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Figure 1: The proposed hierarchical framework consists of a high-level strategy policy (7rh;gn) that
selects low-level skills and issues corresponding commands, and low-level skill policies (7r}oy) that
execute motor primitives including walking, dribbling, and kicking. Policies are trained in simu-
lation and deployed on real quadrupedal robots. In the figure on the right, we show a case of a
real-world 2v1 soccer game, where Attacker 1 passes to Attacker 2, who then shoots and scores. For
more experimental results, see https://youtu.be/7gq7N16jKgI.

Abstract:

Achieving coordinated teamwork among legged robots requires both fine-grained
locomotion control and long-horizon strategic decision-making. Robot soccer of-
fers a compelling testbed for this challenge, combining dynamic, competitive, and
multi-agent interactions. In this work, we present a hierarchical multi-agent rein-
forcement learning (MARL) framework that enables fully autonomous and decen-
tralized quadruped robot soccer. First, a set of highly dynamic low-level skills is
trained for legged locomotion and ball manipulation, such as walking, dribbling,
and kicking. On top of these, a high-level strategic planning policy is trained
with Multi-Agent Proximal Policy Optimization (MAPPO) via Fictitious Self-
Play (FSP). This learning framework allows agents to adapt to diverse opponent
strategies and gives rise to sophisticated team behaviors, including coordinated
passing, interception, and dynamic role allocation. With an extensive ablation
study, the proposed learning method shows significant advantages in the cooper-
ative and competitive multi-agent soccer game. We deploy the learned policies
to real quadruped robots relying solely on onboard proprioception and decentral-
ized localization, with the resulting system supporting autonomous robot-robot
and robot-human soccer matches on indoor and outdoor soccer courts.
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1 Introduction

Recent advances in deep reinforcement learning (DRL) have significantly improved single-agent
capabilities of legged robots, enabling them to perform complex behaviors such as agile locomo-
tion [1, 2, 3, 4], dynamic manipulation [5, 6], and long-horizon navigation [7, 8]. Despite these
successes, real-world robotic systems often require collaboration among multiple agents, which is
particularly challenging for legged robots due to their nonlinear dynamics, high-dimensional control
spaces, and the need for strategic reasoning over extended time horizons.

Robot soccer serves as a high-profile benchmark for such settings, combining real-time control, de-
centralized decision making, and long-horizon strategy. Yet, despite growing interest, most prior
work either adopts rule-based pipelines [9], focuses on simplified 1v1 games [10, 11], or remains
confined to simulation [12, 13]. Deploying a fully learning-based, competitive and cooperative soc-
cer system on real legged robots remains a challenge. Two main difficulties persist in solving this
challenge. First, legged robots have to perform precise motor skills like dribbling and kicking, while
maintaining balance and reacting to the highly dynamic motion of the ball. These skills require
high-frequency joint-level control and are particularly sensitive to contact dynamics. Even small
errors can lead to instability, collisions, or loss of ball control. Second, coordinated team play re-
quires long-horizon strategic reasoning under decentralized execution, which is crucial in real-world
systems to ensure robustness. Without a centralized coordinator, each robot must infer the intentions
of teammates and opponents in a dynamically changing environment, making coordination difficult.

In this work, we propose a hierarchical Multi-Agent Reinforcement Learning (MARL) framework
that addresses these challenges and enables real-world cooperative and competitive soccer between
autonomous quadruped robot teams. To simultaneously achieve stable locomotion and ball manip-
ulation, the framework begins by training a set of low-level skills, including walking, dribbling,
and kicking. These skills require precise, high-frequency control and are used consistently across
different game configurations. Building on these reusable skills, we train a decentralized high-level
policy that learns to compose the low-level skills based on egocentric observation, as illustrated in
Fig. 1. These policies are trained through Fictitious Self-Play (FSP) [14], where agents are iter-
atively trained against a population of past opponent policies, using Multi-Agent Proximal Policy
Optimization (MAPPO) [15], enabling the emergence of long-horizon strategic behaviors such as
passing, interception, and dynamic role assignment.

We demonstrate and analyze 1v1, 2v1 and 2v2 soccer matches in simulation, and deploy 1v1 and
2v1 configurations in the real world. Crucially, in the real-world deployment, each robot relies
solely on its onboard sensors (including a LiDAR) for perception, enabling reliable ball detection in
all directions even under poor lighting conditions. This design, which forgoes any external motion
capture or centralized planner, yields fully decentralized, coordinated multi-agent soccer on real
legged robots. Our results show that complex cooperative and competitive behaviors can emerge
purely through learning, and the policy can be zero-shot transferred to physical robots.

Our main contributions are as follows. (1) We propose a novel hierarchical framework that composes
multiple legged locomotion skills and high-level strategic planning, enabling fully learned coopera-
tive and competitive behaviors for robot soccer. The use of FSP facilitates strategic policy evolution
in adversarial settings. (2) We provide a systematic analysis of emergent multi-agent behaviors,
highlighting key design choices that drive coordination and competition. (3) We demonstrate, for
the first time, a fully decentralized multi-quadruped robotic system capable of playing soccer in the
real world, supporting both robot-robot and robot-human games without external hardware infras-
tructure.

2 Related Work

Legged robotic soccer originated in RoboCup [16] challenges in the 1990s, with early teams gener-
ally relying on manually crafted gaits, vision routines, and rule-based tactics [17, 18, 19]. Kohl and
Stone [20] were among the first to show that learned locomotion policies could outperform manual



tuning in robot soccer, a result that has been validated by many subsequent studies [10, 21]. In the
years since, learning-based control has steadily advanced the capabilities of legged robots in soccer.
Many works have focused on single-robot skills, such as dribbling [22, 23, 24], kicking [25], and
goalkeeping [26] to create a robust set of low-level skills essential for team gameplay.

By contrast, recent works in multi-agent robotic soccer gameplay remain limited. Since soccer is in-
herently a multi-agent game, MARL provides a strong algorithmic foundation to create cooperative
and competitive robot teams. Among them, Centralized-Training-Decentralized-Execution (CTDE)
frameworks such as MAPPO [15] have shown super-human coordination in soccer benchmarks,
enabling emergent passing, zone defense, and role assignment in simulation [12, 13]. For exam-
ple, Kim et al. [27] proposed a two-stage centralized training scheme for heterogeneous 5v5 teams;
Abreu et al. [28] scaled to 11-agent teams with some basic collaborations; Liu et al. [12] trained a
2v2 legged soccer game with emergent role allocation; and Li et al. [13] introduced MARLadona, a
decentralized MARL framework that learns complex team behaviors in simulation.

Yet, real-world deployments remain scarce, mainly limited to 1v1 encounters under controlled sens-
ing. Haarnoja et al. [10] demonstrated state-based 1v1 bipedal matches using self-play RL, and Tiru-
mala et al. [11] showed similar capabilities with fully vision-based policies. To address the behav-
ioral complexity of an increasing number of agents, works [9, 17] have adopted hierarchical frame-
works that decompose tasks into reusable sub-policies, improving sample efficiency, and enabling
flexible behavior switching. Among them, Labiosa et al. [9] demonstrated a 5v5 sim-to-real robot
soccer system. However, these hierarchical approaches mainly rely on condition-specific manu-
ally crafted high-level strategies, requiring expert heuristics and intensive tuning. In comparison,
learning-based approaches, which are capable of self-improving through autonomous gameplay,
have not been demonstrated in real-world deployment.

To date, real-world deployment of cooperative and competitive legged robot soccer leveraging au-
tonomous learning-based control has not been demonstrated, a gap we aim to address in this work.

3 Method

In this section, we introduce a hierarchical framework that progressively learns low-level skills and
high-level strategies in cooperative and competitive soccer scenarios. Our goal is to develop a mod-
ular learning framework for multi-agent quadruped soccer to produce coordinated and strategic be-
haviors both in simulation and on real-world robots. We posit that separating motor control from
decision-making enables more effective learning and transfer, and that co-evolution through adver-
sarial training drives the emergence of team strategies. We detail the design of the low-level and
high-level policies in Sec. 3.2 and Sec. 3.3, and outline the training procedure for high-level strate-
gies via FSP in Sec. 3.4.

3.1 Overview

We study quadruped robotic soccer in a mixed cooperative-competitive setting, where robots are
divided into Attackers tasked with scoring goals and Defenders aiming to defend and counterattack.
This adversarial interaction between teams requires both intra-team coordination and inter-team
competition. The resulting problem exhibits long horizons, sparse rewards, and high-dimensional
continuous control, making direct joint-space reinforcement learning particularly challenging.

To address these challenges, we adopt a hierarchical framework shown in Fig. 2, where the soccer
policy is decoupled into

(i) a library of reusable low-level motor skills learned separately, and
(i1) a high-level scheduler that composes these skills online.

This hierarchical structure (1) reduces the exploration burden, (2) yields interpretable behaviors, and
(3) enables low-level skills to be transferred to different team configurations without re-training.
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Figure 2: Hierarchical Architecture. (a) Low-level skills architecture. The low-level observa-
tion is formed by concatenating the low-level robot observations olryt, ball position py, ;, velocity
command ¢;, and previous joint action a;_;. An auxiliary estimator network predicts privileged
information unavailable to the policy, including the robot state 3, ; (e.g., motor stiffness), ball state
Span,¢ (e.g., ball velocity), and environment state 3., ¢ (€.g., friction coefficient), supervised using
ground-truth data from the simulator. (b) High-level strategy architecture. A Gated Recurrent Unit
(GRU) to maintain a hidden state h; for long-term memory. The high-level actor will output discrete
action index a; that selects the low-level skill type, and a4 that determines the velocity command
input to the chosen skill. These high-level actions are then concatenated with other observations and

passed into the low-level policy for final execution. Check Appendix D for the observation space.

We primarily focus on the 2v1 setting for detailed study and analysis, while also validating our
approach in the 1v1 and 2v2 configuration. At the beginning of each game, the ball is placed near
the primary attacker robot on its half of the court. A game terminates upon a goal, ball out of bounds,
or timeout. A restricted zone is defined along all field boundaries, extending 0.5 meters inward from
the edges. Robots are prohibited from entering these zones to prevent them from running out of
bounds. All policies are trained in the GPU-accelerated simulator IsaacGym [29], and selected
policies are deployed zero-shot on real-world Gol quadruped platforms [30].

3.2 Low-Level Skill Control Policies

To enable the agile and robust behaviors necessary for soccer play, we first train a set of low-level
skills to achieve dynamic locomotion and ball interaction. Inspired by common maneuvers in hu-
man soccer, we developed three low-level skills, Walk, Dribble, and Kick, which provide stable,
interpretable building blocks that simplify the subsequent high-level coordination problem. Train-
ing these low-level skills separately reduces exploration complexity and accelerates convergence,
yielding skills that generalize across different team configurations and form a reliable foundation for
strategic policy learning. The skills share a unified two-dimensional velocity command ¢ = (v, vy)
defined in the world frame. For Walk, c specifies the desired base velocity, and the robot is trained
to align its yaw angle with the velocity direction. For Dribble, c represents the target velocity of
the ball. For Kick, c is a unit vector that determines the desired velocity direction of the ball after
kicking. Each skill is realized by a neural network policy 74 (a | 0, ¢) which outputs desired joint
positions at 50 Hz. These target joint positions are subsequently tracked by proportional—derivative
(PD) controllers operating at 200 Hz with gains K, = 35, K4 = 0.5.

We employ a model-free RL training algorithm Proximal Policy Optimization (PPO) [31] to train
those skills. Reward shaping follows prior work for Walk [32] and Dribble [23]. For Kick, we
introduce a state-conditioned multi-stage reward design. Refer to Appendix D for more details.



3.3 High-Level Multi-Agent Strategy Policy

With the skill library in place, we next explore
how composing pre-trained soccer skills can yield  Table 1: High-Level Policy Action Space
adaptive, coordinated behaviors in dynamic soccer
scenarios. A high-level controller composes these Skill
skills to play soccer in a cooperative and competi-

Direction Options

tive manner, selecting a skill type with its 2D com- Type

mand. To improve training efficiency, we discretize Walk Up .

the continuous command ¢ = (v,,v,) into eight . Up-Left Up-Right
equally spaced unit vectors. The command mag- Dribble Left Right -
nitude ||c|| is pre-specified per skill (e.g. vyax for Kick Down-Left Dov'ar?wn'R'ght
Walk). In addition to the three skills introduced in

Section 3.2, we include a Stop action that holds the Stop - None

robot in place, regardless of the command. Table 1
summarizes the high-level action space.

The high-level policy receives only the current proprioceptive state and egocentric relative positions
of teammates, opponents, the ball, and the goals on both sides. To capture long-term dependen-
cies, we implement the high-level policy with a GRU [33] backbone. Decisions are made every 10
low-level steps (0.2 s, i.e. 5 Hz). This interval balances responsiveness with training efficiency. Two
Softmax heads independently parameterize categorical distributions over primitives and directions.
All agents on the same team share a common high-level policy network.

The reward structure combines sparse outcomes with auxiliary dense shaping. Agents receive a
positive reward for scoring and a negative reward for conceding a goal. Dense rewards are used to
encourage safe and purposeful behaviors, including minimizing collisions between robots, avoiding
exiting the field bounds, and promoting forward ball progression. Importantly, no explicit reward is
given for coordinated behaviors among robots; all cooperation arises implicitly through task-driven
pressures, such as the need to score while avoiding interception by the opponent.

3.4 Co-Evolution of Teams via Fictitious Self-Play

Robot soccer is a typical mixed — AttackerTraining Defender Training
cooperative-competitive task, where = Training = Training
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refinement. Figure 3: The FSP training procedure, where each side is
trained against a population of previously trained opponents.

Specifically, attacker and defender policies are trained using MAPPO under an FSP regime: while
one side updates, the opponent population pool is frozen. Training begins with the attackers, where
the initial defender population consists of random and ball-chasing policies. The ball-chasing policy
is a manually crafted high-level policy in which the robots continuously walk toward the ball. After
each evaluation phase we compute the score

5 = Twin + 0.5 X Tdraw, (1
where 7y, and 74w denote the win and draw rates of the current training team, respectively. When-

ever the focal team’s score satisfies s > s (a pre-defined threshold, s{ for attacker and s for



defender), the current policy snapshot is added to the population, and the training process switches
to the opposing side. During focal team training, each environment independently and uniformly
samples an opponent policy from the population. This curriculum promotes continuous adaptation
while avoiding the instability of simultaneous updates.

4 Experimental Results

In this section, we present comprehensive experimental results using the proposed method, including
an ablation study, analyses of diverse emergent behaviors, and real-world deployment. Through our
experiments in both simulation and the real world, we aim to answer the following questions: Q1:
How does our hierarchical framework and the selection of three low-level skills influence the soccer
training process? Q2: How does the FSP method induce diverse emergent behaviors? Q3: Can
the learned value function provide insights into the cooperative and competitive behaviors of the
high-level policy?

4.1 Ablation Study
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Figure 4: Ablation Study. (a) Ball trajectories under End2End and Ours policies in simulation
for 20 trails. (b) Training score s curves comparing Walk, Walk+Dribble, and Ours, across three
random seeds with the performance envelope colored in shaded area. We highlight that Walk and
Walk+Dribble have substantially higher training variance, and even fail to explore any effective
strategy after sufficient training under some random seeds.

We compare our hierarchical method (Ours) with several baselines, analyzing both behaviors and
training efficiency.

First, we compare Ours with a flat end-to-end policy (End2End) that directly learns from propri-
oceptive observations to specify motor targets at 50 Hz. They are both trained against a stationary
opponent for a sufficient duration. As shown in Fig. 4(a), the End2End policy exhibits unstable
and uncoordinated ball control, often leading to erratic ball motions and frequent out-of-bounds
events. In contrast, Ours achieves smooth and decisive ball trajectories toward the goal, demon-
strating the effectiveness of skill abstraction in producing stable behaviors. Quantitatively, playing
against a static opponent for 1000 episodes, Ours attains a win rate of 98.3%, compared to 37.5%
for End2End, presenting better performance due to the hierarchical framework.

Second, we ablate the contribution of low-level skills by comparing three hierarchical variants:
Walk (only walking skill), Walk+Dribble (walking and dribbling skills), and Ours (walking, drib-
bling, and kicking skills). All models are trained against a defender pool consisting of random
and ball-chasing policies, and training stops once the attacker reaches a predefined score thresh-
old (sthes = (.88). As shown in Fig. 4(b), Walk+Dribble improves over Walk by enhancing ball
control, but the lack of a kicking skill severely hampers exploration. Without the kicking skill,
some runs fail to achieve any scoring success. Ours converges significantly faster, highlighting the
importance of skill diversity for sample-efficient learning.

4.2 Policy Evolution with Fictitious Self-Play

We analyze how the FSP training induces diverse emergent behaviors of the high-level strategy.
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Figure 5: Policy evolution with FSP in 1v1 setting. (a) Co-evolutionary dynamics between attacker
and defender agents. Note that itern represents the policy trained after n iterations. (b) Score s
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Figure 6: Rollouts of policy trained with FSP in 2v1 setting. (b) For attackers, training against all
previous defender snapshots yields a multi-modal distribution of diverse strategies without collaps-
ing into single-modal local optima. For instance, (a) and (c) illustrate two cases where the same
attacker high-level policy exhibits different strategies when facing different defender policies.

Through FSP training, the attacker can gradually evolves from naive shooting to sophisticated tac-
tics such as rebounding and adaptive shooting as the defender improves. Meanwhile, the defender
also learns to perform dynamic interceptions and multi-stage defense over iterations, reflecting co-
evolution between competing sides. The evolution of policy in the 1v1 setting is shown in Fig. 5.

Crucially, FSP enables the strategy policy to discover multi-modal behaviors and avoid local optima
by training the attacker against a diverse population of past defender snapshots. For instance, in the
2v1 setting, the attacker learns to choose between passing and solo running depending on different
defender’s reactions and ball positions (Fig. 6).

These results highlight the effectiveness of FSP in driving behavioral evolution and strategy diversi-
fication. Additional emergent behaviors can be found in Appendix C. Our framework with FSP also
scales effectively to 2v2 setting (Appendix F).

4.3 Real-World Experiments Behavior Analysis with Value Function

To build a decentralized multi-agent soccer system in the real world, we deploy our high- and low-
level policies on three Unitree Gol quadrupeds equipped with onboard sensors and computation,
and local decision-making capabilities enabled by our decentralized policy architecture. The sys-
tem operates on a 10 m x 8 m field (Fig.1) without any external hardware infrastructure. Previous
real-world robot soccer systems typically rely on external motion-capture systems [10], which are
impractical for outdoor deployment, or on vision-based tracking methods [11], which suffer from
limited fields of view and vulnerability to motion blur. In contrast, our robots achieve full au-
tonomy using onboard LiDAR-based sensing (MID-360 [34]) and onboard computation (NVIDIA
Orin NX), enabling robust perception under fast motion, outdoor environments, and varying light-
ing. Localization is handled via real-time LiDAR-inertial odometry using FAST-LIO [35] within
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Figure 7: Real-world behavior analysis. (a)(d) The top-down view of two attackers coordinating to
pass and shoot against a defender. (b)(c) Critic value maps from the attackers’ perspectives show
higher expected returns when Attacker 1 attempts a pass and Attacker 2 moves closer to receive.
(e)(f) The defender intercepts the ball and counterattacks. The defender’s value map highlights
favorable ball positions near the attackers’ goal and lower values near its own goal. (g) A robot
attacker collaborates with a human teammate to score.

a pre-mapped environment, allowing each robot to estimate its global pose independently. Only
minimal pose information is broadcast among agents to enable mutual localization without external
infrastructure. This design enables fully autonomous, decentralized soccer play in both robot-robot
and robot-human scenarios. Check Appendix B and G for indoor 1v1 real experiments and details
of the real-world system.

To further analyze the learned strategies in the real world, we visualize both the agents’ behaviors
and value maps (Fig. 7). In the first scenario shown in Fig. 7(a)-(d), the attackers are controlled
by a trained high-level policy, competing against a defender with a handcrafted ball-chasing policy
that always walks toward the ball. All low-level skill policies are shared by both sides. Against this
reactive defender, the attackers’ value maps assign higher values to ball and base positions that favor
passing the ball. As a result, the attackers coordinate through passing and successfully score.

In the second experiment (Fig. 7(e)—(g)), we replace the handcrafted ball-chasing high-level policy
on Defender 1 with a trained one, and substitute Attacker 2 with a human teammate. This form of
robot—human collaboration and competition is enabled by our fully decentralized control framework.
During the game, the defender successfully intercepts the ball and executes a counterattack, as re-
flected by its value map, which exhibits higher critic values near the attackers’ goal and lower values
near its own goal, aligning with its defensive objectives. In another game, Attacker 1 successfully
passes the ball to the human teammate, resulting in a goal.

In summary, these comprehensive experiments show that our hierarchical framework with all three
low-level skills achieves the most stable and efficient learning, outperforming flat and ablated base-
lines. FSP promotes strategy diversification and mitigates local optima. The learned policy transfers
zero-shot to the real world, with value maps revealing interpretable cooperative and competitive
behaviors—together highlighting the strengths of our design choices.

5 Conclusion

In this work, we propose a hierarchical MARL framework to achieve decentralized quadruped soc-
cer, combining learned low-level motor skills with a high-level multi-agent strategy. Our method
outperforms flat and restricted baselines in both stability and sample efficiency. Through an FSP
regime, our agents develop versatile competitive and cooperative behaviors such as passing, block-
ing, and counter-attacking. Real-world experiments with multiple Unitree Gol robots validate the
effectiveness of our approach on indoor and outdoor soccer courts, taking a step toward autonomous
robot soccer teams that can rival a human team.



6 Limitations

While our hierarchical MARL framework enables robust multi-agent coordination for quadruped
soccer, several limitations remain. First, this work primarily focuses on 1v1 and 2v1 settings; scal-
ing to larger team sizes as in prior works presents challenges for both efficient training and real-world
deployment because there is a sharp increase in sample complexity and communication overhead as
team sizes increase. Real-world deployment of large teams also exacerbates safety and synchroniza-
tion concerns; in particular, our LiDAR-based ball detection may suffer from frequent occlusions
as the number of robots increases. One promising direction is to simulate occlusion during training
and encourage agents to actively infer and search for the ball when it is not directly observable.
Additionally, our current experiments are limited to quadruped platforms. Extending the framework
to full-size humanoid robots would introduce significant additional challenges in maintaining stable
locomotion and achieving precise ball interactions.
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A Low-level Skills Demonstration
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Figure 8: Real-world demonstration of low-level skills: (a) Walk (b) Dribble (c) Kick (d) Receive.

We demonstrate the four low-level motor skills deployed on real quadruped robots. Fig. 8(a) shows
the Walk primitive, which enables stable omnidirectional locomotion with the robot oriented in the
direction of travel. Fig. 8(b) demonstrates the Dribble skill, where the robot approaches the ball,
maintains alignment, and guides it through repeated contact and reorientation. Fig. 8(c) presents the
Kick skill, where the robot moves toward the ball and delivers a powerful strike to propel it forward.
These low-level skills form the foundation for composing higher-level strategic behaviors.

The Receive skill illustrated in Fig. 8(d) allows the robot to stop and handle an incoming ball. While
this skill is occasionally selected during early training stages, we observe that it is consistently
abandoned after sufficient learning. This is because receiving the ball often incurs a significant delay:
the robot must first turn to face the teammate to stop the ball, and then turn again to advance toward
the opponent’s goal. In contrast, it is more efficient to directly exploit the ball’s forward momentum
by immediately dribbling and kicking without stopping. As a result, the high-level policy naturally
and autonomously avoids selecting the Receive skill. To improve training efficiency, we remove it
from the final skills.
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Figure 9: Demonstration of 1v1 real world deployment.

B Real-world Experiments for 1vl Game

We further deploy our trained 1v1 policies in the real world and showcase three representative cases
in Fig. 9. After three iterations of training, the attacker learns to exploit the wall to rebound the
ball into the goal (Fig. 9(a)). Simultaneously, the defender exhibits anticipatory behavior by mov-
ing proactively to intercept the rebounding ball, demonstrating co-evolved competitive dynamics
(Fig. 9(b)). In another scenario, the attacker initially fails to score, but successfully scores by a
follow-up shot, illustrating the robustness and persistence of the learned policy (Fig. 9(c)).

C More Emergent Strategies for 2vl Game

Here, we illustrate more emergent high-level strategies observed during training in the 2v1 setting.
In Fig. 10(a), Defender 1 breaks up a pass between the attackers and counterattacks to score.

In Fig. 10(b), Defender 1 anticipates a potential shot from Attacker 2 by proactively approaching its
own goal, successfully intercepting two shot attempts.

In Fig. 10(c), Attacker 1 waits patiently to attract the defender’s attention, luring Defender 1 closer.
Meanwhile, Attacker 2 moves in advance, receives the pass from Attacker 1, and finishes with a
shot.

In Fig. 10(d), a more sophisticated collaborative behavior emerges. Attacker 2 actively blocks De-
fender 1’s path, enabling Attacker 1 to move behind them and delivers a forward pass from behind.
Attacker 2 then receives the ball and completes the play with a shot on goal. Once this strategy is
acquired, it effectively prevents the defender from gaining access to the ball.
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Figure 10: Demonstration of more emergent high-level strategies in 2v1 game. (a)-(b): The defender
performed effective defenses. (c)-(d): The attackers executed coordinated attacks.

D Training Details
D.1 Low-level Skills Training

Partially Observable Markov Decision Process We formulate the low-level control problem as a
Partially Observable Markov Decision Process (POMDP) defined by a state space S, an action space
A, a transition function p(s;1|8¢, a¢), and a reward function r(s;, a;). At each timestep ¢, the
agent receives an observation oy that provides partial information about the true state s;. The policy
m(a¢|x:) takes as input a history of the most recent h observations, &1 = (0t—p41, Ot—h+2; - - -, Ot),
and outputs an action a;. The objective of the reinforcement learning algorithm is to learn an optimal
policy 7* that maximizes the expected cumulative discounted reward:

Tt = argmgx]Ew lz 'ytr(st,at)] ;

t

where € (0, 1] is the discount factor.

Observations Our low-level policies take as input a sequence of 25 recent observation frames.
Each frame consists of multiple proprioceptive and task-relevant features, as summarized in Table 2.

Kicking Reward Functions We carefully design a state-conditioned multi-staged reward function
to train the kicking policy. We divide kicking behavior into two stages:
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Table 2: Low-Level Policy Observation Terms per Frame

Observation Term Dim. Symbol Description

base_lin vel 3 Base linear velocity in base frame

base_ang vel 3 Base angular velocity in base frame

forward_vec 2 Heading vector of the robot in world frame

projected_gravity 3 olr’t Gravity vector projected into base frame

dof _pos 12 Joint positions

dof _vel 12 Joint velocities

gait_sin_indict 4 Gait clock input signals

ball_states_p 3 Prall,t Relative ball position in base frame (only
for dribbling and kicking)

command 2 c Velocity command in world frame

last_actions 12 a1 Actions taken in previous step

* Pursue & Strike stage (r¥it < 7") The robot is rewarded for walking behind the ball,
facing the command direction, and executing a kick.

* Hold stage (rkik > rthres)  Once 74 exceeds the threshold, indicating a satisfactory
strike, the robot is rewarded for stabilizing its posture in place. Otherwise, it continues
repositioning and attempts to kick again.

Here, 78 is a kick-quality reward function and 7" is a fixed threshold. The overall reward is

given by: r= Thold X ]l(,rltdck > Tthres) + Tstrike X ]l(rlfiCk < rthres).

The main reward terms are listed in Table 3. We omit standard regularization terms such as torque
penalty and action smoothness for brevity.

Table 3: Main Reward Terms for the Kicking Policy

Reward Term Description

kicking ball_vel (7kjck) Encourages ball velocity in the commanded direction

dribbling robot_ball_yaw Aligns the robot-ball and robot-yaw direction with the
command vector

dribbling robot_ball pos Encourages the robot to keep the ball close if 7o < 7

dribbling robot_ball_vel Encourages the robot to approach the ball if 7 < rfres

tracking lin vel Encourages the robot to stay still if re > 7

D.2 High-level Strategy Training

Decentralized Partially Observable Markov Game We formulate the high-level decision prob-
lem as a Decentralized Partially Observable Markov Game (Dec-POMG) defined by a set of agents
7, an enviornment state space S, a joint observation space of all agents O = {0'}¥ ,, a joint action
space of all agents A = {a'},, a transition function p(s;,1|ss,a},...,al), and reward func-
tions r;(s¢, aj, ..., al ),_, for N agents. At each timestep ¢, agent i receives an observation o} that
provides partial information about the true state s;, and selects an action ai ~ ;(ai|o!) based on
its observation. The objective of each agent is to learn a policy 7} that maximizes its own expected
cumulative discounted reward:

I

* t 1
T *argniraXEﬂl,...,ﬂN E Y Ti<st7ata"'aa’t
i
t

where v € [0, 1) is the discount factor. For this paper, all agents on the same team share a common
policy.
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Observations Since the high-level policy uses a GRU to aggregate temporal context, it only re-
quires a single-frame observation as input. The observation space only includes local features, as
detailed in Table 4.

Table 4: High-Level Policy Observations

Observation Term  Dim. Symbol Description

forward_vec 2 oﬁ’t Heading vector of the robot in world frame

ball_pos_xy 2 Poall¢ Relative position of the ball in base frame

teammate pos xy 2 X (Neam — 1) Ppae;  Relative positions of teammates in base
frame

OppO_pOS_Xy 2 X Ngpp Popp,t Relative positions of opponents in base
frame

oppo-goal_posxy 2 Relative position of the opponent goal in

Pyoal,t base frame

self_goal posxy 2 Relative position of the agent’s own goal in
base frame

last_action 2 i—1 High-level action at the previous decision

Qd,t—1
’ step

Nyeam refers to the number of robots on the agent’s own team, while nqpp denotes the number of opponents.

Reward Functions The high-level strategy is primarily guided by sparse event-based rewards,
such as scoring and conceding, which capture the long-term objectives of the game. To facilitate
more efficient learning, we additionally incorporate dense auxiliary rewards that encourage interme-
diate behaviors like ball advancement.

Table 5: High-Level Reward Terms

Reward Term Weight  Description

scoring 1000.0 Reward for successfully scoring a goal

conceding —1000.0  Penalty for conceding a goal

out_of_border —500.0  Penalty when the ball goes out of bounds

ball_forward_pos 1.0 Reward for advancing the ball toward the opponent goal

ball forward vel 1.0 Reward for ball velocity in the forward direction

base2ball 0.3 Reward for approaching the ball when the agent is the
closest teammate

interference -3.0 Penalty for being too close to other robots

penalty_area -0.3 Penalty for being too close to the boundary (all positive
rewards are disabled if robot is in the penalty area)

fall_over —5.0 Penalty for falling over

opponent_near_ball —5.0 Penalty if an opponent is close to the ball

Transition Rule between High-Level Actions and Low-Level Commands Before converting a
high-level action into a low-level command, we apply the following rule-based transitions to ensure
appropriate skill activation:

1. Dribbling is only activated when the robot is sufficiently close to the ball; otherwise, it is
mapped to a walking command directed toward the ball.

2. Kicking is only activated when the robot is sufficiently close to the ball; otherwise, it is
mapped to a stationary stepping.

3. Once Kkicking is initiated at a high-level decision step, the robot continues executing the
kick until the ball is determined to have moved far away, indicating a successful kick.
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4. Walking toward other robots is prevented by predicting future positions using the current
location and velocity command, and checking for potential collisions.

These transition rules are consistently applied during both training and real-world deployment.

E Out of Domain Test

To assess the robustness of our trained policy, we conduct additional out-of-domain evaluations by
varying the robots’ initialization positions. In the 2v1 configuration, we evaluate the final attacker
policy against a fixed ball-chasing defender under three settings, each consisting of 1000 episodes:

1. In-domain: both the defender and attackers are initialized within the same small region
used during training;

2. Out-of-domain (defender position): the defender is initialized within a larger region on its
side, while the attackers’ initialization remains unchanged;

3. Out-of-domain (attacker position): the attackers are initialized within a larger region on
their side, while the defender’s initialization remains unchanged (Fig. 11).

The win rate in the in-domain setting is 89.2%. In the out-of-domain setting with a randomized
defender position, the win rate remains high at 81.9%. When the attackers are initialized out-of-
domain, the win rate is 68.9%. These results demonstrate the robustness and generalization capabil-
ity of our trained attacker policy.

(a) (b)

B n domain range (defender) I In domain range (attacker)

Out of domain range

Figure 11: Visualization of the out-of-domain test setup. The highlighted rectangular regions illus-
trate the randomization ranges of the robots’ initial positions. The red / blue patches corresponds
to the in-domain regions used during training, while the purple patches represent the out-of-domain
regions used for testing. The patches are extended slightly to account for the robots’ body length.

F 2v2 Game in Simulation
To evaluate the generalizability of our training pipeline, we extend the experiments to a 2v2 game in

simulation, as shown in Fig. 12. Results show that our hierarchical framework combined with FSP
scales effectively to more agents, yielding stable and coordinated attacking and defensive behaviors.
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Figure 12: Demonstration of emergent strategies in 2v2 game. (a): The attackers executed coordi-
nated attacks. (b) The defender performed effective coordinated defenses.

G Real-world Soccer System Details

We present the hardware and software pipeline used in our real-world quadruped soccer system.
As shown in Figure 13(a), each Unitree Gol robot is equipped with a Livox MID-360 LiDAR and
interacts with a high-reflectivity ball. An onboard NVIDIA Orin NX computer performs real-time
localization and detection computing and policy inference. Both the LiDAR and Orin are powered
via an integrated voltage regulator connected to the robot’s internal power supply.

Figure 13(b) depicts the software architecture. Both the indoor and outdoor self-localization are
achieved using FAST-LIO [35], a computationally efficient and robust inertial LIDAR odometry
package, within a pre-mapping environment. The ball is detected by filtering high-intensity LIDAR
points resulting from its reflective surface, while human detection relies on filtering points based
on their height. The position of each robot is shared through a wireless broadcast network. Each
robot constructs its own observation and feeds it into a learned policy 7, which integrates both high-
level strategic decision-making and low-level motor skills, enabling decentralized soccer play. The
resulting joint position commands are executed by the onboard microcontroller unit (MCU) using
PD control to actuate the motors.
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Figure 13: Real world deployment overview: (a) Quadrupedal Soccer Hardware: Each robot is
equipped with a LiDAR and onboard computer for perception and control. (b) Software Pipeline:
The system performs ball detection, human detection, and self-localization from LiDAR and IMU
data. This results in a decentralized architecture where each robot makes decisions independently
based on local observations, with only lightweight position sharing to assist mutual localization.
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