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Abstract

Graph condensation (GC) aims to distill the original graph into a small-scale graph,
mitigating redundancy and accelerating GNN training. However, conventional
GC approaches heavily rely on rigid GNNs and task-specific supervision. Such a
dependency severely restricts their reusability and generalization across various
tasks and architectures. In this work, we revisit the goal of ideal GC from the
perspective of GNN optimization consistency, and then a generalized GC optimiza-
tion objective is derived, by which those traditional GC methods can be viewed
nicely as special cases of this optimization paradigm. Based on this, Pre-trained
Graph Condensation (PreGC) via optimal transport is proposed to transcend
the limitations of task- and architecture-dependent GC methods. Specifically, a
hybrid-interval graph diffusion augmentation is presented to suppress the weak
generalization ability of the condensed graph on particular architectures by en-
hancing the uncertainty of node states. Meanwhile, the matching between optimal
graph transport plan and representation transport plan is tactfully established to
maintain semantic consistencies across source graph and condensed graph spaces,
thereby freeing graph condensation from task dependencies. To further facilitate the
adaptation of condensed graphs to various downstream tasks, a traceable semantic
harmonizer from source nodes to condensed nodes is proposed to bridge semantic
associations through the optimized representation transport plan in pre-training. Ex-
tensive experiments verify the superiority and versatility of PreGC, demonstrating
its task-independent nature and seamless compatibility with arbitrary GNNss.

1 Introduction

Graph neural networks (GNN5s) have emerged as a powerful approach to graph data analysis, showing
excellent efficacy in a variety of domains, such as recommender systems [3]], text analysis [56} 53],
social network analysis [52], and so on. However, the dual challenges of exponentially growing
graph data volumes [58]] and increasingly sophisticated GNN architectures [[63] present significant
obstacles for GNN training. These challenges become particularly acute in scenarios that require
multiple GNN training, such as continual graph learning [21]] and federated graph learning [30].

In response to the above issues, graph condensation (GC) [25] [64] is proposed to optimize and
synthesize a small-scale condensed graph from the real graph. The core objective is to ensure that
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condensed graphs achieve comparable performance as original graphs when training the same GNN.
This approach significantly reduces computational overhead and becomes an up-and-coming solution
for efficient graph learning. Depending on matching strategies, GC fall mainly into three types. For
example, (25, 124}155] distilled the properties of the real graph by mimicking its gradient changes in
GNN training. [[64} 59] replicated the training trajectory on original graphs to synthesize condensed
graphs. Other studies [32, [16] generated the graph by aligning the latent space representations of
both graphs and maintaining the distribution consistency. Recently, [16] pointed out that all these
methods can be generalized as distribution matching, with the basic pipeline shown in Fig. [] (a).
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the guidance of supervision signals. Unfortunately, this assumption often proves impractical in
real-world scenarios. For example, in social networks, multiple tasks may coexist (e.g., preference
classification, income prediction, and relation prediction) [[12], and user labels frequently vary owing
to privacy constraints and annotation discrepancies [30]. When the task or label changes, conven-
tional GC methods require re-condensation to capture new knowledge, significantly diminishing the
reusability of condensed graphs. Although [15] attempted to address label dependency by contrastive
learning, its reliance on class similarity hinders its application to other supervised tasks.

To tackle the two critical challenges altogether, we first revisit the GC objective based on the
goal of condensed graphs. It aims to achieve comparable performance to the original graph when
training the same GNN (i.e. GNN optimization consistency). From this perspective, we derive a
generalized GC optimization paradigm without task constraints as shown in Fig. [T] (b) and design a
flexible and generalized GC method termed Pre-trained Graph Condensation (PreGC). Inspired by
data augmentation [10], graph diffusion augmentation is proposed to perturb node diffusion states
via hybrid intervals, thereby enhancing the generalizability of condensed graphs and mitigating
their dependence on specific architectures. To decouple the reliance on task labels, we present a
novel matching mechanism, named transport plan matching. It maintains consistency in semantic
associations between graph space and representation space, thus guaranteeing a unique mapping from
each source node to its condensed counterpart. More importantly, transport plans provide explicit
feedback on the significance of the source node, alleviating the poor traceability and interpretability
issues in conventional condensation methods. After pre-training, a traceable semantic harmonizer via
the optimal transport plan is derived, enabling flexible transfer of task signals from the original graph
to the condensed graph for adaptation to diverse tasks.

To the best of our knowledge, PreGC is the first work for generalized graph condensation considering
both architecture- and task-agnostic scenarios. Our main contributions are outlined as follows:

» Formal theoretical analysis reveals that conventional GC methods are inherently governed by the
reconstruction term and the fitting term. Inspired by such an insight, we propose a pre-training
framework of graph condensation, generalizing the condensed graph to more scenarios.



» To empower the condensed graph for architecture-agnostic scenarios, a hybrid-interval graph
diffusion augmentation is presented, which enhances the diversity of node representations by
introducing stochasticity into the diffusion process of both the condensed and original graphs.

* We propose an optimal transport plan matching to realize semantic alignment without task con-
strained. By keeping a consistent optimal plan for graph alignment and representation alignment,
the uniqueness of semantic associations between source nodes and condensed nodes is guaranteed.

» Experiments on four mainstream tasks and nine representative GNN architectures demonstrate the

superiority and generalization of PreGC. Further data valuation of the original graph highlights the
PreGC'’s excellent traceability and interpretability.

2 Preliminary

Graph Condensation (GC). Given a large-scale original graph ¢ = (A, X) with a node set
V (V| = N), where A € RY*Y denotes the symmetrically normalized adjacency matrix and
X e RV*f isa f-dimensional node feature matrix. GC [25[33]] aims to condense a small synthetic
graph G = (A, X) with a condensed node set V (|V| = M) form the real large graph G, where
A ¢ RM*xM , X € RMxf ,and M < N. At the same time, trained GNNs with the specific task have
comparable performance on both G and G, thus accelerating the training of GNNs.

Graph Optimal Transport. Optimal transport (OT) [39] aims to seek the most cost-efficient transport
plan 7 that transforms a source distribution p into a target distribution ~ while minimizing the total
transport cost (i.e., the optimal transport distance). The elements of 7 represent the probability of
mass transferring from one location to another. In this work, we primarily concentrate on graph
optimal transport [6, 43], which extends the OT to compare structured data. Given two graphs
G = (A,X) and G = (A, X) with the nodes’ empirical distribution g € RY and v € RM, the
general form of the graph optimal transport distance can be formalized as:

W(G,9) = min (C(X,X,A, A, 7)) M

well(p,v)

where I(p,v) = {m € RV>*M|x1,, = p,1y7 = v} is set of the joint distributions m with
marginals p and v, and and (-, -) denotes the inner product for matrices. C represents the cost function
that quantifies the cost of transporting mass from elements in one domain to another.

The transport distance quantifies the distribution divergence between condensed and original graphs,
offering a novel optimization approach for GC. Meanwhile, the transport plan establishes explicit
node correspondences, overcoming the limitations of poor traceability in conventional GC methods.

3 Revisiting and Generalizing Graph Condensation

In this section, we revisit the objective of graph condensation and reveal the limitations of existing
GC methods, thus motivating the design of PreGC.

Revisiting. For convenience, we follow [33] and start with a vanilla example, which adopts a
K-order SGC [48]] as the GNN and simplifies the objective of GNNs into the MSE loss: Ly s =
|[AKXW — Y%, where Y € RV*C denotes the target variable and W € R/*¢ is the model

parameter. For the original graph G, the optimal W = arg min || AKX XW — Y |% can be obtained
w

by MSE loss. In general, the goal of condensation is that the GNN trained on the condensed graph G
to achieve comparable performance to those trained on G, i.e

min ||[W — W/ = min || AXX)'Y — (AXX)'Y||p 2)

where W = arg min || AKX XW — Y||3, with target variable Y € R**“ on G, and } denotes pseudo

W
inverse. Subsequently, we further derive the following proposition (Proofs are in Appendix [A):

Proposition 3.1. Suppose that it has an analytical filter g(-) for a GNN model, the performance
approximation error Oy of condensed graph is jointly bounded by the reconstruction term O z and
the fitting term O-.

IW — W|lr < [Mz(Y)|lr - [|Mz(g(L)X)" = (9(L)X)||r + [|M=(Y) = Y| -[(9@)X)|F 3
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where Mz (-) is any mapping function that aligns g(f;}f( and g(L)X orY and Y. L =1y — A
and L = Iy — A are the Laplacian matrices of G and G.

Proposition [3.1] reveals that the reconstruction term Oz and the fitting term Oy are the two key
factors for ideal GC. Unfortunately, current GC methods rely on specific GNNss (i.e. the rigid filter
g(+)), resulting in spectrally limited condensed graphs with higher reconstruction errors for Oz.
Moreover, the pre-defined task signal in condensation restricts Oy, to the specific task. Consequently,
the condensed graph can only achieve satisfactory performance with the pre-defined GNNs and task,
severely limiting its generalizability and reusability. To overcome these limitations, we focus on
proposition [3.1] and relax the above conditionally constrained GC objective into a generalized one:

Definition 3.1. Generalized Graph Condensation. Given an original graph G, the objective of ideal

graph condensation is to seek a condensed graph G that simultaneously minimizes the representation-
level and the semantic-level discrepancies relative to G:

G* = argmin{ Az(2,2) +£ Ay(G.9) } @
g T T
= %

where Az (-, ) measures the representation-level discrepancy between representations Z and 4 of
Gand G. Ay(-,-) is a distance function measuring semantic-level discrepancy, and £ serves as a
trade-off parameter balancing the fitting and reconstruction terms.

Definition [3.1| presents a general GC optimization paradigm, of which current GC methods can be
regarded as variant forms (Appendix [C.2]shows more details). In this formulation, the generalized
node representation Z replaces g(L)X, and the task-specific fitting term Oy is relaxed to semantic
alignment between two graphs. Therefore, by boosting the diversity of the representations Z and Z,
and designing unsupervised signals for A, it is possible to readily establish a pre-trained graph
condensation framework. Such a framework enhances the generalization of the condensed graph and
augments its adaptability across diverse scenarios.

4 Methodology

Fig. P]illustrates the framework of PreGC, which strictly follows the GC objective in Eq. @). In pre-
training phase, graph diffusion augmentation is proposed to increase the diversity of representations in
Oz to alleviate architectural dependencies. Subsequently, to realize task-agnostic graph condensation,
PreGC adopts an innovative transport plan matching to align semantic associations in Oy. In addition,
test-time fine-tuning further achieves dynamic adaptation on specific tasks and architectures.
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Figure 2: Overall pipeline of the proposed PreGC framework. 7p and 7z denote optimal transport
plans for graph alignment and for representation alignment, respectively.

4.1 Diffusion Augmentation via Graph Heat Equation

As analyzed in Section most GC methods adopt K -order SGC [48] or GCN [26] for encoding
graphs to obtain Z and Z [42]. However, parameters in neural networks may inherit task-induced
biases, thus distorting the intrinsic representation properties. Although GDEM [33]] and CGC [16]
attempt to use parameter-free encoders to obtain node representations, they remain architecture-bound,
resulting in condensed graphs hard to generalize to other GNNs. More critically, under discrete



propagation, the representation distributions of two graphs evolve at markedly divergent rates due to
diameter disparities, inevitably exacerbating the difficulty of GC.

The graph heat equation (GHE) [9], as a generalization of the diffusion equation on graph data
(graph diffusion), serves as an effective solution to the above problems due to its non-parametric
and dynamic continuity properties. Formally, GHE can be defined as % = —LZ;, where Z; is the
evolved input representation at time ¢, and Zy = X. In our proposed PreGC, graph diffusion [31] is

used to encode node representations and solved using Explicit Euler method:
Zt+5t == Zt - 5tLZt = A(6t) Zt (5)

where 6t is diffusion interval and A(®Y) = (1 — 6t)I 4 6tA. Finally, the representation (or state)
Zr at the terminal time 7' = K - §t can be formulated as Z7 = [A®Y]XX. Adjusting 6t enables
smoother propagation rate modulation, mitigating representation instability in discrete propagation.

Graph Diffusion Augmentation. Indeed, deterministic diffusion states capture specific graph spectral
responses. To eliminate architectural bias, the condensed graph should maintain state consistency
with the original graph for arbitrary diffusion times to inherit the complete spectral properties.

As a sample generation strategy, data augmentation [[10, [29]] aims to enhance the generalizability and
robustness of the model through diverse samples. Inspired by this, a simple yet efficient diffusion
augmentation is proposed to improve the generalizability of the condensed graph by generating
diverse diffusion states with hybrid intervals. This process can be formulated as:

S(Z7) = {27 | 2% = (A5 X, 6t ~ P, Vit, < ﬁ(m}flo
where P = U (§tmin, 2/ Amax (L)), T denotes the condensation epoch, and Apax (L) is the maximum
eigenvalue of L. Vit, < 2/Ama (L) ensures the stability of the graph diffusion. Similarly, S(Z7.) is
obtained by keeping the same dt.- as above on Gg.

(6

It can be seen from Eq. (6)) that the stochastic variation of the diffusion interval §¢ raises uncertainty
of the diffusion state at time 7. By aligning the two graph representations Z7. and Z7., the condensed
graph is guided to capture the diffusion trajectories of the original graph across varying states. In
addition, we can derive the following proposition (Proofs are in Appendix [A):

Proposition 4.1. When enough diffusion times {5t, }7_, are sampled from the distribution P over
the interval I = [0tmin, 2/ Amax (L], the spectral response function is satisfied by sampling coverage
over the entire spectral range:

lim Pr(max sup min |®;(5t) — ®;(dt.)| < p) =1, Yo >0 ()
T—o0 iostel T

where ®;(5t) = e~ KOt\i is the spectral response function for the i-th eigenvalue ;.

Proposition [4.T] establishes a fundamental probabilistic guarantee for the completeness of spectral
coverage in graph diffusion augmentation. This strategy breaks through the fixed-architecture
constraints in conventional GC methods and effectively preserves the original spectral properties.

4.2 Optimal Transport Plan Matching

For the generalized GC objective in Eq. (@), the distance function Ay (-, -) is challenging to define
without any task signal. However, semantic information should be an intrinsic property of the graph,
rather than being influenced by the downstream task. In other words, the semantics of the same node
should remain unchanged in both the graph and the representation spaces. This insight inspired us to
ensure the consistency of semantic associations between G and G by defining two similarity metrics
in graph and representation spaces, respectively. In fact, it is nontrivial to directly compare these two
metrics, since they belong to two different spaces and are two disjoint objects by nature.

Fortunately, optimal transport theory provides an elegant framework for this purpose. Therefore, we
present an optimal transport plan matching, which aims to find the consistent optimal plan for graph
alignment and representation alignment. For the graph space, a natural idea is to consider both node
features and structure information in the transport plan. In PreGC, the fused Gromov-Wasserstein
[43]] is adopted to obtain the optimal transport plan 75, € RV *M:

m5(G,G) = argmin (yK(X,X) + (1 - )T (A,A) @ 7p,7Tp) ®)

mp €Il(p,v)



where ® denotes the tensor-matrix multiplication, and -y represents the coefficient used to control the
importance of structure and features. }C(X, X); ; = || X; — X;||2 and F (A, A)jj 0 = [Aix — Ajyl
are cost metric functions that measure feature discrepancy and structure discrepancy, respectively.
For the node presentation, we leverage Wasserstein distance to obtain the optimal plan 7% € RV >*M:

m2(27,Z7) = argmin (K(27,Z7),7z) ©

mz€ll(p,v)
Intuitively, the optimal transport plan characterizes the transferring probability from source nodes to
condensed nodes, and semantic association consistency in different spaces is preserved by minimizing
the divergence between two transport plans. The transport plan matching loss is defined as follows:

Eplan = AJ) (W’*D(g; g~),’ﬂ'2( 5’7 Z})) (10)

Without loss of generality, Ay (-, -) is set to the Frobenius norm in this paper.

4.3 Node Significance Evaluation

Unlike conventional GC works without explicittly considering node contributions for condensation,
the optimal resresentation transport plan 7% here not only delineates the semantic associations
between both graphs, but also inversely reflects the potential significance of the source nodes.
Specifically, let’s first define a mask matrix 7,45 € RY*M to filter out the most influencial nodes
from source graph G on each condensed node j , i.e., we have (Tmask)i,; = (7% )i,; When (7%); ; is
among the top-H of the j-th column, otherwise (m,qsk)i,; = 0. Then, the node significance score
vector s € RY of the source graph can be obtained by:

S = Tmask * 1 (11)

where 1, € RM denotes the all-ones vector. Essentially, the significance s explicitly reveals the
contributions of different source nodes for the condensed graph. Noticeably, the evaluation of node
significance based on s are two-folds. On the one hand, it provides more transparent interpretability
for graph condensation, and on the other hand, it also helps to guide node labeling effectively in an
active learning way [20]]. Section [5.2)further confirms the validity of the node significance evaluation.

4.4 Condensed Graph Optimization

Pre-training. Benefiting from Eq. (@), the reconstruction term Oz can be achieved by diffusion
alignment between Z7- and Z7.. Therefore, according to Eq. , the total loss can be denoted as:

ACtotal = £cost + fcpla'ru ‘Ccost = AZ( 5“1 Z%) (12)

where Az (-, -) denotes the Wasserstein distance [[39]. After obtaining the condensed graph G, the
transport plan 7%, which reflects the transfer probabilities between the source nodes from G and the
condensed nodes, is also retained. To ensure the uniqueness of the semantic mapping, we discretize
7% to obtain the semantic assignment matrix M € RY*M:

M, ; =1I(j = argmax (7%):,) (13)
1<ISM
When the condensed graph G needs to be trained on downstream tasks, the target variable Y € RMxC
can be obtained from the original label by the traceable semantic harmonizer M z(-):
Y = Mz(Ys,) = Dg'M{ Y, (14)

where Yy, € RVrxC iga training label with Ny, labelled nodes, and Q = {41, ..., i, } is the set of
their row indices. Mg € Rt > denotes the sub-assignment matrix defined by (Mq)x ; = M, ;.

Dg = diag(M{,1y,,) € RM*M "and diag(-) is used to create a diagonal matrix.

Test Time Fine-tuning. To further unlock the potential of condensed graphs while improving the
performance of condensed graphs on different tasks and GNN architectures, we draw on the idea
of fine-tuning pre-trained models [3]] to propose PreGCy, a strategy for achieving finer semantic
alignment by fine-tuning the assignment matrix. Specifically, given a decay rate ¢ € [0, 1], the
assignment matrix M is updated every 7, epochs according to predefined tasks and GNN:

M ¢ M + (1 — €)M, (15)



where M, € R¥*M is obtained from 73,(Y,Y) similar as Eq. (¥). Y and Y are the predicted
outputs by the specific GNN encoded from G and G, respectively.

Through the above optimization framework, we empower GC with pre-training and fine-tuning
capabilities. The overall pipeline of PreGC are summarized in Appendix [B]

5 Experiments

5.1 Experimental Settings

Datasets. To comprehensively evaluate the condensation performance of PreGC, five graph datasets
(Cora, Citeseer, Pubmed [26], OGB-Arxiv [60], and H&M [2]]) are utilized in experiments. Different
tasks are tested to validate the generalization of PreGC, including node classification (NC), node
clustering (NClu), link prediction (LP), and node regression (NR). Specifically, OGB-Arxiv includes
two NC tasks: predicting paper topics (T) and publication years (Y). H&M includes an NC task:
predicting product categories (C), and an NR task: predicting product prices (P). Two condensation
ratios (r = %) are considered. More details are provided in Appendix

Baselines & Implementations. We compare the proposed PreGC with six representative graph
condensation methods (GCDM [32], GCond [25]], SFGC [64], SGDD [55]], GDEM [33]], and CGC
[L6]). Following [225}42], the condensed graph is synthesized according to the default settings of the
above methods, and a certain GNN (default is SGC [48]]) is trained on this graph and evaluated on
the test set of the original graph. Moreover, other eight representative GNNs (GCN [26], APPNP
[27], k-GNN [38]], GAT [44], GraphSAGE [[19], SSGC [65]], BernNet [23]], and GPRGNN [8]]) are
selected to evaluate the effectiveness of PreGC. The details of baselines, task settings, condensation
settings, and parameter settings are provided in Appendix and

Table 1: Performance comparison on different tasks (We report test accuracy (%) on NC, NMI (%)
on NClu, and AUC (%) on LP tasks. Bold entry is the best result, underline marks the runner-up).

GCDM GCond SFGC SGDD GDEM cGC PreGC
Dataset Task Ratio (2022) (2022) (2023) (2023) (2024) (2025) (Our) Whole

1.3% 61.5+1.2 79.0+1.3 75.4+0.5 79.2+0.6 80.8+0.4 79.0+0.8 81.1+0.3
NC 2.6% 69.2+0.4 79.0+0.6 79.2+1.4 81.1+0.8 80.7+0.1 81.8+0.6 81.6+0.9 80.8+0.8

1.3% 36.9+0.7 58.1+1.6 56.0+2.0 59.0£1.2 57.2+0.8 58.2+1.2 54.6+1.0
NC—NClu 2.6% 45.3+0.5 57.6+0.9 57.3+0.7 58.7+0.5 57.0+0.5 59.4+0.5 59.6+0.5 59.3£1.5

Cora

13%  568£0.7  56.6£3.0 N/A 570435 669406 655408 753222

LP 26%  57.2+18 62216 N/A 604£22  597+2.6  46.5x4.1 792422  81.9+4.8
13% 19147  26.8+10.1 N/A 143+6.6 295438 89407  33.6:1.0

LP=NClu 260, 131228  32.0£6.0 N/A 134433 352¢14  103£19 349121  42.3%33
09% 54712  689:10  67.109 68916  70.6£0.3  70.5:04  70.6%0.5

NC 1.8% 521209 679407  65.1£15 69717 70504 706204  70.8:0.8  09-2£04
09% 25307 410827  424%18 43013 428407  406:17  43.8+14

NC—NClu  18% 208425 381208  429:09  435£07 452404  407+18 439406 42405

Citeseer

09%  61.5£38  61.5+2.0 N/A 60.0£22  65.843.7 N/A 66.5£1.6

LP 18% 575453 62334 N/A 569427  643£3.6 555439  69.3:3.3  80.8+4.9
09%  72+09 20333 N/A 101512 21,0425 N/A 327207

LP—NClu 1.8% 9.323.0 14.743.0 N/A 92414  169+33  7.2+14 33112 334438
008%  714%1.6 729406  774:02  T84+04  77.8+0.1 78703  79.9+0.4

NC 0.15%  60.840.8  71.6:1.4  78.1£04  78.6:0.5  76.8£0.6 784405  81.0x0.5  /3.8%0.2
0.08% 248428 211255 353306 356208  355%¢0.1  37.0:0.6 356408

NC—NClu  0.15% 194405 189207  369:02 361203  34.1#04  380:04 383207  37.1:0.8
Pubmed 008% 721229 729438 N/A 729831 43.5+1.6 N/A 82.942.0

LP 0.15%  68.9+42  737+35 N/A 68.4%32  56.1%23 848420  863#2.4  95.0+1.0
0.08% 141430 6244 N/A 3.0£0.4 1.6£0.2 N/A 22.5+0.7

LP—NClu  0.15% 137404  4.1+18 N/A 120418 20.1%42  23.5403  24.0:1.0 30733

5.2 Experimental Results

Performance of PreGC on Various Tasks. We first demonstrate the generalizability of the condensed
graph obtained by PreGC as shown in Table [} Clearly, PreGC achieves optimal performance in
most cases. In particular, PreGC consistently outperforms baselines on LP, demonstrating that the
condensed graph of PreGC can well capture the topological relationships in the original structure.
SFGC is unable to perform LP task (i.e. "N/A") due to its emphasis on structure-free during



condensation, limiting its task reusability. In addition, Table 2] shows the generalization of PreGC
under different supervision tasks and the flexibility in task migration. Owing to the limitations that
need to initialize condensed labels by the original class labels, existing methods can’t be directly
applied to node regression (i.e. "N/A"). By virtue of its unsupervised matching strategy, PreGC
becomes the first GC method capable of adapting to NR task. Regardless of the tasks, PreGC
consistently achieved optimal performance. In addition, the fine-tuning strategy PreGCy; achieves
1.46% gain compared to PreGC on H&M dataset.

Table 2: Performance comparison to baselines on different supervised tasks ("Y—T" means conden-
sation on the "Y" task and testing on the "T" task. We report test accuracy (%) on NC and R? (%) on
NR tasks. Imp. indicates the performance improvement over the best baseline).

OGB-Arxiv (r = 1.25%) H&M (r = 2.5%)
T—T Y—-T Y=Y T—=Y C—C P—C P—P C—P
Whole 64.43 £0.24 55.37+0.21 77.07 £0.26 50.80 + 0.64
GCDM 33.08+1.04 46.48+2.40 44.20+0.84 46.17+1.25 57.15+£0.90 N/A N/A 26.08+0.76
GCond 56.74+0.65 41.38+1.65 49.25+0.67 42.52+2.12 64.57+0.53 N/A N/A 15.29+1.14
SFGC 59.64+0.22 50.15+1.55 50.07+0.47 44.30+1.76 60.09+1.24 N/A N/A 4.81+1.04
SGDD 58.68+0.82 27.80+2.09 41.70+2.25 42.30+1.58 61.85+0.39 N/A N/A 18.85+2.13
GDEM 53.93+0.71 40.01+0.87 49.17+0.32 47.80+0.96 52.61£3.05 N/A N/A 6.83+2.99
CGC 58.71£0.65 53.32+1.61 49.50+0.72 48.53+0.24 64.35+0.33 N/A N/A 15.95+1.11
PreGC 60.55+0.43 59.62+0.47 52.34+0.30 51.49+0.36 69.06+0.25 68.86+0.29 34.39+0.93 33.17£1.05
Imp. 0917 6.307 2.847 2.967 4.491 - - 7.091
PreGCy 60.81+0.40 60.86+0.43 52.47+0.20 52.41+0.25 69.98+0.24 69.98+0.28 34.75+0.74 34.63+0.69
Imp. 1171 7.541 2,971 3.887 5411 - - 8.557

Generalizability of PreGC across Different GNNs. Ideal condensed graphs should perform well
in different GNNs, and to this end, each synthetic graph is evaluated by nine GNNSs, and the results
are shown in Table[3] It is evident that the PreGC exhibits the highest average accuracy, suggesting
that the condensed graph extracted by PreGC can consistently benefit various GNNs. Furthermore,
only SFGC and PreGC have average accuracy exceeding that of training on the raw graph. However,
SFGC can lead to limited application scenarios due to its lack of explicit structure.

Table 3: Node classification performance across different GNNs on Pubmed (r = 0.15%). Highlight
marks the lossless results and Avg. is the average results of GNNs.

SGC GCN APPNP k-GNN GAT SAGE SSGC Bern. GPR. Avg.

Whole 78.9+0.2 78.2+0.4 79.2+0.4 77.0£0.8 77.2£0.4 77.0£0.5 79.0£0.3 77.4£0.5 79.0£0.3 78.1£1.0
GCDM 60.8+0.8 56.8+1.1 70.0£0.9 72.320.5 76.2£0.8 53.3%0.8 69.8+0.4 68.2+1.3 71.1£0.7 66.5£7.7
GCond 71.6£1.6 73.1£1.7 73.0£0.2 65.9+2.4 71.7£2.9 69.4£1.5 73.3x0.4 72.6£2.2 72.4+0.8 71.4£2.4
SFGC 78.1£0.4 78.9+0.7 79.7+0.6 78.1£0.7 77.5£0.8 75.9+0.5 78.7£0.3 78.4+0.4 79.0£0.2 78.31.1
SGDD 78.6£0.5 78.7£0.3 78.7£0.7 76.7£0.7 73.4£3.0 76.4+0.4 78.6£0.2 77.3£0.5 77.4£0.7 77.3x1.7
GDEM 76.8+0.6 77.3+0.3 77.7£0.4 78.2+0.5 76.7x0.7 76.4+1.3 77.5%1.1 76.9+0.4 77.0£0.3 77.2+0.6
CGC 78.4+0.5 79.5+0.3 78.8+0.4 75.7+0.9 78.9£0.5 76.4+0.7 79.0£0.4 77.3x0.4 78.5+0.6 78.1+1.3
PreGC 81.0£0.5 80.3+£0.4 80.9+0.3 79.1£0.5 77.8+1.0 77.9£1.0 81.3£0.4 80.2+£0.3 80.0£0.5 79.8+1.3

Performance Gap between Condensed Graph and Original Graph. According to [16, 49,133, the
quality of condensed graphs can be quantified through class-level features on NC task. Therefore, we
present the labeled reconstruction error LRE = L+ 31 [ YTAFX — YTA¥X|| with the class la-
bel to evaluate condensed graphs. This formulation systematically captures multiscale receptive fields
through the expectation over propagation

steps to evaluate the distribution discrep- s com s o
ancy. Weset K = Sandthe case k =0 . L0 L S
is also taken into account, which reflects s AN 3t

the difference between the condensed and
original features. As shown in Fig. 3] com-
pared with two representative GC methods
[161133], the LRFE of PreGC is consistently
lower than that of the other two methods on
different data and tasks. Since PreGC does

Cora . ora
e XY : o oo

not use any task labels in condensation, this Ran i
is more challenging than baselines and also
demonstrates the effectiveness of traceable Figure 3: The LRE of different GC methods.

semantic harmonizer.



Data Valuation based on Node Significance. To confirm the validity of the significance evaluation
in Section[4.3] we rescreened the same number of nodes as the original training set based on Eq. (TT)
and retrained them on the original graph. Fig. {] (b) shows a visualization of the distribution of nodes
in the rescreened training set (Dark nodes denote the training set, and distinct colors denote different
classes). Compared to the default training set provided by [26] (Fig. E] (a)), the rescreened training
set demonstrates greater coverage and distributional dispersion. We further measure distribution

differences with the average nearest neighbor distance d = ﬁ D i, Ijl;illlnzz — 2|2 (larger d

indicates wider coverage of the selected labels, and 2-order diffusion is considered, i.e., Z = A2X
by default), and the results also confirmed the above viewpoint. Fig. 4] (c) compares the performance
of SGC trained with different training sets. Leveraging the rescreened nodes as supervision yields
higher classification accuracy and markedly improves the training efficiency of the source graph.

—— Default
PreGC (r=1.3%)
—e— PreGC (r=2.6%)

[ 2 8 10

a [3
Epoch

(a) Default (d = 1.66) (b) PreGC-2.6% (d = 1.79) (c) Performance on Cora

Figure 4: Performance of the training set selected via node significance on Cora.

Table 4: The prerformance of GC mehtods with different trainig ratio on OGB-Arxiv.

Training Ratio 0.15 0.3 0.45 0.6 0.75 Count

Whole 66.71+0.43  69.53+0.11  70.44+0.51  71.69+0.20  71.72+0.57 -
GCDM 35.98+1.31 36.32+£1.08  36.09+0.89  36.94+0.60  38.35+0.67 x5
GCond 56.1740.30  56.95+0.31 56.83£0.49  57.47£0.36  58.00+0.34 x5
SFGC 59.09+0.42  59.85+0.38  60.04+0.53  60.46+0.51  60.59+0.48 x5
SGDD 58.01£0.77  58.79+0.40  59.03+0.44  59.54+0.53  60.24+0.46 x5
GDEM 5223032  54.20+0.57  54.81£0.44  54.98+0.48  55.41+0.31 x5
CGC 58.39+0.33  59.04+0.49  58.92+0.72  59.53+0.56  60.05+0.29 x5
PreGC 60.53+0.32  61.96+0.56  61.72£0.63  63.37+0.49  63.58+0.82 x1

Flexibility of PreGC. The existing condensation methods are limited to concentrating under certain
proportions of labels. When new labels are added in the original graph, these methods must re-
condensation to capture this new knowledge in the condensed graph, which undoubtedly increases the
condensation cost and limits its flexibility. PreGC can quickly transfer new labels to the condensed
graph through the traceable semantic harmonizer without re-condensation. As shown in Table [}
we rescaled the training set ratio of the original graph and recorded the number of re-condensation
(Count). With the structure and features of the condensed graph fixed, the condensed graph by PreGC
shows similar patterns of change as the original graph as the training ratio increases. This label
allocation strategy significantly improves the reusability of PreGC. Notably, existing baselines require
repeated re-condensation to incorporate new label knowledge (x5), whereas PreGC achieves this
with a single pass of semantic assignment matrix M.

Ablation Study. To validate the efficacy

. AT . Table 5: Experimental results for the ablation study.
of crucial optimization strategies, we con-

duct a comprehensive analysis on H&M - 2.5% - 5.0%
dataset through ablation studies. The ex- H&M . o Cat o
. . atego! rice atego rice
perimental results are shown in Table g £
o e PreGC 69.1x03  34.4+0.9 711203 36.9+l.1
wherein "PreGCyyo Aug" is the PreGCthat —, so0F 0 ocn 50000 679404  33.3+1.4

removes the graph diffusion augmentation PreGCuyo
and "PreGCyy .., " 1 the adoption of
the existing strategy, i.e. predefined node labels before GC. We observe that both graph diffusion
augmentation and L.,s; contribute significantly to the improvement of the GC optimization. Notably,
"PreGCyy ,,.," induces label dependency in condensation, rendering the condensed graph via
category prove inadequate for achieving superior performance on price prediction. Furthermore, the
combination of these two modules increases the stability of the condensed graph.

67.5£0.5  29.1+0.8 68.9+0.8  31.7£1.5

cost




More experimental analysis, including generalizability of PGC across different GNNs, comparison of
LRE with different GC methods, data valuation, and sensitivity analysis are detailed in Appendix [D]
In addition, we also discuss the related work and limitations in Appendix [E]

6 Conclusions

In this work, we revisit the limitations of current GC methods and formulate a generalized GC objec-
tive. Following this paradigm, we further propose a pre-trained graph condensation framework for
distilling a task-agnostic and architecture-flexible condensed graph. To avoid excessive dependence of
condensed graphs on specific GNNSs, a hybrid-interval graph diffusion augmentation is proposed to en-
hance generalization by increasing node state uncertainty. Subsequently, a plan matching mechanism
is derived to eliminate task constraints, which relies on matching optimal transport plans for graph
alignment and representation alignment to preserve semantic association consistency. In addition,
supervised fine-tuning further refines the condensed task signals and improves the performance of the
condensed graph on specific tasks. The experimental results consistently demonstrate the efficacy
and reusability of PreGC, showcasing its generalization on various GNNs and tasks.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS paper checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The contributions are empirically validated in the main body.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix
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Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: The complete proofs are provide in Appendix [A]
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of PreGC and the parameters for imple
menting the baseline in Section[5.1]and the Appendix [C.3]

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code and condensed graph data regarding the testing phase are included in
the supplementary materials. We will release our complete code as soon.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a detailed description of PreGC and the parameters for imple
menting the baseline in Section[5.1and the Appendix[C.3]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the standard deviation for all test results.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We describe the computational resources used in the Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We do not violate Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the potential impacts about fairness and privacy issues.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all sources used and comply with their licenses.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not involve crowdsourcing nor research with human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The LLLMs is not the core methods in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

This is the appendix of our work: ‘“Towards Pre-trained Graph Condensation via Optimal
Transport”. In this appendix, we provide more details of the proposed PreGC in terms of theoretical
proofs, dataset statistics, method analysis, experimental settings with some additional results, and
related works.

A Proof of Propositions

Proposition 3.1. Suppose that it has an analytical filter g(-) for a GNN model, the performance
approximation error Oy of condensed graph is jointly bounded by the reconstruction term O z and
the fitting term O-.

IW = W|p < [Mz(Y)|r | Mz(g(L)X)" — (g(L)X)"||p+ [Mz(Y) = Y] r || (9(L)X) "] F
—_———

Ow Oz Oy

3 (16)
where M z(-) is any mapping function that aligns g(L)X and g(L)X orYand Y. L=1Iy — A
and L = Iy — A are the Laplacian matrices of G and G.

Proof. Given a GNN with an analytical filtering function g(-), we have g(L)XW = Y on the

original graph G and g(L)XW = Y on the condensed graph G, respectively. Due to M z(-)
can align the first dimensions, we also have Mz (g(L)X)W = Mz(Y) for G. Therefore, the
expression can be denoted as:

W —W|p
= Mz (g(L)X) Mz(Y) — (9(L)X)
= Mz (g(L)X)Mz(Y) - (9(L)X) Mz(Y) + (9(L)X) Mz(Y) - (9(L)X)'Y | 17)
< Mz (g(L)X)T = (9(L)X))Mz(Y)|[F + (LX) (Mz(Y) = Y)|r
< Mz(Y)||r - [Mz(gL)X) = (g(L)X) |7 + [M2(Y) = Y|z [[(g@L)X) ]|

For the trajectory matching methods [64,|59], they integrated the above objectives into the process of
graph condensation, that is:

L)X)'Y|p
L)X

argmin|W — W||p =
g

arg mgin{l\Mz(Y)llF Mz (g@L)X) = (LX) r + [Mz(Y) = Y| r [ (LX) £}
Oz 03}
(18)
According to [16], different matching strategies can be summarized into the same optimization
objective. Thus, Proposion 3.1 shows that by minimizing the reconstruction term Oz and the fitting
term Oy, the performance derived from G can be approximated to that of G.

This completes the proof of the proposion. O

Proposition 4.1. When enough diffusion times {5t,}7_, are sampled from the distribution P over
the interval I = [0tmin, 2/ Amax(L)], the spectral response function is satisfied by sampling coverage
over the entire spectral range:

hm Pr(max sup min |®;(dt) — ®;(dt;)| < p) =1, Vo >0 (19)
vostel T

where ®;(5t) = e~ K% is the spectral response function for the i-th eigenvalue \;.

Proof. Given a graph G = (A, X), the diffusion state with diffusion intervals 6t at time T = Kdt,
can be denoted as:

Z77'1 — €7K5tTLX — Ue*K(;t.,-AUTX (20)
For the i-th Laplacian eigenvalue \; we write the corresponding spectral response ®;(0t) = e~ %A%t
withi =1,..., N. Here, we begin with the following the lemma to better support Proposition 4.1:
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; two di ! lﬁc sion intervals 6t17 6t2 € 1, the diﬁerence in spectral response
is satisﬁed:
|i7(ét1) @1(512)‘ = B)\ze K

where 1); lies between t1 and 0ts.

oty — Ot 1)

Proof. According to the mean value theorem, for the function ®;(dt,) = e K0t Ai there exist
¥; € [min(dty, §ta), max(dty, dt2)] such that:

D, (6ta) — @i (0t1) = DL (2h;) (5t — 5ty)

22
(1) = —K \je KN .
Taking absolute values on both sides of the equation:

|(I>7(5t1) — @Z(6t2)| = |€7K6t1)\i — 67K6t2)\i = K)\iewai)‘i . |5t1 — 5t2| (23)
This completes the proof of the lemma. O

From Lemma 1, each ®; is Lipschitz on I with constant:
L; = sup|®}(6t)] = K X\je~ it 24)

otel

Let L = max; L; = KAye K%minAv where Ay = Apax(L). According to the lemma, for any
dt € 1, if there exists a sampled point dt such that |6t — 0t,| < £, then for all ¢, the spectral
response functions satisfy:

1B, (5t) — B (6t,)| = K \ie KV |6t — 6t,| < Ly - |6t — 6t.| < L; - % <o (25

To ensure this condition, we divide the interval I = [0tmin, 2/ Amax(L)] into m = [%1 =
[M] sub-intervals, each of length % = M < ¥. Assuming the diffusion

times {0t, }7_, are sampled from a distribution P with positive density over I, for each subinterval,
the probability that at least one sampling point falls into it is:

p=1—(1—pmin)” (26)

where pp,in > 0 is the minimum probability of sampling a point in any subinterval. When 7" — oo,
we have p — 1. The probability that all m subintervals have at least one sampling point is p"*, and
p™ — 1 when T — oo.

When all subintervals contain at least one sampling point, for any §t € I, there exists a sampling
point ¢, within the same subinterval or in an adjacent subinterval, with |§¢ — 6t | < . This ensures
that:

max sup min |®;(6t) — ®;(t,)] < ¢ (27)
vogtel T
Therefore:
lim Pr(max sup min|®;(dt) — ®;(5t.)| < p) =1, Vo >0 (28)
T—o0 iostel T
That is, when 7 is sufficiently large, the probability that the sampling points form a (-net covering [
tends to 1, ensuring coverage of the entire function family {®;(5t) = e~ 5% . =12 ... N}.
This completes the proof of the proposition. O

B Implementation Details of PreGC

B.1 Algorithm

The detailed algorithm of PreGC is shown in Algorithm In detail, the topology generator GEN(O)

and the condensed features X are initialized before condensation. To accelerate the synthesis of
the condensed graph, the clustering centers of K-means are adopted as the initialization of the
condensed features. Here, GEN(O) can be any strategy used to generate graph structure, and
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we adopt Sym(ReLU(%)) with the symmetric normalization function Sym(-) for convenience.

Then, node representations Z7. and Z7. are generated via the graph diffusion with stochastic states. By
calculating the optimal transport of the two graphs in graph space and representation space, one can
obtain the transport plans 77, and 7% respectively, and the transport cost L.,s:. Plan matching loss
can be obtained from the difference between metrics 77, and 7%. Finally, the PreGC minimizes the
loss Litq; by iteratively optimizing © and X. Our work signifcantly differs from other GC methods,
PreGC truly enables pre-training and provides transparent interpretability of the condensation.

Algorithm 1 Pre-trained Graph Condensation (PreGC)

Require: Real graph G = (A, X), learning rates n: and 72

Ensure: A small-scale condensed graph G = (A, 5() with the mapping matrix M.
1: /* Condensation Phase */
2: Initialize © and X.
3: forr=0,1,---,7 —1do

4

5:  Compute A = GEN(O); then G = (A, X)

6:  Randomly generate diffusion interval 6t~ B

7:  Graph diffusion on G and G to genenrate Z7 and Z7 according to Eq. @} respectively
8
9

Calculate graph transport plan 77, according to Eq.
10:  Calculate representaion transport plan 7% and transport cost Lo+ according to Eq. @])
11:  Compute plan matching loss £y4r according to Eq.

13:  Compute total 10ss Liotar = Lecost + ELplan
14: i 7%(m1 + 72) < 71 then

15: Update © < © — n1VeLiotal
16:  else R 5

17: Update X <= X — 72V Litotal
18:  endif

19: end for

20: Compute M according to Eq. and A = GEN(©)
21: return A, 5{, and M

B.2 Details of Optimal Transport Solution

Since Eq. (9) can be regarded as a special form of Eq. (8) (i.e., ¥ = 1), our discussion primarily
focuses on solving for mp in Eq. (8).

Eq. (8) decomposes into two terms: the former is a Wasserstein distance that operates solely on
node features. This term can be efficiently approximated using the Sinkhorn-Knopp algorithm [[11],
which iteratively converges to the optimal transport plan 7*. Specifically, the Sinkhorn-Knopp
algorithm introduces an entropy regularizer and alternates between Sinkhorn projections, 7(®) =
exp(—KC(X, X)/A) and 7+ = Fi(Fo (7)), where [ represents the number of iterations and
denotes the weigth of regularization. The projections F; (7) = 7@ (117 7) and Fo(7) = 7o (711 7")
denote the column normalization and row normalization, respectively, where @ is element-wise
division. They ensure that the rows and columns satisfy the given marginal distribution constraints.
In the limit, this alternating projection will converge to a minimizer lim;_, o, 7 = 7*.

The latter term corresponds to a Gromov-Wasserstein (GW) distance, which can be formulated as a
nonconvex quadratic programming problem. We use semi-relaxed Gromov-Wasserstein divergence
[45] and optimize 7 with the conditional gradient solver. The gradient of 7w with respect to the
GW term is V, = 2J(A,A) ® w. The conditional gradient algorithm consists in solving a
linearization (P, V) at each iteration, where P € RV*™ the extreme-point solution that arises
from the linearized sub-problem solved. It can be solved by gradient descent with a direction P()7(),
followed by a line search for the optimal step.

In the optimization process, we utilize the third-party library functions GeomLoss and Python Optimal
Transport (POT) to solve Eq. (8) and Eq. (9), respectively.
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C Experimental Details

C.1 Dataset Details

In this work, five graph datasets are adopted to evaluate the effectiveness of our condensation method.
and their data statistics are shown in Table @ Among them, three citation networks (Cora, Citeseer,
and Pubmed) [26] are used for node classification (NC), graph clustering (GC), and link prediction
(LP) tasks. OGB-Arxiv [60] is used to test the performance of GNNs on topic classification and
publication year prediction tasks. H&M [2] is a subset that is obtained from a co-purchase network
of products from the H&M company. The nodes are products whose features consist of the product’s
graphical appearance, perceived color, etc., and they are connected to edges if they are frequently
purchased by the same user. H&M has two semi-supervised tasks: predict the categories of products
(node classification) and predict their average prices (node regression).

Table D1: Details of dataset statistics. NC, NClu, LP, and NR denotes node classification, node
clustering, link prediction, and node regression tasks respectively.

Dataset Nodes Edges  Features Task Classes  Traing / Validation / Test

Cora 2,708 5,429 1,433 NC/NClu/LP 7 140/ 500/ 1,000
Citeseer 3,327 4,732 3,703 NC/NClu/LP 6 120 /500 /1,000
Pubmed 19,717 44,338 500 NC/NClu/LP 3 60/500/ 1,000

. NC-Topic (T) 40 4,585/2,517/7,065

OGB-Arxiv 14,167 33,520 128 NC-Year (Y) 5 7,125/ 3.492 / 3.550

NC-Category (C) 21 7,837/3,908 /3,763

H&M 15,508 920,284 191 NR-Price (P) - 7,724/3,843 /3,941

C.2 Baselines & GNNs

Baselines. In this work, six baselines have been selected for comparison.

* GCDM [32]: An efficient GC method that generates condensed graphs based on distribution
matching by optimizing the maximum mean discrepancy between class representations.

* GCond [23]: A representation GC method that utilizes the gradient matching to align the model
gradient from both graphs.

* SFGC [64]: The first structure-free GC method that synthesizes condensed features by trajectory
matching while preserving the topological information of the original graph.

* SGDD [55]]: A generalized graph condensation method with enhanced graph structure modeling
by topological mapping.

* GDEM [33]: A GC method for topology enhancement by eigenbasis matching.

* CGC [16]: An efficient GC method with graph generation that introduces the training-free strategy
in distribution matching.

To illustrate the distinctions among various approaches and emphasize our contributions, we present
the relationship between six representative graph condensation methods and the generalized graph
condensation paradigm, as shown in Table [D2]

GNN architectures. To evaluate and compare the generalization of PreGC and other graph conden-
sation methods, we test the node classification performance with nine different GNN architectures:
SGC [48]], GCN [26], APPNP [27], k-GNN [38]], GAT [44], GraphSAGE (SAGE) [[19], SSGC [63],
BernNet (Bern.) [23], and GPRGNN (GPR.) [8]. Note that the focus of our work is on verifying
the generalization of condensed graphs rather than the effectiveness of a certain GNN architecture.
Therefore, we harmonize the GNN parameters for all datasets to ensure the fairness of the exper-
iments. Concretely, the smoothing factor in APPNP, SSG, and GPR. is uniformly set to 0.1, the
numer of attention heads in GAT is set to 4. For GNNs [27, 65} 23] 8] that can capture long-range
dependencies, we set the number of propagation layers K = 5 by default and K = 2 otherwise. For
other hyperparameters, we use the combination of parameters provided by PyG by default.
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Table D2: Comparison of different graph condensation methods. For convenience, SGC AKX is
uniformly set to GNN encoder in condensation, and A(®Y) = (1 — 6t)I 4 6tA.

Condensation Phase Testing Phase
Label Graph Optimization Representaion Graph Task
Alignment Condensation Objective z Interpretability Adaptation
GCDM Distribution
(Arxiv22) Before Matching Oz AX|A2X| .- |AKx N/A Classification
GCond Gradient o
(ICLR22) Before Matching Oyy (Wlo Oy) AKX N/A Classification
SFGC Trajectory 5
(NeurIPS23) Before Matching Oy (wlo Oy) "X N/A Classification
SGDD Gradient o
(NeurIPS23) Before Matching Ow (wlo Oy) AKX Topology Classification
GDEM Eigenbasis .
(ICML24) Before Matching Oz XTLX Topology Classification
CGC Distribution o
(WWW25) Before Matching Oz AKX N/A Classification
PreGC Transport Plan B B
(Our) After Matching Oz, 0y [ACDIEX Semantics Any Tasks

C.3 Experimental Setup

Task setting. Unless otherwise noted, we use the default training/validation/testing ratios to evaluate

the performance of the condensed graphs for supervised tasks. Specifically, for Whole , the training
set of the original graph is used for training. For graph condensation methods, we train on the
condensed graph, and validation and testing are always evaluated on the validation and test sets of the
original graph. For link prediction task, we follow [42] and randomly select 10% ratio of edges as
validation and test sets, respectively. In node clustering task, the K-means algorithm is adopted to the
learned embeddings of all nodes (For example, "NC—NClu" is denoted as the embedding obtained
after training on node classification as input for clustering) and adopts normalized mutual information
(NMI) to assess the quality of the clustering results. We report test accuracy (%) on NC, NMI (%)
on NClu, AUC (%) on LP and R? (%) on NR tasks. The average results and standard deviations of
performing 5 different random seeds on each task are reported.

Condensation setting. For condensation methods, the hyperparameters are set according to the
original paper if available. Otherwise, we follow the hyperparameter combinations in GC-Bench [42].
Except for the OGB-Arxiv dataset which uses the normalized features provided by [60], all other
graph data are condensed using the original features. For our proposed PreGC, we set the importance
coefficient v = 0.5 in Eq. by default, §t,;, = 0.1 for all datasets.

Evaluation setting. To verify the effectiveness of various graph condensation strategies, all graphs,
except H&M adopt one-layer GNN encoder, are uniformly configured with a two-layer SGC as the
GNN encoder and a single-layer MLP as the predictor by default to adapt to different downstream
tasks. For all GNNSs, the hidden unit is set to 64, with a learning rate of 0.01, weight decay of 0.0005
and the Adam optimizer employed.

Experiment environment. The experiments are conducted on the machine with Intel(R) Xeon(R)
Silver 4314 CPU @ 2.40GHz, and NVIDIA GeForce RTX 4090 with 24GB memory and CUDA
12.0. The operating system is Ubuntu 20.04.6 with 384GB memory.

D More Experimental Results

D.1 Performance of PreGC on OGB-Arxiv and H&M datasets.

In this section, we show the experimental results at other condensation ratios, as shown in Table @
For transfer tasks such as "Y—T", the condensed graph is first generated on the source task "Y". The
testing phase involves: (1) computing the transport plan between original and condensed graphs, then
(2) transferring the labels of task "T" from the original graph to the condensed graph for evaluation.
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In particular, existing condensation methods are incompatible with node regression tasks, making
condensed graphs unavailable when the source task is "P". Not surprisingly, PreGC consistently
outperforms existing GC methods. In particular, the fine-tuning PreGCi,i.e., PreGCy, achieves more
significant gains on the transfer task. This suggests that the semantic distribution will be significantly
different for different tasks. However, existing methods can only be adapted to a single categorization
task, resulting in limited application of their condensed graphs.

Table E1: Performance comparison to baselines on different supervised tasks.

OGB-Arxiv (r = 2.5%) H&M (r = 5.0%)
T—T Y—T Y=Y T—=Y C—C P—C P—P C—P
Whole 64.43 +0.24 55.37+0.21 77.07 +0.26 50.80 £ 0.64

GCDM 35.49+3.01 44.59+1.59 45.69+0.95 34.66+3.24 59.69+1.18 N/A N/A 19.23£1.87
Gcond 58.49+0.63 49.92+1.66 48.88+1.05 47.18+1.06 51.94£2.71 N/A N/A 15.35£1.46
SFGC 59.72+0.26 47.93+0.57 50.06£0.56 45.66x1.06 59.31£2.28 N/A N/A 14.94+0.55
SGDD 60.46+0.33 51.84+0.40 49.89+0.53 44.50+1.64 62.44+0.51 N/A N/A 17.75£3.19
GDEM 56.69+0.70 34.19+0.03 49.94+0.63 48.54+0.62 51.71+0.89 N/A N/A 11.73£1.72
CGC 59.71+0.42 56.78+1.23 50.79+0.29 49.71+0.54 66.60+0.29 N/A N/A 29.79+0.64
PreGC 62.66+0.47 61.99+0.49 52.96+0.35 52.05+0.42 71.06+0.26 69.38+0.41 36.94+1.05 36.23+0.87

Imp. 2207 5217 2177 2341 4.467 - - 6.447
PreGCy 62.90+0.49 62.85+0.48 53.11+0.17 53.20+0.21 71.54+0.40 71.44+0.32 37.07+0.96 37.01+0.94

Imp. 2.447 6.077 2.321 3.491 4.947 - - 7.221

D.2 Generalization Ability of PreGC across Different GNNs.

This section presents additional generalization results of PreGC across different GNNs, as detailed in
Tables [EZHE4] Overall, the condensed graphs synthesized via PreGC consistently outperform other
condensation methods across diverse datasets, demonstrating the effectiveness of graph diffusion
augmentation. While the most competitive baseline CGC surpasses PreGC on certain GNNgs, its

performance remains limited to specific architectures and shows inferior results on some spatial
GNNss (e.g., k-GNN and GraphSAGE).

Table E2: Node classification performance across different GNNs on Cora (r = 2.6%) ( Highlight
marks the lossless results and Avg. is the average results of GNNGs).

SGC GCN APPNP k-GNN GAT SAGE SSGC Bern. GPR. Avg.

Whole 80.8+0.8 81.0£0.6 81.9+0.8 77.7£1.0 81.8+0.8 79.4+0.5 81.320.6 81.5+0.3 81.2+0.8 80.7+1.4
GCDM 69.2+0.4 67.4+0.9 74.3%0.3 44.842.3 68.2£0.8 46.6+1.1 73.9+0.7 70.4+1.2 66.4£2.5 64.6x11.1
GCond 79.0£0.6 79.1x0.5 78.7+0.8 63.243.1 73.3£1.6 66.7£1.5 78.5%1.1 74.4£3.0 72.0£1.6 73.9+£5.8
SFGC 79.2+1.4 80.0£0.5 80.3£0.5 78.2+0.7 79.9£0.7 77.5£0.6 80.7x0.7 80.0£0.7 79.6+0.4 79.5£1.0
SGDD 81.1+0.8 79.8+0.7 81.2+1.4 71.3£2.6 79.2+0.6 77.4+0.9 80.2+1.0 79.5+2.4 78.8+1.4 78.7£3.0
GDEM 80.8+0.4 80.8+0.4 81.1x0.9 78.6+0.7 80.3+£0.4 79.120.4 81.2+0.3 80.9£0.5 80.6+0.4 80.4+0.9
CGC 81.8+0.6 81.5+0.9 81.6+0.8 40.4£7.0 81.0£0.9 66.4+1.2 81.1+0.3 81.7£0.6 81.4+0.6 75.2+14.0
PreGC 81.6+0.9 81.84+1.1 82.3+:0.4 78.8+1.0 80.0£1.0 79.8+0.6 82.1£1.0 81.1£0.5 82.3£0.6 81.1£1.3

Table E3: Node classification performance across different GNNs on Citeseer (r = 0.9%).

SGC GCN APPNP k-GNN GAT SAGE SSGC Bern. GPR. Avg.

‘Whole 69.2+0.4 69.6+0.33 69.9+0.7 65.5+1.3 69.5+0.7 70.0+0.6 69.8+0.7 68.2+1.0 69.4+0.9 69.0+1.4
GCDM 54.7x1.2 55.1+0.9 56.4+1.6 33.7+1.2 56.1+1.2 41.7x1.2 55.9+1.5 51.9+0.7 49.2+1.9 50.5+7.9
GCond 68.9+1.0 70.1+0.7 60.1+1.3 52.0+3.4 49.4+5.9 62.7+1.1 60.7+2.0 59.9+4.0 48.8+5.8 59.2+7.8
SFGC 67.120.9 69.4+0.6 65.7+2.4 66.0+2.2 65.4+1.6 65.7+0.7 68.4+0.9 63.2+2.2 69.0+0.8 66.6+2.0
SGDD 68.9£1.6 69.1£1.4 70.6£1.0 69.0+1.9 62.1£4.2 70.2£0.6 69.9+1.2 65.3+3.0 64.0£2.9 67.743.1
GDEM 70.6+0.3 69.2+0.8 70.1£0.6 68.6x0.7 69.2£0.7 68.4+0.7 69.5£0.3 69.2+0.8 69.5£0.4 69.4+0.7
CGC 70.5£0.4 72.4£0.5 71.5£0.7 63.3%2.0 70.4£0.8 63.0£1.3 72.2+0.8 72.2£0.5 64.9£1.0 68.9+4.0
PreGC 70.6£0.5 69.3£1.5 69.9+0.7 69.1£0.5 71.0£1.0 69.1£0.7 69.9+0.4 69.5+0.7 69.9+1.3 69.8+0.7

D.3 Performance Gap between Condensed Graph and Original Graph

Figs. [EI|and [E2] show the labeled reconstruction error of different condensation methods. It can be
clearly observed that PreGC consistently and significantly outperforms existing graph condensation
methods, particularly on the CiteSeer and PubMed datasets. This result not only confirms the
effectiveness of PreGC in preserving the critical properties of original graphs during condensation,
but also reveals its robustness to architecture dependencies.
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Table E4: Node classification performance across different GNNs on OGB-Arxiv-topic (r = 2.5%).

SGC GCN APPNP k-GNN GAT SAGE SSGC Bern. GPR. Avg.

Whole 64.4+0.2 63.8+0.5 65.4+0.5 64.2+0.6 63.8+0.3 61.8+0.2 64.7+0.4 63.0£0.2 64.5+0.8 63.9£1.0
GCDM 35.5+3.0 48.8+1.6 48.9£1.5 36.1x2.0 52.2£1.0 35.3£1.7 48.4£0.7 42.9£3.0 49.6+2.3 44.246.9
GCond 58.5£0.6 58.7£0.6 58.120.9 27.8+2.6 39.8+4.6 29.2422 60.120.2 52.5+1.4 46.8+1.5 47.9£12.9

SFGC 59.7£0.3 58.8+1.1 59.9+0.8 57.0£0.2 59.5£0.5 50.1£1.3 60.4+0.5 57.5£1.9 58.3+0.8 57.9+3.1
SGDD 60.5£0.3 54.7+0.9 56.5+0.9 44.1£2.8 31.1£2.0 41.3£1.9 60.3+0.4 33.9+3.8 37.943.1 46.7£11.5
GDEM 56.7£0.7 54.7£1.5 55.3%1.3 35.9+3.9 52.2+0.8 35.0+2.1 55.2+1.0 48.4+2.4 47.0£3.2 48.948.3

CGC 59.7+0.4 58.7+0.5 61.8+0.8 31.7+1.1 60.5+0.6 37.6+1.9 60.1+0.2 57.1x1.0 53.9+0.8 53.5¢11.0
PreGC 62.9£0.5 62.5£0.7 64.9£0.3 62.9£0.9 61.4£0.6 59.5+0.5 64.2£0.7 59.8£1.5 63.2£0.5 62.4+1.8

Table E5: Node classification performance across different GNNs on OGB-Arxiv-year (r = 2.5%).

SGC GCN APPNP k-GNN GAT SAGE SSGC Bern. GPR. Avg.

‘Whole 55.4+0.2 57.7+0.4 55.9+0.4 56.840.5 56.1+0.5 54.5+0.6 55.6+0.4 53.9+0.6 54.2+0.3 PSS
GCDM 45.7x1.0 50.00.1 48.1x0.8 51.0£0.2 50.9+0.2 43.71.1 50.2+0.4 41.8+2.1 49.9+0.7 47.9+3.4
GCond 48.9+1.1 50.8+0.2 50.8+0.5 31.244.6 50.9+0.4 41.9+0.9 51.240.2 49.6+0.4 50.2+0.3 47.3+6.7
SFGC 50.1+0.6 52.0+0.5 51.3+0.3 51.4+0.4 51.9+0.5 45.4+1.2 51.4+0.4 51.3x0.1 51.6+0.1 50.7+2.1
SGDD 49.9+0.5 50.9+0.2 50.7%0.1 51.1£0.0 51.1+0.0 42.4+0.1 50.6+0.4 43.0+3.7 48.5+1.3 48.7£3.5
GDEM 49.9+0.6 51.2+0.3 48.8+0.5 50.9+0.2 51.1+0.3 42.0£1.3 51.2+0.2 43.0+3.1 50.9+0.3 48.8+3.7
CGC 50.8+0.3 51.3+0.1 51.0+0.5 49.1x1.1 511204 39.1+0.8 51.2+0.2 50.9+0.3 50.9+0.1 49.5+4.0
PreGC 53.0+0.4 53.3+0.3 53.5+0.1 52.7+0.3 53.0+0.2 52.1+0.4 53.5+0.4 51.1£1.0 51.9+0.1 52.7+0.8
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Figure E1: The LRE of different GC methods with the smaller condensation ratio.
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Figure E2: The LRE of different GC methods with the larger condensation ratio.
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D.4 Data Valuation based on Node Significance

This section evaluates the node significance of the original graph, i.e., the ability to explicitly represent
the importance of the source node through the transport plan. We rescreened the same number of
nodes as the original training set based on Eq. (TI). For example, in the Cora dataset, the default
number of training nodes is 140 (Default), and we select the top-140 raw nodes based on node
significance s and label them as the training nodes. The training nodes selected through the transport
plan prove more valuable than the default training set, yielding significant improvements in the
performance of GNN, as shown in Figs. [E3|and[E4] This matching method not only enhances the
effectiveness of data annotation, but also elucidates the relative influence of different nodes during
the condensation process, thereby improving the interpretability of graph condensation.

—— Default
PreGC (r=0.9%)
—— PreGC (r=1.8%)

o 454

0 10 40 50

20 30
Epoch

(a) Default (d = 2.88) (b) PreGC-0.9% (d = 3.03) (¢) Performance on Citeseer

Figure E3: Performance of training set selected with transport plan on Citeseer.

— Default
PreGC (r=0.09%)
—— PreGC (r=0.15%)

o 25 50 75 100 125 150 175 200
Epoch

(a) Default (d = 0.172) (b) PreGC-0.09% (d = 0.174) (c) Performance on Pubmed

Figure E4: Performance of training set selected with transport plan on Pubmed.

D.5 Sensitivity Analysis

Our investigation further examines the sensitivity of several crucial hyperparameters: the loss
balancing coefficient £ in condensation, the iteration interval 7, and the decay rate € in supervised
fine-tuning, as illustrated in Fig. [E3] The sensitivity to the balance coefficient varies across different
datasets. Generally, the best results are achieved when £ = 1 or 2. Fig. [E5|(b) illustrates the impact
of supervised fine-tuning on the H&M dataset (The dark blue part represents the condensed graph
without supervised fine-tuning), where a trade-off between the values of 7, and ¢ is required to
ensure optimal performance of PreGC.
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(a) Performance of PreGC with different ¢
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(b) Performance of PreGC,q with different 7., and € (c) Label distribution on H&M-category

Figure ES: The impact of different parameter combinations on PreGC.
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D.6 Ablation Study

In this section, we add ablation experiments of PreGC on the OGB-Arxiv dataset, with the results
presented in Table[E6] Consistent with the observations on the H&M dataset, both key modules play
a significant role in graph condensation. Notably, the removal of graph diffusion augmentation leads
to increased performance fluctuations, which demonstrates that graph diffusion augmentation can
enhance the generalization capability of the condensed graph.

Table E6: Experimental results for the ablation study on OGB-Arxiv.

r=1.25% r=2.5%

OGB-Arxiv Topic Year Topic Year

PreGC 60.5520.43  52.340.30 62.66£0.47  52.9620.35
PreGCyio Aug ~ 59.21£0.75  51.1020.64 59.93+0.68  51.06+0.79
PreGCypo ..., 58.84+0.51  49.42+0.58 59.99£0.42  50.550.49

D.7 Computational Cost

In this section, we conduct additional experiments to compare the computational efficiency of PreGC
with existing baselines on the Cora dataset. It covers peak memory usage and runtime across the
pre-processing, condensation, and fine-tuning stages (CGC is excluded as it is a training-free method).
The results are shown in Table[E7] (* denotes the result of a single execution. Note that in practical
implementations, multiple preprocessing often be necessary depending on specific settings.). It
can be observed that PreGC achieves significantly faster condensation time compared to most GC
methods. Even when fine-tuning is required, it only increases a few additional time costs. Although
GDEM spends the least time during the condensation process, it requires extra preprocessing time
for eigenvalue decomposition. Overall, both PreGC and GDEM exhibit substantially lower training
times than other GC methods. The underlying reason is that existing GC methods employ a nested
bi-level optimization: an outer loop updates the GNN parameters, while an inner loop optimizes the
condensed graph. In contrast, PreGC leverages graph diffusion, a parameter-free message passing
mechanism, eliminating the time-consuming outer loop. This not only reduces condensation time but
also prevents the condensed graph from overfitting to architecture-specific parameters. Furthermore,
when downstream tasks or label distributions change, existing baselines must re-condense the graph
to capture this updated knowledge. In contrast, PreGC is task- and label-agnostic, thus requiring only
a single condensation and can be reused multiple times.

Table E7: The computational cost on Cora dataset (r = 1.3%).

Memory (MB) Pre-processing (S) Condensation (S) Fine-tuning (S) Total (S)

GCDM 1,276 - 1542.38 - 1542.38
GCond 1,280 - 2,304.41 - 2,304.41
SFGC 2,514 14.01* 1,923.64 - 1,937.65
SGDD 1,644 - 2,364.18 - 2,364.18
GDEM 2,658 4.56% 7.48 - 12.04
PreGC 1,714 - 22.36 0.81 23.17

E Discussion

E.1 Related Work

Graph Reduction. Unlike model quantization [47] and knowledge distillation [37]], graph reduction
[64! 122] is a data-centric approach. It aims to reduce the size of a graph by decreasing the number of
nodes and edges, allowing efficient and effective GNN training. It includes graph sparsification [11 [7],
graph coarsening [41, 28], and graph condensation [25} 55]]. Graph sparsification aims to reduce edge
density while preserving key structural or spectral properties of the original graph. Graph coarsening
aggregates nodes or edges to form a smaller super-node or super-edge, often maintaining hierarchical
relationships. Their core principle is to maintain specific large-scale graph properties (e.g., spectra
and principal eigenvalues) in smaller graphs that have been thinned or coarsened, essentially still
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modifying the original graph. In contrast, graph condensation directly optimizes and synthesizes a
small-scale condensed graph, which breaks the information constraints imposed by the original graph
and promotes consistent GNN test performance.

Graph Condensation [25| 24], a.k.a., graph distillation [33]], aims to condense large-scale graph
data into a small-scale synthetic graph, reducing garph redundancy and accelerating GNN training.
Due to its superior ability in graph reduction, it has found a wide range of applications, including
accelerating inference [14]], graph continuous learning [34], and federated graph learning [S1].

Early GC methods inspired by data condensation [61} [62]] proposed matching strategies such as
gradient matching [25] 24} [13]], trajectory matching [[64.|59], distribution matching [32} (16}, 49], etc.,
focusing more on learning the consistency of the representation space and proposing a related variant
of structure-free. SGDD [55]] was the first to propose Laplacian energy distributions to metricize the
relationships among structures. GDEM [33] analyzed the upper limit of the existing GC performance
is limited by the GNN architecture and improves this problem by eigenbasis matching. In addition,
the parameters in different GNNs also bring implicit bias that would be inherited by the condensed
graph.[16] and [17] proposed efficient graph condensation without parameters to avoid this problem.
[54] synthesized a condensed soft label using multiple self-supervised tasks as auxiliary information
to enhance the fitness of condensed graphs. Despite the great efforts made by the above methods,
they are still limited to a particular task (e.g., node classification). Recently, SGDC [46] proposed
self-supervised graph-level condensation, which is free from task dependency by contrast learning.
[15] extended it to self-supervised node-level condensation, improving the generalization ability in
condensed graphs on unsupervised tasks. However, the essence of the above methods is still based on
class partitioning, which cannot be applied to other supervised tasks (e.g., node regression), hindering
the reusability of condensed graphs.

To our best knowledge, we are the first attempt to study generalized graph condensation. PreGC has
the advantages of being GNN-parameter-free and task-independent, allowing the condensed graph to
be flexibly adapted to arbitrary GNN architectures and diverse downstream tasks.

Applications of Graph Condensation. In addition to the aforementioned research, graph conden-
sation has been further extended to other domains [40, 4]. For example, Jin et al. [24] were the
first to generalize graph condensation from node-level to graph-level tasks and significantly reduced
condensation cost using one-step gradient matching. Xu et al. [50] reformulated the paradigm
of graph-level condensation via kernel ridge regression while preserving the performance of the
original graph data. Gupta et al. [18] and Wang et al.[46] further extended graph condensation
to model-agnostic and self-supervised graph-level settings, rapidly advancing the field. Moreover,
owing to the training efficiency of condensed graphs, Liu et al. [35136]] integrated graph condensation
with continual learning, both mitigating catastrophic forgetting and accelerating model training. Yan
et al. [51] and Zhang et al. [57]] applied graph condensation to federated graph learning, enabling
distributed graph learning under privacy constraints by sharing knowledge through condensed graphs.

E.2 Limitation

Although the proposed PreGC is highly generalizable and reusable, eliminating the need to repeat the
condensation, it still suffers from a shortcoming. PreGC inevitably introduces additional complexity
to the condensation process due to the computational constraints of optimal transport. Potential
improvements in computational efficiency can be explored through graph partitioning techniques
or linear optimal transport approximations. However, since the main contribution of this work is to
propose a generalized graph condensation paradigm and a pre-trained condensation framework, we
defer the study of improving computational efficiency to future research.

E.3 Broader Impacts

Although graph condensation is pivotal for scaling graph neural networks to large-scale graph data,
it can also entail fairness and privacy risks. Due to the condensation process selectively preserves
or amplifies structural patterns, it may inadvertently over-represent majority groups while suppress-
ing minority substructures. Moreover, the re-synthesis of node features complicates established
anonymization guarantees, as condensed features may be re-identified via topological cues. Accord-
ingly, the condensation procedure should be considered to mitigate unfairness induced by structural
bias while simultaneously preventing the leakage of sensitive attribute information.
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