

σc
.

In statistical machine learning community, we call E1, E2 and E3 sample error, approximation
error and hypothesis error, respectively. The sample error E1 describes the divergence between
the empirical risk EσT (f) and the expected risk Eσ(f). The hypothesis error E2 characterizes the
difference between the empirical regularized risks with HK and HZ . The approximation error
measures the approximation ability of RKHSHK toH.

B.1 SAMPLE ERROR

In this section, we focus on providing the bound of sample error E1. Unfortunately, the traditional
tools for complexity analysis such as covering number (Ron, 2000; Guo & Shi, 2011), Rademacher
complexity (Mohri & Rostamizadeh, 2009)) and concentration inequalities ((Wu et al., 2007)), cannot
be applied into this non-i.i.d. setting directly. To solve this problem, we employ the sequential
Rademacher complexity developed in (Rakhlin et al., 2010; Kuznetsov & Mohri, 2020a). We define a
function-based random variable as

ξf (z) = `σ(f(x)− y)− `σ(f∗η,T+1(x)− y), f ∈ H̄Z .

Now, we turn to establish the bound of

Eξf (zT+1)− 1

T

T∑
t=1

ξf (zt), ∀f ∈ H̄Z .
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A necessary ingredient needed for our analysis is data-dependent sequential Rademacher complexity
Rakhlin et al. (2010), which we review in the following. We adopt the following definition of a
complete binary tree: a Z-valued complete binary tree v is a sequence (v1, ..., vT ) of T mappings
vt : {±1}t−1 → Z, t ∈ [1, T ]. A path in the tree is γ = (γ1, ..., γT−1) ∈ {±1}T−1. To simplify the
notation, we will write vt(γ) instead vt(γ1, ..., γt−1), even though vt depends only on the first t− 1
elements of γ. The following definition generalizes the classical notion of Rademacher complexity
to sequential setting.

Definition 3. The sequential Rademacher complexityRT (G) of a function class G is defined by

RT (G) = sup
v

E[sup
g∈G

1

T

T∑
t=1

γtg(vt(γ))],

where the supremum is taken over all complete binary trees of depth T with values in Z and γ is a
sequence of Rademacher random variables.

Based on the definition of sequential Rademacher complexity, we have the following concentration
inequality:

Lemma 3. Suppose that the time series {Zt}∞t=−∞ is strictly stationary. For any δ > 0, with
probability at least 1− δ, the following inequality holds for all f ∈ H̄Z and all α > 0

Eξf (zT+1) ≤ 1

T

T∑
t=1

ξf (zt) +
1√
T

+ 6M`σ

√
4π log TRT (G) +

M`σ

√
8 log 1

δ√
T

,

where G := {`σ(f, z) + `σ(fη, z) : f ∈ H̄Z} and M`σ is a positive constant such that `σ(f(x(t))−
y(t)) ≤M`σ for any f ∈ H̄Z and t ∈ Z.

According to the property of sequential Rademacher complexity (see Proposition 14 in (Rakhlin et al.,
2015)), we have

RT (G) = RT (`σ ◦ H̄Z , z) ≤ 16σ(1 + 4
√

2 log3/2(eT 2))RT (H̄Z) (11)

with the 2σ-Lipschitz constant of `σ(·).

Lemma 4. Under Assumptions 1-2, there holds

RT (G) ≤ 32σ[1 + 4
√

2 log3/2(eT 2)]M2p
1
2κ

T
.

Proof. In fact, to every kernel Kj , we can associate a feature map φ with inner product <
φ(xj), φ(x′j) >= K(xj , x

′
j) for any xj , x′j ∈ Xj and j = 1, ..., p. Then the constrained data-

dependent hypothesis space H̄Z can be rewritten as

H̄Z = {f(x) =

p∑
j=1

T∑
t=1

αijφ(x
(t)
j )φ(xj) :

p∑
j=1

τj‖αj‖2 ≤
2M2

λT minj=1,..,p τj
}.
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By direct computation, we have

RT (H̄Z) = sup
{x̄t,ȳt}Tt=1

Eσ[ sup
α∈RTp

1

T

T∑
t=1

σt(

p∑
j=1

T∑
i=1

αijφ(x
(i)
j )φ(x̄

(t)
j (σ))− y(t))]

=
1

T
sup

{x̄(t)}Tt=1

Eσ sup
α∈RTp

T∑
t=1

σt

p∑
j=1

T∑
i=1

αijφ(x
(i)
j )φ(x̄

(t)
j (σ))− 1

T
sup

{ȳ(t)}Tt=1

Eσ
T∑
t=1

σty
(t)(σ)

=
1

T
sup

{x̄(t)}Tt=1

Eσ sup
α∈RTp

T∑
t=1

σt

p∑
j=1

T∑
i=1

αijφ(x
(i)
j )φ(x̄

(t)
j (σ))

=
1

T
sup

{x̄(t)}Tt=1

Eσ sup
α∈RTp

T∑
t=1

σt

p∑
j=1

T∑
i=1

αijK(x
(i)
j , x̄

(t)
j (σ))

=
1

T
sup

{x̄(t)}Tt=1

Eσ sup
α∈RTp

α′
T∑
t=1

σtKt(σ), Kt(σ) = (K(x
(1)
1 , x̄

(t)
1 (σ)), ...,K(x(T )

p , x̄(t)
p (σ))′ ∈ RTp

≤ 1

T
sup
α∈RTp

‖α′‖ sup
{x̄t}Tt=1

Eσ‖
T∑
t=1

σtKt(σ)‖2

≤ 2M2

T 2
sup

{x̄(t)}Tt=1

Eσ‖
T∑
t=1

σtKt(σ)‖2

=
2M2

T 2
sup

{x̄(t)}Tt=1

√√√√Eσ[

T∑
s,t=1

σtσsK′t(σ)Ks(σ)]

≤ 2M2

T 2
sup

{x̄(t)}Tt=1

√√√√Eσ[

T∑
t=1

K′t(σ)Kt(σ)]

≤ 2M2p
1
2κ

T

Thus, combining above result with Eq. (11). We get the desirable result.

Combining the results in Lemma 4 with the inequality in Lemma 3, we then obtain the bound of
sample error E1 for the strictly stationary time series setting.
Proposition 2. Under Assumptions 1-2, for any δ > 0, the following inequality holds for all f ∈ H̄Z
and all α > 0

E1 ≤
1√
T

+ 6M`σ

√
4π log TR+

M`σ

√
8 log 1

δ√
T

with probability at least 1− δ, where

R =
32σ[1 + 4

√
2 log3/2(eT 2)]M2p

1
2κ

T
.

B.2 APPROXIMATION ERROR

Since the output function f∗η,T+1 is the optimal estimator in RKHSHK for time T + 1, the learning
rates of the learning algorithm indeed depend on the approximation ability of the hypothesis spaceHK
with respect to the optimal risk E(f∗) measured by the approximation error E2. For any j = 1, ..., p

and h ∈ Z, we first define the kernel integral operator LKj ,T+1 : L2(ρT+1
Xj )→ L2(ρT+1

Xj ) associated
with the kernel Kj by

LKj ,T+1(f)(xT+1
j ) =

∫
Xj
Kj(x

T+1
j , uj)f(uj)dρ

T+1
Xj (uj),∀h ∈ Z.
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Note that LKj ,T+1 is a compact and positive operator on L2(ρT+1
Xj ). According to Mercer theorem,

we can find the corresponding normalized eigenpairs {(ζjh,i, ψ
j
h,i)}i≥1 such that {ψjh,i}i≥1 is an

orthonormal basis of L2(ρT+1
X ) and ζjh,i → 0 as i→∞. Then for given r > 0, we defined the r-th

power LrKj ,T+1 by

LrKj ,T+1(
∑
i≥1

βjh,iψ
j
h,i) =

∑
i≥1

βjh,i(ζ
j
h,i)

rψjh,i.

We introduce an intermediate function as follows:
f̃η,T+1,j = (LKj ,T+1 + ητjI)−1LKj ,T+1f

∗
j ,∀j = 1, ..., p.

Lemma 5. Under Assumption 3, for the intermediate function f̃η,T+1,j defined above, there holds

E‖f̃η,T+1,j(x
T+1
j )− f∗j (xT+1

j )‖+ ητj‖f̃η,T+1,j(x
T+1
j )‖2Kj ≤ 2(ητj)

2r‖L−rKj ,T+1f
∗
j ‖22.

Proof. Under Assumption 3, for any h ∈ Z, we know that f∗j = LrKj ,h(g∗j,h) for some g∗h,j =∑
i≥1 βh,iψ

j
h,i ∈ L2(ρT+1

Xj ). Then we have

f∗j = LrKj ,T+1(
∑
i≥1

βh,iψ
j
h,i) =

∑
i≥1

(ζjh,i)
rβh,iψ

j
h,i.

The case r = 1
2 means each f∗j lies in the RKHSHKj . Then we have

f̃η,h,j − f∗j = (LKj ,h + ητjI)−1LKj ,hf
∗
j − f∗j =

∑
i≥1

ητj(ζ
j
h,i)

rβjh,iψ
j
h,i

ζji + ητj
.

Then we have

‖f̃η,T+1,j − f∗j ‖22 = (
∑
i≥1

ητj(ζ
j
h,i)

rβjh,i

ζjh,i + ητj
)2 = (ητj)

2r
∑
i≥1

(
ητj

ζjh,i + ητj
)2−2r(

ζjh,i

ζjh,i + ητj
)2r(βjh,i)

2

≤ (ητj)
2r
∑
i≥1

(βjh,i)
2 = (ητj)

2r‖L−rKj ,T+1f
∗
j ‖22.

Similarly, we also have

ητj‖f̃η,T+1,j‖22 = (ητj)
2
∑
i≥1

(
(ζjh,i)

1+r

ζjh,i + ητj
)2(βjh,i)

2 = (ητj)
2r
∑
i≥1

(
ζjh,i

ζjh,i + ητj
)2+2r(

ητj

ζjh,i + ητj
)2−2r(βjh,i)

2

≤ (ητj)
2r‖L−rKj ,T+1f

∗
j ‖22.

Proposition 3. Under Assumptions 3, there holds

E2 = E(f∗η,T+1)− E(f∗) + η

p∑
j=1

τj‖f∗η,T+1,j‖2K ≤ (p+ 1)

p∑
j=1

(ητj)
2r‖L−rKj ,T+1f

∗
j ‖22.

Proof. According to Lemma 1, we have

ET+1(f∗η,T+1)− ET+1(f∗) + η

p∑
j=1

τj‖f∗η,T+1,j‖2K

≤ EσT+1(f∗η,T+1)− EσT+1(f∗) + η

p∑
j=1

τj‖f∗η,T+1,j‖2K +
Mc

σc

≤ EσT+1(f̃η,T+1)− EσT+1(f∗) + η

p∑
j=1

τj‖f̃η,T+1,j‖2K +
Mc

σc

≤ ET+1(f̃η,T+1)− ET+1(f∗) + η

p∑
j=1

τj‖f̃η,T+1,j‖2K +
2Mc

σc
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Then we have

ET+1(f̃η,T+1)− ET+1(f∗) + η

p∑
j=1

τj‖f̃η,T+1,j‖2K = ‖f̃η,T+1 − f∗‖22 + η

p∑
j=1

τj‖f̃η,T+1,j‖2K

≤ ‖
p∑
j=1

[f̃η,h,j − f∗j ]‖22 + η

p∑
j=1

τj‖f̃η,h,j‖2K

≤
p∑
j=1

p‖f̃η,T+1,j − f∗j ‖22 + η

p∑
j=1

τj‖f̃η,T+1,j‖2K

≤ (p+ 1)

p∑
j=1

(ητj)
2r‖L−rKj ,T+1f

∗
j ‖22.

Combing above results, we get the desired result.

B.3 HYPOTHESIS ERROR

This section focuses on bounding the hypothesis error

E3 = {EσT (f̂) + λΩ(f̂)− EσT (f̂η)− η
p∑
j=1

‖f̂η,j‖2K}.

We first give the properties of f̂ and then use them to bridge f̂ and fη .
Lemma 6. For all j = 1, ..., p, there holds

τj‖αηj ‖2 =
1

ηT

√√√√ T∑
t=1

(`′σ(yt −
p∑
j=1

K ′jtα
η
j ))2 ≤ 2σ

ηT
1
2

Proof. Recall the represent theorem which ensures that

f̂η =

p∑
j=1

T∑
t=1

αηtjKj(x
t
j , ·), α

η
tj ∈ R.

For notation simplicity, denote αηj = (αη1j , ..., α
η
Tj)
′ ∈ RT and αη = ((αη1)′, ..., (αηp)′)′ ∈ RTp.

From the definition of Eq. (7), we deduce that

αη = arg min
α∈RTp

{ 1

T

T∑
t=1

`σ(yt −
p∑
j=1

K ′jtαj) + η

p∑
j=1

τj(α
η
j )′Kjαj},

whereKj = {K(xsj , x
i
j)}ni,s=1 ∈ RT×T . we then have

1

T

T∑
t=1

`′σ(yt −
p∑
j=1

K ′jtα
η
j )K ′ji = ητjKjα

η
j .

It is easy to deduce that

αηj =
1

ητjT
(`′σ(y1 −

p∑
j=1

K ′j1α
η
j ), ..., `′σ(yT −

p∑
j=1

K ′jTα
η
j ))′.

Then we obtain that, for any j = 1, ..., p,

τj‖αηj ‖2 =
1

ηT

√√√√ T∑
t=1

(`′σ(yt −
p∑
j=1

K ′jtα
η
j ))2 ≤ 2σ

ηT
1
2

This completes the proof.

21



Published as a conference paper at ICLR 2022

Proposition 4. Under Assumptions 3, there holds

E3 ≤ λΩ(f̂η) = λ

p∑
j=1

τj‖αηj ‖2 ≤
2λpσ

ηT
1
2

.

Proof.

E3 = {EσT (f̂) + λΩ(f̂)− EσT (f̂η)− η
p∑
j=1

‖f̂η,j‖2K}

= EσT (f̂) + λΩ(f̂)− EσT (f̂η)− λΩ(f̂η)− η
p∑
j=1

‖f̂η,j‖2K + λΩ(f̂η)

≤ λΩ(f̂η)

Combining the above inequality with Lemma 6, we get that

E3 ≤ λΩ(f̂η) = λ

p∑
j=1

τj‖αηj ‖2 ≤
2λpσ

ηT
1
2

.

Proof of Theorem 1: Combining Propositions 1-4, for Tη ≤ 1, we have with confidence 1− δ

‖f−f∗‖2
L2(ρT+1

X )
≤ C̃ log(1/δ)(T−

1
2 +T−1σ+η2r+λη−1T−

1
2σ+σ−cλ−2T−2 +σ−cλ−1T−1),

where C̃ is a positive constant independently of T, λ, η, δ, σ. By taking σ = Tm, η = T β and
λ = T γ , we then have with confidence 1− δ

‖f − f∗‖2
L2(ρT+1

X )
≤ C̃ log(1/δ)TΨ(m,β,γ,c,r),

where

Ψ(m,β, γ, c, r) = max{−1

2
,m− 1, 2rβ, γ − 1

2
− β +m,−cm− 2γ − 2,−cm− γ − 1}.

By taking σ = 1
2c , β = − 1

4r and γ = − 1
4r −

1
2c Direct computation shows that

Ψ(m, c, r) =

{
max{− 1

2 ,
1
2c − 1}, if m ≤ 1− 1

4r

max{− 1
2 ,m− 1,−cm+ 1

2r + 2m− 2}, if m > 1− 1
4r .

This completes the proof.

C PROOF OF THEOREM 2

Denote by s = {st}Tt=1 a probability set with
∑T
t=1 st = 1. We define following functions associated

with the probability set s:

f∗T+1 =

p∑
j=1

f∗T+1,j = arg min
f∈HK

E`σ(f(xT+1)− yT+1),

f∗,sT =

p∑
j=1

f∗,sT,j = arg min
f∈HK

T∑
t=1

st`σ(f(xt)− yt),

f̂ sη =

p∑
j=1

f̂ sη,j = arg min
f=

∑p
j=1 fj ,fj∈HKj

{
T∑
t=1

st`σ(yt −
p∑
j=1

fj(x
t
j)) + η

p∑
j=1

τj‖fj‖2Kj},

and

f̂ s =

p∑
j=1

f̂ sj = arg min
f=

∑p
j=1 fj ,fj∈HKj

{
T∑
t=1

st`σ(yt −
p∑
j=1

fj(x
t
j)) + λΩ(f)}.

Correspondingly, we denote by Eσ,sT (f) =
∑T
t=1 st`σ(f(xt)− yt).
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Proposition 5. Let Assumptions 1-2 be true. For any f ∈ H̄Z , there holds

‖f − f∗‖2
L2(ρT+1

X )
≤ E1 + E2 + E3 + EσT (f∗T ) + η

p∑
j=1

τj‖f∗T,j‖2Kj +
2Mc

σc
,

where
E1 = EσT+1(f̂ s)− Eσ,sT (f̂ s)

E2 = Eσ,sT (f̂ s) + λΩ(f̂ s)− Eσ,sT (f̂ sη)− η
p∑
j=1

τj‖f̂ sη,j‖2Kj

and

E3 = ET+1(f∗η,T+1)− ET+1(f∗) + η

p∑
j=1

τj‖f∗η,T+1,j‖2Kj .

Proof. According to Lemma 2, for any f ∈ H̄Z , we can make following error decomposition

‖f − f∗‖2
L2(ρ

T+1
X )

= ET+1(f)− ET+1(f∗)

≤ EσT+1(f)− EσT+1(f∗) +
Mc

σc

≤ {EσT+1(f)− Eσ,sT (f)}︸ ︷︷ ︸
E1

+{Eσ,sT (f)− Eσ,sT (f∗,sT )}+ Eσ,sT (f∗,sT ) + EσT+1(f∗η,T+1)− EσT+1(f∗)

+ η

p∑
j=1

τj‖f∗η,T+1,j‖2Kj}+
Mc

σc

≤ E1 + {Eσ,sT (f) + λΩ(f)− Eσ,sT (f∗,sT )− η
p∑
j=1

τj‖f∗,sT,j‖
2
Kj}+ Eσ,sT (f∗,sT ) + η

p∑
j=1

τj‖f∗,sT,j‖
2
Kj

+ EσT+1(f∗η,T+1)− EσT+1(f∗) + η

p∑
j=1

τj‖f∗η,T+1,j‖2Kj}+
Mc

σc

≤ E1 + {Eσ,sT (f) + λΩ(f)− Eσ,sT (f̂s
η)− η

p∑
j=1

τj‖f̂s
η,j‖2Kj}︸ ︷︷ ︸

E2

+Eσ,sT (f∗,sT ) + η

p∑
j=1

τj‖f∗,sT,j‖
2
Kj

+ EσT+1(f∗η,T+1)− EσT+1(f∗) + η

p∑
j=1

τj‖f∗η,T+1,j‖2Kj}+
Mc

σc

≤ E1 + E2 + ET+1(f∗η,T+1)− ET+1(f∗) + η

p∑
j=1

τj‖f∗η,T+1,j‖2Kj︸ ︷︷ ︸
E3

+Eσ,sT (f∗,sT ) + η

p∑
j=1

τj‖f∗,sT,j‖
2
Kj +

2Mc

σc

≤ E1 + E2 + E3 + Eσ,sT (f∗,sT ) + η

p∑
j=1

τj‖f∗,sT,j‖
2
Kj +

2Mc

σc

≤ E1 + E2 + E3 + min
f∈HZ

{Eσ,sT (f) + λΩ(f)}+ η

p∑
j=1

τj‖f∗,sT,j‖
2
Kj +

2Mc

σc
.

Following the generalization analysis in (Kuznetsov & Mohri, 2020a), we need to discrepancy
measure to measure the discrepancy of the non-stationarity of the stochastic process {Zt}∞t=−∞ with
respect to both the loss function `σ and the hypothesis set H̄Z .
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Definition 4. The discrepancy describes the discrepancy between target distribution and the distribu-
tion of the sample. For any f ∈ H̄Z , the discrepancy measure with respect to Huber loss is defined
as

disc(s) := sup
f∈HZ

{
E`σ(f(xT+1)− yT+1)−

T∑
t=1

Est`σ(f(xt)− yt)
}
.

Lemma 7. For any δ > 0, with probability at least 1 − δ, the following inequality holds for all
f ∈ H̄Z and all α > 0

E`σ(f(xT+1)−yT+1) ≤
T∑
t=1

st`σ(f(xt)−yt)+disc(s)+‖s‖2+6M`σ

√
4π log TRT (G)+M`σ‖s‖2

√
8 log

1

δ
,

where G := {`σ(f, z) : f ∈ H̄Z} and M`σ is a positive constant such that `σ(f(xt)− yt) ≤ M`σ
for any f ∈ H̄Z and t ∈ Z.

Proof of Theorem 2 The proofs of bounding errors E1, E2 and E3 proceeds similarly to the proof of
Theorem 1 and are omitted for brevity.

According to Lemma 3, we have

E1 ≤ disc(s) + ‖s‖2 + 6M`σ

√
4π log TR+M`σ‖s‖2

√
8 log

1

δ
,

where
R = ‖s‖2[32σ[1 + 4

√
2 log3/2(eT 2)]M2p

1
2κ].

Moreover, from Proposition 4, we can get

E3 ≤ (p+ 1)

p∑
j=1

(ητj)
2r‖L−rKj ,T+1f

∗
j ‖22.

Similarly, to bound the hypothesis error

E2 = {Eσ,sT (f̂ s) + λΩ(f̂ s)− Eσ,sT (f̂ sη)− η
p∑
j=1

‖f̂sη,j‖2K},

we first give the properties of f̂ and then use them to bridge f̂ and fη .

Lemma 8. For all j = 1, ..., p, there holds

E2 ≤
2λpσ‖s‖2

η
.

Proof. Recall the represent theorem which ensures that

f̂ sη =

p∑
j=1

T∑
t=1

αη,stj Kj(x
t
j , ·), α

η,s
tj ∈ R.

For notation simplicity, denote αη,sj = (αη,s1j , ..., α
η,s
Tj )′ ∈ RT and αη,s = ((αη,s1 )′, ..., (αη,sp )′)′ ∈

RTp. We then deduce that

αη,s = arg min
α∈RTp

{
T∑
t=1

st`σ(yt −
p∑
j=1

K ′jtαj) + η

p∑
j=1

τj(α
η
j )′Kjαj},

whereKj = {K(xsj , x
i
j)}ni,s=1 ∈ RT×T . We get

T∑
t=1

st`
′
σ(yt −

p∑
j=1

K ′jtα
η,s
j )K ′ji = ητjKjα

η,s
j .
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It is easy to deduce that

αη,sj =
1

ητj
(s1`

′
σ(y1 −

p∑
j=1

K ′j1α
η
j ), ..., sT `

′
σ(yT −

p∑
j=1

K ′jTα
η
j ))′.

Then we obtain that, for any j = 1, ..., p,

τj‖αηj ‖2 =
1

η

√√√√ T∑
t=1

s2
t (`
′
σ(yt −

p∑
j=1

K ′jtα
η
j ))2 ≤ 2σ‖s‖2

η

This completes the proof.

Under Assumptions 1-2, there holds

E2 = {EσT (f) + λΩ(f̂ s)− EσT (f̂ sη)− η
p∑
j=1

‖f̂ sη,j‖2K}

= EσT (f̂ s) + λΩ(f̂ s)− EσT (f̂ sη)− λΩ(f̂ sη)− η
p∑
j=1

‖f̂ sη,j‖2K + λΩ(f̂ sη)

≤ λΩ(f̂ sη) = λ

p∑
j=1

τj‖αη,sj ‖2

≤ 2λpσ‖s‖2
η

.

By combining the above results, we have with confidence 1− δ

‖f̂ s − f∗‖2
L2(ρT+1

X )

≤ disc(s) + min
f∈HZ

{Eσ,sT (f) + λΩ(f)}

+C̃ log(1/δ)(‖s‖2 + ‖s‖2σ + η2r + λη−1‖s‖2σ + σ−cλ−2T−2 + σ−cλ−1T−1 + η),

where C̃ is a positive constant independently of T, λ, η, δ, σ and p. By taking σ = T
1
2c , λ = T−1

and η = T−
1
2 , we completes the proof.

D PROOF OF THEOREM 3

According to the definition of disc(T + 1), we have

disc(s) = sup
f∈HZ

{
E`σ(f(xT+1)− yT+1)−

T∑
t=1

stE`σ(f(xt)− yt)
}

≤ sup
f∈HZ

[

T∑
t=1

q∗tE`σ(f(xt)− yt)−
T∑
t=1

stE`σ(f(xt)− yt)] + disc(q∗).

Furthermore, it is easy to deduce that

sup
f∈HZ

T∑
t=1

(q∗t − st)E`σ(f(xt)− yt)− sup
f∈HZ

T∑
t=1

(q∗t − st)`σ(f(xt)− yt)

≤ sup
f∈HZ

T∑
t=1

(q∗t − st)[E`σ(f(xt)− yt)− `σ(f(xt)− yt)].

Proof of Theorem 3 According to the proof of Theorem 1 in Kuznetsov & Mohri (2020a), we have

sup
f∈HZ

T∑
t=1

(q∗t−st)[E`σ(f(xt)−yt)−`σ(f(xt)−yt)] ≤ 1√
T

+6M`σ

√
4π log TRT (G)+M`σ‖q∗−s‖2

√
8 log

1

δ
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By combining above results, we have with confidence 1− δ

‖f̂ s − f∗‖2
L2(ρT+1

X )

≤ disc(q∗) + sup
f∈HZ

T∑
t=1

(q∗t − st)`σ(f(xt)− yt) + min
f∈HZ

{Eσ,sT (f) + λΩ(f)}

+C̃ log(1/δ)(‖q∗ − s‖2 + ‖s‖2 + ‖s‖2σ + η2r + λη−1‖s‖2σ + σ−cλ−2T−2 + σ−cλ−1T−1 + η).

By taking σ = T
1
2c , λ = T−1 and η = T−

1
2 , we complete the proof.

Algorithm 1: Optimization procedure for adaptive SpHAM

Input: Data {(xt, yt)}Tt=1, Max-Iter Z ∈ Z, Mercer kernel Kj , j = 1, ..., p with bandwidth d,
Weights τl, l = 1, ..., p, q∗.

Initialization: Lipschitz constant L, s0.
Step A: Computing weights ŝ:
for z = 1, ..., Z do

1. Compute Az−1 via DC-programming (or gradient descent method);
2. Update sz via (12).

Output: ŝ = sZ .
Step B: Computing f̂ s:
for z = 1, ..., Z do

1): Compute αz = pL(βz) via (14);

2): mz+1 =
1+
√

1+4m2
z

2 ;
3): βz+1 = αz + mz−1

mz+1
(αz − αz−1).

Output: αŝ = αZ ;
Prediction function: f̂ s =

∑P
j=1

∑T
t=1 α

ŝ
tjKj(x

t
j , ·);

Variable selection: {j : ‖αs
j‖2 ≥ v, j = 1, ..., p}.

E EXPERIMENT OPTIMIZATION

The optimization problem (10) reduces to problem 7 when taking s∗ = 1
T IT . Recall the optimization

problem in Step A:

ŝ = arg min
s
{ sup
f∈HZ

T∑
t=1

(q∗t − st)`σ(f(xt)− yt) +
λ1

2
‖q∗ − s‖22 +

λ2

2
‖s‖22T

1
2c }.

The above optimization problem can be equivalently rewritten as a common type of bilevel optimiza-
tion problem (Colson et al., 2007), i.e,

Outer problem: mins

∑T
t=1(q∗t − st)`σ(fs(xt)− yt) + λ1‖q∗ − s‖22 + λ2T

1/2c‖s‖22,

Inner problem: fs = arg maxf∈Hz

∑T
t=1(q∗t − st)`σ(f(xt)− yt),

where the outer (min) problem parameterized by s, is nested within the inner (max) problem. The
outer problem can be solved by standard gradient descent, where in each step, we need to optimize
the inner (max) problem with last updated s.

We denote by k the iteration time. Then for k + 1-th iteration, we have the following gradient update
rule

sk+1 = sk − γ(Ak − λ1(q∗ − sk) + λ2T
1
2c sk), (12)

where γ is learning rate,

Ak = −
(
`σ(

T∑
t=1

p∑
j=1

αsk

tjKj(x
t
j , x

1
j )− y1), ..., `σ(

T∑
t=1

p∑
j=1

αsk

tjKj(x
t
j , x

T
j )− yT )

)′
∈ RT
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and
αsk = (αsk

11, ..., α
sk

T1, ..., α
sk

1p, ..., α
sk

Tp)
′ ∈ RTp

is obtained by the following weighted optimization problem

αsk = arg max
α

T∑
t=1

(q∗t − skt )`σ(

T∑
m=1

p∑
j=1

αmjKj(x
m
j , x

t
j)− yt).

Note that the inner problem is subjected to f ∈ HK , i.e., ‖α‖2 =
∑p
j=1 τj‖αj‖2 ≤

2M2

λT minj=1,...,p τj
.

A widely-used method for solving this constrained inner problem is DC programming (Tao & An,
1998). For simplicity, we here transform this inner problem into a regularized problem with `2-norm
regularizer, and solve this regularized problem by standard gradient method. After obtaining the
solution ŝ, we turn to solve the following weighted optimization problem in Step B:

αŝ = arg min
αj∈RT ,j=1,...,p

{
T∑
t=1

ŝt`σ(yt −
p∑
j=1

(Kt
j)
′αj) + λ

p∑
j=1

τj ||αj ||2}. (13)

We can see that this problem contains non-smooth function λ
∑p
j=1 τj ||αj ||2 which makes the

standard gradient descent method inapplicable. To conquer this challenge, we leverage fast iterative
shrinkage-thresholding algorithm (FISTA)(Beck & Teboulle, 2009). Our optimization problem
becomes

αk = pL(αk−1) := arg min
α

{
λ

p∑
j

τj ||αj ||2 +
L

2
||α− (αk−1 − 1

L

T∑
t=1

ŝt∇`σ(yt − (Kt)′αk−1)||2
}

=

((
1− λ

||vj ||2

)
+

vj

)
1≤j≤p

, (14)

where

vj = αk−1
j − 1

L

T∑
t=1

ŝt∇αj `σ(yt − (Kt)′αk−1))

and

∇αj `σ(yt − (Kt)′αk−1)) =


2((Kt)′α− yt)(Kt

j)
′ |(Kt)′α− yt| < σ

2σ (Kt)′α− yt ≥ σ
−2σ (Kt)′α− yt ≤ −σ

and L = max 1
T

∑T
t=1 ‖(Kt)′Kt‖ is the lipschitz constant 1

T

∑T
t=1∇`σ(yt − (Kt)′αk−1). Denote

Proj(s) as a projection of s and v > 0 as the threshold value. To focus on the weights of samples
which are really useful for forecasting, we consider Proj(s) as a box projection such that st >
q∗t ,∀t = 1, ..., p). Finally, the optimization procedure for adaptive SpHAM can be summarized in
Algorithm 1. Note that if we only run Step B with ŝt = 1

T ,∀t = 1, ..., T , we can further obtain the
optimization procedure for SpHAM.
Remark 3. The computational complexity of Algorithm 1 depends on the optimization strategy for
DC programming, the training size T , dimension p and the iteration times Z. We denote by the
computational complexity of DC programming O(DC(T, p)). Then, the computational complexity of
Step A is O(ZDC(T, p) + ZT ) and the computational complexity of Step B is O(ZT 3p3). Thus, the
total computational complexity of Algorithm 1 is O(ZO(DC) + ZT 3p3). For large scale data, we
can further speed up Algorithm 1 by random Fourier features technique [Rahimi and Recht 2007],
which is leaved for future work. This has been carefully discussed in the revised manuscript.

F ADDITIONAL EXPERIMENT

F.1 EVALUATION ON BENCHMARK DATA

We test our algorithm on nonlinear dataset from CauseMe. The hyper-parameter selection is the same
as the one in Section 4. The results in Table 3 verify the effectiveness of our method.

27



Published as a conference paper at ICLR 2022

Table 3: The ASE on CauseMe data (p refers to the dimension of features).
Methods (p = 3, T = 300) (p = 5, T = 300)
LSTM 0.7681 0.9230

TS−SpAM 0.7782 0.9485
SpHAM 0.7548 0.9484

F.2 EXPERIMENTS ON AIR QUALITY DATASET

We use the Air Quality dataset obtained from UCI Machine Learning Repository (https://
archive.ics.uci.edu/ml/datasets/Air+quality) to test our model’s ability to detect
the Granger causality. This dataset includes 9358 hourly air quality data in an Italian city, collected
from March 2004 to February 2005. The details of the dataset can be obtained on the UCI website.
The Granger causal network we detect is shown in Figure 3. Given the network, we observe that
the temperature (T) influences ozone (O3) and nitrogen dioxide (NO2) which is validated in Kalisa
et al. (2018). Mwaniki et al. (2014) confirm the relationship between relative humidity (RH) and
nitrogen dioxide (NO2). Yan et al. (2018) verify the relationship between humidity and nitrogen
dioxide (NO2).

F.3 EXPERIMENTS ON CORONAL MASS EJECTIONS DATASET

Coronal Mass Ejections (CMEs) are the most violent eruptions in the Solar System. Despite
machine learning approaches have been applied to these tasks recently Wang et al. (2019); Liu
et al. (2018), there is no any work for interpretable prediction with Granger causal network. CMEs
data are provided in The Richardson and Cane List (http://www.srl.caltech.edu/ACE/
ASC/DATA/level3/icmetable2.htm). From this link, we collect 152 ICMEs observations
from 1996 to 2016. The features of CMEs are provided in SOHO LASCO CME Catalog (https:
//cdaw.gsfc.nasa.gov/CME_list/). In-situ solar wind parameters can be downloaded
from OMNIWeb Plus (https://omniweb.gsfc.nasa.gov/). A total of 9 features are chosen
as input, including: (1) Central PA (CPA), (2) Angular Width, (3) three approximated speeds ( Linear
Speed, 2nd-order Speed at final height,and 2nd-order Speed at 20 Rs), (4) Mass, (5) Kinetic Energy,
(6) MPA and (7)CMEs arrival time. Figure 4 shows that Granger causal network when the output
is CMEs Arrival time. Some interesting findings are concluded from this Granger causal network.
For instance, Speed and Mass, as the significant variables causing CMEs arrival time, have been also
screened out in Liu et al. (2018). Morover, the CMEs Angular Width does not cause the CMEs arrival
time forecasting, while Liu et al. (2018) state that they have a significant correlation. This indicates
that the CMEs arrival time is affected by the Angular Width at current time, but not by the historical
Angular Width.
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Figure 3: The Granger causal network on Air Quality dataset.
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Figure 4: The Granger causal network on CMEs dataset.
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