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Abstract001

Large language models (LLMs) have demon-002
strated strong capabilities in text understanding003
and generation. However, they often lack factu-004
ality, producing a mixture of true and false in-005
formation, especially in long-form generation.006
In this work, we investigates the factuality of007
long-form text generation across various large008
language models (LLMs), including GPT-4,009
Gemini-1.5-Pro, Claude-3-Opus, Llama-3-70B,010
and Mistral. Our analysis reveals that factuality011
tend to decline in later sentences of the gener-012
ated text, accompanied by a rise in the number013
of unsupported claims. Furthermore, we ex-014
plore the effectiveness of different evaluation015
settings to assess whether LLMs can accurately016
judge the correctness of their own outputs: Self-017
Known (the percentage of supported atomic018
claims, decomposed from LLM outputs, that019
the corresponding LLMs judge as correct) and020
Self-Unknown (the percentage of unsupported021
atomic claims that the corresponding LLMs022
judge as incorrect). The results indicate that023
even advanced models fail to achieve perfect024
Self-Known scores, while their Self-Unknown025
scores remain notably above zero, reflecting026
ongoing uncertainty in their self-assessments.027
Moreover, we find a correlation between higher028
Self-Known scores and improved factuality,029
while higher Self-Unknown scores are asso-030
ciated with lower factuality. Even without sig-031
nificant changes in the models’ self-judgment032
(Self-Known and Self-Unknown), the number033
of unsupported claims can increases, likely as034
an artifact of long-form generation. Additional035
Retrieval-Augmented Generation (RAG) ex-036
periments also show the limitations of current037
LLMs in long-form generation, and provide038
valuable insights for improving factuality in039
long-form text generation.040

1 Introduction041

The long-context capabilities of large language042

models (LLMs) (OpenAI, 2023b; AI@Meta, 2024;043

Jiang et al., 2024; GeminiTeam, 2024; Anthropic,044

2024) have seen significant advancements in re- 045

cent years. Lots of work (Shaham et al., 2023; Bai 046

et al., 2024; An et al., 2024; Zhang et al., 2024; 047

Kuratov et al., 2024) have explored the ability of 048

LLMs to handle long contexts, however, relatively 049

few have examined their ability for long-form text 050

generation. 051

Despite LLMs have the impressive generative 052

abilities, these models are prone to producing hal- 053

lucinations (Li et al., 2023; Min et al., 2023) where 054

the generated content often blends factual and fab- 055

ricated information. This tendency not only un- 056

dermines performance but also poses substantial 057

risks in practical applications. To assess the factu- 058

ality of responses from LLMs, recent research (Fan 059

et al., 2020; Wright et al., 2022; Min et al., 2023; 060

Manakul et al., 2023) has introduced a method that 061

breaks down generations into atomic claims – short 062

statements each containing a single piece of infor- 063

mation. These atomic claims are then individually 064

evaluated to determine whether they are supported 065

by evidence or unsupported. 066

To ensure the reliable use of LLMs, it is also 067

crucial that they possess the ability to recognize 068

not only "what they know" but also "what they 069

don’t know." Recent studies, such as those by Ka- 070

davath et al. (2022); Liu et al. (2022); Guerreiro 071

et al. (2023), have shown that language models can 072

assess the validity of their own claims. However, 073

Srivastava et (2023); Yin et al. (2023) have pointed 074

out the limitations of LLMs in recognizing their 075

own knowledge gaps. 076

In this work, we investigate the factuality pat- 077

terns of long-form text generation across various 078

LLMs. We first assess the factuality of long-form 079

generation at different relative positions using two 080

annotated datasets and two models: ChatGPT and 081

PerplexityAI (which integrates a search engine). 082

Our findings indicate that sentences generated ear- 083

lier in the sequence generally demonstrate higher 084

factuality. However, these later-generated sen- 085
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tences also contain more unsupported claims and086

fewer supported claims.087

We further examine the effectiveness of different088

evaluation settings to assess whether LLMs can ac-089

curately evaluate the correctness of atomic claims090

in their own generated outputs. To quantify the cor-091

responding models’ ability to judge the correctness092

of atomic claims, we calculate two metrics: the093

Self-Known score (the percentage of supported094

atomic claims judged as correct by the LLMs) and095

the Self-Unknown score (the percentage of unsup-096

ported atomic claims judged as incorrect by the097

LLMs). Our exploration includes three methods,098

notably a novel approach where the final answer099

option is replaced with "None of the above". This100

modification appears to provide a more accurate101

measure of the LLMs’ abilities, as evidenced by a102

higher flip rate for supported claims and an increas-103

ing flip rate at later relative positions. This suggests104

that the model reassesses its confidence when faced105

with an option signaling uncertainty. In contrast,106

the low flip rate for unsupported claims indicates a107

consistent judgment of their incorrectness. These108

results suggest a nuanced understanding by LLMs109

of supported versus unsupported claims and under-110

score the importance of specific evaluation settings111

to accurately gauge model performance. Our find-112

ings align with human annotations for two LLMs,113

although some discrepancies, particularly with the114

PerplexityAI model, suggest gaps in estimation.115

The main contributions of our work are as fol-116

lows:117

1. We explored the factuality patterns of long-118

form text generation across various model families119

(GPT-4, Gemini-1.5-Pro, Claude-3-Opus, Llama-120

3-70B, and Mistral). We found that even the most121

advanced LLMs typically exhibit lower factual-122

ity scores in the later segments of long-form text.123

Retrieval-Augmented Generation (RAG) systems124

show a similar trend, although they tend to main-125

tain higher factuality overall.126

2. We analyzed Self-Known and Self-Unknown127

ratios for these LLMs across different segments of128

their own generated texts. The results showed rel-129

atively higher Self-Known scores; however, even130

strong LLMs (GPT-4, Gemini-1.5-Pro, Claude-3-131

Opus, etc.) generally achieved only about 50% on132

the Self-Known score. The Self-Unknown scores133

were significantly above zero. These findings indi-134

cate that even the most advanced LLMs still pro-135

duce outputs with limited self-acknowledgment136

ability.137

3. We developed a mathematical framework link- 138

ing Self-Known and Self-Unknown scores to fac- 139

tuality, providing deeper insights into their rela- 140

tionship. Both empirical and theoretical results 141

demonstrate that higher Self-Known scores corre- 142

spond to improved factuality, while higher Self- 143

Unknown scores are associated with reduced factu- 144

ality. Moreover, even without significant changes 145

in the models’ self-judgment (Self-Known and Self- 146

Unknown), the number of unsupported claims may 147

still increase, likely reflecting the inherent chal- 148

lenges of long-form generation. 149

4. Retrieval-Augmented Generation (RAG), 150

which supplies additional knowledge, can improve 151

factuality. However, it fails to fully address the 152

issue of lower factuality at a later position. This 153

highlights the need for alternative decoding algo- 154

rithms specifically designed for long-form genera- 155

tion tasks. 156

2 Long-Form Text Generation 157

To evaluate the factuality of LLM responses, re- 158

cent work (Liu et al., 2023; Chen et al., 2022; Min 159

et al., 2023) breaks a generation into a series of 160

atomic claims—short statements that each contain 161

one piece of information. Each atomic claim is 162

then individually evaluated to determine whether 163

it is supported or unsupported. In this section, we 164

first explore the factuality patterns of these atomic 165

claims in long-form text generation. 166

2.1 Observations 167

In order to explore the factuality of long-form gen- 168

eration at different relative positions, we use the 169

human annotated data from Min et al. (2023) to 170

compute the macro-average percentage of three 171

different claims (supported, unsupported, and irrel- 172

evant) across five different relative positions. In 173

their human-annotated data, each long LLM gener- 174

ation is decomposed into atomic claims and each 175

atomic claim is assigned with one of the three la- 176

bels (“supported”, “not-supported”, “irrelevant”). 177

The detailed procedures for computing fractions 178

of different type claims at different relative posi- 179

tions are as following: 180

1) For every sentence in a generation, we com- 181

puted the fraction of the number of supported 182

atomic claims, unsupported atomic claims and ir- 183

relevant claims; 2) We got the relative position of 184

each sentence, e.g., if it is the third sentence out 185

of six, its relative position would be 3/6 = 50%; 3) 186
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We then grouped all sentences that fall within the187

same relative position range: 0-20%, 20%-40%,188

40%-60%, 60%-80% and 80%-100%; 4) Finally,189

we computed the macro-average percentage within190

the same relative position group.191

Figure 1 (a) shows the ChatGPT results (Figure 8192

in the Appendix shows the PerplexityAI results.).193

We can see that unsupported claims percentage is194

higher when these sentences are generated later.195

We hypotheses the possible reasons are the error196

propagation and these generated claims are with197

low confidence by LLMs.198

We also compute the number of different type199

claims at different relative positions with the above200

similar procedures. As shown in Figure 1 (b),201

LLMs tend to generate less reliable information202

as they continue the generation. More unsupported203

claims are included in the continued generation.204

Open Questions. Is the phenomenon above due205

to LLMs having less knowledge about later gen-206

erations? Can LLMs recognize when claims are207

supported and when they are not? Do LLMs iden-208

tify unsupported claims more effectively when they209

appear later in the text compared to earlier ones?210

3 Self-Known and Self-Unknown211

To investigate these questions, we examine whether212

the corresponding LLMs recognize their atomic213

claims by computing two metrics: Self-Known214

(the percentage of supported atomic claims that the215

corresponding LLMs judge as correct) and Self-216

Unknown (the percentage of unsupported atomic217

claims that the corresponding LLMs judge as in-218

correct). While there is related work, such as Ra-219

jpurkar et al. (2018); Xiong et al. (2024), our ap-220

proach differs in two key ways: (1) Evaluation221

is conducted on atomic claims, which are derived222

from sentences in long-form generation, rather than223

assigning a score to the entire model output; (2)224

Our focus is on factuality (whether an atomic claim225

is true or false), rather than on uncertainty scores226

(i.e., "How likely is the above answer to be cor-227

rect?").228

We explore the computation of Self-Known229

and Self-Unknown using the following three ap-230

proaches ( with the corresponding prompt tem-231

plates provided in Appendix Section B):232

• Direct-Asking: In this approach (Rajpurkar233

et al., 2018), the atomic claim is directly given234

to the corresponding LLMs and be asked235

whether the statement is true or false.236

• Question-Answering: Given an atomic 237

claim, a question-answer pair can be de- 238

rived (Trischler et al., 2017; Rajpurkar et al., 239

2018; Hu et al., 2024) with GPT-4 Turbo. 240

For example, "Lanny Flaherty is an Amer- 241

ican." can be used to derived a question- 242

answer pair ("What nationality is Lanny Fla- 243

herty?", "American"). Then, given the ques- 244

tion and answer, we ask the corresponding 245

LLMs whether the answer is true or false. 246

• Question-Answering w/NOA: Similar to the 247

above approach, a question-answer pair is de- 248

rived according to each atomic claim. One 249

big different is: given question and answer, 250

one more addition choice ( "None of the 251

above") (Rajpurkar et al., 2018) is given to the 252

corresponding LLMs. This is a well-defined 253

evaluation because it can check whether the 254

model actually knows the answer of the ques- 255

tion, especially if the question is vague or 256

context-information is missing. 257

We compute the Self-Known score and the Self- 258

Unknown score using these prompt templates. The 259

human annotated data on ChatGPT1 are used in 260

this experiments. Figure 2 presents the results on 261

ChatGPT. 262

Comparison on the above three evaluation set- 263

tings With the first two settings, the results of 264

Self-Known score and Self-Unknown score are 265

similar. However, the results of the third setting 266

differ from the other two. We hypothesize that the 267

reason is that the added choice, “None of the above” 268

which allows the LLM to determine whether it 269

knows the answer to the question. 270

To examine the effect of this setting, we plot the 271

flip rate (claims judged as correct by the LLM in 272

setting (b) but judged as incorrect in setting (c)) 273

for supported and unsupported claims. As shown 274

in Figure 2d, there is a high flip rate for supported 275

claims, and this rate increases with higher relative 276

positions. In contrast, there is almost no flipping for 277

unsupported claims. Therefore, setting (c) is more 278

suitable for checking whether the LLM knows a 279

atomic claim. The high flip rate observed for sup- 280

ported claims suggests that the model is reconsid- 281

ering its initial judgments when presented with the 282

option “None of the above”. This indicates that the 283

model may not be entirely confident in its original 284

1The labeled ChatGPT data is also from Min et al. (2023)
as above. There are 183 long generations of ChatGPT.
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Figure 1: Long-form generation across different relative positions (%) for ChatGPT.
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(c) Question-Answering W/ NOA

0

10

20

30

40

[, 20) [20, 40) [40, 60) [60, 80) [80, )

supported unsupported

Flip Rate

(d) Flip rate (%) from setting (b) to setting (c) across dif-
ferent relative positions (%) for both supported claims and
unsupported claims. The high flip rate of supported claims
indicates that prompting with setting (c) better recognizes
whether LLMs accurately assess their knowledge of atomic
claims.

Figure 2: Self-Know and Self-Unknown results of ChatGPT across different relative positions (%). S: factuality
(percentage of supported atomic claims); N: percentage of unsupported atomic claims; S (S-known): Self-Known
score; N (S-unknown): Self-Unknown score

answers and is more likely to recognize uncertainty.285

The increasing flip rate for higher relative positions286

further supports this, implying that the model’s287

confidence decreases as the position of the claim288

within the context changes.289

In summary, we observed similar results be-290

tween setting (a) (Direct-Asking) and setting (b) 291

(Question-Answering), and a significant difference 292

between setting (b) (Question-Answering) and set- 293

ting c (Question-Answering W/ NOA). The deeper 294

analysis between setting b and setting c revealed 295

that setting (c) recognizes atomic claims more 296
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confidently and treats atomic claims that flip as297

unknown. This is why we chose to use setting (c)298

in the subsequent experiments.299

4 Analysis300

We denote the prompt input of LLMs as x and long301

output of LLMs as y. The binary auxiliary label302

d = 1 indicates the LLM output is factual correct303

and d = 0 indicates LLM output is wrong.304

We assume that P(d = 1 | y,x) is equal to fac-305

tuality score2 σ of LLM output y. Given x, the306

joint distribution of between the auxiliary label and307

model output (d,y) is308

σ ∗P(y | x) (1)309

=P(d = 1 | y,x)∗P(y | x) = P(d = 1,y | x)310

=P(d = 1,ycorrect | x)σ+311

P(d = 1,ywrong | x)(1−σ)312

=P(d = 1 | ycorrect)P(ycorrect | x)σ+313

P(d = 1 | ywrong)P(ywrong | x)(1−σ) (2)314

ycorrect refers to model outputs aligned with the315

ground truth and ywrong refers to outputs that are316

wrong. Because y is the generated output according317

to the log-likelihood, the correct part and incorrect318

part have similar log-likelihood. Then, it is reason-319

able to have this following assumption:320

P(y | x)≈ P(ycorrect | x)≈ P(ywrong | x)321

Then, after cancel the above three terms in Equa-322

tion 1 and Equation 2 ,323

σ =P(d = 1 | ycorrect)σ +P(d = 1 | ywrong)(1−σ)324

We denote P(d = 1 | ycorrect) and P(d = 0 | ywrong)325

as Self-Known score (percentage of supported326

atomic claims judged as correct by LLMs) and327

Self-Unknown score (percentage of unsupported328

atomic claims judged as incorrect by LLMs) re-329

spectively. Once the above formula is solved, we330

can determine the relationship among the factual-331

ity score, Self-Known score, and Self-Unknown332

score:333

σ =
1−Self-Unknown

2−Self-Unknown−Self-Known
(3)334

Where σ is the factuality score.335

2This is an assumption we are making: that there is no
overconfidence, and the confidence score is approximately
equal to the factuality score.

Factuality Vs. Self-Known Vs. Self-Unknown 336

Given Self-Unknown ∈ [0,1] and Self-Known ∈ 337

[0,1], the factuality score increases when the Self- 338

Known score is increased or the Self-Unknown 339

score is decreased. This matches our observations 340

in Section3 and Figure 2 (c). 341

Estimation of factuality Score In Equation 3, 342

we present a method for estimating the factuality 343

score. We use the Self-Known and Self-Unknown 344

results of the corresponding model (ChatGPT) with 345

configuration (c) to estimate the factuality score 346

across different relative positions. As shown in Fig- 347

ure 3, our estimation closely matches the human- 348

annotation results3. 349

0

25

50

75

100

[, 20) [20, 40) [40, 60) [60, 80) [80, )

Human Our Estimation

Figure 3: Human-annotation factuality score (%) and
our estimation with Equation 3 across different relative
positions (%).

5 Automatic Results on Additional LLMs 350

In this section, we examine the trends in factuality, 351

Self-Known scores, and Self-Unknown scores of 352

other advanced LLMs using an automated evalua- 353

tion tool. 354

5.1 Automatic Tool Setting 355

In Section 2, we used the human annotated data 356

(atomic claims are short statements that are de- 357

composed from the model’s generation, and each 358

atomic claim is labeled as either supported or un- 359

supported based on its factual correctness.). 360

Configuration We use the tool FActScore (Min 361

et al., 2023) for factuality evaluation with the fol- 362

lowing configuration: the latest version of GPT-3.5 363

(gpt-3.5-turbo-0125) is used to break a generated 364

text into a series of atomic claims and evaluate each 365

atomic claim against a retrieved knowledge (model 366

3Due to scarcity of human-annotated, long-form LLM
generation datasets, we did not show
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name “retrieval+llama+npm” is used during the367

evaluation)4.368

Results Figure 7 in the Appendix shows the com-369

parison between the tool’s evaluation and human370

annotation results. We notice the tool’s estimation371

is highly correlate well with human annotations.372

For number of atomic claims, the absolute differ-373

ence is not bigger than 1. And the trend of tool’s374

estimation is almost the same as human annotation.375

For factuality estimation, the tool’s results are well-376

aligned with human annotations for two OpenAI377

models. Although there is an estimation gap for378

the PerplexityAI model, the trend of the estimation379

remains consistent with human annotations.380

Takeaway. The tool with above configurations381

can well capture the trend of number of atomic382

claim and factuality.383

5.2 Additional LLMs384

In this section, we explore the factuality of long-385

form text generation across different relative posi-386

tions using automatic tools.387

5.2.1 Experimental Setup388

For each LLM, we follow four key steps to obtain389

experimental results: (1) generating text outputs;390

(2) filtering the generated content; (3): evaluat-391

ing factuality; and (4): estimating Self-Known392

and Self-Unknown scores with the corresponding393

LLM. For more details on each step, please refer394

to Appendix Section E.395

5.2.2 Results396

Figure 4 show results of several powerful LLMs (397

Gemini-1.5-pro, Claude-3-opus, and two Mistral398

AI models). Two additional LLMs (GPT-4, and399

Llama-3-70B-Instruct) results are provided in Fig-400

ure 9 in the Appendix.401

Decreasing Factuality: Strong Start, Later De-402

cline According to the bold blue lines in Figure 4,403

we observe the highest factuality scores are ob-404

served at the beginning of the generated text across405

all relative positions.406

Factuality Vs. Self-Known Vs. Self-Unknown407

Overall, we observe that the Self-Known score is408

positively correlated with factuality, as indicated409

by the two blue lines, and the Self-Unknown score410

4In the original work, text-davinci-003 was used to get
atomic claims and ChatGPT is used to evaluate whether each
atomic is supported or unsupported.

is positively correlated with the percentage of un- 411

supported atomic claims, as shown by the two red 412

lines in each figure. For these advanced LLMs, the 413

trend of these three scores across different positions 414

shows smaller variation. 415

Clear Difference in the Number of Unsupported 416

Claims Across Positions In Figure 4 (e) and 417

(f), observed minimal differences in factuality for 418

the two models (Mixtral-8x7b and Mistral-Large). 419

However, as depicted in Figure 5, the number of 420

unsupported claims increases significantly from 421

the beginning to the end of the generated text. It 422

indicates the challenges of long-form generation. 423

This also highlights a limitation in relying solely 424

on factuality scores for evaluation. 425

No Significant Changes in Self-Judgment for 426

Some Advanced LLMs We can observe that 427

there is no big change according to dashed lines 428

(Self-Known and Self-Unknown) in Figure 4. How- 429

ever, the number of unsupported claims are increas- 430

ing as shown in Figure 5. 431

How to Improve Factuality Score? In Equa- 432

tion 3, we propose estimating the factuality of a 433

LLM using Self-Known and Self-Unknown scores. 434

A higher Self-Known score typically corresponds 435

to higher factuality. However, does this mean 436

LLMs would achieve 100% factuality if they had a 437

100% Self-Known score and 0 Self-Unknown score 438

on their own generation? The answer is no. It is a 439

necessary condition, not a sufficient one for achiev- 440

ing 100% factuality. In the derivation of Equation 3, 441

several additional assumptions are made5. 442

According to our results, a higher Self-Known 443

score is usually associated with higher factuality, 444

while a higher Self-Unknown score is associated 445

with lower factuality for LLMs. This indicates 446

that it is challenging for LLMs to recognize un- 447

supported claims on their own. Therefore, a judg- 448

ment model that incorporates an external knowl- 449

edge source is necessary for this recognition. 450

Some reasonable question arises: Is the decoding 451

error of LLMs caused by the absence of relevant 452

knowledge? Can Retrieval-Augmented Generation 453

(RAG), which provides additional knowledge, re- 454

solve the issue of lower factuality in later stages of 455

5For instance, one key assumption is that the probability of
correctness given the model output and input P(d = 1 | y,x),
equals the factuality score σ of output y, However, if a LLM
becomes overconfident in generating answers, the term P(d =
1 | y,x) may significantly exceed the actual factuality score.
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Figure 4: Self-Know and Self-Unknown results of different LLMs across different relative positions (%). S:
factuality (percentage of supported atomic claims); N: percentage of unsupported atomic claims; S (S-known):
Self-Known score; N (S-unknown): Self-Unknown score.
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Figure 5: There may be minimal change in the factuality
score, but a significant increase in the number of unsup-
ported claims across different relative positions(%).

generation? In next section, we present the explo-456

ration results of RAG experiments across different457

LLMs.458

5.3 Retrieval-Augmented Generation459

Retrieval-Augmented Generation (RAG) is a460

widely used approach for enhancing language461

model performance in various applications. In462

RAG, relevant text segments are retrieved from463

an external knowledge source and integrated into464

the model’s responses. For our retrieval corpus, we 465

utilized the English Wikipedia as of April 1, 2023, 466

with each page divided into chunks of up to 256 467

tokens. These retrieved passages, containing facts 468

relevant to the entity, were incorporated into the 469

LLMs’ context to improve the factual accuracy of 470

the generated content.6. 471

According to Figure 6a, in the RAG setting, al- 472

though there are significantly fewer unsupported 473

atomic claims overall, a notable increase in the 474

number of unsupported claims is observed in later 475

stages of generation. As shown in Table F, LLMs 476

can still response with lots of unsupported claim 477

even given context knowledge. This increase is 478

likely due to error propagation within the LLMs, 479

highlighting the challenges of long-form genera- 480

tion even when relevant parts are provided. 481

Figure 6a demonstrates that the RAG system ex- 482

hibits significantly lower Self-Known scores and 483

higher Self-Unknown scores. This discrepancy 484

may stem from the corresponding LLM’s lack of 485

prior knowledge regarding the retrieved content in 486

the RAG system, causing it to mistakenly assess 487

6One example is shown in Table F.
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Figure 6: RAG experiments on two strong LLMs (Gemini-1.5-pro and GPT-4).

accurate information as incorrect.488

In these RAG experiments, when all relevant489

knowledge is incorporated, LLMs show improve-490

ments in factuality. However, they still struggle491

with lower factuality in later generations. This492

highlights the need for alternative decoding algo-493

rithms specifically designed for long-form gener-494

ation tasks. Implementing more sophisticated de-495

coding techniques could help mitigate the artifacts496

associated with long-form generation.497

6 Related Work498

Factuality Evaluation Recent advancements499

have seen significant efforts in quantifying the fac-500

tuality of LLM generations. For short answers,501

factuality often correlates with fact verification,502

which directly assesses whether the generation503

aligns with extensive knowledge sources and refer-504

ences (Thorne et al., 2018; Honovich et al., 2022)505

or utilizes language models (Lin et al., 2022). How-506

ever, evaluating factuality in long-form content507

poses greater challenges due to the complexity of508

the generation process. Recent studies (Fan et al.,509

2020; Wright et al., 2022; Min et al., 2023) have510

approached this challenge by breaking down long511

generations into atomic claims. While these ap-512

proaches predominantly focus on factual precision,513

some studies (Wei et al., 2024) also consider evalu-514

ating factual recall. In our work, we concentrate on515

factual precision akin to Min et al. (2023). Moving516

forward, the development of more robust automatic517

tools will be crucial for advancing factuality explo-518

ration in long-form generation tasks.519

Self-Know and Self-Unknown Recent studies520

have extensively explored the concepts of Self-521

Known and Self-Unknown in language models. For522

instance, Kadavath et al. (2022); Liu et al. (2022); 523

Guerreiro et al. (2023) demonstrated that language 524

models are capable of assessing the validity of their 525

own claims and predicting their ability with answer- 526

ing true/false questions accurately. Meanwhile, Sri- 527

vastava et (2023); Yin et al. (2023) highlighted 528

the limitations of LLMs in acknowledging their 529

unknowns, focusing on their ability to recognize 530

unknown knowledge. In our work, we specifically 531

investigate whether LLMs can identify and recon- 532

sider unsupported claims generated from their own 533

outputs. Our results indicate that LLMs struggle to 534

accurately judge unsupported atomic claims from 535

their own generations. We also find that a lower 536

Self-Unknown score or a higher Self-Known score 537

corresponds to higher factuality. 538

7 Conclusion 539

In this study, we investigate the factuality of long- 540

form text generation across different model fam- 541

ilies and relative positions. Our findings reveal 542

a trend of lower factuality in sentences generated 543

later in the sequence. Additionally, we propose 544

methods for enabling LLMs to accurately assess 545

the correctness of atomic claims derived from 546

their own outputs. We introduce an estimation 547

of factuality using Self-Known and Self-Unknown 548

scores, finding that higher Self-Known scores corre- 549

late with increased factuality, whereas higher Self- 550

Unknown scores correlate with decreased factual- 551

ity. These experiments highlight the limitations of 552

current LLMs in long-form generation. Further re- 553

search, such as developing a separate judge model 554

or implementing a sophisticated decoding method, 555

is needed to provide valuable insights for improv- 556

ing factual accuracy in text generation. 557
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8 Limitations558

Following are limitations in our work.559

Evaluation of Self-Know and Self-Unknown In560

this work, we design three different methods for561

estimating Self-Known and Self-Unknown scores562

on LLMs’ own generation. We find that the third563

setting (c), which includes the option "None of the564

above," is effective in determining whether LLMs565

can accurately judge the correctness of claims gen-566

erated from their own outputs. Although our results567

show that these scores are well aligned with the568

estimation of factuality scores using Equation 3,569

exploring better methods for evaluating the correct-570

ness of claims with LLMs would still be beneficial571

for future study.572

Factuality Evaluation In this work, we limit the573

domain of long-form generation to ensure accurate574

factuality evaluation. The concern is that broaden-575

ing the topic range might compromise the accuracy576

of our factuality assessments, rendering our study577

less effective. Recently, evaluation tools (Guan578

et al., 2024; Es et al., 2023; Tang et al., 2024; Wei579

et al., 2024) have been explored. With stronger580

tools, it is possible to explore a wider range of581

domains beyond Wikipedia.582

Moreover, in this work, we primarily focus on583

factuality precision. However, considering factu-584

ality recall is also important, as it ensures that the585

omission of significant pieces of information is pe-586

nalized during evaluation. By incorporating both587

precision and recall, we can achieve a more com-588

prehensive and accurate assessment of factuality in589

long-form generation.590
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A LLMs815

Following are the models that are used in our ex-816

periments.817

• InstructGPT (text-davinci-003) (Ouyang818

et al., 2022):819

• ChatGPT (OpenAI, 2023a)820

• PerplexityAI7821

• GPT-4, GPT-4-Turbo (OpenAI, 2023b)822

• Claude-3-Opus (Anthropic, 2024)823

• Gemini-1.5-Pro (GeminiTeam, 2024)824

• Mixtral-8x7b (Jiang et al., 2024)825

7https://www.perplexity.ai/

• Mistral-Large8 826

• Llama-3-70B-Instruct (AI@Meta, 2024) 827

B Prompt Templates 828

B.1 Prompts Self-known and Self-unknown 829

Direct-Asking Given an atomic claim {claim} 830

and person {person}, we use the following tem- 831

plate: 832

Following is a statement from a 833

bio of {person}. Please check 834

whether the statement is correct 835

or wrong according to your 836

knowledge. 837

838

{claim} 839

Is this statement true or false? 840

Question-Answering Give a question answer 841

pair <{q}, {a}> that is derived from an atomic 842

claim, the following template is used to determine 843

whether LLMs consider the proposed answer is 844

correct: 845

Question: {q} 846

Proposed Answer: {a} 847

Is the proposed answer: 848

(A) True 849

(B) False 850

The proposed answer is: 851

Question-Answering w/ None of the above 852

Given the question answer pair <{q}, {a}> de- 853

rived from an atomic claim, the following template 854

is used: 855

Question: {q} 856

Proposed Answer: {a} 857

Is the proposed answer: 858

(A) True 859

(B) False 860

(C) None of the above 861

The proposed answer is: 862

B.2 Prompts for Creating the 863

Question-answer Pair 864

Given an atomic claim {claim} of a bio and the 865

person {person}, a question-answer pair can be 866

derived with gpt-4 with the following template: 867

8https://mistral.ai/technology/#models

11

https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/W17-2623
https://arxiv.org/abs/2403.18802
https://arxiv.org/abs/2403.18802
https://arxiv.org/abs/2403.18802
https://doi.org/10.18653/v1/2022.acl-long.175
https://doi.org/10.18653/v1/2022.acl-long.175
https://doi.org/10.18653/v1/2022.acl-long.175
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://doi.org/10.18653/v1/2023.findings-acl.551
https://doi.org/10.18653/v1/2023.findings-acl.551
https://doi.org/10.18653/v1/2023.findings-acl.551
https://doi.org/10.18653/v1/2024.acl-long.814
https://doi.org/10.18653/v1/2024.acl-long.814
https://doi.org/10.18653/v1/2024.acl-long.814


Following is a fact from a bio of868

{person}. Please ask a question869

and provide the answer. The870

answer is as concise as you871

can, using a single phrase if872

possible. The answer is also873

part of the provided fact. The874

question and answer is separetd875

with #.876

877

{claim}878

C Rules for Filtering Generations879

Following are the rules we find that are useful to880

filter out unresponsive generation.881

I don’t have ...882

I do not have ...883

I need more information ...884

Please provide me ...885

Please clarify886

I apologize ...887

there isn’t enough information888

Unfortunately, there is no ...889

If you can provide more890

information ...891

you could provide more ...892

It seems you might ...893

894

D Automatic Tool Results895

See Figure 7896

E Details on Computing Experimental897

Result For each LLM898

Step 1: Obtaining generations We feed a899

prompt “Tell me a bio of <entity>” to the LLM900

and take the generation. 500 human entities (Min901

et al., 2023) are used to generate these biographies.902

Step 2: Filtering generations For lots of LLMs,903

a biography is not provided if they think they do904

not have enough detailed information to provide a905

biography. We implement rules to filter out these906

generations9.907

Step 3: Evaluation factuality We use the tool908

for breaking generations into atomic claims and909

evaluate each claim whether it is supported or not.910

In order to save cost, we randomly sampled 100911

9The useful rules are shown in Section C.

samples among the filtered generations. During fac- 912

tuality evaluation, Wikipedia’s knowledge source 913

is used in the automatic tool. 914

Step 4: Estimation of Self-Known and Self- 915

Unknown With above decomposed atomic 916

claims, we use GPT-4 Turbo to get question-answer 917

pairs. For each question-answer pair, a prompt tem- 918

plate (see 3 ) is used to determine whether LLMs 919

consider the proposed answer to be correct. The 920

ratios of supported claims judged as correct, and 921

unsupported claims judged as incorrect are then 922

obtained. 923

F More results 924

#Claims / Gen Filtered Rate (%)

GPT-4 60.8 12.0
Gemini-1.5-pro 67.5 30.0
Claude-3-opus 41.0 42.0
Llama-3-70B-Instruct 45.9 17.2
Mixtral-8x7b 44.8 0.4
Mistral-Large 48.3 5.0

Table 1: Statistics for various LLMs when generating
biographical paragraphs.

Table 1 in the Appendix presents two results 925

for various LLMs: the average number of atomic 926

claims per generation and the filtered rate. The 927

filtered rate represents the percentage of instances 928

where the LLMs do not provide valuable responses, 929

often due to perceiving insufficient information to 930

generate a meaningful answer. We notice that the 931

behavior of Claude-3-opus and Gemini-1.5-pro is 932

more conservative. These models frequently decide 933

not to provide a valuable response, instead stating 934

something like “I do not have enough verified in- 935

formation”. 936
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Figure 7: Comparison between our used tool and human annotation. The number of atomic claims and factuality
(%) across different relative positions (%) are shown for three LLMs: InstructGPT (text-davinci-003), ChatGPT and
PerplexityAI.
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Figure 8: Long-form generation across different relative positions (%) for PerplexityAI.
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Figure 9: Self-Know and Self-Unknown results of different LLMs across different relative positions (%). S:
factuality (percentage of supported atomic claims); N: percentage of unsupported atomic claims; S (S-known):
percentage of supported atomic claims judged as correct by LLMs; N (S-unknown): percentage of unsupported
atomic claims judged as incorrect by LLMs.
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Figure 10: Self-Know and Self-Unknown results of different RAG models across different relative positions (%). S:
factuality (percentage of supported atomic claims); N: percentage of unsupported atomic claims; S (S-known):
percentage of supported atomic claims judged as correct by LLMs; N (S-unknown): percentage of unsupported
atomic claims judged as incorrect by LLMs.
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Document [0] Jessie Mae Brown Beavers Jessie Mae Brown Beavers (March 18, 1923 – September
6, 1989) was an American journalist based in Los Angeles, California. She was an editor at the "Los
Angeles Sentinel" from 1949 to 1989, and served sixteen years on the city’s Human Relations Com-
mission, beginning with her 1973 appointment by mayor Tom Bradley.Early life. Jessie Mae Brown
was born in Los Angeles, the daughter of Arnetta Hoyt Brown, a Baptist deaconess. She attended
the University of California, Los Angeles, where she earned a bachelor’s degree in sociology.Career.
Brown was editor of the family section of the "California Eagle" from 1944 to 1949, when she joined
the staff of the "Los Angeles Sentinel" as an editor. In 1966 she was one of the organizers and leaders
of the Los Angeles chapter of the National Association of Media Women. In 1969, she was given
the Outstanding Woman in Journalism Award by the University of Southern California chapter of
Theta Sigma Phi. Beavers served on the Los Angeles Human Relations Commission for sixteen years,
after she was appointed by mayor Tom Bradley in 1973. On the commission, she worked closely with
fellow commissioner Toshiko S. Yoshida during the American bicentennial
Document [1] , chaired the affirmative action subcommittee, and in 1982 organized hearings on
racial bias in the entertainment industry. She also served one the Los Angeles County Music and
Performing Arts Commission. She ran for a seat on the Los Angeles City Council in 1987. Beavers
was a member of Jack and Jill and the Lullaby Guild. In 1968 she was cited for her work by the
President’s Youth Council. In 1972 she was honored alongside Quincy Jones, editor Ruth Washington,
and student leader Willis Edwards by the Committee of Women for Good Government. In 1973 she
was honored by colleagues and admirers (including Mayor Bradley, judge Vaino Spencer, columnist
Gertrude Gipson, and clubwoman Leontyne Butler King) at a tribute event at the Beverly Wilshire
Hotel, hosted by singer Thelma Houston.Personal life. In 1947 Brown married insurance executive
Leroy A. Beavers, Jr., nephew of Los Angeles businessman George A. Beavers Jr. Actress Dorothy
Dandridge was one of her bridesmaids in the wedding. They had three children. In 1979, she was
assaulted and robbed in the driveway of her home. She died in 1989, aged 66 years, in Los Angeles.
Her grave is at Forest Lawn Cemetery in Gl
Document [2] endale, California.

Question: Tell me a bio of Jessie Mae Brown Beavers.

Response: Jessie Mae Brown Beavers (March 18, 1923 – September 6, 1989) was a prominent
American journalist and community leader based in Los Angeles, California. Born in Los Angeles,
she obtained her bachelor’s degree in sociology from the University of California, Los Angeles.
Beavers’s career was deeply intertwined with journalism and activism. She served as an editor for the
*California Eagle* and later the *Los Angeles Sentinel*, a prominent African American newspaper,
for over four decades. Her commitment to social justice led her to co-found the Los Angeles chapter
of the National Association of Media Women and actively advocate for fair representation in the
media.
Appointed by Mayor Tom Bradley, Beavers dedicated sixteen years to the Los Angeles Human
Relations Commission, tackling issues of racial bias and promoting affirmative action. Her influence
extended to her service on the Los Angeles County Music and Performing Arts Commission.
Throughout her life, Beavers received numerous accolades, including recognition from the President’s
Youth Council and a tribute event graced by notable figures like Mayor Bradley and singer Thelma
Houston. Her enduring legacy continues to inspire aspiring journalists and advocates alike.

Table 2: Generated outputs of Gemini-1.5-pro: each document represents a retrieval chunk, with text highlighted in
red and yellow indicating unsupported claims. Red text represents claims identified as unsupported by the factuality
tool. Yellow text represents unsupported claims that are not identified by the factuality tool.
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