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ABSTRACT

Molecular representation learning is a fundamental task for AI-based drug design
and discovery. Self-supervised contrastive learning on molecular graphs, which
aims to learn good representations via semantic-preserving transformations, is
an attractive framework for this task. However, it is relatively under-explored to
design such transformations for molecules under consideration of their chemical
semantics. In this paper, we consider fragmentation which decomposes a molecule
into a set of chemically meaningful fragments (e.g., functional groups) as the
semantic-preserving transformation. Here, we also utilize the 3D geometric views
of molecules as another source of such transformation. Based on these molecule-
specialized semantic-preserving transformations, we propose Fragment-based
multi-view molecular Contrastive Learning (FragCL), an effective framework
that learns chemically meaningful molecular representations. Extensive experi-
ments demonstrate that our framework outperforms prior molecular representation
learning methods across various molecular property prediction tasks.

1 INTRODUCTION

Obtaining discriminative representations of molecules is a long-standing research problem in chem-
istry (Morgan, 1965). Such a task is critical for many applications, such as drug discovery (Capecchi
et al., 2020) and material design (Gómez-Bombarelli et al., 2018), since it is a fundamental building
block for various downstream tasks, e.g., molecular property prediction (Duvenaud et al., 2015) and
molecule generation (Mahmood et al., 2021). Over the past decades, researchers have focused on
handcrafting the molecular representation which encodes the presence of chemically informative
substructures, e.g., functional groups, in a molecule (Rogers & Hahn, 2010; Capecchi et al., 2020).

Recently, graph neural networks (GNNs, Kipf & Welling, 2017) have gained much attention as a
framework to learn the molecular graph representation due to its remarkable performance in learning
to predict chemical properties (Wu et al., 2018). However, they often suffer from overfitting when the
number of labeled training samples is insufficient (Rong et al., 2020b). To resolve this, researchers
have investigated self-supervised learning that generates supervisory signals without labels to utilize
a huge amount of unlabeled molecules (Rong et al., 2020a; Zhou et al., 2022).

A notable approach in this line of work is contrastive learning, which learns a discriminative represen-
tation by maximizing the agreement of representations of “similar” positive views while minimizing
the agreement of “dissimilar” negative views (Chen et al., 2020). It has widely demonstrated its
effectiveness for representation learning not only for molecules (You et al., 2020; Wang et al., 2021;
2022), but also for other domains, e.g., image (Chen et al., 2020; He et al., 2020), video (Pan et al.,
2021), language (Wu et al., 2020), and speech (Chung et al., 2021). Here, the common challenge for
learning good representations is how to construct effective positive and negative views.

Contribution. Our key idea is to utilize fragmentation that decomposes a molecule into a set of
chemically meaningful fragments (i.e., substructures) such as functional groups. In particular, we
use Breaking of Retrosynthetically Interesting Chemical Substructures (BRICS, Degen et al., 2008)
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Figure 1: An overview of Fragment-based multi-view molecular Contrastive Learning (FragCL). (a)
A set of fragments is regarded as a positive view of a molecule. (b) Each molecule and fragment of
2D and 3D molecular graphs are considered as a positive pair. (c) 3D contextual information can be
learned by predicting the torsional angle.

decomposition as a semantic-preserving transformation. We also utilize the 3D geometry (i.e., 3D
atom positions) as another semantic-preserving view of 2D molecule and fragment graphs.1 This
is beneficial to learn better molecular representations because such 3D information is useful to
predict various chemical properties of molecules such as polarizability (Anslyn & Dougherty, 2006).
Furthermore, to exploit explicit 3D geometric information (e.g., energy surface), we suggest solving
the torsional angle prediction task between adjacent fragments.

2 PRELIMINARIES

Problem Setup: Multi-view MRL. To consider a wide range of downstream tasks, we focus on
learning a graph neural network (GNN) for 2D molecular graphs f2D : M2D → Rd where M2D is the
2D molecular graph space. To be specific, we (i) pretrain a 2D molecule GNN f2D using an unlabeled
set of molecules Du ⊆ M containing both 2D and 3D information, and then (ii) fine-tune f2D on
various downstream tasks without 3D information, i.e., each task has a dataset D ⊆ M2D × Y where
Y is the label space. Therefore, it is important to inject not only 2D topological information, but also
3D geometric information into the 2D molecule GNN f2D during pretraining. We remark that this
multi-view pretraining setup has been recently investigated (Stärk et al., 2022; Liu et al., 2022).

Contrastive Learning. Generally speaking, contrastive learning aims to learn discriminative repre-
sentations by attracting positive views while repelling negative views on the representation space,
e.g., see Chen et al. (2020). A common practice for generating positive views is to utilize semantic-
preserving transformations. Let (x,x+) be a positive pair generated by the transformations and
(x,x−) be a negative pair obtained from different instances in a mini-batch. If z, z+, and z− are the
representations of x,x+, and x−, respectively, then the contrastive learning objective LCL can be
written as follows (Chen et al., 2020; You et al., 2020):

LCL(z, z
+, {z−}) = − log

exp(sim(z, z+)/τ)∑
z− exp(sim(z, z−)/τ)

, (1)

where sim(z, z̃) = z⊤z̃/∥z∥2∥z̃∥2 and τ is a temperature-scaling hyperparameter. The set {z−} may
include the positive z+ depending on the choice of objectives, e.g., NT-Xent (Chen et al., 2020).

1A molecule can be represented by (a) a 2D topological graph (V,E) of nodes V and edges E or (b) a 3D
geometric graph (V,R) of nodes V and 3D coordinates R.
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3 FRAGCL: FRAGMENT-BASED MULTI-VIEW MOLECULAR CONTRASTIVE
LEARNING

Our framework crucially relies on the molecular fragmentation which decomposes a molecule into a
set of chemically meaningful fragments (i.e., substructures). In this paper, we mainly use BRICS
decomposition (Degen et al., 2008), which is designed to preserve most chemically informative
substructures (Liu et al., 2017).

3.1 FRAGMENT-BASED SINGLE-VIEW CONTRASTIVE LEARNING

We first introduce our contrastive learning objective based on molecular fragmentation. Specifically,
given a training batch {Mi}ni=1, we consider (Mi, {M j

i }
ni
j=1) as a positive pair (i.e., they share the

same chemical semantics) where ni is the number of fragments of the molecule Mi. To aggregate
representations of the set of fragments {M j

i }
ni
j=1, we use the attention pooling mechanism (Li et al.,

2016). Formally, the representation for the set {M j
i }

ni
j=1 is obtained as follows:

rmixi :=

ni∑
j=1

exp(a⊤rji + b)∑ni

k=1 exp(a
⊤rki + b)

· rji ,

where rji := f(M j
i ) is the representation for each fragment obtained by a molecule GNN f , a ∈ Rd

and b ∈ R are learnable parameters. Similarly, we compute the molecular representation ri = f(Mi)
for the whole structure. Then, we separately optimize the 2D-GNN f2D and the 3D-GNN f3D along
with projection heads g2D : Rd → Rd and g3D : Rd → Rd by the following contrastive objective with
the fragment-based positive pairs:

Lsingle :=
1

n

n∑
i=1

(
LCL(z2D,i, z

mix
2D,i, {zmix2D,j}j ̸=i) + LCL(z3D,i, z

mix
3D,i, {zmix3D,j}j ̸=i)

)
, (2)

where zi and zmixi denote latent representations projected by g from ri and rmixi , respectively.

3.2 FRAGMENT-BASED CROSS-VIEW CONTRASTIVE LEARNING

We here consider (M2D,M3D) as a positive pair. Then, the molecule-level contrastive objective can
be written as follows:

Lcross,mol :=
1

2n

n∑
i=1

(
LCL(z2D,i, z3D,i, {z3D,j}nj=1) + LCL(z3D,i, z2D,i, {z2D,j}nj=1)

)
. (3)

This objective is widely investigated in molecular representation learning (Stärk et al., 2022; Liu
et al., 2022). However, modeling the cross-view contrastive objective based solely on the similarity of
molecule-level representations may lack capturing fragment-level information (i.e., chemical property
at a finer level). Therefore, we suggest fragment-level cross-view contrastive learning in what follows.

We consider (M j
2D,M

j
3D) as a fragment-level positive pair where {M j} is the set of fragments of

a molecule M . To be specific, we compute the j-th fragment representation pj
i of a molecule Mi

via fragment-wise pooling by pj
i := 1

|V j
i |

∑
v∈V j

i
hv,i , where {hv,i}v∈V are the last-layer node

representations of the whole molecular structure Mi. We then compute latent fragment representations
by a projector g, e.g., zj2D,i = g2D(p

j
2D,i). Using these representations, we compute the average of

fragment-wise similarities si,j between molecules Mi and Mj :

si,i :=
1

ni

ni∑
k=1

sim(zk2D,i, z
k
3D,i), s2D (or 3D)

i,j :=
1

ni

ni∑
k=1

max
1≤l≤nj

sim(zk2D (or 3D),i, z
l
3D (or 2D),j),

where ni is the number of fragments of the molecule Mi. By introducing cross-view objective with
3D information, our framework can effectively discriminate a pair of different molecules whose
fragments are the same, e.g., o-xylene and p-xylene have one phenyl and two methyl fragments.
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Table 1: Test ROC-AUC score on the MoleculeNet downstream molecular property classification
benchmarks. We report mean and standard deviation over 3 different seeds. We mark the best mean
score and scores within one standard deviation of the best mean score to be bold. We denote the
scores obtained from Liu et al. (2022) with (*). Otherwise, we reproduce scores under the same setup.
Scores obtained through fine-tuning of the officially provided checkpoints are denoted by (†).2

Methods BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace Avg.

- 65.4±2.4 74.9±0.8 61.6±1.2 58.0±2.4 58.8±5.5 71.0±2.5 75.3±0.5 72.6±4.9 67.2

Pretrained with 50k 2D molecular graphs of GEOM and fine-tuned on 2D molecular graphs of MoleculeNet

EdgePred* Hamilton et al. (2017) 64.5±3.1 74.5±0.4 60.8±0.5 56.7±0.1 55.8±6.2 73.3±1.6 75.1±0.8 64.6±4.7 65.6
AttrMask* Hu et al. (2020a) 70.2±0.5 74.2±0.8 62.5±0.4 60.4±0.6 68.6±9.6 73.9±1.3 74.3±1.3 77.2±1.4 70.2
GPT-GNN* Hu et al. (2020b) 64.5±1.1 75.3±0.5 62.2±0.1 57.5±4.2 57.8±3.1 76.1±2.3 75.1±0.2 77.6±0.5 68.3
Infomax* Sun et al. (2019) 69.2±0.8 73.0±0.7 62.0±0.3 59.2±0.2 75.1±5.0 74.0±1.5 74.5±1.8 73.9±2.5 70.1
ContextPred* Hu et al. (2020a) 71.2±0.9 73.3±0.5 62.8±0.3 59.3±1.4 73.7±4.0 72.5±2.2 75.8±1.1 78.6±1.4 70.9
GraphLoG* Xu et al. (2021) 67.8±1.7 73.0±0.3 62.2±0.4 57.4±2.3 62.0±1.8 73.1±1.7 73.4±0.6 78.8±0.7 68.5
G-Contextual* Rong et al. (2020a) 70.3±1.6 75.2±0.3 62.6±0.3 58.4±0.6 59.9±8.2 72.3±0.9 75.9±0.9 79.2±0.3 69.2
G-Motif* Rong et al. (2020a) 66.4±3.4 73.2±0.8 62.6±0.5 60.6±1.1 77.8±2.0 73.3±2.0 73.8±1.4 73.4±4.0 70.1
GraphCL* You et al. (2020) 67.5±3.3 75.0±0.3 62.8±0.2 60.1±1.3 78.9±4.2 77.1±1.0 75.0±0.4 68.7±7.8 70.1
JOAO* You et al. (2021) 66.0±0.6 74.4±0.7 62.7±0.6 60.7±1.0 66.3±3.9 77.0±2.2 76.6±0.5 72.9±2.0 70.6
JOAOv2 You et al. (2021) 67.2±3.6 75.0±0.7 63.5±0.3 60.6±0.4 77.1±3.9 73.4±3.4 77.7±1.1 71.7±0.5 69.6
MGSSL Zhang et al. (2021) 67.3±0.9 74.5±0.2 63.6±0.4 58.4±0.2 75.4±3.8 73.9±1.4 77.2±2.5 76.2±1.3 70.8
MolCLR Wang et al. (2021) 67.6±0.6 74.4±1.3 62.9±0.2 58.7±1.1 57.9±3.0 70.8±2.8 75.4±1.2 74.6±3.5 67.8
D-SLA Kim et al. (2022) 69.6±2.4 73.7±0.7 63.3±0.2 59.2±2.0 60.5±1.0 75.3±0.6 75.8±0.9 81.2±2.5 69.8

Pretrained with 50k 2D and 3D molecular graphs of GEOM and fine-tuned on 2D molecular graphs of MoleculeNet

3D-InfoMax Stärk et al. (2022) 67.9±1.2 75.3±0.3 64.6±0.4 59.6±0.7 89.7±0.5 76.7±0.6 73.4±1.2 79.9±0.9 73.4
GraphMVP† Liu et al. (2022) 69.6±0.2 75.6±0.7 63.7±0.3 61.3±0.6 89.0±1.4 75.7±1.0 75.1±0.3 80.9±1.3 73.9
GraphMVP-G† Liu et al. (2022) 70.1±0.7 75.3±0.9 64.2±0.9 61.0±0.5 89.4±1.5 77.7±1.6 75.3±0.8 80.2±1.5 74.1
GraphMVP-C† Liu et al. (2022) 69.6±1.4 74.6±0.1 64.1±0.2 63.0±0.1 88.7±2.6 73.9±1.7 74.7±2.0 81.3±0.7 73.7

FragCL (Ours) 71.4±0.4 75.2±0.7 65.1±0.8 61.0±0.6 95.2±1.0 77.6±1.0 76.3±0.4 82.3±1.6 75.5

Finally, we formulate our fragment-level cross-view contrastive objective as follows:

Lcross,frag := − 1

2n

n∑
i=1

(
log

esi,i/τ

esi,i/τ +
∑

j ̸=i e
s2Di,j/τ

+ log
esi,i/τ

esi,i/τ +
∑

j ̸=i e
s3Di,j/τ

)
. (4)

To sum up, our cross-view objective is as follows:

Lcross :=
1

2

(
Lcross,mol + Lcross,frag

)
.

3.3 TORSIONAL ANGLE PREDICTION BETWEEN FRAGMENTS

We define the torsional angle prediction task for each fragmented bond: for a 2D molecule M2D,i and
a fragmented bond (u, v) ∈ E2D,i, we randomly select non-hydrogen atoms s and t adjacent to u and
v, respectively, and compute the torsional angle y of the quartet (s, u, v, t) on the molecule Mi. If T
is a collection of the tasks for all fragments, our loss function can be written as follows:

Ltor :=
1

|T |
∑

(i,s,u,v,t,y)∈T

LCE(ŷi(s, u, v, t), y), (5)

where LCE is the cross-entropy loss, y is the binned label for the angle, and ŷi(s, u, v, t) :=
gtor([h2D,a,i]a∈{s,u,v,t}) is the prediction from the concatenation of node representations of atoms
(s, u, v, t) of the molecule M2D,i using a multi-layer perceptron (MLP) gtor(·).

3.4 OVERALL TRAINING OBJECTIVE

From the discussion in,Section 3.1, 3.2, and 3.3, we propose our training loss function by:
LFragCL := Lsingle + Lcross + Ltor. (6)

Note that τ is the only hyperparameter that is newly proposed by our framework. We set τ = 0.1 in
Eq. (1) and (4) following You et al. (2020).

2GraphMVP (Liu et al., 2022) pretrains with explicit hydrogens, but fine-tunes without explicit hydrogens.
We report fine-tuning results with explicit hydrogens from official checkpoints. Thus, our reported average value
is slightly higher than the original paper.
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Table 2: Test MAE score on the QM9 downstream quantum property regression benchmarks. For
ours and all baselines, we employ GIN (Xu et al., 2019) as the 2D-GNN architecture and pretrain
with entire 310k molecules from the GEOM dataset (Axelrod & Gomez-Bombarelli, 2022). We mark
the best score bold.

Methods ZPVE ↓ µ ↓ α ↓ Cv ↓ LUMO ↓ HOMO ↓ εgap ↓ R2 ↓ U0 ↓ U298 ↓ H298 ↓ G298 ↓
- 43.7 0.059 0.400 0.144 80.5 89.4 171.0 3.27 62.9 61.8 57.0 48.1

Pretrained on 310k 2D and 3D molecular graphs of GEOM and fine-tuned on 2D molecular graphs of QM9

3D-Infomax Stärk et al. (2022) 27.0 0.051 0.355 0.126 63.4 55.2 103.8 2.99 38.8 45.6 41.0 40.8
GraphMVP-G Liu et al. (2022) 24.1 0.051 0.367 0.123 59.1 53.8 100.4 2.97 39.9 44.2 41.0 40.3

FragCL (Ours) 24.0 0.049 0.353 0.121 57.1 51.8 97.1 2.90 39.2 42.9 40.3 40.0

Table 3: Test MAE score of semi-supervised learning on the QM9 downstream quantum property
regression benchmarks. We employ GIN (Xu et al., 2019) as the 2D-GNN architecture and pretrain
with 110k QM9 training dataset. Then we fine-tune across different label fraction of QM9 training
dataset. We mark the best score bold.

Methods ZPVE ↓ LUMO ↓ HOMO ↓ U0 ↓
Label Fraction (%) 20 50 100 20 50 100 20 50 100 20 50 100

- 111.0 87.1 43.7 236.0 140.6 80.5 233.6 128.1 89.4 165.5 82.8 62.9

Pretrained on 110k 2D and 3D molecular graphs of QM9 and fine-tuned on 2D molecular graphs of QM9

3D-Infomax Stärk et al. (2022) 87.2 42.8 24.4 215.0 98.4 57.9 181.0 102.4 57.7 148.2 75.0 42.1
GraphMVP-G Liu et al. (2022) 85.4 42.8 24.4 214.3 99.7 59.7 177.3 100.0 56.9 145.7 74.5 42.2

FragCL (Ours) 83.7 39.4 22.2 202.2 97.8 54.6 172.9 91.0 48.4 138.7 71.8 38.0

4 EXPERIMENTS

In our experiments, FragCL achieves the best performance in downstream molecular property
prediction tasks. The results on the molecule retrieval results can be found in Appendix G, and the
ablation study can be found in Appendix H.

Experimental setup. For pretraining, we consider the GEOM (Axelrod & Gomez-Bombarelli, 2022)
and the QM9 (Ramakrishnan et al., 2014) datasets, which consist of 2D and 3D paired molecular
graphs. We consider (a) transfer learning on the binary classification tasks from MoleculeNet
benchmark (Wu et al., 2018), and (b) transfer learning and semi-supervised learning on the regression
tasks using QM9 (Ramakrishnan et al., 2014). Details can be found in Appendix B and E.

MoleculeNet classification task. As reported in Table 1, FragCL achieves the best average test
ROC-AUC score when transferred to MoleculeNet (Wu et al., 2018) downstream tasks after pretrained
with 50k molecules from the GEOM (Axelrod & Gomez-Bombarelli, 2022) dataset. To be specific,
FragCL improves the best average ROC-AUC score baseline, GraphMVP-G (Liu et al., 2022),
by 74.1 → 75.5, achieving the state-of-the-art performance on 7 out of 8 downstream tasks. We
emphasize that the improvement of FragCL is consistent over downstream tasks. For example,
GraphMVP-C (Liu et al., 2022) achieves the best performance on Sider, while it fails to generalize
on Tox21, resulting in even lower ROC-AUC score compared to the model with no pretraining. On
the other hand, FragCL shows the best average performance with no such failure case, i.e., FragCL
learns well-generalizable representations over a wide range of downstream tasks.

QM9 regression task. Table 2 and 3 show the overall results of transfer learning and semi-supervised
learning on the QM9 (Ramakrishnan et al., 2014) regression benchmarks, respectively. For transfer
learning (Table 2), we pretrain with 310k molecules from the GEOM (Axelrod & Gomez-Bombarelli,
2022) dataset. FragCL outperforms the baselines, achieving the best performances on 11 out of
12 downstream tasks. We emphasize that FragCL outperforms the baselines when transferred to
both MoleculeNet and QM9 downstream tasks. For semi-supervised learning (Table 3), FragCL
achieves the best performances over all tasks and label fractions. In particular, FragCL shows superior
performance even in the fully supervised learning scenario (i.e., 100% label fraction), e.g., 89.4 →
48.4 for HOMO. This implies that FragCL indeed finds “good initialization” of GNN and show its
wide applicability. More results for semi-supervised learning can be found in Appendix F.
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A RELATED WORK

Multi-view molecular representation learning. Recent works have incorporated multiple views
of a molecule (e.g., 2D topology and 3D geometry) into molecular representation learning (MRL)
frameworks (Zhu et al., 2021a; Fang et al., 2022; Stärk et al., 2022; Liu et al., 2022). In particular,
training 2D-GNNs with multi-view MRL has gained much attention to alleviate the large cost to
obtain 3D geometry of molecules (Stärk et al., 2022; Liu et al., 2022). However, they focus on
molecule-level objectives, which could lack capturing the local semantics (Yao et al., 2022). In this
work, we develop a fragment-based multi-view MRL framework to incorporate fine-grained cross-
view interactions. Moreover, since our method is architecture-agnostic, it would be an interesting
future direction to incorporate our framework into Transformer-based approaches (Zhu et al., 2022;
Luo et al., 2022).

Single-view molecular representation learning. One of the single-view (i.e., 2D topological or
3D geometric graph) molecular representation learning techniques is predictive pretext tasks. For
example, those methods reconstruct the corrupted input as pre-defined pretext tasks (Hamilton et al.,
2017; Hu et al., 2020a; Rong et al., 2020a; Zhang et al., 2021; Zhou et al., 2022; Jiao et al., 2022;
Zaidi et al., 2022). Another large portion of technique is contrastive learning. For example, You
et al. (2020; 2021); Wang et al. (2021); Zhang et al. (2020) utilize augmentation schemes to produce
a positive view of molecular graphs, and Fang et al. (2021); Sun et al. (2021); Wang et al. (2022)
mitigate the effect of semantically similar molecules in the negative samples (Zhu et al., 2021b).

Molecular fragmentation. Recent advancements in the field of molecule generation (Maziarz et al.,
2021; Jin et al., 2018; 2020) have recognized the significance of semantically important substructures,
also known as fragments, in determining the properties of molecules. This approach aligns with
the chemical principle that the properties of a molecule are primarily determined by its important
substructures, rather than atom-level features (Smith, 2008).

Recently, substructures of molecules has also been considered in molecular contrastive learning. For
example, You et al. (2020); Wang et al. (2021); Zhang et al. (2020) construct a positive view of a
molecule as its single substructure (i.e., subgraph) and Wang et al. (2022) repels representations of
fragments from intra- and inter- molecule substructures. Compared to these prior works, we utilize
fragmentation as a semantic-preserving transformation, considering the set of fragments as a positive
view of a molecule.
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B EXPERIMENTAL DETAILS

Self-supervised pretraining details. We follow the training setup considered in GraphMVP (Liu
et al., 2022): Specifically, we use a batch size of 256 and no weight decay. Also, we set the
temperature τ as 0.1 for overall experiments. We use {Nodedrop, Attrmask, identity}
randomly, i.e., 1

3 probability for each fragment and the original 2D molecular graphs, and Gaussian
noise N (0, I) to each coordinate of 3D molecular graphs. When Nodedrop or Attrmask is used,
we drop/mask the portion of 0.1 vertices from the total vertices. For self-supervised pretraining, we
train for 100 epochs using Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001 and
no dropout. For transfer learning to the QM9 (Ramakrishnan et al., 2014) dataset, we train with 310k
entire unlabeled molecules from GEOM for 50 epochs. For semi-supervised leraning for the QM9
dataset, we train with 110k training molecules (without labels) from QM9 for 50 epochs. Our code is
based on open-source codes of GraphMVP3.

For FragCL trained only with single view objective and other reproduced 2D baselines, we exclude
explicit hydrogens in molecular graph, following the common frameworks of (You et al., 2020; 2021)
for 2D molecular graphs. For FragCL, 3D-InfoMax, GraphMVP, GraphMVP-C, and GraphMVP-G
we include explicit hydrogens into molecular graph, following (Liu et al., 2022) that utilizes the 3D
coordinates of hydrogen atoms provided in GEOM dataset (Axelrod & Gomez-Bombarelli, 2022).
For torsional angle prediction task, we use 2-layer MLP for gtor and we construct the quartet of
atoms (s, u, v, t) for the fragmented bond (u, v) so that s, t are non-hydrogen atoms, and the binning
of y splits 0 to 2π into 18 uniform bins. In terms of time-complexity, FragCL takes almost the same
amount of training cost as GraphMVP (Liu et al., 2022).

Evaluation on MoleculeNet downstream tasks. Following the baselines, we use scaffold split
(Chen et al., 2012), which splits the molecules based on their substructures. We use the split ratio
train:validation:test = 80:10:10 for each downstream task dataset to evaluate the performance. For
the consistency of the input graphs in pretraining and fine-tuning, we exclude implicit hydrogen
atoms of molecules in fine-tuning dataset for single-view pretrained FragCL and other reproduced
2D baselines and we include implicit hydrogen atoms of molecules in fine-tuning dataset for FragCL,
3D-InfoMax, GraphMVP, GraphMVP-C, and GraphMVP-G. Experimental detail follows GraphMVP
(Liu et al., 2022); we fine-tune a pretrained 2D GNN with an initialized linear projection layer for 100
epochs with Adam optimizer and a learning rate of 0.001, and dropout probability of 0.5. Our results
are calculated by the test ROC-AUC score of the epoch with the best validation ROC-AUC score.
Besides the ROC-AUC score of individual downstream tasks, we also report the average ROC-AUC
score across downstream datasets.

Evaluation on QM9 downstream tasks. Following (Liu et al., 2021), we split the molecules in the
QM9 (Ramakrishnan et al., 2014) dataset into 110,000 molecules for training, 10,000 molecules for
validation, and 10,831 molecules for test. Our result is calculated by the test MAE score of the epoch
with the best validation MAE score. We fine-tune a pretrained 2D GNN with an initialized 2-layer
MLP for 1,000 epochs with Adam optimizer and StepLR scheduler with decay ratio 0.5, and initial
learning rate 5e-4.

Hardwares. We use a single NVIDIA GeForce RTX 3090 GPU with 36 CPU cores (Intel(R)
Core(TM) i9-10980XE CPU @ 3.00GHz) for self-supervised pretraining, and a single NVIDIA
GeForce RTX 2080 Ti GPU with 40 CPU cores (Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz) for
fine-tuning.

3https://github.com/chao1224/GraphMVP
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C BASELINES DETAILS

We compare our method with an extensive list of baseline methods in the literature of graph represen-
tation learning:

• No pretraining trains a model from scratch for downstream task.
• EdgePred (Hamilton et al., 2017) uses edge-reconstruction as a pretext task.
• AttrMask (Hu et al., 2020a) train GNN encoder by recovering the vertex features from the masked

vertex features.
• AttrMask (Hu et al., 2020a) learns representation by recovering the vertex features after masking

them.
• GPT-GNN (Hu et al., 2020b) uses the graph generation task as a pretext task.
• Infomax (Sun et al., 2019) maximizes mutual information between global representations (i.e.,

graph representations) and local representations (i.e. path representation).
• ContextPred (Hu et al., 2020a) learns representation by predicting surrounding subgraph of

specific node edge.
• GraphLoG (Xu et al., 2021) discriminates graph and subgraph pairs from their opposing pairs

to preserve local similarity between various graphs, which leads to the embedding alignment of
correlated graphs.

• G-Contextual (Rong et al., 2020a) learns representations by randomly masking local subgraphs of
target nodes (or edges) and predicting these contextual properties from node embeddings.

• G-Motif (Rong et al., 2020a) predicts the occurrence of the semantic motifs extracted by using
chemical prior.

• GraphCL (You et al., 2020) is a generic graph contrastive learning method based on their graph-
agnostic augmentation schemes, which do not use any molecule-specific knowledge.

• JOAO (You et al., 2021) proposes min-max optimization processes to learn optimal data augmen-
tation strategies dynamically from a pre-fixed candidate set of augmentations.

• MGSSL (Zhang et al., 2021) introduces a generative self-supervised objective to reconstruct a
motif-tree.

• MolCLR (Wang et al., 2021) performs a contrastive learning with NT-Xent (Chen et al., 2020),
constructing positive views of a molecule by proposed molecule augmentation schemes.

• D-SLA (Kim et al., 2022) extracts graph representations by learning the exact discrepancy between
the original graph and the augmented graphs.

• 3D-InfoMax (Stärk et al., 2022) proposes to consider 2D topological molecule graph and 3D
geometric molecule graph from the same molecule as a positive view of each other.

• GraphMVP, GraphMVP-G, and GraphMVP-C (Liu et al., 2022) regard 2D and 3D molecular
graphs as a positive pair, and propose feature reconstruction of each view as a generative task.
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D GRAPH NEURAL NETWORKS

In general, a molecule M ∈ M can be represented by an attributed graph M = (V,E,A,B,R)
where V is a set of nodes associated with atom features A ∈ R|V |×datom (e.g., atomic numbers),
E ⊆ V × V is a set of edges associated with bond features B ∈ R|E|×dbond (e.g., bond types),
and R ∈ R|V |×3 is an array of 3D atom positions. Conventionally, M2D = (V,E,A,B) and
M3D = (V,A,R) are referred to 2D topological and 3D geometric molecular graphs, respectively
(Stärk et al., 2022; Liu et al., 2022). It is worth noting that obtaining accurate 3D geometric
information R is very expensive due to iterative quantum computations and thus many real-world
applications often suffer from the lack of such 3D information (Liu et al., 2022). We employ 5-layer
graph isomorphism network (GIN) (Xu et al., 2019) as 2D-GNN f2D and 6-layer SchNet (Schütt
et al., 2017) as 3D-GNN f3D. We use mean pooling as readout function of both f2D and f3D. The
configuration is drawn from GraphMVP (Liu et al., 2022) for a fair comparison.

2D molecule GNN f2D : M2D → Rd. For any 2D molecule M2D = (V,E,A,B) ∈ M2D, graph
neural networks for 2D molecules (2D-GNNs in short) compute molecular representations by applying
(a) iterative neighborhood aggregation (also known as message passing) to acquire node-level
representations based on the graph (V,E) and then (b) a readout function (e.g., mean pooling) to
create graph-level representations at the final layer. Formally, node- and graph- level representations
of L-layer 2D-GNN are as follows:

h(ℓ)
v := MP(h(ℓ−1)

v , {h(ℓ−1)
u , Buv}u∈N (v)), ℓ ∈ [L],

f2D(M) := f2D(M2D) = Readout({h(L)
v }v∈V ),

where MP(·) is a message passing layer, Readout(·) is a readout function, h(0)
v = Av is the atom

feature for a node v, Buv is the bond feature for an edge (u, v) ∈ E, and N (v) is the set of adjacent
nodes of v. In a decade, there have been developed a number of message passing layers and readout
functions (Kipf & Welling, 2017; Xu et al., 2019; Ahmadi, 2020; Zhao et al., 2022). In this work,
we mainly use the graph isomorphism network (GIN) architecture (Xu et al., 2019) following the
standard MRL setup (Hu et al., 2020a).

Graph Isomorphism Network (GIN). We provide a detailed description of architecture of graph
isomorphism network (GIN) (Xu et al., 2019), which we mainly consider as the feature extractor
f2D(·) in this paper. Particularly, GIN learns representation h

(ℓ)
v by:

h(ℓ)
v = MLP(ℓ)

(
h(ℓ−1)
v +

∑
u∈N (v)

(
h(ℓ−1)
u + e(ℓ−1)

uv

))
, (7)

where e
(ℓ−1)
uv is the embedding corresponding to the attribute of edge {u, v} ∈ E .

3D molecule GNN f3D : M3D → Rd. For any 3D molecule M3D = (V,A,R) ∈ M3D, graph neural
networks for 3D molecules (3D-GNNs in short) compute molecular representations by applying (a)
iterative geometric interactions through distances and angles between nodes (i.e., atoms) to acquire
node-level representations based on the 3D geometry R and then (b) a readout function to create
graph-level representation at the final layer. Formally, node- and graph- level representations of
L-layer 3D-GNN are as follows:

h(ℓ)
v := IB(h(ℓ−1)

v , Rv, {h(ℓ−1)
u , Ru}u∈V \{v}), ℓ ∈ [L],

f3D(M) := f3D(M3D) = Readout({h(L)
v }v∈V ),

where IB(·) is an interaction block, Readout(·) is a readout function, h(0)
v = Av and Rv is the atom

feature and the 3D position for a node v, respectively. A number of interaction layers has been
developed to encode geometric features of molecules (Schütt et al., 2017; Liu et al., 2021; Schütt
et al., 2021). In this work, we mainly use the SchNet architecture (Schütt et al., 2017) following the
setup of Liu et al. (2022).

SchNet. We consider SchNet (Schütt et al., 2017), which is a strong 3D graph neural network under
fair comparison (Liu et al., 2022) as our f3D(·) in this paper. Particularly, SchNet learns representation
h
(ℓ)
v = MLP(ℓ) by:

13



ML4Materials Workshop ICLR 2023

h(ℓ)
v = MLP(ℓ)

(∑
u∈V

(
Φ(h(ℓ−1)

u , rv, ru)
))
, (8)

where Φ is the continuous-filter convolution layer and rv is the 3D position of the vertex v.
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E DOWNSTREAM DATASET DETAILS

We perform transfer-learning on 8 benchmark binary classification datasets from MoleculeNet (Wu
et al., 2018). More information on downstream tasks is described in Table 4.

• BBBP contains data on whether the compound is permeable to the blood-brain barrier.
• Tox21 measures the toxicity of a compound and was used in the 2014 Tox21 Data Challenge.
• ToxCast includes multiple toxicity annotations of compounds collected after performing high-

throughput screening tests.
• Sider refers to side effect resources, i.e., data on the marketed drugs and their side effects.
• Clintox is a dataset of comparison results between drugs approved through the FDA and drugs

removed because of toxicity during clinical trials.
• MUV is a validation dataset of virtual screening technology. Specifically, it is subsampled in the

PubChem BioAssay using refined nearest neighborhood analysis.
• HIV consists of data about capability to prevent HIV replication.
• Bace is collected dataset of compounds that could prevent (BACE-1).

Table 4: MoleculeNet downstream classification dataset statistics

Dataset BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace

Number of molecules 2,039 7,831 8,575 1,427 1,478 93,087 41,127 1,513
Number of tasks 1 12 617 27 2 17 1 1
Avg. Node 24.06 18.57 18.78 33.64 26.15 24.23 25.51 34.08
Avg. Degree 51.90 38.58 38.52 70.71 55.76 52.55 54.93 73.71

We also perform transfer-learning on 12 benchmark regression tasks from QM9 (Ramakrishnan et al.,
2014). More information on downstream tasks is described in Table 5 .

Table 5: QM9 downstream regression tasks

Task Summary Unit

ZPVE Zero point vibrational energy meV
µ Dipole moment D
α Isotropic polarizability a0

3

Cv Heat capacity at 298.15K cal/mol · K
LUMO Lowest unoccupied molecular orbital energy meV
HOMO Highest occupied molecular orbital energy meV
εgap Gap between HOMO and LUMO meV
R2 Electronic spatial extent a0

2

U0 Internal energy at 0K meV
U298 Internal energy at 0K meV
H298 Enthalpy at 0K meV
G298 Gibbs energy at 0K meV
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F DETAILED RESULTS ON QM9

Table 6: Comparison of test MAE score of semi-supervised learning on the QM9 downstream
quantum property regression benchmarks. We pretrain GIN (Xu et al., 2019) as the 2D-GNN
architecture with 110k QM9 training set and fine-tune on 10% subset of QM9 training set. We mark
the best score bold.

Methods ZPVE ↓ µ ↓ α ↓ Cv ↓ LUMO ↓ HOMO ↓ εgap ↓ R2 ↓ U0 ↓ U298 ↓ H298 ↓ G298 ↓
- 173.1 0.339 2.67 0.882 415.5 340.7 680.8 20.6 278.0 301.3 299.9 274.1

Pretrained on 110k 2D and 3D molecular graphs of QM9 and fine-tuned on 10% 2D molecular graphs of QM9

3D-Infomax Stärk et al. (2022) 166.7 0.325 2.59 0.878 395.3 332.7 672.7 20.4 257.5 284.1 283.9 249.4
GraphMVP-G Liu et al. (2022) 152.6 0.324 2.58 0.872 388.3 325.8 662.7 19.9 255.4 281.4 271.7 245.3

FragCL (Ours) 151.5 0.322 2.51 0.869 381.0 321.2 650.5 19.8 252.9 279.4 269.1 243.6
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Figure 2: Comparison of test MAE score of semi-supervised learning with different fraction of
labeled samples on QM9 downstream quantum property regression benchmarks. We pretrain GIN
(Xu et al., 2019) as the 2D-GNN architecture with 110k molecules from QM9 pretraining dataset.

In this section, we provided detailed results for semi-supervisd learning on the QM9 (Ramakrishnan
et al., 2014) dataset. Figure 2 shows the test MAE score across different label fractions after pretrained
with the QM9 training dataset. We choose 4 downstream tasks which yields the highest performance
gap after pretraining compared to non-pretraining (we exclude εgap := |HOMO − LUMO| since we
already include HOMO and LUMO). As visualized, FragCL consistently outperforms the considered
baselines. Table 6 shows the results for all 12 downstream tasks of QM9 when fine-tuned with 10%
of training data. For all downstream tasks, FragCL achieves the best performance.
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G MOLECULE RETRIEVAL

Table 7: Retrieved molecules by searching the three most closest molecules from the Tox21 dataset
to the query molecule in terms of similiarty in representation space from pretrained models of
GraphMVP-G and FragCL (Ours) with the GEOM dataset (Axelrod & Gomez-Bombarelli, 2022).
We mark fragments by BRICS as dotted lines.

Query GraphMVP-G (Liu et al., 2022) FragCL (Ours)

We further perform molecule retrieval task for qualitative analysis. Using pretrained models by
FragCL and GraphMVP-G (Liu et al., 2022), we calculate the cosine similarity of representations
between the query molecule and the molecules in the Tox21 dataset. In Table 7, three molecules
most similar to the query molecule are presented. While GraphMVP-G does not find molecules
with similar fragments to the query molecule, FragCL effectively retrieves molecules with common
fragments (indicated by dotted lines in Table 7) in the query molecule.
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H ABLATION STUDY

H.1 MAIN ABLATION

Table 8: Average ROC-AUC score with differnt posivie view construction strategy across 8 down-
stream tasks in MoleculeNet.

Positive view construction Fragmentation strategy Avg.

Nodedrop, Subgraph (You et al., 2020) - 73.4

A set of fragments (Ours)
Random bond deletion 73.5
Random non-ring bond deletion 74.0
BRICS decomposition (Ours) 75.5

Table 9: Effectiveness of each objective as measured on the average ROC-AUC score across 8
downstream tasks in MoleculeNet.

Cross-view interaction
Pretraining data Molecule-level Fragment-level Torsion-level Avg.

Single-view (2D) - - - 72.4

Multi-view (2D&3D)
✓ - - 74.7
✓ ✓ - 75.1
✓ ✓ ✓ 75.5

Fragment-based positive view construction. In Table 8, we investigate how our positive view
construction strategy is effective. We first compare our strategy with the alternative: an augmented
molecular graph (i.e., random subgraph) as a positive view (You et al., 2020). We observe that deleting
random bonds for positive-view construction does not improve the performance (73.4 → 73.5),
since important substructures of molecules (e.g., aromatic ring) can be easily broken by random
deletion of bonds, which could lead to significant change in chemical properties. Preventing such
ring deformation increases overall performance by 73.5 → 74.0. BRICS decomposition further
incorporates chemical prior to obtain semantic-preserved fragments, boosting the performance by
74.0 → 75.5. The result implies that considering chemically informative substructures is a key
component of our framework. We provide detailed results in Appendix H.2.

Effectiveness of multi-view pretraining. In Table 9, we evaluate how each objective in our total
loss LFragCL affects performance. We observe that molecule-level cross-view contrastive learning
(Lcross,mol; Eq. (3)) between 2D and 3D molecular views improves the overall performance by
72.4 → 74.7. Introducing fragment-level cross-view contrastive learning (Lcross,frag; Eq. (4))
further boosts the performance by 74.7 → 75.1, capturing fine-grained semantics of molecules.
Torsional angle prediction (Ltor; Eq. (5)) further improves the performance by 75.1 → 75.5 by
directly injecting the information of 3D geometric view into 2D-GNN. These results confirm that
FragCL effectively utilizes both 2D and 3D fragmented views for multi-view pretraining. Notably,
ours with only single-view contrastive (2D) learning outperforms Mole-BERT (Xia et al., 2023),
which is the prior state-of-the-art pretraining method on 2D molecule data. Detailed results can be
found in Appendix H.2.

Table 10: Average number of atoms in MoleculeNet dataset. Hydrogen is included.

Avg. # of atoms BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace

Train 43.6 33.0 33.0 57.8 49.6 42.6 45.3 63.5
Test 52.1 49.8 52.3 102.0 43.0 44.8 45.5 67.9

Table 11: Improvement of FragCL compared to GraphMVP-G.

Gap b/w FragCL and GraphMVP-G BBBP BACE MUV HIV

Full test set 1.3 1.0 0.1 1.0
< Avg. # of atoms in training set 2.3 1.1 2.9 1.5
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Effectiveness on Clintox. In Table 1, the improvement of our method is the largest in Clintox dataset.
In Table 10, ClinTox is unique in that it has a higher average number of atoms in the training set
compared to the test set. Furthermore, we observe that the performance gap between FragCL and
GraphMVP-G (the strongest baseline) tends to widen as the number of atoms in test molecules
decreases. To illustrate this point, Table 11 below compares the performance gap when evaluated
on the full test set and on the molecules in the test set with fewer atoms than the average in the
training set. We consider the downstream tasks with |Avg. # of atoms in the training set molecules−
Avg. # of atoms in the test set molecules| < 10, due to the stability of evaluation. FragCL’s enhanced
performance on smaller molecules can be explained by its capacity to learn fine-grained molecular
features through fragmentation.

H.2 ABLATION DETAILS

Table 12: Comparison of positive view construction strategies for multi-view molecular contrastive
learning framework. We report the test ROC-AUC score on the MoleculeNet downstream property
classification benchmarks. We pretrain GIN (Xu et al., 2019) as the 2D-GNN architecture with 50k
molecules from the GEOM dataset (Axelrod & Gomez-Bombarelli, 2022), following Liu et al. (2022).
We report mean and standard deviation over 3 different seeds. We bold the best average score.
Positive view construction Fragmentation strategy BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace Avg.

Nodedrop, Subgraph - 69.3±1.4 75.0±0.4 63.7±0.4 60.4±1.4 88.3±0.6 76.2±1.9 76.2±1.5 78.3±0.4 73.4

A set of fragments (Ours)
Random bond deletion 69.3±1.0 73.8±0.9 63.9±0.5 59.9±1.2 91.4±2.3 76.8±0.7 74.6±3.1 78.3±2.5 73.5
Random non-ring bond deletion 69.5±0.9 73.7±0.2 64.0±0.1 60.5±0.5 93.2±1.5 77.3±2.5 75.2±0.9 78.8±0.4 74.0
BRICS decomposition (Ours) 71.4±0.4 75.2±0.7 65.1±0.8 61.0±0.6 95.2±1.0 77.6±1.0 76.3±0.4 82.3±1.6 75.5

In Table 12 we provide a full result of Table 8 in Section H. We conduct an ablation study on regarding
the set of fragments as a positive view of a molecule. Again, we emphasize that the result implies
that considering chemically informative structures is a key component of FragCL.

Table 13: Ablation of components for multi-view molecular contrastive learning framework. We
report the test ROC-AUC score on the MoleculeNet downstream property classification benchmarks.
We pretrain GIN (Xu et al., 2019) as the 2D-GNN architecture with 50k molecules from the GEOM
dataset (Axelrod & Gomez-Bombarelli, 2022), following Liu et al. (2022). We report mean and
standard deviation over 3 different seeds. We mark the best mean score to be bold.

Pretraining data Multi-view interaction BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace Avg.Molecule-level Fragment-level Torsion-level

Single-view (2D) - - - 71.0±0.3 75.3±0.8 62.8±0.4 60.3±1.1 79.1±2.2 74.1±0.5 75.9±1.2 80.7±1.3 72.4

Multi-view (2D & 3D)
✓ - - 68.2±0.6 75.6±1.5 64.6±0.2 60.8±0.8 94.9±0.8 77.7±1.2 76.3±0.5 79.5±0.3 74.7
✓ ✓ - 71.0±0.8 75.3±0.9 64.4±0.3 61.6±2.6 95.1±1.5 76.4±1.6 76.2±0.7 80.9±2.6 75.1
✓ ✓ ✓ 71.4±0.4 75.2±0.7 65.1±0.8 61.0±0.6 95.2±1.0 77.6±1.0 76.3±0.4 82.3±1.6 75.5

In Table 13, we provide a full result of Table 9 in Section H. We validate that each components of
FragCL has an individual effect in improving the performance of multi-view pretraining.
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