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Abstract

In responding to a visual stimulus, cortical neurons exhibit a high degree of variability, and
this variability can be correlated across neurons. In this study, we use recordings from both
mice and humans to systematically characterize how the variability in the representation of
visual stimuli changes with learning, engagement and attention. We observe that in mice,
familiarization with a set of images over many weeks reduces the variability of responses,
but does not change its shape. Further, switching from passive to active task engagement
changes the overall shape by shrinking the neural variability only along the task-relevant
direction, leading to a higher signal-to-noise ratio. In a selective attention task in humans
wherein multiple distributions are compared, a higher signal-to-noise ratio is obtained via
a different mechanism, by mainly increasing the signal of the attended category. These
findings show that representation variability can be adjusted with task needs. A potential
speculative role for variability, consistent with these findings, is that it helps generalization.

1. Introduction

The activity of cortical neurons in response to a stimulus can be extremely variable even in
highly standardized recordings (de Vries et al., 2020; Siegle et al., 2021), despite the fact
that neurons have the capacity to be very reliable (e.g., peripheral neurons: Dong et al.,
2013). This variability limits the fidelity of sensory cortical coding (Rumyantsev et al.,
2020): as reviewed by Averbeck et al. (2006), this “noise” in neural activity across trials
is not independent between neurons, and coding bounds are mainly limited by correlated
noise (Kanitscheider et al., 2015; Moreno-Bote et al., 2014; Pitkow et al., 2015).

While the geometry of trial-to-trial variability has been studied in detail for simple
discrimination tasks (Rumyantsev et al., 2020), from a computational perspective, the role
of this variability is less clear. One proposed role is that variability encodes perceptual
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Figure 1: Depictions of metrics used to measure trial-to-trial variability. The noise projection
measures the mean absolute deviation of variability in a direction of interest. The q-value
computes the variance in a direction of interest, and normalizes it by the average variance
over all directions. The signal-to-noise ratio is the distance between the trial-averages of two
distributions, divided by the standard deviation along the same direction.

uncertainty through a sampling-based probabilistic representation (Orbán et al., 2016). Under
this assumption, anisotropic variability helps with generalization, with higher variance along
directions which require generalization and lower variance along directions which require
specificity (Shang et al., 2021). If trial-to-trial variability in responses evolved to help
generalization, we can make several predictions:

1. While it is important to generalize, especially for novel stimuli, more specialization is
needed with increased familiarity. We expect a decrease in variability with familiarity.

2. Sometimes, a task requires the creation of a category boundary between items that are
otherwise generalized over. Then, we expect a change in the signal to noise ratio along
the task-relevant direction.

3. Sometimes, a task requires a dynamic change in the response category, which is not
over-learned via experience, but rather instructed through an attentional cue. Then, we
expect a change in the signal-to-noise ratio along the directions which are relevant at
that moment.

To address predictions 1 and 2, we trained mice on a change-detection task, in which mice
watched a sequence of flashes of the same image for a variable number of presentations, and
had to respond with a lick when the image changed. For prediction 1, we compared the
variability in representation for a set of eight images to which the mice were exposed for
multiple weeks, against six novel images. For prediction 2, we compared the first hour of
recording, which consisted of an active task component, with the following hour consisting of
passive replay of the same sequence of stimuli (with the lick-port withdrawn, so no response
could be made). To address prediction 3, we used recordings from humans shown images
belonging to one of four categories, and instructed to provide yes/no responses for each
stimulus, given a target category.

Metrics to Measure Variability. We quantify the extent of variability in different
directions using three different metrics: (i) the noise projection, which measures the extent
of variability in a given direction; (ii) the q-value, a measure of the relative variability in a
given direction, compared to all other directions; and (iii) the signal-to-noise ratio (SNR),
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Figure 2: (a,b) Directions along which variability is measured in (a) the mouse and (b) the
human dataset. (c-n) Different variability metrics (on rows) computed for (c-e,i-k) the
change/no-change direction and (f-h,l-n) the between-image direction, for (c-h) novel vs.
familiar stimuli and (i-n) active vs. passive sessions in mice. Lines correspond to different
mice. (o-q) Metrics in two directions comparing unattended (“off-target”) and attended (“on-
target”) categories in humans. Lines correspond to different sessions and target categories.

which measures the (linear) distinguishability between two distributions (depicted in Fig. 1;
see Appendix A for details).

2. Results

We explore how the geometry of variability changes with stimulus familiarity and task
engagement in mice on a dataset we collected at the Allen Institute (2022), employing a
visual change detection task. Mice were presented one of eight images in 250ms flashes
separated by 500ms gray screens. The image changed after a variable number of flashes;
mice had to lick to receive a reward when the image changed. Apart from the “Familiar”
session with eight images that were seen during training, we also recorded an additional
“Novel” session with six new images and two familiar images. In each recording session, after
one hour of “active” task engagement, the mice were replayed the same sequence of stimuli
for “passive” viewing. Neural activity was recorded using six neuropixels probes targeting
visual cortical regions. We consider the variability in the representation defined by the spike
counts of visual cortical neurons in a 50–125ms window after stimulus onset.

Evidence from stimulus familiarity in mice. To examine how variability changes with
familiarity, we measure the variability of neural activity for familiar and novel images in the
Allen Institute dataset. We consider two directions: (i) that between the trial-averages under
change and non-change conditions for each image (red lines in Fig. 2a); (ii) the direction
between every pair of images within change and non-change conditions (blue lines in Fig. 2a).
The former is a task-relevant direction, while the latter is ethologically relevant.
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We compute the noise projection, the q-value and the SNR, for each image (in the
change/no-change direction) and for every pair of images (in the between-image direction),
and average over all images or image pairs (details in Appendix B). Going from ‘Novel’ to
‘Familiar’, we observe a reduction in the noise projection in both the change/no-change
direction (22.5% decrease in median across mice) and in the between-image direction
(21.6% decrease in median across mice; see Fig. 2c,f). However, we are unable to detect a
statistically significant decrease in the q-value (−3.5% median decrease in the change/no-
change direction, −2.9% decrease in the between-image direction; one-sided signed-rank test;
Fig. 2c–h), suggesting an overall shrinkage in neural variability. The shrinkage in variability
is accompanied by increased SNR in the direction between images (28.0% increase in median
across mice), suggesting that familiarity increases distinguishability of ethologically relevant
stimuli (depicted in Fig. A in the graphical abstract).

Evidence from task engagement in mice. To examine the effect of task engagement on
the geometry of neural variability, we compute the same metrics, in the same two directions,
between active and passive sessions (details in Appendix B; results in Fig. 2i–n). We find a
small but statistically significant reduction in variability in the change/no-change direction,
going from passive to active task engagement (6.7% reduction in median across mice; Fig. 2i).
Moreover, this decrease is highly specific, as indicated by a decrease in the q-value (17.7%
decrease in median across mice; Fig. 2j). The decreased noise is also accompanied by
increased distinguishability between non-change and change stimuli (22.4% increase; Fig. 2k;
also depicted in Fig. B in the graphical abstract). In contrast, we are unable to detect
statistically significant changes in any metric in the direction between images (median
decreases of −8.7%, 5.8% and 2.5% in Figs. 2l–n respectively). These results suggest that
the brain is able to dynamically decrease variability in a task-specific direction when moving
from a passive to an active task context.

Evidence from selective attention in humans. To understand how variability changes
when selective attention is paid to one of several stimulus categories, we examine a dataset
that we previously analyzed (Minxha et al., 2020). Single unit data was collected from
electrodes implanted in the medial temporal lobe (MTL) and medial frontal cortex (MFC)
of patients performing a categorization task. Patients were given a target category and had
to provide yes/no responses to stimulus images from one of four categories (fruits, cars,
human faces and monkey faces). We study the variability in the representation given by
spike counts of MTL and MFC neurons in a 100–700ms window after stimulus onset.

To understand the effect of attending to a particular category on the geometry of neural
variability, we compared two different directions: (i) the direction between a given category
when it was attended-to (i.e., it was the “on-target” category) and the other categories when
they were unattended (refer red lines in Fig. 2b); and (ii) the direction between the same
given category when it was unattended (i.e., “off-target”) and the other categories when
they were also unattended (refer blue lines Fig. 2b). This comparison specifically tells us
about the change in neural representation variability due to selective attention paid to a
given category1 (details of the analysis are in Appendix C).

1. Note that the distributions here are over multiple trials of a single category, which includes several distinct
images. In contrast, the task on mice had distributions corresponding to multiple trials of a single image.
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Fig. 2o–q present the above comparison for MTL neurons (similar results are observed on
MFC neurons as well), with individual lines for each category and session. Figs. 2o,p do not
show a statistically significant change in the noise projection or in the q-value between these
conditions (−4.1% and −6.3% decrease in median across target categories and sessions).
However, there is a highly significant increase in the SNR going from an unattended to an
attended state (42.9% increase in median across target categories and sessions), suggesting
that the brain dynamically changes the distinguishability of different categories based on
task context (depicted in Fig. C in the graphical abstract).

3. Discussion

Our work presents a confirmation of three predictions for the normative theory that the role
of variability is to promote generalization. To our surprise, the mechanisms of increased SNR
in engagement and attention were different. We were only able to confirm these predictions
indirectly, since we cannot experimentally manipulate the structure of variability directly to
test generalization performance.

Our results complement prior observations in the attention literature (Cohen and Maun-
sell, 2009; Ni et al., 2018; Rabinowitz et al., 2015), which showed that attention decreased
shared correlations in the V4 visual area of monkeys, providing a plausible explanation for
observed improvements in behavioral performance. Our results on attention do not cover
visual cortex, but we see increased SNR for the attended category in the higher order areas
of MTL and MFC. We also see decreased variance and increased SNR in a task-specific
direction, in visual cortex, when mice are engaged in a task.

This paper does not address what mechanisms can give rise to such changes. Mechanisms
that can affect neural correlations in a state-dependent manner have been discussed in the
literature (Doiron et al., 2016), but we leave further investigation of this to future work.
We have also not considered how classical adaptation, in response to repeated stimulus
presentation, interacts with the changes in variability we observe. Future work will also
consider whether the variability across mice (or across humans) in Fig. 2 can explain
behavioral differences observed between subjects.

An interesting avenue for follow-on studies is to introduce anisotropic trial-to-trial
variability in artificial neural networks, and then examine the degree to which they generalize,
and the directions in representation space they generalize over.
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Appendix A. Mathematical Definitions of the Variability Metrics

We measure the geometry of variability by considering the distribution of neural activity
over multiple trials. We assume that the neural activity of a single neuron is given by a
real number, e.g., its spike count within some temporal window. Then, in the datasets, the
overall distribution of neural activity is an empirical distribution given by a set of vectors
xi ∈ RN , i ∈ {1, ..., T}, where N is the number of neurons and T is the number of trials.

Let {xi} represent the N -dimensional neural activity vector across T trials, and ŵ be a
unit vector in some direction of interest. Let x̄ ∈ RN be the trial-averaged neural activity.
Then, the three variability metrics—the noise projection, the q-value, and the signal-to-noise
ratio—are given by:

NoiseProj({xi}, ŵ) =
1

T

T∑
i=1

|ŵT(xi − x̄)| (1)

6

https://portal.brain-map.org/explore/circuits/visual-behavior-neuropixels
https://portal.brain-map.org/explore/circuits/visual-behavior-neuropixels


The Geometry of Variability is Dynamic

q({xi}, ŵ) =
Var(ŵT(xi − x̄))

1
N

∑N
j=1 Var(xij − x̄j)

(2)

SNR({x(1)i }, {x(2)i }) =
∥x̄(1) − x̄(2)∥

Std
(
{v̂T(x

(1)
i − x̄

(1)
)} ∪ {v̂T(x

(2)
i − x̄

(2)
)}
) , (3)

where v̂ = (x̄(1) − x̄(2))/∥x̄(1) − x̄(2)∥. In most cases in the results section, we refer to the
noise projection and q-value between two distributions as well. In these cases, the noise
projection and q-value are more precisely defined as:

NoiseProj({x(1)i }, {x(2)i }) =
1

2T

T∑
i=1

|v̂T(x
(1)
i − x̄

(1)
)| + |v̂T(x

(2)
i − x̄

(2)
)| (4)

q({x(1)i }, {x(2)i }) =
Var

(
{v̂T(x

(1)
i − x̄

(1)
)} ∪ {v̂T(x

(2)
i − x̄

(2)
)}
)

1
N

∑N
j=1 Var

(
{x(1)ij − x̄

(1)
j } ∪ {x(2)ij − x̄

(2)
j }

) , (5)

where v̂ is as before, the unit vector along the line joining the centers of the two distributions.

On the Stability of our Estimates. It should be noted that the expressions provided
here involve estimating the variance or standard deviation of one-dimensional quantities.
We avoid computing the covariance matrix itself, since the dimensionality of our data is
larger than the number of available trials. A more careful analysis of the variance of our
estimates of these metrics is left to future work.

On the Skewness of Variability. In constructing our metrics, we ignore the precise shape
of the distribution of neural variability, and assume that it is approximately ellipsoidal. In
practice, if the variability is highly anisotropic, with different degrees of skew along different
directions, our metrics would not capture these effects, since they only consider up to the
second moment. This could occur, for instance, with Poisson spike counts at low rates,
wherein a Poisson distribution with a rate of λ has a positive skew of 1/

√
λ. A more careful

analysis of the impact of such effects are beyond the scope of the current study and could
be taken up in future work.

Appendix B. Analysis Pipeline for the Mouse Data

1. We only considered mice with both familiar and novel sessions, and which had at least
20 neurons in each of the following visual cortical regions: VISp, VISl, VISal, VISam
and VISpm. We sub-selected units that had a quality of ‘good’, with an SNR of at
least 1, and with fewer than 1 inter-spike interval violations.

2. In each session, we computed the neural activity by counting the spikes of each unit in
a 50–125ms time window after stimulus onset.

3. Stimulus flashes that corresponded to a ‘change’ were those trials in which the image
changed (i.e., was different from the image in the preceding flash) and the mouse was
engaged in the task (defined by having a rolling reward rate of at least 2 rewards/min).

4. Stimulus flashes that corresponded to a ‘non-change’ were those flashes that occurred
between 4 and 10 flashes after the start of a behavioral trial and before the image
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changed, which did not have an omission or follow an omission, on which the mouse
did not lick, and while the mouse was engaged.

5. The three variability metrics in the change/no-change direction were computed sep-
arately for every image, between change and non-change distributions. The metrics
were then averaged across all 8 images (for the familiar session) and across all 6 novel
images (for the novel session; the two shared familiar images were ignored).

6. The variability metrics in the between-image direction were computed separately for
every pair of images in the non-change class and for every pair in the change class.
The variability metrics were then averaged across all images pairs across both classes.

7. The active-passive comparison was performed on the 6 novel images.

8. Each line in Fig. 2c-n corresponds to a different mouse. Statistical significance was
assessed across mice using one-sided (paired) Wilcoxon signed-rank tests.

The selection criteria in Step 1 above yielded 39 mice with both familiar and novel
sessions, with 525.15 ± 98.63 units in familiar sessions, and 423.97 ± 80.67 units in novel
sessions (mean ± standard deviation). We also obtain 82.18 ± 19.57 trials of each image for
the non-change condition and 23.78 ± 6.06 trials of each image for the change condition.

Appendix C. Analysis Pipeline for the Human Data

1. We only considered sessions with at least 10 recorded units in the medial temporal
lobe (i.e., across both hippocampus and amygdala). We also removed all “control”
sessions from the analysis.

2. We considered only the categorization blocks and ignored the memory blocks from the
full experimental data (refer Minxha et al. 2020).

3. For each session, we computed the neural activity by counting spikes in a 100–700ms
window after stimulus onset.

4. We sub-selected those trials on which the patient recorded a correct response to the
categorization task.

5. For each category, we separated trials on which a stimulus image of that category
appeared when the category was on-target and off-target.

6. For each category, we measured the three variability metrics between its on-target
distribution and each of the three off-target distributions of the remaining categories,
and averaged over them. We then compared these against the metrics that were
computed between the selected category’s off-target distribution and each of the three
off-target distributions of the remaining categories, and averaged over.

7. The results in Fig. 2o-q collapse across all sessions (each patient could have more than
one session), and across all target categories within each session. Statistical significance
was assessed across all sessions and target categories using one-sided (paired) Wilcoxon
signed-rank tests.

Using the selection criteria described above, we had a total of 20 sessions across 11
patients. Each session had 22.7 ± 8.76 units (mean ± standard deviation).
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