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ABSTRACT

Recent studies revealed complex convergence dynamics in gradient-based meth-
ods, which has been little understood so far. Changing the step size to balance
between high convergence rate and small generalization error may not be suffi-
cient: maximizing the test accuracy usually requires a larger learning rate than
minimizing the training loss. To explore the dynamic bounds of convergence rate,
this study introduces differential capability into an optimization process, which
measures whether the test accuracy increases as fast as a model approaches the
decision boundary in a classification problem. The convergence analysis showed
that: 1) a higher convergence rate leads to slower capability growth; 2) a lower
convergence rate results in faster capability growth and decay; 3) regulating a
convergence rate in either direction reduces differential capability.

1 INTRODUCTION

Training a model is an optimization problem that involves minimizing the model errors on a training
dataset. When training a network with gradient-based methods, accelerating convergence to the
solution is of a top priority (Dieuleveut et al., 2017; Arora et al., 2019), but not the only performance
variable to optimize. Minimizing the difference between the model errors on a training subset and a
testing subset, which is called the generalization error, plays a fundamental role (Hardt et al., 2016;
Zhang et al., 2017; Lin, 2019).

While adapting a step size in iterative optimization schemes increases the convergence rate, it does
not deliver the best generalization error (Luo et al., 2019; Xie et al., 2020; Heo et al., 2021; Zhou
et al., 2020). Adaptive optimization methods are often outperformed by non-adaptive stochastic
gradient descent (SGD) for overparameterized models, where the number of trainable parameters
is much higher than the number of samples they are trained on. Recent studies revealed that over-
parametrization itself leads to faster convergence (Arora et al., 2018; Li & Liang, 2018; Allen-Zhu
et al., 2019; Oymak & Soltanolkotabi, 2019; Liu & Belkin, 2020; Oymak & Soltanolkotabi, 2020;
Chen et al., 2021). Besides, a step size on testing is usually larger than a step size on training (Bortoli
et al., 2020; Li & Arora, 2020; Cohen et al., 2021). These findings point to the fact that convergence
demonstrates more complex dynamics which has not been well understood so far.

The study raises a research question on whether we can deepen our understanding by inspecting
human and machine reasoning processes in a testing environment. Originating from the item re-
sponse theory (IRT) (Lord, 1980; de Ayala, 2009), differential capability shows how fast increases
the probability of a correct response to an item of a given difficulty in comparison with a learner’s
ability. With a new interpetation in a machine learning context, the differential capability may iden-
tify how fast increases the test accuracy compared to a model’s ability to reach a decision boundary
in a classification problem. It seems to be an appropriate measure to answer our research question.
The work related to this problem is briefly discussed in Appendix A.

2 DIFFERENTIAL CAPABILITY

2.1 PROBLEM SETUP

For a dataset {xi, yi}mi=1 with xi ∈ Rn, yi ∈ {−1, 1}, let us minimize an empirical loss function
with a weight vector θ ∈ Rn:

L(θ) =
∑
i

`(yiθ
>xi), (1)
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where ` measures the discrepancy between the output y and the model prediction. The gradient
descent (GD) finds the weight vector with a fixed step size η:

θ(t+ 1) = θ(t)− η∇θL(θ). (2)

For a large family of monotone losses with polynomial and exponential tails (Nacson et al., 2019),
the derivative of `(t) can be presented as `′(t) = −e−f(t), where f(t) satisfies ∀k ∈ N:

∣∣∣ fk+1(t)
f ′(t)

∣∣∣ =
O(t−k). The continuous form of equation 2 (η → 0) is equal to θ′(t) =

∑
i e
−f(yix

>
i θ(t))yixi,

where the weight vector can be presented asymptotically as θ(t) = g(t)θ̂ + h(t), h(t) = o(g(t)),
where g(t) defines a convergence rate, θ̂ = argminθ∈Rn ‖θ‖2, so that yiθ

>xi ≥ 1 (Soudry et al.,
2018; Nacson et al., 2019) . Using `′(t), we can write:

g′(t)θ̂ =
∑
i

e−f(g(t)yix
>
i θ̂+h(t)yix

>
i yixi ≈ e−f(g(t)

∑
i

e−f
′(g(t))h(t)yix

>
i yixi.

For the last equation, we can require g′(t) = e−f(g(t). Approximating it with g′(t) ≈
e−f(g(t))−ln f ′(g(t)) gives us a closed from solution g(t) = f−1(ln t+ C).

The present study enriches the provided reasoning with differential capability, which measures
whether the test accuracy increases as fast as a model’s ability to reach a decision boundary. In-
troducing differential capability into an optimization process, this research explores the dynamic
bounds of a convergence rate and reveals how an increase/decrease in a convergence rate affects the
proposed measure.

Related work often attributed the success in balancing convergence and generalization to the com-
plexity and capacity of neural networks. To observe the impact of differential capability on con-
vergence dynamics, which is not affected by network architecture, the present study focuses on the
simplest learner model - a single neuron, the capacity of which stimulates the renewed interest (Frei
et al., 2020; Gidon et al., 2020; Jones & Kording, 2020; Yehudai & Shamir, 2020).

2.2 LOSS FUNCTION WITH DIFFERENTIAL CAPABILITY

Let us build a loss function on the well-studied two-parameter logistic item response theory (2PL
IRT) model Lord (1980); de Ayala (2009): P (yij = 1|ωj , ri, di) = 1

1+exp(−ri(ωj−di))
, where

P (yij = 1|ωj , ri, di) is a probability of correctly responding yij = 1 to an item i with a difficulty
di by a learner j with the ability ωj ; ri is a discrimination parameter that measures the differential
capability of an item i. A high value of ri means that the probability of a correct response to an item
with a given difficulty increases as quickly as a learner’s ability. When ri = 1 and di = 0, the 2PL
IRT model reduces to the sigmoid function.

In comparison with the 2PL IRT model, the new loss function, equipped with differential capability,
changes the shape of the sigmoid so that it becomes non-monotonic and exhibits more complex
behavior. First, differential capability grows with a rate ri. When a learner acquires the ability ωj to
respond correctly to an item with difficulty di, the differential capability decays with a rate ci. The
probability of answering correctly to an item is equal to Pdi

. Using the Gompertz logistic law of
population dynamics (Gray & Gray, 2017), a learner’s response to an item i can be defined as:

P (yij = 1|ωj , ri, ai, bi, di) = aie
bie
−ri(ωj−di)

, (3)

where ai = eεi , εi = ci
ri

, bi = lnPdi
− εi. The parameter εi reflects the balance between a growing

rate ri and a decaying rate ci for an item i. Fig. 1 depicts different configurations of the DC loss
function, where DC stands for differential capability.

2.3 CONVERGENCE ANALYSIS

Interpreting differential capability in a machine learning context, where a high value of this measure
points out that the test accuracy increases as fast as a model ability to reach a decision boundary,
the equation 3 can be rewritten as `DC(t) = aebe

−r(t−d)

, for which `′DC(t) = −abre−f(t), where
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Figure 1: Different configurations of the DC loss function: (a) no DC (ri = 1, ci = 0), (b) growing
DC (ri > 0, ci = 0), (c) decaying DC (ri = 1, ci > 0), and (d) both growing and decaying DC
(ri > 0, ci > 0).

f(t) = r(t − d) − be−r(t−d). According to the reasonong presented in Section 2.1, estimating the
inverse function of f(t) gives the convergence rate:

gDC(z) = d+
(
W0(be

−z) + z
)
/r, z > 0, (4)

where W0(z) is the principal branch of the Lambert function. Nacson et al. (2019); Soudry et al.
(2018) showed that for any strict monotone loss `(t), given in Section 2.1, under certain conditions,
g(t) = ln t. With a variable substitute z = ln t, the convergence rate g(z) = z is further refered to
as the default rate.

Let us first analyze the parameters b, d, and r, which affect the convergence rate equation 4. We can
see that the difficulty denoted by d > 0 increases the absolute value of gDC(z). The parameter b
depends on Pd and the ratio c/r: b = lnPd − c/r (see equation 3). As 0 < Pd < 1, ln(Pd) < 0.
The smaller Pd is, the faster | lnPd| increases. The ratio c/r > 0 grows up if r → 0 (an infinitesimal
value) or/and c > r. The parameter b < 0, but smaller Pd, r and larger c increase its absolute value.

Let us now show that differential capability dynamically changes the bounds of convergence rate.
Theorem. For any z > 0, b < 0, moderate r > 0, and d = 0, the bounds of the convergence rate
gDC(z) given by equation 4 are below and above the default convergence rate g(z) = z.

The proof of the theorem is deferred to Appendix B.
Corollary. The bounds of gDC(z) move to the left when r is larger and to the right when d is larger
and r is smaller.

Proof. The validity of the corollary follows from equation 4.

From the convergence analysis, we can conclude that: 1) a higher convergence rate leads to a lower
growth rate r, which results in smaller differential capability; 2) a lower convergence rate leads to
a higher growth rate r, which is compensated by a higher decay rate c, and, thus, results in smaller
differential capability again. This means that regulating a convergence rate in either direction does
not increase differential capability.

3 EXPERIMENTAL RESULTS

As the proposed measure dynamically changes the bounds of the convergence rate g(t), it also brings
more flexibility in regulating the trade-off between a convergence rate and an error rate. Fig. 2 illus-
trates how differential capability affects the inner processes inside a neuron for the loss configura-
tions given in Fig. 1. It replaces the superposition in equation 1 with more complex dynamics (see
Fig. 2 (a), (b) in comparison with Fig. 2 (c)-(h)), where the balance between a growth rate r and a
decay rate c regulates the convergence/error rate trade-off.

Let us adopt this illustration to design the experiments on a set of synthetic datasets (m = 1000,
n = 2), which were randomly split into training (80%) and testing (20%) subsets (see Fig. 3, in
the upper left corner). A neuron adjusted its weights with gradient descent in a stochastic setting
(SGD) with the default parameters, batch size |B(t)| = 75, and nepoch = 1500. The number of
runs was equal to 10. The hyperparameters were chosen within the following regions: d ∈ [0, 5],
Pd ∈ [0.1, 0.9], r ∈ [0.1, 12], and c ∈ [0, 12] with a 2.5% random pick from the full grid space.
In Fig. 3, the label “no DC” reflects the default configuration with the sigmoidal loss function (see
2 (a), (b)), “DC r ↓” denotes the configuration with growing DC 2 (c), (d)), and “DC r ↑, c ↑”
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Figure 2: The impact of differential capability (DC) on inner processes inside a neuron

stands for the configuration with growing and decaying DC 2 (g), (h)). Here, the configuration with
only decaying DC was left with little attention. According to the provided convergence analysis,
increasing c affects the dynamics bounds of convergence rate to a smaller extent (see Section 2.3).

The theoretical analysis revealed that a slower growth rate r ↓ reduces differential capability while
increasing the convergence rate. Fig. 3 illustrates this result. The growth rate r increases slower than
it needs to reach the highest test accuracy. But, its value r > 1, which means it naturally enlarges
the step size of the optimizer (see Section 2.3, `′DC(t)). As a consequence, we can observe the
higher test accuracy (see the red curves in contrast to the blue ones on the plots). This is exactly the
phenomenon this study is intended to demystify.

A faster growth rate r ↑ and decay rate c ↑ reduce differential capability as well while decreasing
the convergence rate. A non-zero value of c balances against even higher value of r, which, on
the one hand, slows down the convergence, on the other hand, increases the test accuracy to a
greater extent (see the black curves in contrast to the red and blue ones on the plots). From the
above empirical analysis, we can conclude that neither increase nor decrease in a convergence rate
improves differential capability as the model does not achieve the highest test accuracy.

40 60 80 100

40

60

80

100

Te
st

 A
cc

ur
ac

y

(a) BLOBS

no DC
DC r↓
DC r↑,c↑

50 55 60 65

50

55

60

65

(c) XOR

no DC
DC r↓
DC r↑,c↑

50 60 70 80 90
50

60

70

80

90
(e) MOONS

no DC
DC r↓
DC r↑,c↑

40 60 80 100
Train Accuracy

40

60

80

100

Te
st

 A
cc

ur
ac

y

(b)

no DC
DC r↓
DC r↑,c↑

50 55 60 65
Train Accuracy

50

55

60

65

(d)

no DC
DC r↓
DC r↑,c↑

50 60 70 80 90
Train Accuracy

50

60

70

80

90
(f)

no DC
DC r↓
DC r↑,c↑

Figure 3: The impact of differential capability (DC) on convergence/error rate trade-off

4 CONCLUSION

This study explored the dynamic bounds of a convergence rate with differential capability, which
measures how fast increases the test accuracy compared to a model’s ability to reach a decision
boundary in a classification problem. The provided analysis enriched the understanding of conver-
gence dynamics and revealed that both increase and decrease in a convergence rate reduce differen-
tial capability.

4



Under review as a conference paper at ICLR 2021

REFERENCES

Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-parameterization.
In ICML, 2019.

S. Arora, N. Cohen, and E. Nazan. On the optimization of deep networks: Implicit acceleration by
overparameterization. In ICML, 2018.

S. Arora, N. Cohen, N. Golowich, and W. Hu. A convergence analysis of gradient descent for deep
linear neural networks. In ICLR, 2019.

V. De Bortoli, A. Durmus, X. Fontaine, and U. Simsekli. Quantitative propagation of chaos for sgd
in wide neural networks. In NeurIPS, 2020.

Y. Chen, T. S. Filho, R. B. C. Prudencio, T. Diethe, and P. Flach. β3-irt: A new item response model
and its applications. In AISTATS, 2019.

Z. Chen, Y. Cao, D. Zou, and Q. Gu. How much over-parameterization is sufficient to learn deep
relu networks? In ICLR, 2021.

J. Cohen, S. Kaur, Y. Li, Z. Kolter, and A. Talwalkar. Gradient descent on neural networks typically
occurs at the edge of stability. In ICLR, 2021.

R. J. de Ayala (ed.). The Theory and Practice of Item Response Theory (Methodology in the Social
Sciences). The Guilford Press, New York, 2009.

A. Dieuleveut, N. Flammarion, and F. Bach. Harder, better, faster, stronger convergence rates for
least-squares regression. Journal of Machine Learning Research, 18:1–51, 2017.

S. Frei, Y. Cao, and Q. Gu. Agnostic learning of a single neuron with gradient descent. In NeurIPS,
2020.

A. Gidon, T. Adam Zolnik, P. Fidzinski, F. Bolduan, A. Papoutsi, P. Poirazi, M. Holtkamp, I. Vida,
and M. E. Larkum. Dendritic action potentials and computation in human layer 2/3 cortical
neurons. Science, 367(6473):83–87, 2020. doi: 10.1126/science.aax6239.

M. J. Gierl, O. Bulut, Q. Guo, and X. Zhang. Developing, analyzing, and using distractors for
multiple-choice tests in education: A comprehensive review. Review of Educational Research, 87
(6):1082–1116, 2017. doi: 10.3102/0034654317726529.

W. G. Gray and G. A. Gray (eds.). Introduction to Environmental Modeling. Cambridge University
Press, Cambridge, UK, 2017.

M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic gradient
descent. In ICML, 2016.

B. Heo, S. Chun, S. Joon Oh, D. Han, S. Yun, G. Kim, Y. Uh, and J.-W. Ha. Adamp: Slowing down
the slowdown for momentum optimizers on scale-invariant weights. In ICLR, 2021.

I. S. Jones and K. Kording. Can single neurons solve mnist? the computational power of biological
dendritic trees. arXiv preprint, arXiv:2009.01269v1, 2020.

I. Kulikovskikh. Cognitive validation map for early occupancy detection in environmental sensing.
Engineering Applications of Artificial Intelligence, 65:330–335, 2017. doi: https://doi.org/10.
1016/j.engappai.2017.08.008.
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A RELATED WORK

The analysis of SGD based optimization for overparameterized models has recently become an ac-
tive area of research interest (Arora et al., 2018; Li & Arora, 2020; Arora et al., 2019; Allen-Zhu
et al., 2019; Zhou et al., 2020; Wu et al., 2021). Recent studies indicated that large learning rates
can preserve good generalization and accelerate SGD convergence with no additional gradient scal-
ing. While analyzing the effect of overparametrization, Wu et al. (2021) pointed to the difference
in directional biases for SGD and GD with a moderate and annealing rates. Vaswani et al. (2019)
explored line-search techniques and provided heuristics to automatically set larger learning rates. Li
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& Arora (2020) analyzed an exponential rate schedule. They showed that using SGD with momen-
tum (Liu & Belkin, 2020) and an exponentially increasing rate, coupled with batch normalization,
maintains a good balance between convergence and generalization across all standard architectures.

In line with more successful SGD adoption for overparameterized models, remarkable progress has
been achieved in optimization methods with adaptive learning rates. SGDP and AdamP use effective
rates without changing the update directions (Heo et al., 2021), which allows preserving the original
convergence properties of GD optimizers. RAdam adopts the learning rate warm-up heuristic to
rectify the variance of adaptive rates (Liu & Belkin, 2020) and, by that, stabilize training, accelerate
convergence, and improve generalization. To balance generalization and convergence on unstable
and extreme learning rates, Luo et al. (2019) put forward AdaBound and AMSBound which adopt
dynamic bounds on rates to eliminate the generalization gap between adaptive methods and SGD
and maintain a higher learning rate early in the training. These methods were further developed with
regard to a dynamic decay rate in (Liang et al., 2020).

Adopting the item response theory to address interpretability and explainability issues in deep learn-
ing has been reported to be successful. Kulikovskikh (2017) extended the model of logistic re-
gression with 4PL IRT model to reduce the disruptive influence of floor and ceiling effects on the
convergence of log-likelihood. Lalor et al. (2018) inverstigated the relationship between items dif-
ficulty and model performance in deep networks. Martı́nez-Plumed et al. (2019) interpretated the
IRT model parameters in terms of a classification problem. Chen et al. (2019) proposed a new IRT
model, which allows simulating continuous responses and enriches the family of Item Characteristic
Curves. The authors applied the model to evaluating the quality of different machine learning clas-
sifiers with items difficulty and discrimination. Kulikovskikh et al. (2020) suggested a new query
strategy for an active learning environment to increase the transparency of deep network architec-
tures.

B PROOF OF THE THEOREM

Proof. For z > 0, the equation wew = z has one positive solution w = W0(z), which increases
with z. If z = e, then w = 1. Thus, w > 1 if z > e. By taking logarithms of both sides, we get:

lnw + w = ln z;

w = ln z − lnw < ln z. (5)
When z > e,

1 < w < lnx

0 < lnw < ln ln z. (6)

Substituting equation 6 into equation 5 yields:
ln z − ln ln z < w < ln z, (7)

where the left side is positive for z > 1. Since w = W0(z), we can write:
ln z − ln ln z <W0(z) < ln z, (8)

Let us now modify the argument of W0(z) with regard to gDC(z):
b

z
+ z <W0(be

−z) + z <
b

z
− b

ln z
+ z;

b

z
+ z <W0(be

−z) + z < b
ln z − z
z ln z

+ z,

where ln z − z < 0 as ln z < z for all z > 0.

By definition, b < 0. Thus, for z > e:

b
ln z − z
z ln z

+ z > z;

b

z
+ z < z

As we see, the boundaries of W0(be
−z)+z are below and above the default convergence rate z.
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