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Abstract

We analyze whether object detectors trained on001
vision-language data learn effective visual rep-002
resentations for synonyms. Since many current003
vision-language models accept user-provided004
textual input, we highlight the need for such005
models to learn feature representations that are006
robust to changes in how such input is provided.007
Specifically, we analyze changes in synonyms008
used to refer to objects. Here, we study object009
detectors trained on vision-language data and010
investigate how to make their performance less011
dependent on whether synonyms are used to re-012
fer to an object. We propose two approaches to013
achieve this goal: data augmentation by back-014
translation and class embeddings enrichment.015
We show the promise of such approaches, re-016
porting improved performance on synonyms017
from mAP@0.5=33.87% to 37.93%.018

1 Introduction019

In recent years, we have witnessed increased in-020

terest in vision-language models (Radford et al.,021

2021; Yuan et al., 2021) that learn joint image and022

text representations in a self-supervised way, and023

that can later be used as building blocks for models024

fine-tuned on downstream tasks (Wu et al., 2023;025

Kuo et al., 2022; Kim et al., 2023). In addition,026

recent models such as GPT-4 (OpenAI, 2023) and027

DALL-E 3 (Betker et al., 2023) are built to accept028

image and text input provided by end users, with no029

set constraints on such inputs. Thus, models must030

be robust to variations in how input is provided.031

We analyze how vision-language models handle032

the variability in textual inputs. Specifically, we033

investigate variations in synonyms used to refer to034

objects. We show how such variability negatively035

affects performance for open-vocabulary object de-036

tection, and we propose two ways to help vision-037

language detectors learn better representations for038

synonyms: data augmentation by back-translation039

and class embeddings enrichment.040

Figure 1: Top: input to an open-vocabulary object de-
tector: images, class embeddings, and captions; and its
output: bounding boxes with associated labels. Bot-
tom: our approaches. 1) Data augmentation by back-
translation: add captions back-translated from a foreign
language; 2) Class embeddings enrichment: consider
synonyms when extracting class embeddings.

Figure 1 illustrates our proposed approaches. 041

With back-translation, we use a machine transla- 042

tion model to translate captions from English to 043

another language, and then we translate them back 044

to English. Because the back-translation is not per- 045

fect, the original caption and the back-translated 046

one are not going to be the same: they will show 047

changes, for instance, in which nouns are used 048

to refer to objects (i.e., synonyms). We hypoth- 049

esize that adding more synonyms to the captions 050

used for training will help a model learn better 051

representations for them. With class embeddings 052

enrichment, we modify the class embeddings that 053

open-vocabulary object detectors (Wu et al., 2023; 054

Gu et al., 2021; Minderer et al., 2022) use to match 055
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visual embeddings learned for image regions. Fur-056

thermore, when training with enriched class embed-057

dings, we experiment with enriching them through-058

out the whole training process, or using a Curricu-059

lum Learning approach: start training with the orig-060

inal embeddings, and finish with the enriched ones.061

In both our approaches, we modify inputs to062

the training process (i.e., captions and class em-063

beddings), making them generalizable to different064

model architectures and training strategies. We065

show promising results with improved performance066

on synonyms from mAP@0.5=33.87% to 37.93%.067

In summary, our contribution is twofold: (1)068

we identify an issue with current state-of-the-art069

(SOTA) vision-language object detector models070

(namely, difficulty in detecting objects referred to071

by synonyms), and (2) we propose two generaliz-072

able strategies to train vision-language object detec-073

tors to learn better representations for synonyms.074

2 Related Work075

Vision-language (VL) models for open-076

vocabulary detection. Open-vocabulary object077

detection refers to training a detector model on078

a set of classes and testing it also on a separate079

set of classes unseen during training (Gu et al.,080

2021; Gao et al., 2022; Minderer et al., 2022; Kim081

et al., 2023; Wu et al., 2023). Many methods take082

advantage of large pre-trained VL models (Radford083

et al., 2021; Jia et al., 2021; Lu et al., 2019)084

that are generally trained to recognize which085

image-caption pairs match and which do not. In086

this work, we use BARON (Wu et al., 2023): a087

state-of-the-art (SOTA) open-vocabulary object088

detector making use of the CLIP (Radford et al.,089

2021) pre-trained VL model.090

Concept relationships. Text embeddings have091

been shown to encode relationships between con-092

cepts such as synonyms and antonyms (Lu et al.,093

2018; Gokhale et al., 2022). At the same time,094

studies on adversarial attacks have highlighted how095

performance of language models varies when the096

input is changed, even when preserving the seman-097

tic meaning of the input text (Jia et al., 2019; Zhu098

et al., 2019; Ribeiro et al., 2018). Unsurprisingly,099

when such language models are combined with100

vision models, similar problems arise, with perfor-101

mance on VL tasks varying under perturbations of102

text input (Tascon-Morales et al., 2023; Gokhale103

et al., 2022; Sheng et al., 2021; Gokhale et al.,104

2020). Our work is related to such studies since105

we aim to make VL models more robust to text 106

input variations, although we differ from previous 107

work in target task (object detection vs. visual 108

reasoning). Further, we do not require changes in 109

how a model is trained, for instance, by defining 110

a new loss function (Gokhale et al., 2022; Tascon- 111

Morales et al., 2023); we simply modify inputs to 112

the model, making our approach more general. 113

Curriculum learning. Curriculum learn- 114

ing (Bengio et al., 2009) (CL) refers to training 115

a deep learning model by ordering the training 116

samples; a model can learn better if the training 117

samples are chosen following a schedule (i.e., a 118

curriculum) rather than randomly selected. Previ- 119

ous work has shown the promise of CL for tasks 120

such as machine translation (Liu et al., 2023; Qian 121

et al., 2021), automated text scoring (Zeng et al., 122

2023), and common sense reasoning (Maharana 123

and Bansal, 2022). We apply the idea of chang- 124

ing the input a model is trained on, but, instead 125

of changing the training images, we change what 126

class embeddings the model is trained on. 127

3 Methods 128

3.1 Object detection: BARON 129

We choose BARON (Wu et al., 2023) as our 130

vision-language open-vocabulary detector since 131

it achieves SOTA results on the task of open- 132

vocabulary detection. BAg of RegiONs (BARON) 133

is based on Faster R-CNN (Ren et al., 2015), where 134

the classification layer is replaced by a linear layer 135

so that its output is an embedding (or pseudo- 136

words), rather than a class label. The key novelty of 137

this method is the introduction of bags of regions: 138

embeddings are extracted for a set of bounding 139

boxes around each region proposal, not for a single 140

proposal only. This is to model the co-occurrence 141

of bags of visual concepts. BARON is trained from 142

images and captions, and it requires a list of class 143

embeddings (extracted from object names) to clas- 144

sify each region proposal. At test time, an image 145

is fed to the model and bounding boxes are classi- 146

fied by comparing the extracted visual embeddings 147

with the provided class embeddings. If we change 148

such class embeddings by extracting them with syn- 149

onyms, detection performance significantly drops 150

(Table 2), motivating our work. 151

3.2 Evaluating using synonyms 152

To evaluate the ability of a model to detect objects 153

when using synonyms, we change the class em- 154
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Original German Russian
A skate board rider does
a trick in front of a building.

A skateboarder does
a trick in front of a building.

A skater does a trick
in front of the building.

Three adults help a youngster
follow a sheet of instructions.

Three adults help a teenager
follow a sheet of instructions.

Three adults help the
teenager follow instructions.

Table 1: Examples of (left) original COCO captions, (middle) captions back-translated from German, and (right)
captions back-translated from Russian.

beddings during inference by replacing each class155

name with one of its synonyms and computing the156

class embeddings using such synonym. Since we157

have multiple synonyms per class, we repeat this158

process 5 times (with 5 different synonyms), and159

we compute the mean and standard deviation of the160

detection performance across these five runs. The161

mean measures how well the downstream task is162

performed when varying input synonyms, the stan-163

dard deviation measures how variable performance164

is: if a model learned all synonyms as well as class165

names, standard deviation would be 0 (i.e., perfor-166

mance does not depend on the input synonym).167

3.3 Augmentation by back-translation168

In our first approach, we apply a machine trans-169

lation model from English to another language to170

the input captions, and then translate the translated171

caption back to English. This approach has been172

successfully used as a data augmentation strategy173

on NLP tasks (Edunov et al., 2018; Xie et al., 2020;174

Sennrich et al., 2016) but it is less explored for VL175

models. Back-translation (BT) is a form of data176

augmentation because the BT process is imperfect:177

the back-translated caption will not be the same178

as the original one. There can be changes in, for179

instance, words used to refer to objects (i.e., syn-180

onyms), which is our motivation for proposing this181

method: we hypothesize that the increased variabil-182

ity in the vocabulary used to describe objects is183

beneficial to learn robust feature representations.184

3.4 Class embeddings enrichment185

In our second approach, we enrich the class em-186

beddings BARON is trained with by incorporat-187

ing synonyms. Class embeddings are matched to188

region proposals to assign a class to each region189

proposal: the class whose embedding is most simi-190

lar to that predicted for the region proposals. We191

compute class embeddings off-line using a CLIP192

Text Encoder (TE): for each class (e.g., person),193

we process a list of prompts through the TE (e.g.,194

“A picture of a person”, “A photo of a person”),195

returning one embedding per prompt; their aver- 196

age is taken as the overall class embedding. When 197

enriching the class embeddings, we do not only 198

add the class name (e.g., “person”) in the prompts, 199

but also each synonym for that class (e.g., “man”, 200

“woman”). The enriched class embedding is the av- 201

erage of the resulting text embeddings for prompts 202

with the class name and its synonyms. 203

3.5 Curriculum learning 204

A potential issue with our embeddings enrichment 205

approach is that, when training on enriched em- 206

beddings and testing on object names, the shift in 207

training vs. test embeddings may cause a decrease 208

in performance. We propose curriculum learning to 209

train with both the original class embeddings and 210

our enriched version: we start training on the for- 211

mer, and finish training on the latter. By seeing both 212

sets of embeddings during training, we hypothesize 213

a model will perform competitively when evaluated 214

both on object names and synonyms. 215

4 Results 216

4.1 Implementation 217

We train models on COCO Captions (Chen et al., 218

2015) and evaluate them on COCO Objects (Lin 219

et al., 2014), and we use the list of synonyms made 220

available by (Lu et al., 2018) for synonym evalu- 221

ation (e.g., “ship, motorboat” for “boat”, “plane, 222

aircraft” for “airplane”). In this list, only 44 of the 223

80 COCO class have at least one synonym, so we 224

limit evaluation to this subset of classes. 225

For machine translation, we use the Facebook 226

FAIR WMT2019 models (Ng et al., 2019). 227

To train and evaluate BARON1, we reduce batch 228

size from 16 to 12 due to hardware constraints. 229

For curriculum learning experiments, we train with 230

one set of class embeddings for half of the training 231

process, and we finish with the other set. 232

1https://github.com/wusize/ovdet/tree/main, last
accessed October 10th, 2023
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Captions COCO
names

Synonyms
mean (std) Avg.

Original 44.45 33.87 (5.94) 35.63
Back-translation

German 44.23 34.25 (5.32) 35.91
Russian 43.89 33.67 (5.99) 35.37

Both 42.92 32.89 (5.97) 34.56

Table 2: Back-translation: mAP@0.5 (as %) evaluated
on COCO class embeddings (“COCO names”) and on
synonyms embeddings (“Synonyms”). “Avg.”: mean
performance across the 5 synonyms and the COCO
name. Bold: highest performance, italics: second-best.

4.2 Evaluating using synonyms’ embeddings233

We now evaluate models on synonyms used as test234

class embeddings. As a baseline, we train a model235

on the original COCO captions and COCO class236

name embeddings, and we compare it with models237

trained using back-translation or class embeddings238

enrichment. In Table 2, we see performance greatly239

drops when using synonyms as opposed to COCO240

names (mAP@0.5=44.45% vs. 33.87% when train-241

ing with original captions). This corroborates the242

need to better learn synonyms during training.243

4.3 Augmentation by back-translation244

We qualitatively verify that back-translation in-245

creases the use of synonyms by showing exam-246

ples of original COCO captions and their back-247

translated versions with two languages: German248

and Russian. From Table 1, we see that back-249

translation is successful at introducing synonyms:250

“skateboarder” or “skater” in the first caption and251

“teenager” in the second. In addition, we compute252

the ratio between the number of mentions of an253

object using a synonym divided by the total num-254

ber of mentions (synonyms and verbatim mention255

of the COCO object name). We compare such ra-256

tio computed from the original captions and from257

the back-translated (BT) ones, obtaining 0.317 for258

original captions, 0.326 for BT: German, 0.344 for259

BT: Russian, and 0.343 for BT: Both. These results260

corroborate our assumption that back-translation261

increases variability in synonyms usage.262

From Table 2, adding back-translated captions263

from German improves mean performance on syn-264

onyms (with a slight decrease in performance on265

class names), as well as decreases variability in266

performance (from 5.94% to 5.32%), showing im-267

proved robustness to variations in input synonym.268

Captions COCO
names

Synonyms
mean (std) Avg.

Class embeddings: COCO names
Original 44.45 33.87 (5.94) 35.63
BT: German 44.23 34.25 (5.32) 35.91
Class embeddings: enriched
Original 43.58 37.25 (4.56) 38.31
BT: German 37.48 36.75 (4.56) 36.87
Curriculum 43.49 37.93 (3.22) 38.85

Table 3: Class embedding enrichment: mAP@0.5 (as
%) evaluated on COCO class embeddings (“COCO
names”) and on synonyms embeddings (“Synonyms”).

4.4 Class embeddings enrichment 269

Table 3 shows increased mean performance 270

on synonyms when enriching class embeddings 271

(mAP@0.5=37.25% vs. 33.87%, and std=4.56% 272

vs. 5.94%, respectively), as well as increased over- 273

all average performance (38.31% vs. 35.63%). 274

These results show the promise of enriching 275

class embeddings, although we notice a small 276

decrease in performance when evaluating on 277

COCO names when training with original captions 278

(larger when comparing BT with/without enrich- 279

ment). When evaluated on synonyms, combin- 280

ing back-translation and embedding enrichment 281

yields an improvement over using back-translation 282

(mAP@0.5=34.25% to 36.75%). 283

4.5 Curriculum learning 284

In Table 3 (bottom), we notice how curriculum 285

learning improves performance on synonym evalu- 286

ation compared to COCO embeddings and enriched 287

embeddings, while performance on COCO names 288

decreases only slightly. Average performance im- 289

proves (mAP@0.5=38.31% to 38.85%). To our 290

knowledge, this is one of the first results demon- 291

strating curriculum learning for object detection 292

using VL data for training. 293

5 Conclusions 294

In this work, we considered variations in nouns 295

used to refer to objects (i.e., synonyms), and how 296

they affect performance of vision-textual object 297

detectors. We highlighted how detecting objects 298

when synonyms are used as input is challenging, 299

and we introduced two approaches to ameliorate 300

this issue, which proved successful at boosting de- 301

tection performance on synonyms. 302
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6 Limitations303

In this work, we show the promise of altering the304

training process of vision-language object detec-305

tors to help learn more robust representations that306

better adapt to variations in textual input in terms307

of synonyms used to refer to objects. Despite such308

promise, our study has some limitations. First, we309

only evaluate on object detection; further studies on310

other vision and language tasks (e.g., visual ques-311

tion answering) are needed to fully characterize312

the problem and evaluate the proposed solutions.313

Second, we evaluate only on synonyms provided314

by (Lu et al., 2018). Although the used synonyms315

allow us to show our main points, more compre-316

hensive synonyms’ lists can be tested. Third, we317

show the impact of our approaches on one model318

(i.e., BARON (Wu et al., 2023)); while this is319

a SOTA open-vocabulary object detection model320

whose overall design is similar to that of other de-321

tectors (Minderer et al., 2022; Gu et al., 2021), re-322

peating our experiments with other models would323

better show the generalizability of our proposed324

strategies. Finally, our approaches to better learn325

synonyms focus on changing the input to the model326

(whether it being the captions or the class embed-327

dings it is trained with). While such a choice makes328

our approach independent of the model’s inner ar-329

chitecture (e.g., how features are extracted and com-330

bined) or the training process (e.g., how a batch is331

constructed), more individualized approaches are332

worth investigating to solve the observed trade-off333

between performance on synonyms and on object334

names.335

Ethical considerations. In our work, we use a ma-336

chine translation model to augment captions with337

synonyms. Such models may have learned gender-338

related biases (e.g., doctor/man, nurse/woman) that,339

in turn, could be passed on to the object detector340

(making it easier for the model to detect people in341

a certain profession if they are of a specific gen-342

der). The fact that we keep the original captions343

and add the back-translated one should offer some344

safeguards against this issue.345
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