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Abstract

Explainable AI Planning (XAIP) aims to develop AI agents
that can effectively explain their decisions and actions to hu-
man users, fostering trust and facilitating human-AI collab-
oration. A key challenge in XAIP is model reconciliation,
which seeks to align the mental models of AI agents and
humans. While existing approaches often assume a known
and deterministic human model, this simplification may not
capture the complexities and uncertainties of real-world in-
teractions. In this paper, we propose a novel framework that
enables AI agents to learn and update a probabilistic human
model through argumentation-based dialogues. Our approach
incorporates trust-based and certainty-based update mecha-
nisms, allowing the agent to refine its understanding of the
human’s mental state based on the human’s expressed trust
in the agent’s arguments and certainty in their own argu-
ments. We employ a probability weighting function inspired
by prospect theory to capture the relationship between trust
and perceived probability, and use a Bayesian approach to
update the agent’s probability distribution over possible hu-
man models. We conduct a human-subject study to empiri-
cally evaluate the effectiveness of our approach in an argu-
mentation scenario, demonstrating its ability to capture the
dynamics of human belief formation and adaptation.

Introduction
The increasing integration of AI systems into real-world ap-
plications has underscored the critical need for transparency
and trust in human-AI interactions. In this landscape, Ex-
plainable AI Planning (XAIP) has emerged as a pivotal area
of focus (Fox, Long, and Magazzeni 2017), propelled by its
promise to develop AI agents capable of explaining their de-
cisions and actions in a manner comprehensible to human
users. Central to XAIP is the concept of model reconcilia-
tion (Chakraborti et al. 2017), a process aimed at aligning
the mental models of AI agents and human users to facil-
itate better understanding and communication. These men-
tal models are typically encoded using planning paradigms
(Sreedharan, Srivastava, and Kambhampati 2021; Sreedha-
ran, Chakraborti, and Kambhampati 2021) or logical for-
malisms (Son et al. 2021; Vasileiou, Previti, and Yeoh 2021;
Vasileiou et al. 2022; Vasileiou and Yeoh 2023).
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However, a common assumption in most XAIP-related
work has been that the AI agent possesses a known and
deterministic model of the human user, which is used in
the agent’s deliberative processes. This simplistic approach
may fail to capture the intricate complexities of real-world
interactions, as humans often hold beliefs with varying de-
grees of certainty, and their beliefs evolve dynamically over
time. Such simplifications can lead to significant misalign-
ments between AI agents and human users, as the agents
might base their decisions or explanations on an inaccurate
or incomplete understanding of the human’s mental model.
Consequently, this can result in decreased human trust and
engagement with AI agents, undermining the fundamental
goals of the human-AI interaction community and hindering
the development of human-compatible AI systems (Russell
2019).

To address this challenge, we propose a novel approach
that enables AI agents to adapt their decisions and expla-
nations based on a more nuanced and dynamic understand-
ing of human mental states. We relax the assumption of a
deterministic human model and instead posit that the AI
agent maintains a probabilistic representation of the human’s
knowledge. This probabilistic human model is learned and
updated dynamically through ongoing interactions, allowing
the agent to refine its understanding of the human’s mental
state over time. To facilitate this learning process, we intro-
duce a framework that learns and updates the probabilistic
human model through argumentation-based dialogues (Gor-
don 1994; Prakken 2006; Parsons, Wooldridge, and Amgoud
2003; Rago, Li, and Toni 2023; Vasileiou et al. 2023). Ar-
gumentation provides a natural and expressive mechanism
for the agent and the human to exchange information, be-
liefs, and justifications, allowing for a rich and dynamic in-
teraction. Our learning framework incorporates two com-
plementary update mechanisms: a trust-based update and a
certainty-based update.

The trust-based update mechanism allows the AI agent to
adjust its probabilistic human model based on the human’s
expressed trust in the agent’s arguments. Specifically, when
the agent presents an argument, the human may not fully
accept it as true, but rather evaluate it based on their trust
in the agent’s argument. We capture this notion of trust-
based uncertainty using a trust value τ(Ai) ∈ [0, 1] asso-
ciated with each agent argument Ai, where higher values in-



dicate greater trust. To capture the relationship between the
human’s trust in the agent’s argument and the probability of
that argument, we employ a probability weighting function
inspired by prospect theory (Tversky and Kahneman 1992).
This function maps the human’s trust τ(Ai) in the agent’s ar-
gument to a probability p(Ai) in a way that accounts for the
psychological biases humans exhibit when assessing proba-
bilities under uncertainty.

The certainty-based update mechanism focuses on the hu-
man’s expressed certainty in their own arguments. When the
human puts forward an argument, they may express some
degree of uncertainty about it, represented by a probability
p(Aj) ∈ [0, 1]. This probability reflects the human’s confi-
dence in their own argument Aj , based on factors such as
their background knowledge, reasoning process, and aware-
ness of potential counterarguments.

To update the (probabilistic) human model, we use a
Bayesian update mechanism. Particularly, we update the
agent’s probability distribution over possible human mod-
els based on the uncertainties associated with the arguments
exchanged during the dialogue. At each timestep, when an
argument is presented by either the agent or the human, we
perform a general update on the probability distribution that
increases the probability of the models consistent with the
argument, weighted by the argument’s associated probabil-
ity, and decreases the probability of the models inconsistent
with the argument.

Finally, to assess the framework’s ability to approximate
human models through argumentation-based dialogues, we
conduct a human-user study that simulates a decision-
making scenario. Our findings demonstrate the feasbility of
our approach to dynamically approximate a human model
as a probability distribution, leading to increased trust and
satisfaction among participants.

The main contributions of this paper are as follows:
• We propose a novel framework for learning and updat-

ing a probabilistic human model through argumentation-
based dialogues, where we incorporate trust-based and
certainty-based update mechanisms.

• We conduct a human-user study to empirically evaluate
the effectiveness of our approach in decision-making sce-
nario, demonstrating its ability to capture the dynamics of
human belief formation and adaptation.

Related Work
We situate our work with respect to explainable AI planning
and argumentation-based dialogues.

Explainable AI Planning
Explainable AI planning (XAIP) aims to foster trust, fa-
cilitate human-AI collaboration, and enable effective de-
cision support in complex domains by providing users
with understandable explanations of planning processes and
decision-making (Fox, Long, and Magazzeni 2017). XAIP
has been applied in various domains, including robotics
(Setchi, Dehkordi, and Khan 2020), healthcare (Saraswat
et al. 2022), and beyond, highlighting its broad applicabil-
ity and potential impact.

A central focus of XAIP research has been on the con-
cept of model reconciliation (Chakraborti et al. 2017; Sreed-
haran, Chakraborti, and Kambhampati 2021; Vasileiou,
Previti, and Yeoh 2021; Vasileiou et al. 2022; Vasileiou and
Yeoh 2023), which seeks to align the mental models of AI
agents and human users. However, the original framework
often assumes that the agent has perfect knowledge of the
human’s model a priori, which can lead to incorrect assump-
tions and suboptimal explanations. To address this limita-
tion, recent works have focused on relaxing the assump-
tions made about the human model. Notably, Dung and Son
(2022) tackled this limitation from the perspective of answer
set programming, tying their approach exclusively to plan-
ning problems.

On the other hand, some related work tackled this limi-
tation by considering uncertainty about the human’s model.
In this context, Sreedharan, Chakraborti, and Kambhampati
(2018) propose a framework for reconciling with a set of
possible human models, demonstrating how it can be used
to provide explanations to multiple human users simultane-
ously. This work highlights the importance of accounting
for the inherent uncertainty and variability in human men-
tal models. In a related study, Sreedharan, Srivastava, and
Kambhampati (2018) developed a method for estimating the
mental model from a provided foil, further emphasizing the
need for techniques that can infer and update the agent’s un-
derstanding of the human’s model based on the available in-
formation.

Argumentation-based Dialogues
Argumentation-based dialogues have been developed to aid
two (or more) agents in making decisions regarding their
goals and plans. In this context, two agents with shared goals
will only endorse plans that align with their beliefs. The
literature on argumentation-based dialogues spans multiple
disciplines, including AI (Bench-Capon and Dunne 2007),
legal reasoning (Zhong et al. 2014), and multi-agent systems
(Nielsen and Parsons 2006), underlining the broad applica-
bility and interdisciplinary nature of this research area.

Belesiotis, Rovatsos, and Rahwan (2010) propose an ab-
stract argumentation-based protocol that enables two agents
to deliberate on their proposals until they reach an agree-
ment, guided by the persuasion-aligned planning beliefs
of the agents. This work demonstrates the potential of
argumentation-based approaches for facilitating collabora-
tive decision-making and consensus-building in multi-agent
settings. Argumentation-based explanation have also gained
a lot of traction (Fan and Toni 2015; Shams et al. 2016; Fan
2018; Collins, Magazzeni, and Parsons 2019; ?; Budán et al.
2020; Dennis and Oren 2022; Rago, Li, and Toni 2023).
These works primarily focus on explanations whose justi-
fication is provided through argumentation semantics using
specific dialogue formalizations, establishing an equivalence
between the dialogues and the argumentation semantics. At
the intersection of argumentation-based dialogues and XAIP
is the work by Vasileiou et al. (2023), where the authors pro-
posed a dialectical reconciliation dialogue between an AI
agent and a human user with no assumptions about a known
human model. The goal of this dialogue is to improve the un-



derstanding of the human user’s understanding of the agent’s
decisions. While these approaches provide a solid founda-
tion for argumentation-based explanations, they do not ex-
plicitly consider the uncertainty inherent in human-agent in-
teractions.

Most closely related to our setting, another line of re-
search investigated probabilistic argumentation ((Hunter
2013, 2014, 2022)) and introduces uncertainties in argumen-
tation. Specifically, uncertainties are represented by proba-
bilistic measures, e.g., probabilities or degrees of belief, and
assigned to propositions or arguments. These works build
upon probabilistic argument graphs, as defined in (Dung and
Thang 2010; Li, Oren, and Norman 2011), providing a for-
mal framework for reasoning about uncertain arguments.

Building upon ideas from XAIP and argumentation-based
dialogues, we provide a probabilistic approach to model-
ing and updating the agent’s representation of the human’s
model. Compared with previous works, our framework en-
ables a more nuanced and adaptive approach to model rec-
onciliation in XAIP by maintaining a probability distribu-
tion over possible mental models and updating it based on
the human’s trust and certainty feedback.

Background
We assume classical propositional logic for describing as-
pects of the world. We consider a finite (propositional) lan-
guage L that utilizes the classical entailment relation, rep-
resented by |=. The set of models (i.e. possible words) of
L is denoted by M, where each model mi ∈ M is an as-
signment of true or false to the formulae of L defined in
the usual way for classical logic. For ϕ ∈ L, let Mod(ϕ) =
{mi ∈ M |mi |= ϕ} denote the set of models of ϕ.

Logic-based Argumentation
We provide a partial review of logic-based argumenta-
tion (Besnard and Hunter 2014). Our framework relies on
an intuitive understanding of a logical argument, which is
essentially a set of formulae used to prove a specific claim.
Definition 1 (Argument). Let L be the language and φ ∈ L
a formula. An argument for φ is defined as A = ⟨Φ, φ⟩ such
that: (i) Φ ⊆ L; (ii) Φ |= φ; (iii) Φ ̸|=⊥; and (iv) ∄Φ′ ⊂ Φ
s.t. Φ′ |= φ.

We refer to φ as the claim of the argument, and Φ as the
premise of the argument.
Example 1. Let L be a propositional language made up of
variables {a, b, c, d, e}. Then, A1 = ⟨{a, b, a ∧ b → c}, c⟩
and A2 = ⟨{b, d, d → a, a∧ b → c}, c⟩ are two arguments
for c.

We incorporate a general definition of a counterargument
to address conflicting knowledge among agents. A counter-
argument is defined as an argument that opposes another ar-
gument by highlighting conflicts regarding the premises or
claims. Specifically,
Definition 2 (Counterargument). Let L be the language, and
let A1 = ⟨Φ, φ⟩ and A2 = ⟨Ψ, ψ⟩ be two arguments for φ
and ψ, respectively. We say thatA2 is a counterargument for
A1 iff Φ ∪Ψ |=⊥.

Example 2. Let L be a propositional language made up of
variables {a, b, c, d, e}, and let A1 = ⟨{a, b, a∧ b → c}, c}
be an argument for c. Then, A2 = ⟨{f, d, f ∧ d→ ¬b},¬b⟩
and A3 = ⟨{e, e → ¬c},¬c⟩ are two counterarguments for
A1.

Modeling Uncertainty in Propositional Logic
Building on a propositional language L, we can model the
uncertainty of arbitrary formulae using a probability distri-
bution over the models M of L. Formally,
Definition 3 (Probability Distribution). Let M be the set of
models of the language L. A probability distribution P on
M is a function P : M 7→ [0, 1] such that

∑
m∈M

P (m) = 1.

In essence, a probability distribution over the models of L
creates a ranking between those models with respect to how
likely they are to be true. This then allows us to quantify the
uncertainty in a formula as follows:
Definition 4 (Degree of Belief). Let M be the set of models
of language L and P a probability distribution over M. The
degree of belief of a formula ϕ ∈ L is P (ϕ) =

∑
m|=ϕ

P (m).

We may refer to P (ϕ) as degree of belief or probability of
ϕ interchangeably. Note that this approach to probabilities
is essentially equivalent to probabilities assigned directly to
the formulae (Bacchus 1990).
Example 3. Let L be a propositional language with vari-
ables {a, b}. An example of a probability distribution over
the models M of L is shown in Table 1.

m1 m2 m3 m4

a True True False False
b True False True False

P (mi) 0.1 0.2 0.4 0.3

Table 1: An example of probability distribution over models.

Then, a has degree of belief P (a) = P (m1) + P (m2) =
0.3. Similarly, a → b has degree of belief P (a → b) =
P (m1) + P (m3) + P (m4) = 0.8..

Approximating Human Models During
Argumentation-based Dialogues

In this section, we introduce a framework that allows an
agent to progressively update its approximation of the hu-
man model over the course of an argumentation-based dia-
logue (Vasileiou et al. 2023).

Problem Setting and Assumptions
We consider an argumentation-based dialogue between two
participants: an agent (a) and a human (h). We make the
following key assumptions:

• Shared Domain Language: Both a and h have access to
and communicate in the same propositional language L,
with a shared vocabulary of atomic variables. This allows
them to construct domain-specific formulae.



• Uncertain Human Model: The agent maintains a proba-
bilistic model of the human’s knowledge, represented by a
probability distribution Ph over the possible models M of
the human’s knowledge at each step of the dialogue. This
distribution captures the agent’s uncertainty about the hu-
man’s knowledge. Initially, the agent assumes a uniform
prior P t0

h (m) = 1
|M| for all m ∈ M, representing agnos-

ticism about the human model.

• Argument Traces: We assume access to a (finite) argu-
ment trace D = ⟨(A1, x1)

t1 , (A2, x2)
t2 , . . .⟩ produced

by the dialogue, where each (Ai, xi)
ti represents an ar-

gument Ai put forward by participant xi ∈ {a, h} at
timestep ti.

Handling Argument Uncertainty
In real-world argumentation, the arguments put forward by
both the agent and the human often come with some de-
gree of uncertainty. This uncertainty can arise from various
sources, such as incomplete or imprecise knowledge, sub-
jective interpretations, or lack of confidence in the reasoning
process. In our framework, we consider two types of uncer-
tainty associated with arguments:

• Uncertainty in Agent’s Arguments: When the agent
presents an argument Ai at timestep ti, the human may
not fully accept the argument as true, but rather evaluate
it based on their trust in the agent. Intuitively, if the hu-
man has a high level of trust in the agent, they are more
likely to assign a high probability to the agent’s argument,
indicating that they believe it is likely to be true or valid.
Conversely, if the human has low trust in the agent, they
may assign a lower objective probability to the argument,
reflecting their doubts or skepticism about its correctness.
We capture this notion of trust-based uncertainty using a
trust value τ(Ai) ∈ [0, 1] associated with each agent ar-
gument Ai, where higher values indicate greater trust.

• Uncertainty in Human’s Arguments: When the human
puts forward an argument Aj at timestep tj , they may
express some degree of uncertainty about it, represented
by a probability p(Aj) ∈ [0, 1]. This probability reflects
the human’s confidence in their own argument, based on
factors such as their background knowledge, reasoning
process, and awareness of potential counterarguments.
Higher values of p(Aj) indicate greater certainty in the
argument.

Now, according to prospect theory (Kahneman and Tversi
1979), the probability of an event may not align with
the “subjective” perception of that probability, that is peo-
ple tend to overweight small probabilities and underweight
moderate to high probabilities when making decisions un-
der uncertainty (Fox and Poldrack 2009). To this end, we
propose a probability weighting function (Gonzalez and Wu
1999) to describe the relationship between the two. In our
scenario, we define the trust value of argumentAi as the hu-
man’s subjective perception of the argument’s uncertainty,
denoted by τ(Ai). To capture its relationship with the proba-
bility of the argument p(Ai), we use the following sigmoidal
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Figure 1: Probability weighting function with γ =
0.2, 0.4, 0.6, 0.8 and 1.

function (Tversky and Kahneman 1992).

τ(Ai) =
p(Ai)

γ

(p(Ai)γ + (1− p(Ai))γ)1/γ
, (1)

where γ ∈ (0, 1) is a parameter that controls the degree of
this nonlinear distortion.
Specifically, lower values of γ (closer to 0) indicate exces-
sive distortion (i.e., overweighting or underweighting) of the
objective probability, while higher values (closer to 1) indi-
cate a nearly linear relationship between the trust and the ob-
jective probability. The examples of relationships are shown
in Figure 1.

The key idea behind using this function in our argumen-
tation model is that it provides a psychologically plausible
way to map the human’s trust in an argument to an objec-
tive probability that is not just a linear scaling of trust. By
accounting for the nonlinear biases in human probability as-
sessment, the function allows the agent to more accurately
model how the human is likely to respond to arguments of
varying degrees of trustworthiness.

Updating the Human Model
We employ a Bayesian approach to update the agent’s proba-
bility distribution Ph over possible human models based on
the uncertainties associated with the arguments exchanged
during the dialogue. At each timestep ti, when an argument
Ai is presented by either the agent or the human, we perform
the following general update on the probability distribution:

P ti
h (m)=


P

ti−1

h (m)∑
m|=Ai

P
ti−1

h (m)
· p(Ai) if m |= Ai

P
ti−1

h (m)∑
m ̸|=Ai

P
ti−1

h (m)
· (1− p(Ai)) if m ̸|= Ai

(2)



where m |= Ai denotes that model m is consistent with ar-
gument Ai, i.e., the premises and conclusion of Ai hold in
m, and p(Ai) is the probability associated with the argu-
ment. The proportionality constant is chosen to ensure that
P ti
h remains a valid probability distribution.
Intuitively, the update mechanism in Eq. (2) increases the

probability of human models that are consistent with the
presented argument, weighted by the argument’s associated
probability p(Ai). Models that are inconsistent with the ar-
gument have their probabilities decreased accordingly. The
higher the probability of the argument, the more the distri-
bution shifts towards consistent models.

Note that the probability p(Ai) is determined based on
the source of the argument. If Ai is presented by the agent,
p(Ai) is the objective probability derived from the human’s
trust in the argument, τ(Ai), using the probability weighting
function Eq. (1). Specifically, p(Ai) is obtained by numeri-
cally inverting Eq. (1) to solve for p(Ai) given τ(Ai).
Example 4. Consider a dialogue where at timestep t1, the
agent asserts the argument A1 = ⟨{a, a → b}, {b}⟩. The
human assigns a trust value of τ(A1) = 0.6 to this argu-
ment. Assuming γ = 0.85, the objective probability of A1 is
computed using Eq. (1):

0.6 =
p(A1)

0.85

[p(A1)0.85 + (1− p(A1))0.85]
1

0.85

Solving for p(A1), we get p(A1) ≈ 0.62. Suppose there
are four possible models, M = {m1,m2,m3,m4}, with a
uniform prior distribution P t0

h (m1) = . . . = P t0
h (m4) =

0.25. Let m1 be the model that entails the premises of A1,
i.e., m1 |= {a, a → b}. Applying the update mechanism
from Eq. (2), we get:

P t1
h (m1) =

0.25

0.25
· 0.62 = 0.62

P t1
h (mk) =

0.25

0.25 + 0.25 + 0.25
· 0.38 = 0.126 (k = 2, 3, 4)

After this update, the model m1 that is consistent with
the agent’s argument has a higher probability than the other
three models, reflecting the human’s moderate trust in the
argument.
On the other hand, if Ai is an argument presented by the
human, p(Ai) is the probability directly expressed by the
human for their own argument.
Example 5. Continuing the previous example, suppose
at timestep t2, the human presents the argument A2 =
⟨{¬a}, {¬a}⟩ with probability p(A2) = 0.9.

Let m3 and m4 be the models that entail the premise of
A2. Applying the update mechanism to the distribution re-
sulting from the previous (objective) probability update, we
get:

P t2
h (m1) =

0.62

0.62 + 0.126
· 0.1 = 0.083

P t2
h (m2) =

0.126

0.62 + 0.126
· 0.1 = 0.017

P t2
h (m3) = P t2

h (m4) =
0.126

0.126 + 0.126
· 0.9 = 0.45

After this update, the models m3 and m4 that are con-
sistent with the human’s argument have much higher prob-
ability than the models consistent with the agent’s previous
argument.

By applying this update rule iteratively according to the
sequence of arguments in the dialogue trace D, the agent
can gradually refine its estimate of the human model distri-
bution Ph. The refined distribution incorporates information
about the uncertainties associated with both the agent’s and
human’s arguments, providing a more nuanced and psycho-
logically grounded estimate of the human’s knowledge.

It is worth noting that this update rule assumes that the hu-
man’s trust in the agent’s arguments and their own expressed
probabilities are well-calibrated and consistent across the di-
alogue. In practice, there may be situations where the hu-
man’s probability assessments are inconsistent or biased.
Handling such inconsistencies and biases is an important
challenge for future work. Nevertheless, the proposed up-
date rule provides a simple and principled way to integrate
argument uncertainties into the agent’s modeling of the hu-
man’s mental state, enabling more effective adaptation of the
agent’s argumentative strategies to the individual human.

Empirical Evaluation: Human-User Study
To evaluate the effectiveness of our proposed framework for
approximating human models during argumentation-based
dialogues, we conducted a user study simulating a real-
world scenario. In this study, participants interacted with an
AI assistant named “Blitzcrank” to assess the suitability of
a fictional venue, “Luminara Gardens”, for hosting a com-
pany team-building event. The study aimed to investigate
the dynamics of human-AI interaction, the AI’s ability to
gauge participants’ understanding, and changes in partici-
pants’ trust levels throughout the dialogue.

Based on our proposed framework and the designed sce-
nario, we formulated the following hypotheses:

H1: Our framework can effectively approximate
a probability distribution that captures the par-
ticipants’ knowledge during argumentation-based
dialogues.

H2: Participants’ trust in the AI assistant increases
as the interaction progresses.

Study Design

Dialogue Design: The study consisted of a series of inter-
action rounds between each participant and Blitzcrank. In
each round, the participants were presented with a set of
Blitzcrank’s arguments regarding the suitability of Luminara
Gardens for the team-building event. The arguments varied
in their level of informativeness and persuasiveness, reflect-
ing different degrees of argument strength.

After receiving an argument from Blitzcrank, the partici-
pants were asked to select their level of trust in the argument
from four options: almost complete trust (τ = 0.9), high
trust (τ = 0.7), average trust (τ = 0.5), or low trust (τ =



Trust Level Almost
Complete Trust

High
Trust

Average
Trust

Low
Trust

Trust Value τ = 0.9 τ = 0.7 τ = 0.5 τ = 0.2

Objective
Probability

γ = 0.4 1.000 0.990 0.937 0.150
γ = 0.5 1.000 0.959 0.804 0.104
γ = 0.6 0.989 0.898 0.657 0.114
γ = 0.7 0.972 0.826 0.566 0.133
γ = 0.8 0.949 0.765 0.522 0.155
γ = 0.9 0.922 0.724 0.504 0.178

Table 2: Mapping of trust levels to the probabilities of
Blitzcrank’s arguments.

Certainty Level Probability Linguistic Cues

High Certainty 0.9
“I am confident that...”
“I am certain that...”
“There is no doubt that...“

Moderate Certainty 0.7
“It seems probable that...”
“It’s quite likely that...”
“There’s a good chance that...“

Neutral Uncertainty 0.5
“I’m not entirely sure, but...”
“It could be the case that...”
“There’s a possibility that...“

Moderate Uncertainty 0.3
“There’s some doubt as to whether...”
“It’s questionable whether...”
“It’s uncertain if...“

High Uncertainty 0.1
“I’m not confident in saying...”
“It’s hard to say for sure...”
“There’s significant uncertainty...”

Table 3: Classification of participant arguments by certainty
level according to linguistic cues in their arguments.

0.2). These trust levels τ(Ai) were mapped to objective ar-
gument probabilities p(Ai) using the probability weighting
function Eq. (1). In our experiments, we computed p(Ai) nu-
merically with the Newton–Raphson method (Kelley 2003).
Table 2 shows the computed probabilities with respect to
the trust levels. Note that here we select γ from the set
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Next, the participants were presented with a set of five
candidate counterarguments, each associated with a cer-
tainty level. The certainty level was inferred from linguistic
cues in the arguments (e.g., “I’m quite sure that...”, “Is it pos-
sible that...”). The participant selected one of these counter-
arguments to present to Blitzcrank. Table 3 shows the clas-
sification of the participants’ arguments by certainty level.

This process of argument presentation, trust assessment,
and counterargument selection constituted one interaction
round. After each round, the participants were asked to rank
four different perspectives on Luminara Gardens’ suitability
for the event, based on their current understanding.1 These
perspectives represented models, and the rankings provided
a measure to assess the participant’s understanding at each
stage. Rank 1 indicated the most likely perspective (model),
while rank 4 indicated the least likely one.

The dialogue continued for a fixed number of rounds (up
to three) or until the participants chose to end the interaction.
The specific arguments, counterarguments, and perspectives
used in the study were designed to cover a range of aspects
related to Luminara Gardens’ suitability, such as venue ca-

1Note that the user model would be potentially changing over
rounds, depending on the trust level of the agent’s argument and
the uncertainty level of the user’s argument in the subsequent inter-
actions.

pacity, catering options, entertainment facilities, and pricing.

Participant Details: We recruited 150 participants via
the Prolific platform (Palan and Schitter 2018). Participants
were required to be fluent in English and were compensated
$2.00 for their time. Out of the 150 participants, 143 com-
pleted the study satisfactorily by passing attention checks
and providing coherent responses.

Participants were divided into two groups based on the
number of interaction rounds they chose to complete: Group
A (44 participants) engaged in two rounds of interaction
with Blitzcrank, while Group B (99 participants) engaged in
three rounds, which was the maximum allowed. The choice
of the number of rounds was up to the participants, reflecting
their willingness to engage in a shorter or longer dialogue
with the AI assistant.

Post-Study Questionnaire: After completing the dialogue,
participants answered a post-study questionnaire containing
five Likert-scale items (1 - strongly disagree to 5 - strongly
agree). Three items assessed changes in trust levels across
the interaction rounds, while the remaining two items evalu-
ated overall satisfaction with the interaction and the quality
of Blitzcrank’s arguments.

Variants and Baselines

In the following, we introduce three variants of our proposed
method:

• Variant 1: Personalization Upper Bound: Observe that ev-
ery participant has a distinct relationship between his/her
trust level and the objective probability. As such, we per-
sonalize the specific value of γ in Eq. (1), for every indi-
vidual, that optimizes the distribution of Spearman’s rank
correlation using all user data in this variation.

• Variant 2: Personalization I: (Group A) For each partici-
pant in Group A, we use the data from the first interaction
process to determine the personal predicted value of γ,
which is then applied to the second interaction process;
(Group B) For each participant in Group B, we use the
data from the first two interaction processes to determine
the personal predicted value of γ, which is then applied to
the final interaction process.

• Variant 3: Personalization II: Unlike Variant 2, for each
participant in Group B, we use only the data from the first
interaction process to determine the personal predicted
value of γ, which is then applied to the last two interaction
processes.

To evaluate our framework, we compare our proposed
method with the following three baselines:

• Baseline 1: The trust update does not apply the weighting
function (i.e., γ = 1 in Eq. (1)). The probability distribu-
tion update involves assigning a probability to each model
that entails the argument, followed by normalization. For-



Methods Trust Weighting Probability Update
Baseline 1 γ = 1 in Eq. (1) Eq. (3)
Baseline 2 γ = 1 in Eq. (1) Eq. (2)
Baseline 3 Eq. (1) Eq. (3)

Proposed Method Eq. (1) Eq. (2)

Table 4: Baseline methods

mally,

P ti
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• Baseline 2: The trust update does not apply the weighting
function (i.e., γ = 1 in Eq. (1)). The probability distribu-
tion update follows Eq. (2).

• Baseline 3: The trust update applies weighting func-
tion Eq. (1). The probability distribution update follows
Eq. (3).

Table 4 shows the trust weighting rule and probability update
of baseline methods.

Evaluation Metrics
To quantitatively evaluate our framework’s performance in
approximating human models and assess the significance of
trust changes, we employed the following metrics:

• Spearman’s Rank Correlation: We computed Spear-
man’s rank correlation coefficient (Spearman 1904) (ρ)
between the participant’s perspective rankings and the
rankings generated by our framework at each interac-
tion round. A high positive correlation indicates that our
framework effectively approximates the participant’s un-
derstanding of the situation.

• Student’s t-Test: To determine whether participants’ trust
levels increased between interaction rounds, we con-
ducted paired t-tests (Student 1908) with p-value 0.05
comparing trust scores across rounds. Separate tests were
performed for Group A (comparing trust between rounds
1 and 2) and Group B (comparing trust between rounds 1
and 2, and between rounds 2 and 3).

Results and Discussion
The results of our user study provide strong support for both
hypotheses H1 and H2.

Figure 2 displays the distribution of Spearman’s rank cor-
relation coefficients over different values of γ across all par-
ticipants. The majority of coefficients are above 0.75, in-
dicating a substantial agreement between the participants’
perspective rankings and those generated by our framework.
This finding suggests that our approach effectively approx-
imates a probability distribution that captures the partic-
ipants’ knowledge during argumentation-based dialogues,
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Figure 2: Spearman’s rank correlation distributions over dif-
ferent values of γ.

supporting hypothesis H1. Moreover, γ = 0.7 produces the
best distribution among all chosen values.

Figure 4 illustrates the distribution of Spearman’s rank
correlation coefficients for different variants. The Person-
alization Upper Bound achieves the optimal distribution of
the proposed method. Moreover, Personalization I yields
a better distribution than Personalization II because it uti-
lizes more user data during the prediction process. Specif-
ically, Personalization I can be considered to produce the
best achievable distribution of our proposed method, given
that obtaining the optimal distribution produced by the Per-
sonalization Upper Bound by using all user data for deter-
mining individual γ values is unrealistic. The effectiveness
of all variants demonstrates the flexibility and potential of
our proposed methods, thereby supporting hypothesis H1.

Figure 4 shows that our proposed method outperforms
the baseline methods in the distribution of Spearman’s rank
correlation coefficients, which hereby supports hypothe-
sis H1. Specifically, our method enables 55% of corre-
lation values to lie in the region of [0.75, 1], exceeding
the 46%, 50%, 46% provided by the baseline methods.

Table 5 shows a gradual increase in the average trust score
as the dialogue proceeds. Besides, Table 6 presents the re-
sults of the t-tests comparing trust scores between interac-
tion rounds. For both Group A and Group B, we observe
statistically significant increases in trust scores from round
1 to round 2 (p1,2 < 0.05). Additionally, for Group B,
trust scores significantly increase from round 2 to round 3
(p2,3 < 0.001). Such results provide compelling evidence
for hypothesis H2, indicating that participants’ trust in the
AI assistant grows as the dialogue progresses and the assis-
tant provides more relevant and persuasive arguments.

Our user study demonstrates the effectiveness of our
proposed framework in an argumentation-based dialogue
scenario. The results highlight the framework’s ability to
dynamically approximate a human model as a probabil-
ity distribution, leading to increased trust and satisfaction
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Figure 3: Comparisons of Spearman’s rank correlation dis-
tributions under different variants.

Average Trust Score Group A Group B
First Round 0.511 0.508

Second Round 0.634 0.552
Third Round N/A 0.662

Table 5: Average trust degree in different rounds.

Group A (2 rounds) Group B (3 rounds)
p1,2 0.00011297 0.04303665
p2,3 N/A 0.000001278

Table 6: Statistical significance (p < 0.05) of trust change.

among participants. Moreover, the post-study questionnaire
responses further corroborate these findings, with partici-
pants reporting high levels of satisfaction with the interac-
tion and the quality of Blitzcrank’s explanations.

Discussion and Conclusions
In this paper, we introduced a novel framework for approx-
imating human mental models during argumentation-based
dialogues. Our approach leverages a Bayesian belief update
mechanism to refine a probability distribution over possible
human models based on the arguments exchanged through-
out the dialogue. By incorporating uncertainty estimates for
both the agent’s and human’s arguments, our framework pro-
vides a principled way to reason about the human’s evolving
knowledge state and perspectives.

The results of our human-subject study demonstrate the
potential effectiveness of our framework in an applied argu-
mentation setting. The high correlation between the rankings
generated by our approach and the participants’ actual per-
spective rankings suggests that our framework can capture
some of the dynamics of human belief formation during ar-
gumentative interactions.

However, it is important to emphasize that this work is
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Figure 4: Comparisons of Spearman’s rank correlation dis-
tributions under different baselines. Note that Baselines 1
and 3 have the same distribution since the chosen values of
γ do not significantly influence the outcome due to the prob-
ability update function Eq. (3).

still in its early stages, and further research is needed to val-
idate and refine the proposed framework. Our study had a
limited sample size and focused on a single argumentation
domain, so the generalizability of the findings to other con-
texts remains to be established. Moreover, the framework
currently makes several simplifying assumptions, such as
the consistency and calibration of human probability judg-
ments, which may not hold in real-world settings.

One of the key aspects of our framework is the notion
of argument-specific trust, which shapes the human’s per-
ception of the agent’s arguments. We model trust as being
influenced by factors such as perceived relevance, logical
strength, consistency with prior beliefs, and clarity. The trust
value assigned to each argument is treated as an observ-
able input to the belief update process. However, our cur-
rent framework does not explicitly model a global notion of
trust, i.e., the human’s overall trust in the agent across the
entire dialogue. Extending the framework to incorporate a
global trust component, and investigating its interplay with
argument-specific trust, is an important direction for future
work.

Another important consideration in practical argumenta-
tion systems is how to elicit the human’s certainty levels
for their own arguments. We envision several possible ap-
proaches, including explicit probability input, categorical
confidence ratings, and inference from linguistic cues. A
combination of these methods, allowing for both system-
generated estimates and user adjustments, may provide a
good balance of accuracy and usability. However, further
empirical studies are needed to understand the impact of dif-
ferent elicitation methods on the quality and calibration of
probability estimates in real-world settings.

In our study, the human users were asked to quantify their
trust in the agent’s argument Ai with a trust value τ(Ai) ∈



[0, 1]. However, a human user may be uncertain about vari-
ous parts of the argument. For example, let A1 = ⟨{a, a →
b}, b⟩, and τ(A1) = 0.2. This value does not indicate
whether the user’s uncertainty is on the conclusion of the ar-
gument (e.g., b) or in parts of its premises (e.g., a or a→ b).
Future work will look into a more nuanced argument uncer-
tainty specification.

Another limitation of our current framework is the sim-
plified representation of arguments as logical propositions.
Real-world arguments often involve more complex struc-
tures and reasoning patterns, such as analogies, causal rea-
soning, and appeals to emotion. Capturing these rich argu-
mentation dynamics within a computational framework is
a significant challenge that requires further research at the
intersection of argumentation theory, natural language pro-
cessing, and knowledge representation.

In conclusion, the framework and study presented in this
paper represent an initial step towards the development
of adaptive, human-centric argumentation systems. While
much work remains to be done to refine and validate our
approach, we believe that this research direction has the po-
tential to enhance the effectiveness of human-AI interaction.

Acknowledgments
This research is partially supported by the National Sci-
ence Foundation under award 2232055 and by J.P. Morgan
AI Research. The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of the sponsoring organizations, agencies, or the
United States government.

References
Bacchus, F. 1990. Representing and Reasoning with Prob-
abilistic Knowledge - A Logical Approach to Probabilities.
MIT Press.
Belesiotis, A.; Rovatsos, M.; and Rahwan, I. 2010. Agree-
ing on Plans through Iterated Disputes. In Proceedings of
International Conference on Agents and Multiagent Systems
(AAMAS), 765–772.
Bench-Capon, T. J.; and Dunne, P. E. 2007. Argumentation
in Artificial Intelligence. Artificial Intelligence, 171(10-15):
619–641.
Besnard, P.; and Hunter, A. 2014. Constructing Argument
Graphs with Deductive Arguments: A Tutorial. Argument &
Computation, 5(1): 5–30.
Budán, M. C.; Cobo, M. L.; Martinez, D. C.; and Simari,
G. R. 2020. Proximity Semantics for Topic-based Abstract
Argumentation. Information Sciences, 508: 135–153.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan Explanations as Model Reconciliation:
Moving Beyond Explanation as Soliloquy. In Proceedings of
the International Joint Conference on Artificial Intelligence
(IJCAI), 156–163.
Collins, A.; Magazzeni, D.; and Parsons, S. 2019. Towards
an Argumentation-based Approach to Explainable Planning.

In Proceedings of the International Workshop on Explain-
able Planning (XAIP), 16.
Dennis, L. A.; and Oren, N. 2022. Explaining BDI Agent
Behaviour through Dialogue. Autonomous Agents and
Multi-Agent Systems, 36(2): 29.
Dung, H. T.; and Son, T. C. 2022. On Model Reconciliation:
How to Reconcile When Robot Does not Know Human’s
Model? In Proceedings of the International Conference on
Logic Programming (ICLP), 27–48.
Dung, P. M.; and Thang, P. M. 2010. Towards (Probabilistic)
Argumentation for Jury-based Dispute Resolution. In Pro-
ceedings of the International Conference on Computational
Models of Argument (COMMA), 171–182.
Fan, X. 2018. On Generating Explainable Plans with
Assumption-Based Argumentation. In Proceedings of the
Principles and Practice of Multi-Agent Systems (PRIMA),
344–361.
Fan, X.; and Toni, F. 2015. On Computing Explanations
in Argumentation. In Proceedings of AAAI Conference on
Artificial Intelligence (AAAI), 1496–1502.
Fox, C. R.; and Poldrack, R. A. 2009. Prospect Theory and
the Brain. In Neuroeconomics, 145–173.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
Planning. arXiv preprint arXiv:1709.10256.
Gonzalez, R.; and Wu, G. 1999. On the Shape of the Prob-
ability Weighting Function. Cognitive Psychology, 38(1):
129–166.
Gordon, T. F. 1994. An Inquiry Dialogue System. Artificial
Intelligence and Law, 2: 239–292.
Hunter, A. 2013. A Probabilistic Approach to Modelling
Uncertain Logical Arguments. International Journal of Ap-
proximate Reasoning, 54(1): 47–81.
Hunter, A. 2014. Probabilistic Strategies in Dialogical Argu-
mentation. In Proceedings of the International Conference
on Scalable Uncertainty Management (SUM), 190–202.
Hunter, A. 2022. Argument Strength in Probabilistic Argu-
mentation based on Defeasible Rules. International Journal
of Approximate Reasoning, 146: 79–105.
Kahneman, D.; and Tversi, A. 1979. Prospect Theory: An
Analysis of Decision Under Risk. Econometrica, 47(2):
263–292.
Kelley, C. T. 2003. Solving Nonlinear Equations with New-
ton’s Method. SIAM.
Li, H.; Oren, N.; and Norman, T. J. 2011. Probabilistic Argu-
mentation Frameworks. In Proceedings of the International
Workshop on Theory and Applications of Formal Argumen-
tation (TAFA), 1–16.
Nielsen, S. H.; and Parsons, S. 2006. A Generalization
of Dung’s Abstract Framework for Argumentation: Arguing
with Sets of Attacking Arguments. In Proceedings of the In-
ternational Workshop on Argumentation in Multi-Agent Sys-
tems (ArgMAS), 54–73.
Palan, S.; and Schitter, C. 2018. Prolific. ac—A subject pool
for online experiments. Journal of Behavioral and Experi-
mental Finance, 17: 22–27.



Parsons, S.; Wooldridge, M.; and Amgoud, L. 2003. Proper-
ties and Complexity of Some Formal Inter-Agent Dialogues.
Journal of Logic and Computation, 13(3): 347–376.
Prakken, H. 2006. Formal Systems for Persuasion Dialogue.
The Knowledge Engineering Review, 21(2): 163–188.
Rago, A.; Li, H.; and Toni, F. 2023. Interactive Explanations
by Conflict Resolution via Argumentative Exchanges. In
Proceedings of the International Conference on Knowledge
Representation and Reasoning (KR), 582–592.
Russell, S. 2019. Human Compatible: Artificial Intelligence
and the Problem of Control. Pearson.
Saraswat, D.; Bhattacharya, P.; Verma, A.; Prasad, V. K.;
Tanwar, S.; Sharma, G.; Bokoro, P. N.; and Sharma, R. 2022.
Explainable AI for Healthcare 5.0: Opportunities and Chal-
lenges. IEEE Access, 10: 84486–84517.
Setchi, R.; Dehkordi, M. B.; and Khan, J. S. 2020. Explain-
able Robotics in Human-Robot Interactions. Procedia Com-
puter Science, 176: 3057–3066.
Shams, Z.; De Vos, M.; Oren, N.; and Padget, J. 2016.
Normative Practical Reasoning via Argumentation and Dia-
logue. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), 1244–1250.
Son, T. C.; Nguyen, V.; Vasileiou, S. L.; and Yeoh, W. 2021.
Model Reconciliation in Logic Programs. In Proceedings of
the European Conference on Artificial Intelligence (ECAI),
393–406.
Spearman, C. 1904. The Proof and Measurement of As-
sociation between Two Things. The American Journal of
Psychology, 15(1): 72–101.
Sreedharan, S.; Chakraborti, T.; and Kambhampati, S. 2018.
Handling Model Uncertainty and Multiplicity in Explana-
tions via Model Reconciliation. In Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS), 518–526.
Sreedharan, S.; Chakraborti, T.; and Kambhampati, S. 2021.
Foundations of Explanations as Model Reconciliation. Arti-
ficial Intelligence, 301: 103558.
Sreedharan, S.; Srivastava, S.; and Kambhampati, S. 2018.
Hierarchical Expertise Level Modeling for User Specific
Contrastive Explanations. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
4829–4836.
Sreedharan, S.; Srivastava, S.; and Kambhampati, S. 2021.
Using State Abstractions to Compute Personalized Con-
trastive Explanations for AI Agent Behavior. Artificial In-
telligence, 301: 103570.
Student. 1908. The Probable Error of a Mean. Biometrika,
1–25.
Tversky, A.; and Kahneman, D. 1992. Advances in Prospect
Theory: Cumulative Representation of Uncertainty. Journal
of Risk and Uncertainty, 5(4): 297–323.
Vasileiou, S. L.; Kumar, A.; Yeoh, W.; Son, T. C.; and
Toni, F. 2023. DR-HAI: Argumentation-based Dialectical
Reconciliation in Human-AI Interactions. arXiv preprint
arXiv:2306.14694.

Vasileiou, S. L.; Previti, A.; and Yeoh, W. 2021. On Exploit-
ing Hitting Sets for Model Reconciliation. In Proceedings
of AAAI Conference on Artificial Intelligence (AAAI), 6514–
6521.
Vasileiou, S. L.; and Yeoh, W. 2023. PLEASE: Generating
Personalized Explanations in Human-Aware Planning. In
Proceedings of the European Conference on Artificial Intel-
ligence (ECAI), 2411–2418.
Vasileiou, S. L.; Yeoh, W.; Son, T. C.; Kumar, A.; Cashmore,
M.; and Magazzeni, D. 2022. A Logic-based Explanation
Generation Framework for Classical and Hybrid Planning
Problems. Journal of Artificial Intelligence Research, 73:
1473–1534.
Zhong, Q.; Fan, X.; Toni, F.; and Luo, X. 2014. Explaining
Best Decisions via Argumentation. In Proceedings of the
European Conference on Social Intelligence (ECSI), 224–
237.


