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Abstract

Incrementally learning new semantic concepts while retaining existing information is funda-
mental for several real-world applications. While behaviors of different sizes of backbones
and architectural choices have been studied to propose efficient limited-sized architectures
within many non-incremental computer vision applications, only large convolutional and
Visual Transformer (ViT) backbones have been explored for class-incremental semantic seg-
mentation, without providing a fair comparison wrt model size. In this work, we propose a
fair study across existing class-incremental semantic segmentation methods, focusing on the
models efficiency wrt their memory footprint. Moreover, we propose TILES (Transformer-
based Incremental Learning for Expanding Segmenter), a novel approach exploiting small-
size ViT backbones efficiency to offer an alternative solution where severe memory con-
straints are applied. It is based on expanding the architecture with the increments, allowing
to learn new tasks while retaining old knowledge within a limited memory footprint. Be-
sides, in order to tackle the background semantic shift, we apply adaptive losses specific to
the incremental branches, while balancing old and new knowledge. Furthermore, we exploit
the confidence of each incremental task to propose an efficient branch merging strategy.
TILES provides state-of-the-art results on challenging benchmarks using up to 14 times
fewer parameters.

1 Introduction

In a traditional non-incremental learning context, machine learning models process the whole training data
at once. However, incrementally learning new information held by new collected data while retaining past
knowledge is a critical capacity needed in real-word applications such as robotics, self-driving vehicles or
video surveillance, as past data is not always available for storage or privacy reasons. In a more specific
context, Class-Incremental (CI) learning can be more constrained when the new data features new classes
not seen previously without bringing anymore knowledge about previously learnt classes. While humans
can learn to recognize new objects continuously without forgetting the ones previously seen, deep learning
models can suffer from performance degradation on previously learned tasks. This phenomenon introduced
by Mccloskey & Cohen (1989) is known as catastrophic forgetting, and happens especially if the new classes
are learned with no supervision on past knowledge.

This problem has received much attention from the research community for the task of image classification
(IC). Several approaches have proposed to expand the model architecture to learn new tasks such as Yan
et al. (2021) or to retain a portion of the previous dataset and use it in subsequent steps. Other researchers
have tried to solve CI learning in a more challenging setting, where no old data is available and with
no or limited model expansion. Approaches based on transferring information from the old to the new
network known as Knowledge Distillation (KD) presented by Hinton et al. (2015) have shown great success
in alleviating catastrophic forgetting for IC. Architecture-wise, all first methods were CNN based until DyTox
(Douillard et al. (2022)) which demonstrated good performances while using a Visual Transformer (ViT)
based architecture (Dosovitskiy et al. (2021)) with very few additional parameters at each step.
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However, less attention has been given to Class-Incremental Semantic Segmentation (CI-SS). This task holds
one more challenge which is the semantic shift of the background: the semantic meaning of the background
changes at each step since past and future classes are considered as background relative to the current step
(which only relies on labels of current classes). This is why direct adaptations of CI-IC approaches do not
perform well for CI-SS. Several solutions have been proposed to deal with this challenge such as self-inpainting
by Cermelli et al. (2020). Besides, while most approaches dealing with CI-SS use Deeplab-v3 (Chen et al.
(2017)) with a CNN backbone, more recently, CoinSeg (Zhang et al. (2023)), NeST (Xie et al. (2024)) and
Incrementer (Shang et al. (2023)) leveraged ViT-based architectures and outperformed CNN-based models
while employing large ViT backbones. However, to the best of our knowledge, no benchmark exists to fairly
compare these various methods. Moreover, despite the various studies providing smaller sized ViT backbones
on several computer vision tasks (Strudel et al. (2021); Liu et al. (2021)), no such small models have been
proposed for CI-SS.

In this work, we provide a fair comparison across previous state-of-the-art (SOTA) CI-SS approaches, by
taking into account the performance of the used backbones having different memory footprints. Besides, we
demonstrate that previous ViT-based CI-SS methods using large backbones are not adapted for use cases with
severe memory constraints where smaller backbones should be used. As an alternative, we propose a novel
approach to solve limited footprint CI-SS based on an expanding ViT architecture. Similarly to Incrementer,
we choose Segmenter architecture (Strudel et al. (2021)) for its class embeddings which represent an efficient
way to retain knowledge on classes. In contrast, our method features an expanding architecture which
helps alleviate the semantic shift of the background, especially when using small backbones. Therefore, our
Transformer-based Incremental Learning for Expanding Segmenter (TILES) appears better suited to the
constrained-memory CI-SS scenarios as it largely outperforms previous SOTA methods when limited-sized
backbones are applied. It is also able to outperform previous approaches while using up to 14 times fewer
parameters. The effectiveness of the proposed framework is demonstrated through extensive experiments
on the CI-SS benchmarks Pascal-VOC (Everingham et al. (2010)) and ADE20k (Zhou et al. (2019)). Our
contributions can be formulated as follows:

• We provide a fair comparison across different CI-SS methods while studying their behaviors and
efficiencies. Besides, we demonstrate a big performance drop of the best SOTA approach when
using smaller backbones.

• Alternatively, we propose TILES to solve CI-SS with critical memory constraints. We demonstrate
that the proposed expanding mechanism dedicating balanced task-specialized branches alongside
a suitable loss computation and a branch merging technique, are the more efficient to cope with
constrained-memory cases.

• We improve the SOTA performance for CI-SS using limited-sized backbones, on two challenging
benchmarks.

2 Related work

2.1 Class-incremental learning

We can distinguish three main families of approaches solving CI learning for image classification, object
detection or semantic segmentation:

Replay methods: The strategy here is to use data holding past knowledge in the subsequent steps (Liu
et al. (2020); Maracani et al. (2021)). This idea can provide good performances since there is limited or no
catastrophic forgetting, but it is contrary to privacy constraints (e.g health, industrial or defense sensitive
data). In this work, we do not consider this family of approaches.

Expansion methods: These approaches try to find an efficient way to make the model evolve throughout
the epochs by allocating new parameters to the new classes. This strategy has already proven its worth
in CI-IC by achieving good performance in Yan et al. (2021). DyTox (Douillard et al. (2022)) is the first
approach to use an expanding transformer-based architecture with limited sized backbones for CI-IC. It
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can dynamically process new knowledge by moderately increasing the number of parameters leading to
performance similar to SOTA CNN-based approaches.

Regularization methods: This family of approaches focuses on how the model learns at each step and
can be further divided into weight regularization and functional-based methods. On the one hand, weight
regularization approaches, especially used for CI-IC, put constraints on the weights having high impact on
previous tasks (Kirkpatrick et al. (2017)). On the other hand, functional-based approaches compute losses
measuring the distance between a specific layer outputs produced by the previous and the new models re-
spectively (Cermelli et al. (2020); Shmelkov et al. (2017); Phan et al. (2022)). These methods are the most
popular thanks to their simplicity and capacity to continuously learn new classes. In particular, Knowl-
edge Distillation (KD) proposed by Hinton et al. (2015) has shown great success reducing the catastrophic
forgetting especially for CI-IC.

2.2 Class-incremental semantic segmentation

Several methods have tried to solve CI-SS using KD, given its success for CI-IC. However, the Cross Entropy
Loss (LCE) and the KD Loss (LKD) contradict each other for CI-SS because of the semantic shift of the
background. In fact, previously seen classes are labeled in the new ground-truth as background, hence a
contradiction with the old model’s predictions. Similarly, the new classes are classified as background by the
old model, hence a contradiction with the new ground-truth labels. Therefore, this opposition makes the
model cut the trade-off between rigidity and flexibility in an inefficient way.

MiB (Cermelli et al. (2020)) is the first to tackle the background semantic shift challenge by changing the
new model outputs depending on which loss is computed. Indeed, the new model predictions corresponding
to new classes are considered as background in the LKD. Similarly, those corresponding to old classes
are considered as background in the LCE . PLOP (Douillard et al. (2021)) deals with the background
semantic shift in a different manner, by joining the predictions made by the previous model and the new
ground truth to generate a new target. Later, SDR (Michieli & Zanuttigh (2021)) and UCD (Yang et al.
(2022)) show that using contrastive learning on lower dimension representations offers a powerful way to
retain knowledge. RCIL (Zhang et al. (2022a)) uses representation compensation to merge old and new
parameters while MicroSeg (Zhang et al. (2022b)) addresses the challenge of background shift by leveraging
regional objectness to identify and preserve previously learned classes. Moreover, RBC (Zhao et al. (2022))
corrects context bias through a context-rectified image-duplet learning scheme, a biased-context-insensitive
consistency loss, and an adaptive class-balanced learning strategy. Finally, Bg_Adapt (Zhang & Gao (2024))
leverages a background adaptation mechanism based on residual modeling to better handle background
category evolution. Even though these methods propose different incremental strategies, they are all based
on the Deeplab-v3 (Chen et al. (2017)) architecture with a ResNet (He et al. (2016)) backbone as the core
model on which the CI-SS strategies are applied.

More recently, ViT-based architectures have been used to solve CI-SS trying to benefit from these architec-
ture’s efficiencies. On the one hand, two recent methods are based on a SwinB backbone (Liu et al. (2021)):
first, CoinSeg (Zhang et al. (2023)) uses a discriminative feature representation thanks to inter-class and
intra-class contrastive losses, while NeST (Xie et al. (2024)) proposes a pre-training method that transforms
existing classifiers to initialize new ones, enhancing alignment with the model backbone. On the other hand,
Incrementer (Shang et al. (2023)) takes advantage from the Segmenter (Strudel et al. (2021)) class embed-
dings to add new knowledge while retaining old information, based on a ViT-B backbone (Dosovitskiy et al.
(2021)). It also proposes to adapt the LKD to only focus on old class regions and to regularise training
alleviating both overfitting on new classes and confusion of similar semantic concepts. Since these methods
are based on different backbones, they re-implement some previous methods using the same backbone for
performance comparison such as MiB(ViT-B), RBC(ViT-B) or MicroSeg(SwinB).

2.3 Positioning of our method

At each step, the new data has most likely different statistical properties from the data seen previously. This
distributional shift has a huge impact on the optimization of the model weights. This is enhanced in the case
of CNNs where Batch Normalization (BN) layers are usually present, having a high dependency to the data
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distribution. Thus, if the distributional shift is not detected, the model will inevitably suffer from stronger
catastrophic forgetting (Zhao et al. (2021)). Therefore, we believe that transformer-based architectures can
be more appropriate for incremental learning since they do not rely on BN, making them better continual
learners (Li et al. (2022)).

Moreover, a very important aspect of real world applications is the memory footprint. However, contrary
to the non-incremental semantic segmentation approaches where the efficiency and the performance drop
using smaller backbones have been extensively studied, only big backbones (ViT-B and SwinB) have been
tested for ViT-based CI-SS methods. Uncertainty on how the incremental strategies would perform with
smaller backbones makes them impractical for real-world use. Besides, it would be interesting to build new
strategies for these constrained cases.

Furthermore, during the training of previous SOTA approaches, the rigidity-elasticity trade-off is usually
handled by a hyperparameter balancing the LCE of the predictions with relation to the new ground truth
labels, and the LKD between the new and the old model’s predictions. However, the values of the two losses
vary depending on the confidence acquired by the old model, the number of classes for each task, and the
number of images used for the training of each step. Previous models did not take this into account and
applied a fixed hyperparameter independent of the task. In this work, we aim to tackle this, for a better
trade-off between old and new classes, by introducing an adaptive balancing parameter during training,
alongside a weighting branch merging parameter during inference.

To sum up our positioning, the proposed method TILES aims i) to present a solution for scenarios with
severe memory constraints by exploiting the efficient transformer architectures for CI-SS; ii) to leverage the
effectiveness of both knowledge distillation and expansion methods for incremental learning to tackle the
semantic shift of the background iii) while minimizing the parameter expansion at each increment and iv)
without retaining data for privacy concerns.

3 Method

3.1 Problem definition

The goal of CI-SS is to learn a model able to perform well on an increasing set of semantic classes. Let T
denote the total number of steps or increments at which a model has to learn a new task to cope with a new
subset of classes in addition to previously learned classes. At step t ∈ {1, . . . , T}, let Dt denote an additional
subset of annotated data: Dt = {(xt

i, yt
i)}i where xt

i is the i-th image and yt
i is the corresponding ground truth

of the same size, where each pixel is classified in Ct, the set of semantic classes at step t. The challenge is
that the foreground classes are supervised only at one step, i.e Cn

⋂
Cm = ∅, ∀n, m ∈ {1, . . . , T}, n ̸= m,

even if older classes continue to appear in new images or if future classes appeared in the older steps they
are both considered as background. However, at the end, the model should still be able to retain knowledge
on all seen classes C1 ⋃

C2 ⋃
...

⋃
CT .

3.2 Overview

We propose TILES as an expanding CI-SS approach that is convenient for scenarios with severe memory
constraints. In fact, while it is possible for big encoders/decoders to encompass several semantic concepts
learnt during different steps with minimum forgetting thanks to their considerable number of parameters,
we argue that this is not possible when much smaller backbones are used, which we demonstrate in sec. 4.2.
Therefore, we design TILES allowing limited expansion, particularly useful and necessary for these cases,
while assuring a limited memory footprint. Similar to Incrementer (Shang et al. (2023)) our approach is
based on the Strudel et al. (2021) architecture: Segmenter which uses a fully transformer encoder-decoder
to generate class masks for SS. To adapt this architecture to CI learning, at each step t, we add Kt class
embeddings to represent the Kt newly added classes Ct. This technique offers an efficient encoding of the
class knowledge which could be saved in the next steps helping the model to retain information through its
weights. We use a shared encoder between all tasks. However, we adopt an expanding architecture where
each task has its specific specialized decoder branch b. The training of different steps of TILES is presented
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Figure 1: Training process of TILES (left) vs. KD-based SOTA methods (right). In TILES, the input
image is first processed by the encoder, e.g ViT-Tiny, then each of the task branches (the tiles) generates a
prediction map specific to the task it learned. LKD losses are computed between old and new predictions
of each old branch separately to retain old knowledge, while LCE is used to learn to predict new classes
via the new branch. LBC helps the differentiation and specification of each branch. In previous KD-based
CI-SS approaches, both LKD and LCE are applied on the same output with possibly opposed goals. The
architectural design is explained in sections 3.3, 3.4 and the learning strategy is detailed in section 3.6.

in Figure 1 (left). Note that the decoders are adapted so that the expansion is not prodigal in terms of
number of parameters.

During inference, the input image is processed by the encoder, then, by each of the T branches of the decoder
in parallel. A final branch merging module is used to aggregate the predictions of different branches such
as illustrated in Figure 2. Thanks to this expanding strategy, there is no semantic shift in each branch
individually. The branch merging module carries out the choice of the final result using branch weights.

The different learning strategies in the initial step and then, how new branches are built on top of the
previous model to segment all classes are detailed hereafter.

3.3 Encoder

The input image is denoted by xt
i ∈ RH×W ×C where H, W and C are respectively the height, width and

number of channels of the image. xt
i is divided into patches of size P × P pixels to generate the sequence

of patches xt
i = [xt

i,1, ..., xt
i,N ] ∈ RN×P 2×C , where N is the number of patches i.e N = HW

P 2 . These
patches are then flattened, linearly projected and added to learnable position embeddings to generate the
sequence wt

i = [wt
i,1, . . . , wt

i,N ] ∈ RN×D, D being the embedding dimension. The encoder generates an
output zt

i = [zt
i,1, . . . , zt

i,N ] ∈ RN×D. The encoder weights are updated at each increment.
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Figure 2: Branch merging module used during inference to merge two segmentation maps learned during
different steps. Illustration is on a PascalVoc image using TILES-S trained on the [15-1] overlapped scenario.
See sec. 3.5 for explanations.

3.4 Decoder incremental branches

To retain knowledge on classes, we use the learnable class embeddings as introduced in Segmenter (Strudel
et al. (2021)) which are noted for the b-th branch (i.e task) as clsb = [cls1

b , . . . , clsKb

b ] ∈ RKb×D. At the entry
of each branch, the class embeddings clsb are concatenated to the encoder outputs zt

i . Hence, the sequence
fed into the Mask Decoder is dt

i,b = [zt
i,1, . . . , zt

i,N , cls1
b , . . . , clsKb

b ] ∈ R(N+Kb)×D. The self-attention block
decoder (SAB) then generates the sequence d′

i,b
t = [z′

i,1
t, . . . , z′

i,N
t, cls′

b
1, . . . , cls′

b
Kb ] ∈ R(N+Kb)×D made of

the transformed class embeddings cls′
b ∈ RKb×D and transformed encoded patches z′

i
t ∈ RN×D. The class

embeddings and encoded patches are then respectively linearly projected, and the Kb masks are generated
from their scalar product. For each branch, this output of dimension N ×Kb is then upsampled to obtain a
segmented image of the same size as the input in order to get the prediction at step t: predt

i,b ∈ RKb×H×W

where b ∈ {1, . . . , t}. As a result, each decoder branch is specialized in a task where classes from other tasks
are considered as background. At step t, only the decoder weights of branch bt are changed while we freeze
old step branches.

3.5 Branch merging

During inference, the predictions made by each task branch predt
i,b are combined to generate the segmented

image on all classes predt
i such as presented in Figure 2. In particular, for each pixel, we merge the predictions

pb of the different branches to decide the final value p of that pixel using the following rules:

• if all task branches predict the pixel as background, i.e {pb = 0, ∀b ∈ {1, . . . , T}}, then the final
label is the background: p← 0 (label for background);

• if only one branch predicts the pixel as a foreground class, i.e ∃! b1 ∈ {1, . . . , T} such that {pb1 =
c, c ̸= 0} ∩ {pb = 0, ∀b ̸= b1}, then the final label is that foreground class: p← c;

• if two or more branches predict the pixel as different foreground classes i.e ∃ b1, b2 ∈ {1, . . . , T}, b1 ̸=
b2 such that {pb1 = c1, c1 ̸= 0} ∩ {pb2 = c2, c2 ̸= 0} (red area in Figure 2), then the final label is
the one scoring the highest confidence which is computed as a weighted probability P (pb) ·γb, where
γb is the probability compensation weight for the branch b.

Probability compensation weight: Background preponderance in images varies a lot depending on the
dataset e.g no background class in ADE20k and a very present background class in Pascal-VOC such as
detailed in sec. 4.1.1. It also highly depends on the nature of the task. For instance, the majority of pixels
are considered as background in learning step 6 of the 100 − 10 scenario, whereas background is much less
present in the first step. This preponderance underrates, in different ratios, the probabilities of foreground
classes, which causes different probability values of foreground classes while branch merging. To circumvent
this, our branch merging strategy takes into account the relative sparsity of task classes Cb by choosing
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γb = #p(background)
#p(images) , where #p(images) and #p(background) are respectively the number of pixels of all

images used in train, and the corresponding number of background pixels.

3.6 Learning

Figure 1 illustrates the fundamental difference of loss computation between TILES and previous KD-based
approaches. At a given step t, TILES (left) has t branches specialized in predicting t different tasks. It is
trained to learn a new task on the new branch and to retain old tasks knowledge on old branches, while
differentiating between semantic concepts of different tasks.

Learn a new task: To learn the new task, the ground-truth yt
i contains only labels belonging to the new

set Ct as foreground while all other classes are set to background. Hence, LCE(predt
i,b=t, yt

i) is applied on
the branch t specific to the new task that estimates predt

i,b=t. The goal is to be able to distinguish between
the new classes and the old ones which are considered as background in this branch.

Retain knowledge on old tasks: Since the encoder weights are shared between all tasks and are updated
while learning the new task, we have to make sure that these weights will not change so much on the new
background pixels (containing old classes’ pixels) so that they will no longer fit the old tasks, leading to
catastrophic forgetting. Therefore, Lb

KD is computed for each branch b ∈ {1, .., t − 1} as a cross-entropy
on the output softmax probabilities of predictions predt

i,b and predt−1
i,b at current and previous steps only

on new background pixels (i.e where yt
i = 0). Such as introduced in Incrementer (Shang et al. (2023)),

a LKD applied only on new background pixels instead of the whole image enables more elasticity on new
foreground pixels (yt

i ! = 0) to learn the new tasks and more rigidity on new background pixels which contain
old foreground classes (see ablation in sec. 4.3).

Differentiate between semantic concepts of different branches: Incrementer (Shang et al. (2023))
demonstrated that close semantic concepts seen in different tasks could be confused since they are learnt
in independent steps. This is further heightened in our case since we use totally independent decoders to
learn different tasks. To alleviate this problem we add a Branch Classification Loss LBC defined as the mean
values of the mask Mi = {mj,k, 1 ≤ j ≤W, 1 ≤ k ≤ H} for each image xi ∈ RH×W ×C , where:

mj,k =


0 if pb

j,k = 0 ∀ b ∈ {1, . . . , t}
0 if ∃! b1 ∈ {1, . . . , t}; {pb1

j,k = c, c ̸= 0} ∩ {pb
j,k = 0, ∀b ̸= b1}

1 otherwise

(1)

This loss encourages having at most one non-zero (foreground) value per pixel, alleviating confusion of close
semantic classes learnt at different steps (see ablation in sec. 4.3).

Total loss: For step 1 the total loss is the presented LCE(pred1
i,1, y1

i ). For steps t > 1, the total loss Losst
i

is computed as follows, where λold > 0 to balance rigidity vs. elasticity of the model:

Losst
i = λold

∑
b∈[1:t−1]

Lt
KD(predt

i,b[yt
i = 0], predt−1

i,b [yt
i = 0])

︸ ︷︷ ︸
Loss on older tasks

+ LCE(predt
i,t, yt

i)︸ ︷︷ ︸
Loss on the new task

+ LBC(pred1
i,b, .., predt−1

i,b , predt
i,b)︸ ︷︷ ︸

Branch classification loss

(2)

Balancing losses: At the beginning of each training step t > 1, we initialize the model parameters using
those of the model at step t− 1. Hence, the different LKD losses are much smaller than the new LCE . This
causes the model to learn considerably the new task and forget the old one i.e catastrophic forgetting, since
the LKD have minor impact in the final loss. To balance the rigidity vs. the elasticity of the model, we
set λold to equalize the two terms at the beginning of training of each step: λold = LCE(iteration=1)

LKD(iteration=1) . This
parameter takes into consideration the old model confidence on the old tasks and the nature of the tasks
(number of images, preponderance of the background) which cause losses variations. Differently, previous
KD-based methods (right in Figure 1) compute both LKD and LCE on the same output predicting all classes
seen in tasks {1, .., t} and balance them with a fixed weight per step which is a hyperparameter to find.
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4 Experiments and results

4.1 Experimental settings

4.1.1 Datasets, protocols and scenarios

To evaluate the effectiveness of TILES, we use two commonly used datasets, Pascal-VOC and ADE20k, and
follow the evaluation protocols and scenarios associated.

Pascal-VOC (Everingham et al. (2010)): contains 11,530 images segmented and labeled into 20 possible
semantic classes plus a background class which is highly predominant. Indeed, the segmentation is object-
centric and 56% of all pixels are labeled as background. Following previous work by Yang et al. (2022), we
evaluate our models using both disjoint and overlapped protocols. In the disjoint protocol, each learning
step contains a unique set of images, whose pixels belong to classes seen either in the current or previous
step. Differently, in the overlapped protocol, each training step contains all the images that have at least one
pixel of a novel class. Thus, images may contain pixels of classes that will be learned in the future. Notice
that, since the sets of images are unique to each step in the disjoint protocol, the number of images used
for training each step is drastically lower than in the overlapped protocol. The following three scenarios are
evaluated for both protocols: [19 − 1], [15 − 5] and [15 − 1] referring to [number of classes seen at step 1 -
number of classes new seen at each step > 1 until reaching the 20 classes of Pascal-VOC].

ADE20k (Zhou et al. (2019)): is made of 20,000 images, each segmented into 150 possible classes. The
segmentation is exhaustive in this case: images are segmented into stuff classes (e.g , wall, sky) and things
(e.g , cars, person). Like previous works (Shang et al. (2023); Zhang et al. (2023)), models are evaluated
on ADE20k with the overlapped protocol since it is the more realistic one, on three scenarios: [100 − 50],
[100− 10] and [50− 50].

4.1.2 Implementation details

Similar to previous incremental approaches (Cermelli et al. (2020); Douillard et al. (2021)), random crops of
size 512×512 pixels are used for training for both datasets. Moreover, the incremental learning configurations
concerning the semantic classes learned at each step are retrieved from Cermelli et al. (2020). We optimize
the models using SGD with a constant learning rate of 1e-3 throughout the steps. The models are trained
with a batch size of 8, for 30 epochs for Pascal-VOC and for 64 epochs for ADE20k. The confidence weight
γb and the loss weight on old tasks λold are computed online (c.f as explained in sections 3.5 and 3.6).

We compute three variants of TILES with suffixes -B, -S and -T denoting Base, Small or Tiny. In fact, we
use a ViT (Dosovitskiy et al. (2021)) pre-trained on Imagenet (Deng et al. (2009)) for image classification
(-B, -S or -T) as encoder. TILES-T uses the same encoder and decoder as Segmenter-T (Strudel et al.
(2021)), resulting in 6.7M (million) parameters for one step and adding 0.4M parameters at each subsequent
step as we add a branch decoder for each increment. For scalability reasons, TILES-S and TILES-B use the
original ViT-B and ViT-S encoders respectively but adopt a custom decoder having a smaller hidden size of
256. This reduction helps limit the expansion of parameters for many step’s scenarios. A dense layer is used
to resize the resp. 384 and 768 hidden sizes output of ViT-S and ViT-B encoders to 256. Thus, TILES-S
(TILES-B) uses 23.8M (88.2M) parameters at the initial step with additional 1.8M parameters at each step
for both configurations. Table 5 details the number of parameters used for each scenario for TILES and
previous methods.

For Incrementer (Shang et al. (2023)), we use the same values reported in the their paper, where ViT-B
encoder and decoders are used. We perform the missing experiments for the ViT-S and ViT-T variants of
Incrementer for comparison with TILES variants using the same encoder backbones.

4.1.3 Evaluation metrics

The evaluation metric usually used for CI-SS is the mean Intersection over Union (mIoU) which is the mean
of the IoU per class. Results of the last step models are compared: a mIoU score is computed for classes
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learned in the first step, another for those learnt in subsequent step(s), and the all column (in the tables
hereafter) represents the average mIoU over all classes.

Knowledge Remaining (KR): Different approaches use different models and backbones, which are based
on different joint performances (see Table 4): the non-incremental scenario in which the model learns from
the whole data at once which can be considered as an upper bound for a given architecture and backbone.
Hence, it is not fair to evaluate absolute all mIoU performances to evaluate the gain of the incremental
strategies, while using different architectures. To this end, we propose an additional evaluation metric: the
Knowledge Remaining (KR). This metric is actually inspired by work done by Hoyer et al. (2022) in domain
adaptation to fairly compare adaptation strategies while using different architectures and backbones. It is
calculated as the ratio of the performance in the incremental setup by the performance in the i.e joint setup.

4.2 Results

Backbone Method #P (M) 19-1 (2 steps) 15-5 (2 steps) 15-1 (6 steps)
1-19 20 all KR 1-15 16-20 all KR 1-15 16-20 all KR

ResNet-101

MiB 66 70.2 22.1 67.8 87.6 75.5 49.4 69.0 89.1 35.1 13.5 29.7 38.4
PLOP* 66 75.0 39.1 73.2 94.6 74.7 49.8 68.5 88.5 65.2 22.4 54.5 70.4

SDR 66 69.1 32.6 67.4 87.1 75.4 52.6 69.9 90.3 44.7 21.8 39.2 50.6
UCD 66 71.4 47.3 70.0 90.4 77.5 53.1 71.3 92.1 49.0 19.5 41.9 54.1
RBC 66 77.3 55.6 76.2 98.1 76.6 52.8 70.6 90.9 69.5 38.4 61.7 76.7

RCIL+ 66 - - - - 78.8 52.0 72.4 93.5 70.6 23.7 59.4 76.7
MicroSeg+ 66 78.8 14.0 75.7 97.4 80.4 52.8 73.8 95.0 80.1 36.8 69.8 89.8

Bg_Adapt+ 66 78.2 42.2 76.4 98.7 - - - - 77.6 45.9 79.4 90.4

SwinB
MicroSeg+ 104 79.0 25.3 76.4 92.4 81.9 54.0 75.2 90.9 80.5 40.8 71.0 85.9
CoinSeg+ 104 79.6 70.2 79.1 95.6 80.5 70.8 78.2 94.6 76.8 57.2 72.2 87.3

PLOP+NeST+ 104 81.5 44.8 79.8 96.5 82.1 63.2 77.6 93.8 82.7 52.5 75.5 91.3

ViT-B

RBC 102 80.2 38.8 78.1 95.4 78.9 62.0 74.7 91.2 75.9 40.2 67.0 81.8
MiB 102 79.9 47.7 78.3 95.6 78.6 63.1 74.7 91.2 72.6 23.1 60.2 73.5

Incrementer 102 82.5 61.0 81.4 99.4 82.5 69.3 79.2 96.7 79.6 59.7 74.6 91.1
TILES-B 90 to 97 81.0 53.4 79.6 99.4 81.9 69.4 78.8 98.4 79.8 55.4 73.7 92.0

ViT-S Incrementer 26 76.4 47.5 75.0 95.4 74.0 56.1 69.5 88.4 72.6 46.1 66.0 84.0
TILES-S 26 to 33 79.1 53.3 77.8 99.0 79.7 65.3 76.1 96.8 77.1 47.8 69.8 88.8

ViT-T Incrementer 7 67.2 39.7 65.8 90.4 56.7 38.0 52.0 71.4 53.3 20.0 45.0 61.8
TILES-T 7 to 9 73.6 38.0 71.8 98.6 71.7 47.2 65.6 90.1 66.3 21.1 55.0 75.5

Table 1: CI performances (mIoU and KR in %) on Pascal-VOC for different overlapped scenarios. Best KR
per backbone per scenario in bold. *Reported by Yang et al. (2022). + mIoU computation is biased by
considering background IoU. #P is the number of parameters (in millions).

Backbone Method #P (M) 19-1 (2 steps) 15-5 (2 steps) 15-1 (6 steps)
1-19 20 all KR 1-15 16-20 all KR 1-15 16-20 all KR

ResNet-101

MiB 66 69.6 25.6 67.6 87.3 71.8 43.3 64.7 83.6 46.2 12.9 37.9 49.0
PLOP* 66 75.1 38.2 73.2 94.6 66.5 39.6 59.8 76.6 49.0 13.8 40.2 51.9

SDR 66 69.9 37.3 68.4 88.4 73.5 47.3 67.2 86.8 59.2 12.9 48.1 62.1
UCD 66 73.4 33.7 71.5 92.4 71.9 49.5 66.2 85.6 53.1 13.0 42.9 55.4
RBC 66 76.4 45.8 74.9 96.4 75.1 49.7 68.8 88.5 61.7 19.5 51.1 65.8

RCIL+ 66 - - - - 75.0 42.8 67.3 87.0 66.1 18.2 54.7 70.7

ViT-B

RBC 102 80.9 42.1 79.0 96.4 77.7 59.1 73.1 89.2 69.0 28.4 58.9 71.9
MiB 102 80.6 45.2 78.8 96.3 75.0 59.9 71.2 87.0 66.7 26.3 56.6 69.1

Incrementer 102 82.4 64.2 81.5 99.5 81.6 62.2 76.8 93.8 81.4 57.1 75.3 91.9
TILES-B 90 to 97 80.5 55.2 79.2 98.9 77.6 49.3 70.5 88.0 74.1 35.7 64.5 80.5

ViT-S Incrementer 26 76.4 19.9 73.6 93.6 75.2 26.9 63.1 80.3 71.9 38.6 63.6 80.9
TILES-S 26 to 33 79.1 51.5 77.7 98.9 76.1 47.7 69.0 87.8 73.9 35.1 64.2 81.7

ViT-T Incrementer 7 68.9 13.6 66.1 90.8 65.7 22.9 55.0 75.5 59.1 14.2 47.9 65.8
TILES-T 7 to 9 72.9 44.5 71.5 98.2 68.5 37.4 60.7 83.4 61.6 26.5 51.7 71.0

Table 2: CI performances (mIoU and KR in %) on Pascal-VOC for different disjoint scenarios. Best KR
per backbone per scenario in bold. *Reported by Yang et al. (2022). + mIoU computation is biased by
considering background IoU. #P is the number of parameters (in millions).
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Backbone Method #P (M) 100-50 (2 steps) 100-10 (6 steps) 50-50 (3 steps)
1-100 101-150 all KR 1-100 101-150 all KR 1-50 51-150 all KR

ResNet-101

MiB 66 37.9 27.9 34.6 88.9 31.8 14.1 25.9 65.6 35.5 22.9 27.0 69.4
PLOP* 66 29.8 4.2 22.2 57.1 32.1 2.8 22.3 57.3 19.2 0.4 6.6 17.0

SDR 66 37.4 24.8 33.2 85.3 28.9 7.3 21.7 55.8 40.9 23.8 29.5 75.8
UCD 66 40.4 27.3 36.0 92.5 28.6 12.4 23.2 59.6 39.3 22.2 27.9 71.7
RBC 66 42.9 21.5 35.8 92.0 39.0 21.7 33.2 85.3 49.6 26.3 34.1 87.7
RCIL 66 42.3 18.8 34.5 88.6 39.3 17.7 32.1 82.5 48.3 25.0 32.5 83.5

MicroSeg+ 66 40.2 18.8 33.1 85.1 41.5 21.6 34.9 89.7 48.6 24.8 32.9 84.6
Bg_Adapt+ 66 42.0 23.0 35.7 91.8 41.1 23.1 35.2 90.5 47.9 26.5 33.7 86.6

SwinB
MicroSeg+ 104 41.1 24.1 35.4 92.7 41.0 22.6 34.8 91.1 49.8 23.9 32.5 85.1
CoinSeg+ 104 41.6 26.7 36.6 93.4 42.1 24.5 36.2 92.3 49.0 28.9 35.6 90.8

PLOP+NeST+ 104 43.5 26.5 37.9 96.9 41.7 24.2 35.9 91.8 50.6 28.9 36.2 92.6

ViT-B
MiB 102 46.4 35.0 42.6 88.6 43.0 30.8 38.9 80.9 52.2 35.6 41.1 85.4

Incrementer 102 49.4 35.6 44.8 93.1 48.5 34.6 43.6 91.3 56.2 37.8 43.9 91.3
TILES-B 90 to 97 51.9 39.3 47.7 99.2 50.6 18.6 39.9 82.7 58.9 41.2 47.1 97.9

ViT-S Incrementer 26 48.7 29.9 42.4 90.6 42.3 15.1 33.2 70.9 55.7 32.6 40.3 86.1
TILES-S 26 to 33 50.2 34.1 44.8 98.2 46.7 15.8 36.4 79.8 55.5 37.4 43.4 95.2

ViT-T Incrementer 7 47.6 8.6 34.6 89.9 34.1 8.6 24.6 63.9 49.9 23.4 32.2 83.6
TILES-T 7 to 9 43.1 24.8 37.0 96.1 36.8 16.8 30.1 78.2 50.1 28.1 35.4 91.9

Table 3: CI performances (mIoU and KR in %) on ADE20k for different overlapped scenarios. Best KR
per backbone per scenario in bold. *Reported by Yang et al. (2022). + mIoU computation is biased by
considering background IoU. #P is the number of parameters (in millions).

We compare in Table 1, Table 2 and Table 3 different state-of-the-art CI-SS methods on the predefined
scenarios and protocols of Pascal-VOC and ADE20k datasets. Since these methods are based on different
architectures and backbones, their corresponding joint setups have different values such as illustrated in table
Table 4. Moreover, it is important to highlight that the memory footprint varies a lot depending on the
backbone, which has not been considered by previous CI-SS methods, by comparing absolute mIoU while
having different joint values and model sizes. For these reasons and to ensure a fair comparison between the
different incremental techniques, we focus on comparing the knowledge remaining (KR) which evaluates the
capacity of retaining old knowledge while learning new tasks, regardless of the used architecture. The goal
here is to fairly compare the different approaches, and to propose a new light-weight option for use-cases with
severe memory constraints. Note that methods with + consider the background in their mIoU computation
which distorts results since generally all methods have very good background IoU .

On the one hand, we can notice in the three tables that previous ViT based approaches assure in general
better absolute and KR performances than the CNN based approaches. In addition to the incremental
techniques used, this is also due to the fact that visual transformers are better continual learners than CNNs
such as discussed in sec. 2.3, to the better joint values and to the bigger memory footprint used. In fact,
using more parameters improves the models’ capacity to encompass the old and the new knowledge with
minimum forgetting. Nevertheless, despite using less parameters than previous ViT based approaches thanks
to the smaller decoder (see sec. 4.1.2 for details), TILES-B is able to achieve interesting results and even
outperforms them in the more realistic overlapped scenario for both datasets.

On the other hand, we compare Incrementer (Shang et al. (2023)) with TILES using smaller backbones to
study behaviors when severe memory constraints are applied. We choose Incrementer as a reference because
it has best results among most scenarios on both ADE20k and Pascal-VOC datasets, and because it uses
the same semantic segmentation base method as TILES: Segmenter (Strudel et al. (2021)). We can see that
fine-tuning parameters when using smaller backbones results in a big performance drop since the limited
number of parameter is not able to encompass both old and new knowledge while ensuring a good rigidity
vs. elasticity trade-off. As an alternative, TILES-S and TILES-T provide always better performances, with
a KR p.p ranging from: i) for ViT-S from 0.8 to 8.4 for Pascal-VOC and from 7.6 to 9.1 for ADE20k, and ii)
for ViT-T from 5.2 to 18.4 for Pascal-VOC and from 6.2 to 14.3 for ADE20k. Indeed, the performance gap
between TILES and Incrementer is heightened for smaller backbones. These improvements are especially
thanks to the adopted expanding mechanism which seems necessary to learn new tasks without big forgetting,
while adding a limited number of parameters at each step. Indeed, depending on the balance between the
old and new losses, applying smaller backbones to Incrementer seems to either cause catastrophic forgetting
or to limit learning new tasks.
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Model Backbone Pascal-VOC ADE20k
Deeplab-v3 ResNet-101 77.4 38.9
Deeplab-v3 SwinB 82.7 39.1
Incrementer ViT-B 81.9 48.1

TILES-B ViT-B 80.1 48.1
Incrementer ViT-S 78.6 46.8

TILES-S ViT-S 78.6 45.6
Incrementer ViT-T 72.8 38.5

TILES-T ViT-T 72.8 38.5

Table 4: Performance (mIoU in %) of the joint setting of different models and backbones for Pascal-VOC
and ADE20k datasets.

Model Backbone 1 step 2 steps 3 steps 6 steps
Deeplab-v3 ResNet-101 66 66 66 66
Deeplab-v3 SwinB 104 104 104 104
Incrementer ViT-B 102 102 102 102

TILES-B ViT-B 88 90 92 97
Incrementer ViT-S 26 26 26 26

TILES-S ViT-S 24 26 27 33
Incrementer ViT-T 6.7 6.7 6.7 6.7

TILES-T ViT-T 6.7 7.1 7.5 8.7

Table 5: Number of parameters (in million) used with relation to the number of steps of the scenario.

Note that, despite adopting an expansion mechanism, the number of parameters added in all these cases is
paramount (see Table 5 for details). In fact, TILES-B uses less parameters than other ViT-B and SwinB
based approaches thanks to the light-weight decoder used. For TILES-S and TILES-T, we can prove efficiency
by providing major improvements compared to Incrementer while adding 1.8M and 0.4M parameters per
step respectively.

It is also important to highlight that TILES-S achieves the same absolute results as Incrementer (ViT-B)
for the [100− 50] and [50− 50] ADE20k protocols despite displaying different joint performances and while
using up to 4 times fewer parameters (25 vs. 102) thanks to the adopted expanding mechanism along with
the corresponding losses and branch merging module. Similarly, TILES-T achieves and even surpasses CNN
based absolute approaches in some cases, despite the smaller joint performances and while using up to 9 times
fewer parameters (7.1 vs. 66). TILES-T also provides similar or better absolute performances compared
to SwinB-based methods while using up to 14 times fewer parameters (7.1 vs. 104) for the same ADE20k
protocols. This proves the over-allocation of parameters by previous CI-SS methods and the importance of
studying the efficacy of models for highly constrained tasks.

Moreover, despite being an expanding method, TILES-T shows a good scalability with the number of in-
crements (239 steps would be necessary to surpass the 102M parameters used by previous ViT-based ap-
proaches). Therefore, TILES-T is convenient for applications with extremely severe memory constraints or
needing a large number of increments. Besides, TILES-S shows closest performances to previous ViT-based
methods while keeping the number of parameters lower until an expansion of 43 increments. Thus, TILE-S
is adapted to applications requiring a lower number of increments, and where improved performance is more
important than severe memory constraints.

4.3 Ablation study

TILES-S using Segmenter-S decoder: In Table 6, we compare ADE20k results using TILES-S but with
two different decoders: Segmenter-S decoders which add 4M parameters at each step and our light-weight
decoders adding 1.8M parameters per step. It demonstrates that, despite the much bigger Segmenter-S
decoder, the absolute mIoU improvement compared to the TILES-S decoder is null or minor compared to
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the memory footprint increase (ranging from 15% to 48%). This proves that the adopted decoder architecture
is sufficient to encompass the new knowledge while adding a limited memory footprint at each step.

Method #P (M) 100-50 (2 steps) 100-10 (6 steps) 50-50 (3 steps) Joint1-100 101-150 all KR 1-100 101-150 all KR 1-50 51-150 all KR
TILES-S (SS-D) 30 to 46 49.8 35.2 44.9 95.9 42.1 31.6 38.6 82.5 56.1 41.2 43.6 93.2 46.8
TILES-S (ours) 26 to 33 50.2 34.1 44.8 98.2 46.7 15.8 36.4 79.8 55.5 37.4 43.4 95.2 45.6

Table 6: Influence of decoder architecture on TILES-S performance (mIoU and KR in %) on 3 overlapped
scenarios on ADE20k. SS-D denotes Segmenter-S decoder. #P is the number of parameters (in millions).

Balancing losses: Table 7 (A1 and TILES) shows that loss balancing in TILES (λold ̸= 1 as detailed) is
beneficial (+1.4 p.p. mIoU for TILES-T on Pascal-VOC [15 − 5] disjoint). We can notice that equalizing
losses at the beginning, alleviates forgetting and creates a better rigidity vs. elasticity trade-off. This can
be even more important for several-step scenarios where the model forgets old knowledge at each increment.

Ablation λold LKD γb LBC 1-15 16-20 all
A1 = 1 on new background pixels ̸= 1 ✓ 67.2 55.0 64.2
A2 ̸= 1 on all pixels ̸= 1 ✓ 71.5 42.6 64.3
A3 ̸= 1 on new background pixels = 1 ✓ 71.0 45.1 64.5
A4 ̸= 1 on new background pixels ̸= 1 ✗ 72.4 42.7 65.0
TILES ̸= 1 on new background pixels ̸= 1 ✓ 71.7 47.2 65.6

Table 7: Ablation study of loss balancing λold (A1), applying LKD on all pixels or only on new background
pixels (A2), probability compensation weight γb (A3) and binary classification loss LBC (A4) on TILES-T
performance (mIoU in %) on Pascal-VOC [15-5] disjoint scenario.

Applying LKD on all pixels: Table 7 (A2 and TILES) proves that applying the knowledge distillation
loss LKD only on new background pixels improves significantly the new classes performances compared to
applying this loss to whole image. In fact, this technique provides more elasticity on the pixels corresponding
to new classes by retaining knowledge only on the new background pixels that could be potentially old classes
learnt in old steps.

Compensation weight of probability for branch merging: Table 7 (A3 and TILES) shows that
compensating the branch prediction probabilities is beneficial as it gives more weight to ignored branches i.e
in this case the new branch as the training-set for this step is smaller.

Impact of branch classification loss: Since different decoders are used for different tasks for TILES,
semantically close concepts could be learnt by separate decoders causing a confusion between them and
thus a performance drop (see sec. 3.6). Table 7 (A4 and TILES) shows the big degradation of new classes
performances if the branch classification loss between the branches LBC is retrieved.

5 Conclusion

In this work, we elaborated a complete comparison across previous SOTA CI-SS methods based on different
backbones. While different performance trends can be remarked, all these methods use quite large memory
footprint without any study about their efficiency wrt this aspect. Thus, we proposed TILES, a new CI
learning method based on a ViT architecture for SS and specifically convenient for use cases with severe
memory constraints. Indeed, we demonstrated a big performance drop for a previous SOTA method when
smaller backbones are used, unlike TILES which is more adapted for these cases. Moreover, TILES can even
outperform previous SOTA models which use much bigger backbones (up to 14× bigger) when comparing
absolute performance. We hope that this work stimulates the AI community’s interest to study models
efficiency for CI-SS.
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