
Local Causal Discovery for Estimating Causal Effects

Shantanu Gupta, Zachary C. Lipton, David Childers

Carnegie Mellon University
{shantang,zlipton,dchilders}@cmu.edu

Abstract

Even when the causal graph underlying our data is unknown, we can nevertheless
use observational data to narrow down the possible values that an average treatment
effect (ATE) can take by (1) identifying the graph up to a Markov equivalence
class; and (2) estimating that ATE for each graph in the class. While the PC
algorithm can identify this class under strong faithfulness assumptions, it can be
computationally prohibitive. Fortunately, only the local graph structure around
the treatment is required to identify an ATE, a fact exploited by local discovery
algorithms to identify the possible values for an ATE more efficiently. In this paper,
we introduce Local Discovery using Eager Collider Checks (LDECC), a new local
discovery algorithm that leverages unshielded colliders to orient the treatment’s
parents differently from existing methods. We show that there exist graphs where
LDECC exponentially outperforms existing local discovery algorithms and vice
versa. Moreover, we show that LDECC and existing algorithms rely on different
faithfulness assumptions, leveraging this insight to test for and recover from certain
faithfulness violations.

1 Introduction

Estimating an average treatment effect (ATE) from observational data typically requires structural
knowledge, which can be represented in the form of a causal graph. While a rich literature offers
methods for identifying and estimating causal effects given a known causal graph [13, 8, 3], many
applications require that we investigate the values that an ATE could possibly take when the causal
graph is unknown. Under certain faithfulness assumptions, we can (i) perform causal discovery using
observational data to identify the graph up to a Markov equivalence class (MEC); and (ii) estimate
the ATE of a given treatment on a given outcome for every graph in the MEC, thus identifying the set
of possible ATE values. We denote this (unknown) set of identified ATE values by Θ∗.

Causal discovery has been investigated under a variety of assumptions [12, 2]. Under causal suf-
ficiency (i.e., no unobserved variables) and faithfulness, the PC algorithm [12, Sec. 5.4.2] can
consistently learn the MEC of the true graph from observational data (and thus Θ∗). However, fully
characterizing the MEC is not always necessary and can be prohibitively expensive. Maathuis et al.
[5] proved that the local structure around the treatment node is sufficient for estimating Θ∗. Existing
local causal discovery algorithms [16, 19, 15, 1] leverage this insight, discovering just enough of the
graph to identify any parents and children of the treatment that PC would have discovered. These
methods sequentially discover the local structure around the treatment, its neighbors, and so on,
terminating whenever all neighbors of the treatment are oriented (or no remaining neighbors can be
oriented). These algorithms typically differ in how they discover the local structure at each step. We
instantiate a simple version of existing local causal discovery algorithms, which we call Sequential
Discovery (SD), that runs the PC algorithm locally to discover the local structure around the nodes.

In this work, we introduce Local Discovery with Eager Collider Checks (LDECC) (Sec. 3), a new
local discovery algorithm that uses a different method to orient the parents of a treatment X . Initially,

NeurIPS 2022Workshop on Causal Machine Learning for Real-World Impact (CML4Impact 2022).

mailto:shantang@cmu.edu
mailto:zlipton@cmu.edu
mailto:dchilders@cmu.edu

X YM

W
A

B
C

D

(a) True DAG G∗.

X YM

W
A

B
C

D

(b) CPDAG from PC.

X YM

W
A

B
C

(c) SD’s output

X M

W
A

B

(d) LDECC

Figure 1: Demonstration of PC, SD, and LDECC for the graph in (a).

LDECC runs the same set of Conditional Independence (CI) tests as SD to identify the neighbors of
X . Subsequently, LDECC chooses the same CI tests as PC would choose given the state of the graph,
with one crucial exception: Whenever two nodes A and B are identified such that (i) A ⊥⊥ B|S for
some set S; and (ii) X /∈ S, LDECC then checks whether they become dependent when X is added
to the conditioning set. If the test reveals dependence A ⊥̸⊥ B|S ∪ {X}, then LDECC orients the
smallest subset of X’s neighbors that d-separate it from {A,B} as parents. We prove that, under
faithfulness and with access to a CI oracle, the estimated ATE set ΘLDECC is equal to Θ∗.

We analyze LDECC and compare it to SD, highlighting complementary strengths, both in terms of
their computational and the faithfulness requirements. We present classes of causal graphs where
LDECC performs exponentially fewer CI tests than SD, and vice versa. Thus, the methods can be
combined profitably (by running LDECC and SD in parallel and terminating when either algorithm
terminates), avoiding exponential runtimes whenever either algorithm’s runtime is subexponential.
We also find that LDECC and SD rely on a different set of faithfulness assumptions (Sec. 3.2). Thus,
there are classes of faithfulness violations where one algorithm will correctly estimate the ATE
set while the other, in general, will not. Under the assumption that one of the sets of faithfulness
assumptions is correct, we propose a hybrid procedure which recovers a conservative bound on the
ATE set which can in some cases can be made sharp. We empirically test LDECC on synthetic as
well as semi-synthetic graphs (Sec. 4) and show that it performs comparably to SD (and PC) and
typically runs fewer CI tests than SD.

2 Preliminaries

In this work, we assume that the causal structure of the observational data can be encoded using a
DAG G∗(V,E), where V and E are the set of nodes and edges, respectively. Each edge A→ B ∈ E
indicates that A is a direct cause of B. Throughout this paper, we denote the treatment node by X
and the outcome node by Y . For a node V ∈ V, we denote its neighbors, parents, children, and
descendants by Ne(V),Pa(V),Ch(V), and Desc(V), respectively. Let Ne+(V) = Ne(V) ∪ {V }.
An unshielded collider (UC) is a triple P → R ← Q such that P—Q /∈ E. For a UC α = (P →
R ← Q), let sep(α) = min{|S| : S ⊆ V \ {P,Q} and P ⊥⊥ Q|S} denote the size of a smallest
subset S that d-separates P and Q.

A DAG entails a set of CIs via d-separation [8, Sec. 1.2.3]. DAGs that entail the same set of CIs
form an MEC, which can be characterized by a completed partially directed acyclic graph (CPDAG).
For the true DAG G∗, we denote by Θ∗ the set of ATE values (of X on Y) in each DAG in the MEC
corresponding to G∗. The causal faithfulness assumption (CFA) holds iff all CIs satisfied by P(V)
are entailed by G∗. Throughout this work, we focus on causally sufficient graphs and unless stated
otherwise, assume that the CFA holds. Under the CFA, the PC algorithm recovers this MEC roughly
as follows (demonstrated for the DAG in Fig. 1a): (i) estimate the skeleton by running CI tests; (ii)
find UCs in this skeleton (Fig. 1b red edges); and (iii) orient additional edges using Meek’s rules [7]
(Fig. 1b blue edges) to get a CPDAG. Full details on the PC algorithm are in Appendix A.

We instantiate existing local discovery algorithms using SD (Fig. 2). SD sequentially finds the
neighbors of nodes (FindNeighbors in Fig. 8a) starting from X , then its neighbors, and so on (Lines 3–
7). After each such local discovery step, SD orient nodes in the subgraph discovered until that point
using UCs and Meek’s rules like PC (Line 8). It terminates if all neighbors of X get oriented. The
ATE set is estimated by applying the backdoor adjustment [8, Thm. 3.3.2] with every locally valid
parent set of X , i.e., one that does not create a new UC at X (see Lines 11–16 and isLocallyValid
in Fig. 2). Consider the DAG in Fig. 1a. Here, SD will discover the neighbors of X,W,M and A.
After this, the UC A → W ← B will be detected and after propagating orientations, both W and

2

1 def OrientChildren(Ne(X),mnsX):
2 children = ∅;
3 for C ∈ Ne(X) do
4 for V ∈ V s.t. C /∈ mnsX(V) do
5 if C ⊥̸⊥ V |mnsX(V) then

children.add(C) ;
6 end
7 end
8 return children;
9 def isLocallyValid(S):

10 for every A,B ∈ S do
11 if isNonCollider(A—X—B)

then return False;
12 end
13 return True;

1 def SD_algorithm(Treatment X):
2 queue = [X], done = ∅;
3 while queue ̸= ∅ do
4 V = queue.pop();
5 FindNeighbors(V);
6 done.add(V);
7 queue.add(Ne(V) \ (done ∪

queue));
8 parents, children, unoriented =

OrientNodesInSubgraph(done);
9 if unoriented = ∅ then break ;

10 end
11 ΘSD = ∅;
12 for S ⊆ unoriented do
13 if isLocallyValid(S) then
14 R = S ∪ parents;
15 ΘSD.add(βY |X.R);
16 end
17 return ΘSD;

Figure 2: The SD algorithm and additional
subroutines.

Input: Treatment X .
1 Ne(X),mnsX = FindNbrsAndMNS(X);
2 parents = ∅;
3 children = OrientChildren(Ne(X),mnsX);
4 unoriented = Ne(X) \ children;
5 for (A ⊥⊥ B|S) ∈ PC test (A,B ̸= X) do
6 if A,B ∈ Ne(X) and X /∈ S then
7 parents.add({A,B});
8 parents.add(S ∩ Ne(X));
9 else if A,B ∈ Ne(X) and X ∈ S then

10 MarkNonCollider(A—X—B);
11 for V ∈ Ne(X) \ (S ∪ {A,B}) do
12 if A⊥̸⊥ B|{S, V } then

children.add(V) ;
13 end
14 else if X /∈ S and A⊥̸⊥ B|{S, X} then
15 for V ∈ {A,B} do
16 if V ∈ Ne(X) then

parents.add(V);
17 else parents.add(mnsX(V));
18 end
19 end
20 for P ∈ parents, C ∈ unoriented do
21 if isNonCollider(P—X—C) then

children.add(C) ;
22 end
23 unoriented.remove(parents ∪ children);
24 if unoriented = ∅ then break ;
25 end
26 ΘLDECC = ∅;
27 for S ⊆ unoriented do
28 if isLocallyValid(S) then
29 R = S ∪ parents;
30 ΘLDECC.add(βY |X.R);
31 end

Output: ΘLDECC

Figure 3: The LDECC algorithm.

M will be oriented and SD terminates (Fig. 1c). Full details on the PC and SD algorithms are in
Appendix A.

3 Local Discovery using Eager Collider Checks (LDECC)

In this section, we propose LDECC, a local causal discovery algorithm that orients the parents of
X by leveraging UCs differently from existing methods (Prop. 3). We prove its correctness under
the CFA (Thm. 1) and then show its complementary nature relative to SD in terms of computational
(Sec. 3.1) and faithfulness (Sec. 3.2) requirements. We defer the proofs to Appendix B.2.

We first define a Minimal Neighbor Separator (MNS) which plays a key role in LDECC.
Definition 1 (Minimal Neighbor Separator (MNS)). For a DAG G(V,E) and nodes X and A /∈
Ne+(X); mnsX(A) ⊆ Ne(X) is the unique set (see Prop. 2) of nodes such that (i) (d-separation)
A ⊥⊥ X|mnsX(A), and (ii) (minimality) for any S ⊂ mnsX(A), A⊥̸⊥ X|S.

For the graph in Fig. 1a, we have mnsX(A) = mnsX(B) = mnsX(C) = {W} and mnsX(Y) =
{W,M}. While an MNS need not exist for every node (see Example 3), mnsX(V) always exists
∀V /∈ Desc(X) (which is sufficient for correctness of LDECC):

3

X

W V1

V2 V3

V4

VN

C

A

B

Clique of size 𝑁

(a) LDECC outperforms SD.

V1

V2 V3

V4

VN
X

W C

A

B

S1 S2 SM…

Clique of size 𝑁

(b) SD outperforms LDECC.

Figure 4: Classes of graphs where LDECC and SD perform a different number of CI tests.

Proposition 1. For any node V /∈ (Desc(X) ∪ Ne+(X)), mnsX(V) exists and mnsX(V) ⊆ Pa(X).
Proposition 2 (Uniqueness of MNS). For every node V such that mnsX(V) exists, it is unique.
Proposition 3 (Eager Collider Check). For nodes A,B ∈ V \ Ne+(X) and S ⊆ V \ {A,B,X}, if
(i) A ⊥⊥ B|S; and (ii) A⊥̸⊥ B|S ∪ {X}; then A,B /∈ Desc(X) and mnsX(A),mnsX(B) ⊆ Pa(X).

Prop. 3 suggests a different strategy for orienting parents of X: if two nodes that are d-separated by
S become d-connected by S ∪ {X}, the MNS of such nodes exists and contains the parents of X .

The LDECC algorithm (Fig. 3), first finds the neighbors of X and MNS (Line 1, FindNeighbor-
sAndMNS in Fig. 8b) by running PC locally like SD. In Line 1, mnsX = {mnsX(V) : V ∈
V \ Ne+(X)}). Next, using mnsX , we orient the children C of X that are part of UCs of the form
X → C ← V (Line 3). LDECC then starts running CI tests in the same way as the PC algorithm
would (excluding tests for X since we already know Ne(X)) (the for-loop in Line 5). Every time we
detect a CI A ⊥⊥ B|S, we check the following cases: (i) if A,B ∈ Ne(X) and X /∈ S, then there
must be a UC A→ X ← B and so we mark A and B as parents (Lines 6, 7); (ii) if A,B ∈ Ne(X)
and X ∈ S, then we mark A—X—B as a non-collider (Lines 9, 10); and (iii) Eager Collider Check
(ECC): if X /∈ S and A⊥̸⊥ B|{S, X}, then, by leveraging Prop. 3, we mark mnsX(A) and mnsX(B)
as parents (Lines 14–17). Next, for each oriented parent, we use the non-colliders detected in Case (ii)
to mark children (Line 20, 21). LDECC terminates if there are no unoriented neighbors. Lines 11–13
and Line 8 are needed to account for Meek’s rule 3 and 4. The key departure from PC is Case (iii):
with an ECC, unlike SD and PC, the skeleton is not used to orient parents.

Consider the running example of the DAG in Fig. 1a. We first find the local structure around X .
Then we start running CI tests the same way as PC. After we run A ⊥⊥ B|C, we do an ECC and find
A⊥̸⊥ B|{C,X}. Since mnsX(A) = mnsX(B) = {W}, we mark W as a parent of X . Next, we find
that W ⊥⊥M |X and mark W—X—M as a non-collider which lets us mark M as a child (because
W is a parent). LDECC terminates as all neighbors of X are oriented (Fig. 1d) and the ATE set is
computed by using {W} as the backdoor adjustment set: ΘLDECC = {βY |X.W } = Θ∗.

Theorem 1 (Correctness). Assuming the CFA holds and access to a CI oracle, we have ΘLDECC
set
= Θ∗.

3.1 Comparison of computation requirements

In this section, we compare LDECC, SD, and PC based on the number of CI tests they perform. We
show that neither of LDECC or SD uniformly dominates the other and characterize their performance
in terms of properties of the true DAG.

To begin, we prove that, in the worst case, LDECC performs a polynomial (in |V|) number of extra
tests compared to PC when |Ne(X)| is bounded.
Proposition 4 (Number of tests: PC vs LDECC). Assume access to a CI oracle. Let the number of
tests performed by PC and LDECC be TPC and TLDECC, respectively. Then we have

TLDECC ≤ TPC +O(|V|2) +O
(
|V||Ne(X)|

)
.

The O(|V|2) term accounts for the extra ECCs we might perform and the O
(
|V||Ne(X)|]

)
term

accounts for discovering Ne(X). In practice, we observe that the upper bound is quite loose: Even
when |Ne(X)| is large, PC also has to perform a large number of tests for X .
Proposition 5 (LDECC exponentially better). Assume access to a CI oracle. There exist graphs s.t.

TLDECC +Θ(2|V|) ≤ TPC, and TLDECC +Θ(2|V|) ≤ TSD.

4

X M

C
A

B
DW S

Y

(a) DAG with FF violations.

X M

C
A

B
DW S

Y

(b) CPDAG discovered by PC under FF violation.

Proof. Consider the class of graphs shown in Figure 4a where there is a clique of size N on the path
from the UC A→ C ← B to W . Both PC and SD will perform Θ(2N) CI tests for nodes inside this
clique. Thus, when N ≍ |V|, SD will have exponential complexity. By contrast, LDECC unshields
the UC and orients W as a parent via an ECC in O(|V|2) CI tests.

Qualitatively, the result shows that if there is a dense region between a UC and the parent it orients,
SD might perform poorly because it has to wade through this dense region to get to the UC. By
contrast, LDECC can avoid this problem as it does not rely on the skeleton to orient the parents.
However, LDECC does not uniformly dominate SD in terms of the number of tests. There are classes
of causal graphs where LDECC performs an exponentially greater number of CI tests than SD:
Proposition 6 (SD exponentially better). Assume access to a CI oracle. Let U be the set of UCs in
the graph and M = maxU∈U sep(U). There exist graphs such that

TSD +Θ(2M−1) ≤ TPC, TSD +Θ(2M−1) ≤ TLDECC.

Proof. Consider the class of graphs shown in Figure 4b with a UC with a separating set of size M
and a clique of size N upstream of that UC. Since LDECC runs CI tests in the same order as PC,
if N ≥ M , LDECC performs Θ(2M−1) CI tests for nodes inside the clique (all tests of the form
Vi ⊥⊥ Vj |S s.t. S ⊆ {V1, . . . , VN} \ {Vi, Vj} and |S| < M will be run) before the UC is unshielded
via the test A ⊥⊥ B|{S1, . . . , SM}. By contrast, SD terminates before even getting to the clique, thus
avoiding these tests. So if M ≍ |V|, LDECC will perform exponentially more tests than SD.

Qualitatively, this shows that if UCs have large separating sets and there are dense regions upstream
of such UCs, LDECC might perform poorly whereas SD can avoid tests in these regions since it
would not reach these dense regions.

Hybrid algorithm. In practice, we can implement a hybrid algorithm that runs both SD and LDECC
in parallel and terminates when either algorithm terminates. The number of CI tests performed will
be Thybrid ≤ 2min {TSD, TLDECC}. Thus this procedure broadens the class of graphs where local
discovery can be performed efficiently because it will be subexponential if at least one of the
algorithms is subexponential (whereas PC might be exponential).

3.2 Comparison of faithfulness requirements

In this section, we show that SD and LDECC are robust to different faithfulness (FF) violations. The
next two examples demonstrate that some FF violations affect SD but not LDECC and vice versa.
Example 1 (SD incorrect.). Consider the DAG in Fig. 5a and the following FF violation: Let’s
say that W ⊥⊥ D|M (i.e., conditioning on the collider cancels out the W ← D edge) and thus the
edge W ← D is incorrectly removed. Thus, both SD and PC will not mark W as a parent since the
orientations will not be propagated (Fig. 5b). However, this violation does not affect LDECC since it
uses ECCs to orient parents and so W will be oriented correctly.

Example 2 (LDECC incorrect.). Consider the DAG in Fig. 5a and the following FF violation: Let’s
say that A ⊥⊥ X|M and B ⊥⊥ X|M . Thus we might incorrectly detect mnsX(A) = mnsX(B) =
{M} causing the ECC to orient M as a parent. However, this FF violation does not impact SD as
the skeleton and UCs are still detected correctly.

The CFA is a controversial assumption [14] and many prior works attempt to test and recover from
FF violations (usually by running additional CI tests) [9, 17, 11, 18, 6]. If LDECC and SD give
different ATE set estimates, one strategy is to output a conservative ATE set. Consider the following
procedure: (i) run both SD and LDECC to get ΘSD and ΘLDECC; (ii) If ΘSD ̸= ΘLDECC (i.e., there

5

0 5000 10000 15000 20000 25000 30000
Number of tests

0

5

10

15

20

25

30

35

Nu
m

be
r o

f g
ra

ph
s

Distribution of CI tests
PC
LDECC
SD

(a) Number of tests with CI oracle.

10000 15000 20000 25000 30000
Sample size

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

 (H
au

sd
or

ff
di

st
an

ce
)

MSE vs Sample size
PC
LDECC
SD

(b) MSE vs sample size.

10000 15000 20000 25000 30000
Sample size

2000

3000

4000

5000

6000

7000

Nu
m

be
r o

f C
I t

es
ts

Number of CI tests
PC
LDECC
SD

(c) Number of tests (finite samples).

Figure 6: Comparison of PC, LDECC, and SD on synthetic graphs.

is a contradiction), output the set Θunion = ΘLDECC ∪ ΘSD. Then Θunion will contain the true ATE
value if either of the two algorithms is correct. Another strategy would be to check (via additional CI
tests) if the assumptions for one of the algorithms is violated. As an illustration, consider the case in
Example 2. We can run extra CI tests of the form V ⊥⊥ X|S for V ∈ {A,B} and every possible
subset S ⊆ Ne(X). We would find that (A,B) ⊥⊥ X|W . Thus {W} would also be a valid MNS
thereby violating uniqueness of MNS. In this case, we can output the ATE set from SD which would
be correct if the FF requirements for SD hold. This also shows the complementary nature of the two
algorithms: If there are detectable FF violations for one algorithm, we have an alternative ATE set
from the other algorithm that we can output.

4 Experiments

We empirically compare PC, SD, and LDECC on random synthetic linear graphs with Gaussian errors.
We show that LDECC leads to some MSE gains on synthetic graphs while performing fewer tests
than SD on average. We also compare these algorithms on both linear and discrete semi-synthetic
graphs from bnlearn [10] and observe that LDECC performs comparably to SD (see Appendix C.2).

We generate synthetic linear graphs with Gaussian errors, Nc covariates—non-descendants of X and
Y with paths to both X and Y —and Nm mediators—nodes on some causal paths from X to Y . We
generate edges between the different types of nodes with varying probabilities (see Appendix C.1 for
the precise procedure). The ground-truth parameter is set identified, so we use Hausdorff distance as
our evaluation metric:

MSEHausdorff({Θ̂}Ni=1,Θ
∗) =

1

N

N∑
i=1

max

{
sup

u∈Θ̂(i)

inf
v∈Θ∗

(u− v)
2
, sup
v∈Θ∗

inf
u∈Θ̂

(u− v)
2

}
,

where {Θ̂}Ni=1 is the estimated ATE set over N graphs and Θ∗ is the ground-truth ATE set.

Results on synthetic data. We first compare the three algorithms based on the number of CI tests
performed with access to a CI oracle. We generate 100 synthetic graphs with Nc = 25 and Nm = 3
and plot the distribution of CI tests (Fig. 6a). We see that LDECC performs substantially fewer tests
than both SD and PC for ∼ 65 graphs and has comparable performance on the other graphs. Next,
we evaluate the methods on 250 synthetic graphs with Nc = 20 and Nm = 3, and for each graph,
estimate Θ by resampling the data 5 times, at four different sample sizes. We use the Fisher-z’s CI
test and OLS for estimation. LDECC outperforms both SD and PC in terms of MSE at all sample
sizes (Fig. 6b) while still performing fewer tests (Fig. 6c).

5 Conclusion

Broadening the landscape of local causal discovery, we propose a new algorithm that uses ECCs
to orient parents. We show that it complements existing methods in terms computational and
faithfulness requirements. Thus LDECC can be fruitfully combined with the existing class of local
causal discovery algorithms that operate sequentially. In future work, we hope to come up with
procedures to test and recover from a larger class of faithfulness violations. Extending local causal
discovery methods to handle causal graphs with latent variables is also a promising direction.

6

References
[1] T. Gao and Q. Ji. Local causal discovery of direct causes and effects. Advances in Neural

Information Processing Systems, 2015.

[2] C. Glymour, K. Zhang, and P. Spirtes. Review of causal discovery methods based on graphical
models. Frontiers in genetics, 2019.

[3] A. Jaber, J. Zhang, and E. Bareinboim. Causal identification under markov equivalence:
Completeness results. In International Conference on Machine Learning. PMLR, 2019.

[4] M. H. Maathuis and D. Colombo. A generalized back-door criterion. The Annals of Statistics,
2015.

[5] M. H. Maathuis, M. Kalisch, and P. Bühlmann. Estimating high-dimensional intervention
effects from observational data. The Annals of Statistics, 2009.

[6] A. Marx, A. Gretton, and J. M. Mooij. A weaker faithfulness assumption based on triple
interactions. In Uncertainty in Artificial Intelligence. PMLR, 2021.

[7] C. Meek. Causal inference and causal explanation with background knowledge. arXiv preprint
arXiv:1302.4972, 2013.

[8] J. Pearl. Causality. Cambridge university press, 2009.

[9] J. Ramsey, J. Zhang, and P. L. Spirtes. Adjacency-faithfulness and conservative causal inference.
arXiv preprint arXiv:1206.6843, 2012.

[10] M. Scutari. Learning bayesian networks with the bnlearn r package. arXiv preprint
arXiv:0908.3817, 2009.

[11] P. Spirtes and J. Zhang. A uniformly consistent estimator of causal effects under the k-triangle-
faithfulness assumption. Statistical Science, 2014.

[12] P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman. Causation, prediction, and search.
MIT press, 2000.

[13] J. Tian and J. Pearl. A general identification condition for causal effects. eScholarship, University
of California, 2002.

[14] C. Uhler, G. Raskutti, P. Bühlmann, and B. Yu. Geometry of the faithfulness assumption in
causal inference. The Annals of Statistics, 2013.

[15] C. Wang, Y. Zhou, Q. Zhao, and Z. Geng. Discovering and orienting the edges connected to a
target variable in a dag via a sequential local learning approach. Computational Statistics &
Data Analysis, 2014.

[16] J. Yin, Y. Zhou, C. Wang, P. He, C. Zheng, and Z. Geng. Partial orientation and local structural
learning of causal networks for prediction. In Causation and Prediction Challenge. PMLR,
2008.

[17] J. Zhang and P. Spirtes. Detection of unfaithfulness and robust causal inference. Minds and
Machines, 2008.

[18] J. Zhang and P. Spirtes. The three faces of faithfulness. Synthese, 2016.

[19] Y. Zhou, C. Wang, J. Yin, and Z. Geng. Discover local causal network around a target to a given
depth. In Causality: Objectives and Assessment. PMLR, 2010.

7

1 Completely connected undirected graph
U(V,E);

2 ∀A,B ∈ V SepSet[A][B] = null;
3 s = 0;
4 while ∃(A—B) ∈ E s.t.
|Ne(A) \ {B}| ≥ s do

5 for S ⊆ Ne(A) \ {B} s.t. |S| = s do
6 if A ⊥⊥ B|S then
7 U .removeEdge(A—B);
8 SepSet[A][B] = S;
9 break;

10 end
11 s← s+ 1;
12 end
13 for every unshielded A—C—B do
14 if C /∈ SepSet[A][B] then
15 Orient A→ C ← B;
16 end
17 ApplyMeekRules(U);

Output: U ,SepSet

(a) The PC algorithm [12, Sec. 5.4.2]

Rule 1

Rule 2

Rule 3

Rule 4

(b) Meek’s orientation rules.

Figure 7: The PC algorithm and Meek’s rules.

A Additional details on the PC and SD algorithms.

Definition 2 (CPDAG [4, Pg. 5]). A set of DAGs that entail the same set of CIs form an MEC. This
MEC can be uniquely represented using a CPDAG. A CPDAG is a graph with the same skeleton as
each DAG in the MEC and contains both directed (→) and undirected (—) edges. A directed edge
A → B means that the A → B is present in every DAG in the MEC. An undirected edge A—B
means that there is at least one DAG in the MEC with an A→ B edge and at least one DAG with the
B → A edge.

The complete PC algorithm is given in Fig. 7a. PC starts with a fully connected skeleton and runs
CI tests to remove edges. For each pair of nodes (A,B) that are adjacent in the skeleton, check CIs
of size s—starting with s = 0 and then increasing it by one in each subsequent iteration—until the
edge is removed or the number of nodes adjacent to both A and B is less than s. Once the skeleton is
found, UCs are detected and then additional edges are oriented by repeatedly applying Meek’s rules
(Fig. 7b) until no additional edges can be oriented. With access to a CI oracle, the output of PC is a
CPDAG encoding the MEC of the true DAG G∗.

The FindNeighbors function used in the SD algorithm is given in Fig. 8a. For a given target node,
FindNeighbors essentially runs the CI tests like the PC algorithm, but locally around the target node.

B Additional details for Section 3

B.1 Additional functions used by LDECC

The FindNeighborsAndMNS function used by the LDECC algorithm is given in Fig. 8b. We first
begin by calling FindNeighbors (Fig. 8a) to get the neighbors of X . Then in Lines 3–11, we find the
MNS for each node. In Lines 12–15, we verify that the MNS is valid. The following proposition
shows that the MNS returned by this algorithm is correct.
Proposition 7 (MNS is correct). Assume access to a CI oracle. Then mnsX(V) returned by the
FindNeighborsAndMNS function (Fig. 8b) is correct.

Proof. First, consider a node V for which there is no valid MNS. For all such nodes, Lines 12–15
will set the MNS to invalid. So going forward, we will focus on nodes with a valid MNS.

8

Input: Target node V .
1 Completely connected undirected graph
U(V,E);

2 ∀A,B ∈ V, SepSet[A][B] = null;
3 s = 0;
4 while ∃(V —B) ∈ E s.t.
|Ne(V) \ {B}| ≥ s do

5 for S ⊆ Ne(V) \ {B} s.t. |S| = s do
6 if A ⊥⊥ B|S then
7 U .removeEdge(A—B);
8 SepSet[V][B] = S;
9 break;

10 end
11 s← s+ 1;
12 end

Output: U ,SepSet,NeU (V);

(a) The FindNeighbors function.

Input: Treatment node X .
1 U ,SepSet,Ne(X) = FindNeighbors(X);
2 ∀V, mnsX(V) = invalid;
3 for V ∈ V \ Ne+(X) do
4 mnsX(V) = Ne(X) ∩ SepSet[X][V];
5 R = SepSet[X][V] \ Ne(X);
6 while R ̸= ∅ do
7 A = GetAndRemoveFirstItem(R);

8 mnsX(V)← mnsX(V) ∪
(SepSet[X][A] ∩ Ne(X));

9 R← R ∪ SepSet[X][A] \ Ne(X);
10 end
11 end
12 for V ∈ V \ Ne+(X) do
13 if V ⊥̸⊥ X|mnsX(V) then
14 mnsX(V) = invalid;
15 end

Output: Ne(X),mnsX ;

(b) The FindNeighborsAndMNS function.

Figure 8: Functions used by SD and LDECC.

X YM

A

Figure 9: mnsX does not exist for node Y .

First, we start with the base case of a node V such that SepSet[X][V] ⊆ Ne(X). Since the MNS is
unique (Prop. 2), Line 4 will correctly set the MNS for this node and the while loop in Line 6 will not
be entered.

Now consider a node V such that SepSet[X][V] \ Ne(X) ̸= ∅. We first prove that SepSet[X][V] ∩
Ne(X) ⊆ mnsX(V). Consider any node N ∈ SepSet[X][V]∩Ne(X). Then there must be some path
X—N— . . .—V and thus N ∈ mnsX(V). If N was not part of mnsX(V), then SepSet[X][V]\{N}
would also have d-separated V from X . This cannot happen because PC runs CI tests in increasing
order of size, SepSet[X][V] is also minimal in that there is no subset S′ ⊂ SepSet[X][V] that would
d-separate X and V . This ensures the correctness of Line 4.

Let R = SepSet[X][V] \ Ne(X). Now we need to ensure that all paths from V to X through R
get blocked. The while-loop in Line 6 ensures this. Consider the path X—B— . . .—A— . . .—V
such that A ∈ R and B /∈ SepSet[X][V]. Here there are two possibilities: (i) B ∈ SepSet[X][A] in
which case it will be added to mnsX(V) in Line 8; or (ii) B /∈ SepSet[X][A] in which case some
other intermediate node on the path from A to X will be added to R in Line 9 and eventually in some
subsequent iteration of the while-loop, B will be added to mnsX(V).

Finally, we show that minimality is still maintained, i.e., that every node added by Line 8 must be a
part of mnsX(V). This has to be the case because the only way a node B can be added in Line 8 is if
there is some path from V to X via B. Thus B has to be a part of mnsX(V) to block this path.

Example 3 (MNS does not exist.). Consider the graph in Fig. 9. For node Y ∈ Desc(X), mnsX
does not exist: There is no subset of Ne(X) that d-separates Y from X .

B.2 Omitted Proofs.

Proposition 1. For any node V /∈ (Desc(X)∪Ne+(X)), there exists a MNS and mnsX(V) ⊆ Pa(X).

9

Proof. Let Q = Desc(X) ∪ Ne+(X). Since Pa(X) blocks all backdoor paths from X , for every
V /∈ Q, we have V ⊥⊥ X|Pa(X). Therefore, for every V /∈ Q, there exists some subset S ⊆ Pa(X)
such that V ⊥⊥ X|S.

Proposition 2 (Uniqueness of MNS.). For nodes V s.t. mnsX(V) exists, it is unique.

Proof. We will prove this by contradiction. Consider a node V with two MNSs: S1 ⊆ Ne(X) and
S2 ⊆ Ne(X) with S1 ̸= S2.

If S1 ⊂ S2 or S2 ⊂ S1, then minimality is violated. Hence, going forward we will only consider the
case where S1 \ S2 ̸= ∅ and S2 \ S1 ̸= ∅.
Consider any node A ∈ S1 s.t. A /∈ S2. For S2 to be a valid MNS, some nodes in S2 \S1 must block
all paths from V to X that contain A (this is because if this path were to be only be blocked by some
nodes in S1, then minimality of S1 will be violated as S1 \ {A} would also have been a valid MNS).
This means that there is a path from V to X through some nodes in S2 \ S1 that cannot be blocked
by S1 (else these nodes in S1 would have blocked the paths from V to A violating minimality of S1).
This contradicts the fact that S1 is a valid MNS. Therefore, we must have S1 = S2.

Proposition 3 (Eager Collider Check). For nodes A,B ∈ V \ Ne+(X), any S ⊂ V \ {A,B,X}, if
(i) A ⊥⊥ B|S; and (ii) A⊥̸⊥ B|S ∪ {X}; then A,B /∈ Desc(X) and mnsX(A),mnsX(B) ⊆ Pa(X).

Proof. We prove this by contradiction. Let’s say there is a child M of X such that M ∈ mnsX(B)
or M ∈ mnsX(A).

First, note that if Conditions (i, ii) hold, then there is a path of the form A• → C and B• → C and
C → . . . X , where • means that there can be either an arrowhead or tail (i.e., there can be either a
directed path A → . . . → C or a backdoor path A ← . . . → C and likewise for B) with C /∈ S.
W.l.o.g., let’s say that M ∈ mnsX(B) (the argument for node A follows similarly). Then there
is a directed path from X to B through M (i.e., X → M → . . . → B). There cannot be a path
B → . . .→M because then M will be a collider and therefore we will have M /∈ mnsX(B). These
components are illustrated in the figure below:

X

C
A

B

M

We now show that B /∈ Desc(X) (the argument for node A is the same). There cannot be a directed
path B → . . .→ C because otherwise a cycle B → . . .→ C → . . .→ X →M → . . .→ B gets
created.

Thus the path from B to C must be of the form B ← . . . → C. Note that there is an active path
between A and B through X (A• → . . . → C → . . . → X → M → . . . → B). Since A ⊥⊥ B|S,
there are two possibilities: (i) S contains X to block this path which contradicts the definition of S
(where X /∈ S); or (ii) S blocks all paths between A and X or between B and X in which case A and
B cannot become dependent when additionally conditioned on X thereby violating Condition (ii).

Therefore, we have that A,B /∈ Desc(X) and by Prop. 1, mnsX(A) and mnsX(B) will be valid and
only contain parents of X .

Proof of correctness of LDECC under the CFA
Lemma 1. Consider a DAG G(V,E) with a node X ∈ V. Let A,B ∈ V be two nodes such
that A—B /∈ E and A,B /∈ Desc(X) (i.e., both A,B are non-descendants of X). Then, for any
S ⊆ V \ {A,B} such that A ⊥⊥ B|S and A⊥̸⊥ B|S ∪ {X}, we have Ch(X) ∩ S = ∅.

Proof. We prove this by contradiction. Let’s say that there is child M ∈ S (the relevant component
of the graph is shown in the figure below).

10

X M

A

B

Since M ∈ S, there is a path A— . . .—M— . . .—B such that M is a non-collider on this path.
Thus there has to be an arrowhead into at least one of A or B from M : i.e., there is at least one of
M → . . .→ B or M → . . .→ A. W.l.o.g., let’s say there is an arrowhead into B. Then we would
have B ∈ Desc(X) (because of the path X →M → . . .→ B) leading to a contradiction.

Theorem 1 (Correctness). Assuming the CFA holds and access to a CI oracle, we have ΘLDECC
set
= Θ∗.

Proof. We will prove the correctness of LDECC by showing that (i) every orientable neighbor of
the treatment X will get oriented correctly by LDECC; and (ii) every unorientable neighbor of the
treatment will remain unoriented.

Note that the function FindNbrAndMNS returns mnsX correctly (Prop. 7).

Parents are oriented correctly. In PC, edges get oriented using UCs and then propagating addi-
tional orientations via application of Meek’s rules (Figure 7b).

The simplest case is where two parents form a UC at X . Consider parents W1 and W2 that get
oriented because they form a UC W1 → X ←W2. Lines 6,7 will mark W1 and W2 as parents.

We will now consider parents that get oriented due to each of the four Meek rules and show that
LDECC orients parents for each of the four cases.

Meek Rule 1:

Consider a parent W that gets oriented due to the application of Meek’s rule 1. This can only
happen due to some UC A→ C ← B from which these orientations have been propagated (relevant
components of the graph are illustrated in the figure below).

X

C
A

B
W

Thus there is a directed path C → . . . → W → X . This would mean that W ∈ mnsX(A) and
W ∈ mnsX(B). Thus Line 17 will mark W as a parent.

Meek Rule 2:

Consider a parent W2 that gets oriented due to the application of Meek’s rule 2. In this case, we have
an oriented path W2 → W1 → X but the edge W2—X is unoriented (and Meek Rule 2 must be
applied to orient it).

The first possibility is that the X ← W1 was oriented due to some UC A → C ← B with a path
C → . . .→W1 (relevant components of the graph are illustrated in the figure below):

X

𝑊!

𝑊"

C
A

B

In this case, there would be a collider at W1: C → . . .→W1 ←W2. Thus if W1 ∈ mnsX(A), then
W2 ∈ mnsX(A) and thus LDECC will mark W2 as a parent in Line 17.

The other possibility is that X ← W1 was oriented due to a UC like W3 → X ← W1 but there is
an edge W3—W2 which causes the collider W2 → X ← W3 to be shielded and due to this, the
W2—X remained unoriented. However, by definition of the Meek Rule, the edge W2 → W1 is

11

oriented. Thus, (i) either there is a UC of the form W2 →W1 ← C; or (ii) there is a UC from which
the W2 →W1 orientation was propagated. The relevant components of the graph for these two cases
are illustrated in the figures below.

X

𝑊!

𝑊"

C

𝑊#

X

𝑊!

𝑊" C
A

B

𝑊#

For Case (i), W2 ∈ mnsX(C) and for Case (ii), W2 ∈ mnsX(A) and W2 ∈ mnsX(B). In both cases,
LDECC will mark W2 as a parent in Lines 17,16.

Meek Rule 3:

Consider a parent W that gets oriented due to the application of Meek’s rule 3 (relevant component
of the graph is shown in the figure below).

X

𝑊!

𝑊"

W

By definition of the Meek rule, W1—W—W2 is a non-collider (because if it were a collider, the edges
would have been oriented since this triple is unshielded) and therefore for any S ⊆ V \ {W1,W2}
such that W1 ⊥⊥W2|S, we have W ∈ S. Thus Line 8 will mark W as a parent.

Meek Rule 4:

Consider a parent W that gets oriented due to the application of Meek’s rule 4. The relevant
component of the graph is shown in the figure below.

X𝑊!

𝑊" W

The first possibility is that the orientations W2 →W1 → X were propagated from a UC A→ C ← B
with a path C → . . .→W2 (the relevant components of the graph are shown in the figure below).

X𝑊!

𝑊" W

C

A B

In this case, due to the non-collider W2—W—X (because if it were a collider, the edges would have
been oriented since this triple is unshielded), we have W ∈ mnsX(A) and thus W will be marked as
a parent in Line 17.

The second possibility (similar to the Meek rule 2 case) is that W2 → W1 was oriented due to a
UC like Z → W1 ← W2 but there is an edge Z—W which shields the Z → W1—W causing the
W1—W edge to remain unoriented (the relevant components of the graph are shown in the figure
below).

12

X𝑊!

𝑊" W

Z

In this case, we would have W ∈ mnsX(Z) and thus W gets marked as a parent in Line 17.

Children are oriented correctly. We now similarly show that children of X get oriented correctly.

The simplest case is when there is a UC of the form X → M ← V . We have M /∈ mnsX(V) and
M ⊥̸⊥ V |mnsX(V) and thus the function OrientChildren will mark M as a child.

Now, we consider each Meek rule one at a time and show that LDECC will orient children for each
rule.

Meek Rule 1:

Consider a child M that gets oriented due to the application of Meek’s rule 1. This can only happen
if there is some parent W that gets oriented and W—X—M forms an unshielded non-collider. In
this case, Line 21 will mark M as a child.

Meek Rule 2:

Consider a child M2 that gets oriented due to the application of Meek’s rule 2: there is an oriented
path X →M1 →M2 but the X—M2 edge is still unoriented (the relevant component of the graph
is shown in the figure below).

X

𝑀!

𝑀"

One possibility is that there is UC of the form V → M1 → X which orients the X → M1 edge
and V —M1—M2 is a non-collider which orients the M1 →M2 edge (the relevant components of
the graph are shown in the figure below). If the X → M1 was oriented but the X—M2 was not,
then there would have been a UC upstream of X that would have oriented X → M1 through the
application of Meek rule 1. But this would also cause the X →M2 edge to be oriented.

X

𝑀!

𝑀"

V

We have M2 /∈ mnsX(V) and M2 ⊥̸⊥ V |mnsX(V) and thus the function OrientChildren will mark
M as a child.

Similar to the Meek rule 2 case, there might be a UC of the form M1 → M2 ← Z that can orient
M1 → M2. However, for the X → M1 edge to remain unoriented, there must be an edge Z—X
to shield the X—M2—Z collider. If this happens, Meek rule 3 would apply (which we handle
separately as shown next).

Meek Rule 3:

Consider a child M that gets oriented due to the application of Meek’s rule 3 (the relevant component
of the graph is shown in the figure below). By definition of the Meek rule, W1—X—W2 is a
non-collider (because if it were a collider, the edges would have been oriented since this triple is
unshielded) and since W1 →M ←W2 forms a collider, we have W1 ⊥̸⊥W2|S ∪ {M} for any S s.t.
W1 ⊥⊥W2|S. Thus Line 12 will mark M as a child.

X

𝑊!

𝑊"

M

13

Meek Rule 4:

Consider a child M that gets oriented due to the application of Meek’s rule 4 (the relevant component
of the graph is shown in the figure below).

M𝑀!

𝑊 X

One possibility such that the W →M1 gets oriented leaving the edges W—X , X—M , and X—M1

unoriented is if there is a UC of the form V → M1 ← W where there is an edge V —X to shield
the X—M1 edge (the relevant component of the graph is shown in the figure below). Here the triple
W—X—V must be a non-collider to keep the X—M edge unoriented (otherwise applying Meek
rule 1 from the UC W → X ← V would orient X → M). So for any S such that V ⊥⊥ W |S, we
must have X ∈ S and V ⊥̸⊥W |S ∪ {M}. Therefore, Line 12 will mark M as a child.

M𝑀!

𝑊 X

V

The other possibility is that the W →M1 gets oriented due to Meek rule 3 (the relevant component
of the graph is shown in the figure below). Here the Z—X and V —X must be present to keep the
X—M1 edge unoriented (because otherwise an unshielded collider would be created). Furthermore,
the triple Z—X—V must be a non-collider in order to keep the X—M edge unoriented. (otherwise
applying Meek rule 1 from the UC Z → X ← V would orient X → M) So for any S such that
V ⊥⊥ Z|S, we must have X ∈ S and V ⊥̸⊥ Z|S ∪ {M}. Therefore, Line 12 will mark M as a child.

M𝑀!

𝑊 X
V

Z

No spurious orientations. Now we prove that nodes are never oriented the wrong way by LDECC.

We show that OrientChildren will never orient a parent as a child. We prove this by contradiction. Let’s
say there is a parent W that is oriented as a child by OrientChildren. This can happen if there is a node
V s.t. W /∈ mnsX(V) but V ⊥̸⊥W |mnsX(V). This can only happen if there is a path V — . . .—W
that is not blocked by mnsX(V). In this case, there would be a path V — . . .—W → X that is not
blocked by mnsX(V) and therefore we should have W ∈ mnsX(V) which is a contradiction.

Line 7 can never mark a child as a parent since otherwise the CFA would be violated.

Line 12 will not mark a parent as a child. Consider a parent M that incorrectly gets marked as a child
by Line 12. (the relevant component of the graph is shown in the figure below). For Line 12 to be
reached, the if-condition in Line 9 must be True. This will happen if W1—X—W2 is a non-collider.
Thus at least one of W1 or W2 is a child. W.l.o.g., let’s assume that W1 is a child. If that happens, a
cycle gets created: X →W1 →M → X . Therefore M can never be oriented by Line 12.

X

𝑊!

𝑊"

M

Line 17 cannot mark a child as a parent because of the correctness of the ECC (Prop. 3).

Line 8 will not mark a child as a parent. Both A and B from Line 6 are parents of X . By Lemma 1,
a child cannot d-separate two non-descendants nodes and thus the set S in Line 8 cannot contain a
child.

14

0 2000 4000 6000 8000 10000 12000
Number of tests

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Nu
m

be
r o

f n
od

es

Distribution of CI tests
LDECC
SD

(a) Number of tests with CI oracle.

10000 15000 20000 25000 30000
Sample size

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
SE

 (H
au

sd
or

ff
di

st
an

ce
)

MSE vs Sample size
LDECC
SD

(b) MSE vs sample size.

10000 15000 20000 25000 30000
Sample size

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f C
I t

es
ts

Number of tests
LDECC
SD

(c) Number of tests (finite samples).

Figure 10: Comparison of LDECC and SD on a semi-synthetic graph.

Line 21 will not add a child as a parent because otherwise the CFA would be violated.

Proposition 4 (Number of tests: PC vs LDECC). Assume access to a CI oracle. Let the number
of tests performed by PC and LDECC be TPC and TLDECC, respectively. Let the number of tests
performed by LDECC in the FindNbrsAndMNS routine be T

(X)
LDECC. Then we have

TLDECC ≤ TPC +O(|V|2) + T
(X)
LDECC ≤ TPC +O(|V|2) +O

(
|V||Ne(X)|

)
.

Proof. Compared to the PC algorithm, LDECC performs two main steps that are different: (i) It
locally runs PC around X to find the neighbors of X and compute the MNS; and (ii) Run an ECC
when an edge is removed.

The O
(
|V||Ne(X)|]

)
term upper bounds the complexity of step (i).

For any graph with |V| nodes, the number of edges is |E| ∈ O(|V|2). The O(|V|2) term upper
bounds the extra tests LDECC does for ECCs.

C Experiments

C.1 More details on experiments with synthetic graphs

We generate synthetic linear graphs with Gaussian errors, Nc covariates—non-descendants of X
and Y with paths to both X and Y —and Nm mediators—nodes on some causal paths from X
to Y . We generate edges between the different types of nodes with varying probabilities: (i) We
connect the covariates to the treatment with probability pcx; (ii) We connect one covariate to another
with probability pcc; (iii) We connect the covariates to the outcome with probability pcy; (iv) We
connect the treatment to the mediators with probability pmx; (v) We connect one mediator to another
with probability pmm; (vi) We connect the mediators to the outcome with probability pmy; (vi)
We connect a mediators to a covariate with probability pcm. For our experiments, we have used
pcx = pcc = pcy = pmx = pmm = pmy = 0.1 and pcm = 0.05.

For each node V , we generate data using the following structural equation:

v := b⊤V pa(v) + ϵV , ϵV ∼ N (0, σ2
V),

where v and pa(v) are the realized values of node V and its parents, respectively; b⊤V ∈ R|Pa(V)|

is the vector denoting the edge coefficients; and ϵV is an independently sampled noise term. Each
element of bV is sampled independently from a uniform distribution U(0.1, 1) and σ2

V is sampled
independently from a uniform distribution U(0.3, 1).

C.2 Experiments with semi-synthetic graphs

We empirically compare PC, SD, and LDECC on both semi-synthetic linear and discrete graphs
from bnlearn. We begin by comparing performance of PC, SD, and LDECC with a CI oracle on
the MAGIC-NIAB linear graph. PC performs ∼ 1.472× 106 tests. For SD and LDECC, we plot the
distribution of CI tests on a subset of nodes: we only consider nodes where either algorithm performs
< 20000 tests). Both algorithms perform comparably with SD doing slightly better (Fig. 10a). Next,

15

10000 15000 20000 25000 30000
Sample size

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

M
SE

 (H
au

sd
or

ff
di

st
an

ce
)

MSE vs Sample size
LDECC
SD

(a) MSE vs sample size.

10000 15000 20000 25000 30000
Sample size

2000

4000

6000

8000

10000

Nu
m

be
r o

f C
I t

es
ts

Number of tests
LDECC
SD

(b) Average number of tests (finite samples).

Figure 11: Comparison of LDECC and SD on the MAGIC-IRRI graph from bnlearn.

0 1000 2000 3000 4000 5000
Number of tests

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Nu
m

be
r o

f n
od

es

Distribution of CI tests
LDECC
SD
PC

(a) Alarm graph.

0 10000 20000 30000 40000
Number of tests

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f n
od

es

Distribution of CI tests
LDECC
SD
PC

(b) Insurance graph.

0 2000 4000 6000 8000 10000 12000 14000
Number of tests

0

5

10

15

20

25

Nu
m

be
r o

f n
od

es

Distribution of CI tests
LDECC
SD
PC

(c) Mildew graph.

Figure 12: Comparison of by LDECC and SD based on the number of CI tests (with a CI oracle) on
discrete graphs from bnlearn.

we designate the nodes G266 and HT as treatment and outcome, respectively. We see that in terms of
MSE, which we compute over 200 runs, both are very similar at all four sample sizes (Fig. 10b) but
LDECC performs fewer CI tests (Fig. 10c).

We also present results on the linear Gaussian MAGIC-IRRI graph from bnlearn (Fig. 11) for four
different sample sizes. We designate the nodes G2639 and CHALK as the treatment and outcome,
respectively. For each of the four sample sizes, we sample data from the graph 200 times to compute
the MSE and average number of tests. We see that in terms of MSE, both SD and LDECC perform
comparably (Fig. 11a) and LDECC performs fewer CI tests (on average) than SD (Fig. 11b).

Finally, we compare PC, SD, and LDECC based on the number of CI tests (with access to a CI oracle)
on three discrete graphs from bnlearn: Alarm (Fig. 12a), Insurance (Fig. 12b), and Mildew (Fig. 12c).
We plot the distribution of tests for LDECC and SD by setting each node in the graph as the treatment.
We can see that for both Alarm and Insurance, both SD and LDECC perform a comparable number
of tests. On the Mildew graph, LDECC outperforms SD and performs strictly fewer CI tests.

16

	Introduction
	Preliminaries
	Local Discovery using Eager Collider Checks (LDECC)
	Comparison of computation requirements
	Comparison of faithfulness requirements

	Experiments
	Conclusion
	Additional details on the PC and SD algorithms.
	Additional details for Section 3
	Additional functions used by LDECC
	Omitted Proofs.

	Experiments
	More details on experiments with synthetic graphs
	Experiments with semi-synthetic graphs

