Low rank softmax can have unargmaxable classes in theory
but rarely in practice

Anonymous ACL submission

Abstract

Classifiers in natural language processing
(NLP) often have a large number of output
classes. For example, neural language models
(LMs) and machine translation (MT) models
both predict tokens from a vocabulary of thou-

Feature x,

Class ¢,

Class c3

P(Class ¢y | x)

\

o
1

P(Class c3 | x)

10
05
0.0

o
1

10

05

0.0

P(Class ¢4 | x)

10

0.0

sands. The softmax output layer of these mod-
els typically receives as input a dense feature
representation, which has much lower dimen-
sionality than the output. In theory, the result
is some words may be impossible to predict
via argmax, irrespective of input features, and
empirically, this has been shown to happen in
small language models (Demeter et al., 2020).
In this paper we ask whether it can happen
in practical large language models and transla-
tion models. To do so, we develop algorithms
to detect such unargmaxable tokens in public
models. We find that that 13 out of 150 models
do indeed have such tokens; however, they are
very infrequent and unlikely to impact model
quality. We release our algorithms and code to
the public.!

1 Introduction

Probabilistic classifiers with a large number of
output classes are commonplace in NLP. For ex-
ample, the vocabulary size of contemporary LMs
and MT models varies from tens to hundreds of
thousands (Liu et al., 2020). Recent advances
in modelling such large vocabularies have mostly
been made by improving neural network feature
encoders (Devlin et al., 2019; Liu et al., 2019; Con-
neau et al., 2020). But irrespective of the encoder’s
usefulness, projecting lower dimensional features
to higher dimensional outputs constrains expressiv-
ity, with consequences that are not well understood.

In this work we elaborate on the consequences
that arise when the number of output classes |C| is
greater than the dimensionality d of the classifica-
tion layer inputs. For example, MT models often

'Code available at REDACTED

L L

Feature x;

Figure 1: Illustration of Stolen Probability: Class cy
can never be predicted using argmax for this softmax
classifier with |C'| = 4 classes in d = 2 dimensions. On
the left, each input point x is colored according to the
class assigned the largest probability; note that while
C1, and cs surface as regions, c, does not. On the
right we similarly show that there is no direction in the
input space for which ¢4 has the largest probability.

have subword vocabularies of size |C| ~ 30000,
but have d ~ 1024. These models are low rank
and thus less expressive (Yang et al., 2018; Ganea
et al., 2019); more importantly, they cannot repre-
sent some outputs. Demeter et al. (2020) recently
highlighted that this weakness? occurs in softmax
LMs, showing that, in theory, some tokens can
never be assigned the highest probability for any
input, a phenomenon they call Stolen Probability.
Figure 1 illustrates how it occurs.

While Demeter et al. (2020) highlighted the the-
oretical problem and showed that it occurs in small
LMs, they were unable to test larger LMs. In this
paper we ask: Does Stolen Probability arise in
large models used in practice? To answer this ques-
tion, we develop algorithms to identify unargmax-
able tokens. We tested 7 LMs and 143 MT models.
Out of those, only 13 of the MT models exhibit
Stolen Probability, and even for those cases the
tokens are all noisy and infrequent. We conclude
that most practictioners do not need to worry about
Stolen Probability, and we provide new tools so

*This problem was highlighted by Cover (1967) and has
an interesting history of independent discovery (Smith, 2014).

that they can confirm this on their own models.
Our contributions are the following:

* We explain how Stolen Probability can arise
as a consequence of a rank constrained soft-
max layer.

¢ We extend the work in (Demeter et al., 2020)
with algorithms that provide an exact answer
rather than an approximate one while also in-
cluding the softmax bias term in the analysis.

* We verify a large number of commonly used
publicly available language and translation
models for Stolen Probability.

* We release our algorithm so that others can
inspect their models.

2 The Softmax Bottleneck and Stolen
Probability

2.1 Softmax Bottleneck

Neural network layers with more outputs than in-
puts impose low rank constraints.®> Such constraints
commonly exist as bottlenecks in hidden neural
network layers, e.g. eutoencoders (Hinton and
Zemel, 1994) and projection heads in multi-head
transformers (Vaswani et al., 2017) among others.
While bottlenecks make a model less expressive by
restricting the functions it can represent, they are
desirable both computationally and as a form of
regularisation that can improve modelling.

In contrast, herein we focus on the undesirable
properties of a softmax output layer with a low rank
parametrisation, also known as a Softmax Bottle-
neck (Yang et al., 2018). The crucial difference is
that a Softmax Bottleneck is usually not followed
by a non-linear transformation, and as such the rank
constraint limits expressivity in a very rigid way by
restricting outputs to a subspace.* This constraint
was shown to hurt LM perplexity (Yang et al., 2018)
and non-linear augmentations have been proposed
as improvements (Yang et al., 2018; Kanai et al.,
2018; Ganea et al., 2019). Ganea et al. (2019, Theo-
rem 2) further elaborated on the loss of expressivity
due to the Softmax Bottleneck by showing that the
minimum cross entropy loss that can be achieved
by a rank constrained softmax is greater or equal to
that obtained by a softmax with increased rank. In

3 A layer can also be made low rank if any weight vectors
are made collinear, but we do not consider this case here.

* A linear subspace if no bias term is present and an affine
subspace otherwise.

P(Class c; | x)

Convex Hull

Feature x;

Feature x;

Figure 2: Illustration of the culprit softmax weights for
Stolen Probability in Figure 1. On the left each vector is
a row of the softmax weights W € R**2_ ¢, is interior
to the convex hull, the triangle formed by ¢y, ¢> and c5.

this work we discretise the output space of softmax
and quantify the loss in expressivity more tangibly
by thinking in terms of unrealisable class rankings.
From this interpretable perspective we will see that
a fixed number of rankings is not realisable and
Stolen Probability can arise as a consequence.

2.2 Stolen Probability

Demeter et al. (2020) analyse what happens if a
class weight vector of a softmax layer is interior
to the convex hull of all other class weight vec-
tors. They show that the interior class probability
is bounded above by the probability of at least one
class on the convex hull, making it unargmaxable
(see Figure 2 and Cover, 1967, Figure 1). However,
in their analysis they did not address softmax layers
that include a bias term. We address this limitation
in Section 3, thus enabling us to search for Stolen
Probability in any released model.

To detect whether Stolen Probability arises in
models without a bias term, the authors introduce
an approximate algorithm that asserts whether a
weight vector is internal to the convex hull. It is
approximate since their method had a precision
approaching 100% but 68% recall when compared
to an exact algorithm (Qhull Barber et al., 1996)
on the first 10 dimensions of a softmax LM. In
Section 3.3 we introduce an exact algorithm to
detect unargmaxable tokens with certainty.

The authors use their approximate algorithm to
show that AWD-LSTM LMs (Merity et al., 2018)
“steal” probability from candidate bounded words
when contrasted to the probabilities assigned by
a smoothed n-gram LM. However, they find that
as they increase the dimensionality d of the soft-
max weights to 200, the effect of Stolen Probabil-
ity begins to dissipate. This raises the question
of whether Stolen Probability is of importance for

neural models used in practice which also have
larger softmax weight dimensionality. In this paper
we address this question for MT models of dimen-
sionality d € [256,512,1024]. We choose MT
models since they have more practical use cases
than (generative) LMs: if Stolen Probability exists
in an MT model, then the affected tokens can never
be produced when using greedy decoding. In our
experiments we find that Stolen Probability arises
in limited cases, which however are not of grave
importance.

3 Detecting Stolen Probability

In order to quantify whether Stolen Probability
arises in released LMs and MT models, we first
need to introduce tractable algorithms for detecting
it. In this section we explain how Stolen Probabil-
ity can arise when we have a Softmax Bottleneck.
Then, we introduce a fast approximate algorithm
and a slow exact algorithm which we combine to
detect vocabulary tokens that cannot be predicted.

3.1 Definitions
3.1.1 Softmax

A softmax layer gives us the probability assigned to
a target class ¢; for an input feature vector x € R?
as follows:

eWCTt x+bct

5 et

= softmax(Wx + b),,

PC=c¢|x)=

where W e RI€I%? are the class weight vectors
stacked row by row, and b € RI! is the bias term.
The above are used to compute the logits y =
Wx + b. In what follows, we will refer to the
feature activations x in R as the input space and
the logits y in RIC! as the output space of the
softmax layer.

3.1.2 Discretising the output space into
Permutations

As we saw in Figure 1, there are certain arrange-
ments of softmax weights for which a target class
¢¢ cannot be surfaced as the argmax. To understand
this phenomenon, it will be helpful to discretise the
outputs to a finer granularity: rankings. In order
for a classifier to predict a class ¢; it must rank ¢;
above all other classes by assigning it the largest
probability. From this perspective, a classifier as-
signs each input x a permutation 7 that ranks the

class indices in increasing order of probability.

72 Pemy [X) < Plemy [%) <. < Plemq, | %)

As an example, if we have 4 classes and obtain
probabilities P(C' | x) = [.2 1 3] we
assign x the permutation 7r3142 , since P(c3 | x) <
P(ep | x) < P(ea | x) < P(co | x). We can
readily obtain the coarser argmax decision (¢>) by
reading off the last index of the permutation.

3.2 How can Stolen Probability arise?

Stolen probability arises for class c; when all per-
mutations that rank c¢; above the rest cannot be
realised due to rank constraints. We explain how
by combining the following two observations.

Observation 1. We can discretise RIC! into re-
gions corresponding to permutations by segment-
ing the space with hyperplanes.

The hyperplanes that partition space into re-
gions R corresponding to permutations are a well
known structure in Combinatorics, the Braid Hy-
perplane Arrangement > (Stanley, 2004). The
Braid Arrangement for 3 and 4 classes is illustrated
in rows 1 and 2 of Figure 3 respectively.

In order to be able to rank the classes according
to permutation R, our network needs to be able
to map an input x to region R in the output space.
However, this is not always possible when we have
a Softmax Bottleneck as we elaborate below.

Observation 2. When we have rank constraints
only a subspace of R/°! is feasible.

Case i) softmax(Wx). By calculating y =
Wx, the class logits y are a linear combination
of d columns of W. Therefore, when d < |C|
we can only represent a d-dimensional subspace of
RIC! at best. This feasible subspace is illustrated as
a grey plane in the middle column of Figure 3.

Case ii) softmax(Wx + b). If we also have a
bias term b the model can choose how to offset
the subspace. When the bias term b is not in the
column space of W the zero vector O is no longer a
feasible y and instead of a linear subspace we have
an affine subspace. See Figure 7 in the Appendix
for an illustration comparing the two cases.

Corollary 1. A softmax classifier parametrised
by W and b can rank classes in the order of per-
mutation 7 iff the affine subspace spanned by W

SSee Appendix B for more details on hyperplane arrange-
ments and the Braid Arrangement specifically.

Observation (1):
Discretise RIC! into permutations

Feasible logits

C] =3

C| =4

Observation (2):
Observe rank constraints

(1) & (2) = Corollary 1:
Feasible permutations

Figure 3: Illustration of Corollary 1 (3"¢ column) as a result of Observation 1 (1! column) and Observation 2 (2"¢
column) for softmax(Wx), W € RI€I*4_ d = 2. Planes truncated for ease of visualisation. Top row: In the left
column we see the Braid Arrangement for 3 classes partitioning the output space into 6 regions that correspond to
permutations: class rankings in increasing order of probability. In the middle column we see that because d = 2
we can only map x to the feasible logits, a plane (grey) defined by W. Therefore, in the right column we see that
we can only represent permutations that correspond to the regions we can intersect with this plane. For |C| = 3 we
can still represent all 6 rankings of 3 classes since any plane in general position will intersect all 6 regions. Bottom
row: The Braid Arrangement for 4 classes. Since d < |C|—1 the plane can only intersect 12 regions so only 12/24
permutations are feasible. As an example, we see that the plane intersects region Ry, ,,, but not R, ,,, and hence
1342 18 feasible while 71324 is not. In fact, the orientation of the plane is such that none of the 6 R, regions are

intersected, so as in Figures 1 and 2 ¢4 cannot be ranked above c;, co and c3 and Stolen Probability arises.

and b intersects region R, of the Braid Arrange-
ment 5. When d < |C| — 1 there are regions that
cannot be intersected 7. The feasible permutations
in our example correspond to the sections formed
on the grey plane illustrated in the rightmost col-
umn of Figure 3. Note that for |C| = 4 only 12 out
of 24 regions can be intersected.

As we make the Softmax Bottleneck narrower
by reducing the dimension d of the softmax inputs,
more permutations become infeasible (Good and
Tideman, 1977; Kamiya and Takemura, 2005). Im-
portantly, if we choose |C| and d and whether to
use a bias term, changing the values of the softmax
weights changes the set of feasible permutations but
not the cardinality of the set (Cover, 1967; Smith,
2014). See Appendix C for more details.

Corollary 2. Stolen Probability occurs for class

®This insight of slicing the Braid Arrangement was intro-
duced in Kamiya et al. (2011).

"When d = C'—1 we can still intersect all regions, because
the Braid Arrangement always has rank |C'| — 1 (all its normal
vectors are perpendicular to the 1 vector).

cy when any permutation that would rank class
¢t above all other classes is infeasible.

3.2.1 Effect of softmax bias term

Without a bias term the regions corresponding to
permutations are unbounded (see the rightmost col-
umn of Figure 3). As such, imposing any range
restrictions on the softmax layer inputs x does not
change the feasible regions as long as the restriction
includes the origin. However, when we introduce a
bias term we also get bounded regions (see Figure 7
in the Appendix that contrasts the two situations).
Therefore, in this case the scale of the inputs to
the softmax layer also matters. If the inputs do not
have a large enough range, there will be regions that
exist but cannot be reached by the feature encoder.

3.3 Exact algorithm

Given a softmax layer parametrised by W and b,
is there a class c; that has Stolen Probability? First
we describe a slow but exact algorithm.

An exact algorithm will either prove class c; has

no Stolen Probability by returning a feasible point
x : argmax (Wx + b) = ¢ or it will prove ¢; is
bounded by verifying no such point exists.

To check if a region exists that ranks ¢; above
all others, we need to find an input x € R that
satisfies the following constraints:

Pei |x) < Plep | x), Vi:1<i<|C|,i#t

Each of the above constraints is equivalent to re-
stricting x to a halfspace (see Appendix A). Hence,
to enforce all above inequalities x is restricted to
an intersection of halfspaces.

(We, — WCt)TX + (be; — b)) <0
Vi: 1<i<|C|, i#t
If the intersection of halfspaces is empty, there
is no x for which class ¢; can be ranked above
all others - and hence Stolen Probability occurs.
Finding a point in an intersection of halfspaces can
be solved via linear programming, albeit we found
the algorithm to be slow in practice for d > 100.

()

3.3.1 Chebyshev Center linear programme

The Chebyshev center of a polytope (Boyd et al.,
2004, p. 417) is the center of the largest ball of
radius r that can be embedded within the polytope.
We can find the Chebyshev center x. and the radius
r with the following linear programme.

maximise r

w, X. 4 r||willa < b;, 1<i<|C]-1
x. < 100

X, > —100

r>0

subject to

Where w; = w,, — w¢, and b; = b.;, — bc,, Vi :
¢; # ¢;. We further constrain x, to guarantee the
feasible set is bounded, since the Chebyshev center
is not defined otherwise. This constraint also cap-
tures the fact that neural network activations cannot
be arbitrarily large.

If the above linear programme is feasible, we
know that class ¢; is unbounded and we also get a
lower bound on the volume of the region for which
it is solvable by inspecting r. On the other hand, if
the linear programme is infeasible, c¢; is bounded
in probability.

3.4 Approximate algorithm

The exact algorithm was too slow to run for the
whole vocabulary. In order to avoid running the ex-
act algorithm for every single vocabulary item, we

Input: W, b, ¢;
l
Approximate
Algorithm

KOQ

(ct = approx bounded>

| G
e
Exact °
Algorithm
éh = fé‘?«?'
7,
2E %

(¢
(ct = bounded) Cct = unbounded)

Figure 4: Algorithm to detect Stolen Probability for
class c¢;. We first run the approximate algorithm, which
quickly proves most vocabulary tokens are unbounded.
If it fails to find a solution in N steps, we rely on the
exact algorithm to either find a solution or prove there
is no solution and the token is bounded.

developed an incomplete algorithm (Kautz et al.,
2009) with a one-sided error, which can quickly
rule out most tokens, leaving only a small number
to be checked by the exact algorithm. It proves that
¢t is unbounded by finding an input x for which
¢t has the largest activation. Unlike the exact algo-
rithm, if no solution exists it cannot prove that the
token is bounded. Hence we terminate our search
after a predetermined number of steps. However,
not finding a solution does not necessarily mean
that this token is bounded. We denote any tokens
not found to be bounded by the approximate al-
gorithm as approx bounded and we run the exact
algorithm on them. An illustration of the way we
combine the exact and approximate algorithms to
decide whether class c¢; is bounded in probability
can be found in Figure 4.

3.4.1 Braid Reflect

The idea behind this approximate algorithm is to
use the Braid Hyperplane Arrangement as a map
to guide us towards a point x for which ¢; has
the largest activation. To show that class ¢; is not
bounded, it suffices to find an input x for which the
largest probability is assigned to c¢;. Empirically
we found this to be easy for most classes.

We begin by interpreting the actual weight vec-
tor as the candidate input x = WCTt We do so
since the dot product of two vectors is larger when

Algorithm 1: Braid reflection step

Data: Class index ¢;, x € R%,
W e RICIxd b e RICI
1 ¢; = argmax(Wx + b)
W = (Wct: - Wcl-:)—r
b=Db, — b,

1
W/ — W
wllz

s W N

sd=w'x
6 X =%x—2(d+ 2w

Iwll

Figure 5: Move x to region where P(c;) > P(c;).

the two vectors point in the same direction®. While
the magnitude of the vectors affects the dot prod-
uct, we found the above initialisation worked well
empirically. When ¢; is not the argmax for x and
¢; 1s instead, Relation 1 for ¢; and ¢; will have the
wrong sign. The sign of this relation defines which
side of the Braid hyperplane for ¢; and ¢; we are
on. To correct the sign, we construct the normal
vector and offset (Lines 2, 3 in Figure 5) of the
Braid hyperplane, compute the distance of x from
it (Line 5), and reflect x across it (Line 6). We
repeat the above operation until we get c; to be the
argmax or we give up after IV steps.

4 Experiments

Do publicly released LMs and MT models have
classes that are bounded in probability? In this
section we use the combined algorithm introduced
in Figure 4 to search models for Stolen Probability.

We test 7 LMs and 143 MT models. We find that
Stolen Probability only occurs in 13 MT models,
but this mostly affects infrequent and noisy vocab-
ulary tokens. We therefore do not expect Stolen
Probability to affect translation quality per se.

We also find that nearly all vocabulary tokens of
LMs and student MT models can be verified with
less than 10 steps of the approximate algorithm. In
contrast, other MT models need thousands of steps
and also rely on the exact algorithm. In this sense,
models that need few steps of the approximate al-
gorithm are easy to verify: the search problem for
their arrangement of softmax weights is easier.

Throughout the following experiments we as-
sumed the softmax inputs were bounded in magni-
tude for all dimensions —100 < z; < 100. As we
mentioned in Subsection 3.2.1, if we have a soft-

¥a’b = |lal|, ||b||, cos @ is maximised for § = 0

max bias term, there are bounded regions. If the
bounded regions are large, even though the outputs
are not theoretically bounded, they are practically
bounded since neural network feature encoders can-
not produce arbitrarily large activations and some
regions may be unreachable®. For the approximate
algorithm, we search for a solution with a patience
of N = 2500 steps and resort to the exact algo-
rithm if the approximate method fails or returns a
point outside the aforementioned bounds. We use
Gurobi (Gurobi Optimization, 2021) as the linear
programme solver. The experiments took 3 days
to run on an AMD 3900X 12-core CPU using 10
threads and 64Gb of RAM.

4.1 Language Models (0/7 bounded)

We checked 7 widely used Language Models for
Stolen Probability. While some of these models
such as BERT (Devlin et al., 2019) are not directly
used for generation, a recent trend is to use these
large LMs as prompt models (Liu et al., 2021) for
few shot learning. A prompt model obviates the
need for a separate classifier by rephrasing a clas-
sification task as slot filling given a task specific
template. Prompt approaches commonly choose
the answer for the slot by argmaxing the softmax
distribution obtained by a LM. Hence we verify
that there are no answers that are unargmaxable.

BERT, RoBERTa (Liu et al., 2019), XLM-
RoBERTa (Conneau et al., 2020) and GPT2 (Rad-
ford et al., 2019) did not exhibit any bounded
tokens and can be assessed without resorting to
the exact algorithm (see Table 4 in the Appendix).
Moreover, the LMs were very easy to verify with
the approximate algorithm requiring less than 1.2
steps per token on average.

4.2 Machine Translation (13/143 bounded)

model source Helsinki FAIR Edinburgh Bergamot
bounded 13/32 0/4 0/82 0/25
dataset OPUS WMT’'19 WMT’17 multiple'”
architecture Transf Transf LSTM Transf
input dim 512 1024 500,512 256,512,1024
softmax bias v X v v

tied embeds enc+dec+out dec+out dec+out enc+dec+out

Table 1: Results for the MT models we verified.

We first focus on models which we found to have
Stolen Probability (bounded) and then briefly de-

9The validity of our assumption is only relevant for models
we find to be bounded. We therefore verified that —100 <
x < 100 holds for two of them, see Appendix G.

https://github.com/browsermt/students

https://github.com/browsermt/students

scribe models that were not. A summary of the re-
sults and characteristics of the models we checked
can be seen in Table 1. More detailed results can
be found in Tables 5, 6, 7 and 8 in the Appendix.

Helsinki NLP OPUS (13/32 bounded). The 32
models we use for this subset of experiments are
MT models released through Hugging Face (Wolf
et al., 2020). We use models introduced in Tiede-
mann and Thottingal (2020). These models are
trained on subsets of OPUS. All models are trans-
former models trained using Marian (Junczys-
Dowmunt et al., 2018). They include a bias term
and have tied encoder, decoder and output embed-
dings of dimensionality 512.

Stolen Probability, if present, will affect gener-
ation in the target language. We therefore restrict
our analysis to the target language vocabulary. To
facilitate this, we inspect translation models for
which the source and target languages have differ-
ent scripts. We explore 32 models with source and
target pairs amongst Arabic (ar), Hebrew (he), En-
glish (en), German (de), French(fr), Spanish (es),
Finnish (fi), Polish (pl), Greek (el), Russian (ru),
Bulgarian (bg), Korean (ko) and Japanese (ja). We
rely on the script to disambiguate between source
and target language and discard irrelevant tokens
from other languages. We also ignore vocabulary
tokens containing digits and punctuation.

In Figure 6 we can see the number of Byte Pair
Encoding (BPE) (Sennrich et al., 2016) tokens that
were bounded for these models, sorted in decreas-
ing order. As can be seen, Stolen Probability does
not occur for any tokens for 19/32 language pairs.
For the remaining 13 languages, while there can
be quite a few bounded tokens, most would not be
expected to affect translation quality.

Out of the set of 427 unique bounded BPE to-
kens, 307/476 are single character subword tokens
and only 2 are word stem BPE segments: erecti (bg-
en) and IIpensapurenbubl (en-ru) which means
“preliminary” in Russian. The rest include the
<unk> token and what seem to be noisy subword
unicode tokens such as kKKK, iii and &0,

On closer inspection of the SentencePiece to-
keniser we found that both IIpenBapurenbubI
and erecti come up as tokenisation alternatives
that make them rare and irregular. We found
that the IIpensapurensubl token was rare since
it is capitalised and only occurs once, while an-
other occurrence was caused by a BPE segmen-
tation corner case due to Unicode token variation

Stolen probability for HelsinkiNLP models

Model language pairs
208

0 25 50 75 100 125 150 175
Number of bounded vocabulary tokens

Figure 6: 13/32 HelsinkiNLP models have vocabulary
tokens that cannot be predicted using greedy decoding.

of IIpensapurenbubi-e. Other mentions having
IIpensapurennunt as a substring were split differ-
ently. In a similar vein, we found that the erecti
token occurred due to BPE corner cases for erecti-0-
n, erecti-lis-), erecti-1, erecti-. and erecti-cle many
of which are misspellings or rare word forms from
clinical text. As such, the impact of these tokens
being bounded is small since there are alternative
ones the MT model can prefer over them which
could even correct spelling mistakes.

FAIR WMT"’19 (0/4 bounded). We checked 4
FAIR models (en-ru, ru-en, en-de, de-en) submitted
to WMT’19 (Ng et al., 2019). These transformer
models have softmax weights of dimensionality
1024 and no softmax bias term.

None of the FAIR models were found to have
Stolen Probability, but for some tokens we had to
rely on the exact algorithm to show this.

Edinburgh WMT’17 (0/82 bounded). These
WMT’17 submissions (Sennrich et al., 2017) were
ensembles of left-to-right trained models (I12r)
and right-to-left trained models (r21). These
were LSTMs trained with Nematus using softmax
weight dimensionality 500 or 512 and softmax
weights tied with the decoder input embeddings.
The models include a bias term.

None of the models have Stolen Probability.
However, we found that models that comprise an
ensemble varied a lot in how easy it was to show
that the vocabulary was unbounded, despite them
differing solely in the random seed used for weight
initialisation. As an example, zh-en.12r(1) had 8 to-
kens that needed to be verified with the exact algo-
rithm, zh-en.12r(2) had 3 and zh-en.I12r(3) had 366.
This highlights that random initialisation alone is
enough to lead to very different arrangements of
softmax weights.

Bergamot (0/25 bounded). The Bergamot
project'! model repository contains both large

https://browser.mt

https://browser.mt

transformer-base and transformer-big teacher mod-
els, as well as small knowledge distilled (Kim and
Rush, 2016) student models. Student models have
d = 256 (tiny) or d = 512 (base), while teacher
models have d = 1024. Interestingly, we find
that it is easier to show that student models are
unbounded when compared to teacher models, de-
spite student models having softmax weights 1/2
or 1/4 the dimensions of the teacher model.

5 Discussion

We conclude from our experiments that Stolen
Probability is possible, but it rarely occurs in prac-
tice for tokens that would lead to irrecoverable
errors in the MT models we checked. It is chal-
lenging to make exact claims about why Stolen
Probability occurs because the models we tested
varied in so many ways. However, we observed
some general trends which we outline below.

5.1 Infrequent tokens are the victims

The most general observation is that the tokens that
are more likely to be bounded or are hard to prove
to be unbounded are the infrequent ones. This
can be seen in Figures 12 and 13 in the Appendix,
where the x-axis contains the vocabulary of the
models sorted left to right by increasing frequency.
Each dot represents the number of steps needed to
check whether a token is bounded or not, and as
can be seen the values to the right are generally
much higher than those to the left.

5.2 Some models are easier to verify

We found that the LMs and student MT model
vocabularies can be shown to be unbounded with
one step of the approximate algorithm on average.
On the other hand, for Helsinki NLP and FAIR MT
models more than 10 steps were needed.

To put the above observations into context, we
also check the behaviour of our algorithms on ran-
domly initialised parameters. If we initialise a
softmax layer of |C'| = 10000 classes using a uni-
form distribution U (—1, 1) we do not expect Stolen
Probability to occur after d = 30 (see Figure 11 in
the Appendix). Moreover, any randomly initialised
parameters can be checked using the approximate
algorithm with fewer steps as we increase d.

From this perspective it is therefore surprising
that student models were easier to show to be un-
bounded than the teacher models, despite the soft-
max weight dimensionality of the student models

being much lower (256 for tiny, versus 1024 for
teacher). This shows that effective neural MT mod-
els do not need to be hard to check, but nevertheless
neural models trained on the original data can some-
times converge to such an arrangement of weights.

6 Related Work

Other works have observed limitations of the soft-
max layer when modelling infrequent classes for
image classification (Kang et al., 2020) and rare
words for MT (Nguyen and Chiang, 2018; Rau-
nak et al., 2020). They show that normalising the
magnitude of the softmax weight vectors improves
predictions for infrequent classes. However, the
motivation for weight normalisation is guided em-
pirically. From the perspective of this work, weight
normalisation provably prevents Stolen Probability
from arising when a softmax layer has no bias term.
For more details, see Section D in the Appendix.

7 Conclusions and Future Work

In this work we discretised the outputs of soft-
max and showed how dimensionality constraints
shrink the set of feasible class rankings and can
lead to some classes being impossible to predict
using argmax. In our experiments we demonstrated
that while neural MT models can have vocabu-
lary tokens that are bounded in probability, this
does not occur often in our experiments. Moreover,
for the models we tested we would not expect dis-
cernible differences in translation quality because
the bounded tokens are noisy and infrequent. We
release an algorithm for detecting whether some
classes are bounded in probability with the hope
that this will be helpful to the wider community
working on a plethora of different models where
the observed phenomena may vary.

In future work we aim to investigate any learn-
ability consequences more closely. As we saw,
when using an approximate search algorithm, some
models are much harder to show to be bounded
than others. Since gradient descent algorithms are
also iterative search algorithms seeking optimal pa-
rameters, we hypothesise that it will be challenging
to train neural network encoders to map activations
to regions of the input space that a search algorithm
cannot find easily. Hence, while Stolen Probability
may not be present because of constraints imposed
by the softmax parameters of the last layer, it may
practically be present because of difficulties en-
countered by the encoder.

References

C. Barber, D. Dobkin, and Hannu Huhdanpaa. 1996.
The quickhull algorithm for convex hulls. ACM
Trans. Math. Softw., 22:469—-483.

Stephen Boyd, Stephen P Boyd, and Lieven Vanden-
berghe. 2004. Convex optimization. Cambridge uni-
versity press.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Thomas M. Cover. 1967. The number of linearly in-
ducible orderings of points in d-space*. Siam Jour-
nal on Applied Mathematics, 15:434-439.

David Demeter, Gregory Kimmel, and Doug Downey.
2020. Stolen probability: A structural weakness
of neural language models. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2191-2197, Online. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Octavian Ganea, Sylvain Gelly, Gary Bécigneul, and
Aliaksei Severyn. 2019. Breaking the softmax
bottleneck via learnable monotonic pointwise non-
linearities. In ICML, pages 2073-2082.

I.J Good and T.N Tideman. 1977. Stirling numbers and
a geometric ,structure from voting theory. Journal
of Combinatorial Theory, Series A, 23(1):34-45.

Gurobi Optimization. 2021. Gurobi Optimizer Refer-
ence Manual.

Sibylle Hess, Wouter Duivesteijn, and Decebal Con-
stantin Mocanu. 2020. Softmax-based classification
is k-means clustering: Formal proof, consequences
for adversarial attacks, and improvement through
centroid based tailoring. ArXiv, abs/2001.01987.

Geoffrey E Hinton and Richard Zemel. 1994. Autoen-
coders, minimum description length and helmholtz
free energy. In Advances in Neural Information Pro-
cessing Systems, volume 6. Morgan-Kaufmann.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,

Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116—
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Hidehiko Kamiya and Akimichi Takemura. 2005.
Characterization of rankings generated by linear dis-
criminant analysis. Journal of multivariate analysis,
92(2):343-358.

Hidehiko Kamiya, Akimichi Takemura, and Hiroaki
Terao. 2011. Ranking patterns of unfolding models
of codimension one. Advances in Applied Mathe-
matics, 47(2):379-400.

Sekitoshi Kanai, Yasuhiro Fujiwara, Yuki Yamanaka,
and Shuichi Adachi. 2018. Sigsoftmax: Reanalysis
of the softmax bottleneck. In Advances in Neural
Information Processing Systems, volume 31. Curran
Associates, Inc.

Bingyi Kang, Saining Xie, Marcus Rohrbach,
Zhicheng Yan, Albert Gordo, Jiashi Feng, and
Yannis Kalantidis. 2020. Decoupling representation
and classifier for long-tailed recognition. In Interna-
tional Conference on Learning Representations.

Henry A. Kautz, Ashish Sabharwal, and Bart Selman.
2009. Incomplete algorithms. In Handbook of Satis-

fiability.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317-1327, Austin,
Texas. Association for Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ArXiv, abs/2107.13586.

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach.
ArXiv, abs/1907.11692.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726-742.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. Regularizing and optimizing LSTM
language models. In International Conference on
Learning Representations.

https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.198
https://doi.org/10.18653/v1/2020.acl-main.198
https://doi.org/10.18653/v1/2020.acl-main.198
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://proceedings.mlr.press/v97/ganea19a.html
http://proceedings.mlr.press/v97/ganea19a.html
http://proceedings.mlr.press/v97/ganea19a.html
http://proceedings.mlr.press/v97/ganea19a.html
http://proceedings.mlr.press/v97/ganea19a.html
https://doi.org/https://doi.org/10.1016/0097-3165(77)90077-2
https://doi.org/https://doi.org/10.1016/0097-3165(77)90077-2
https://doi.org/https://doi.org/10.1016/0097-3165(77)90077-2
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com
https://proceedings.neurips.cc/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://doi.org/https://doi.org/10.1016/j.aam.2010.11.002
https://doi.org/https://doi.org/10.1016/j.aam.2010.11.002
https://doi.org/https://doi.org/10.1016/j.aam.2010.11.002
https://proceedings.neurips.cc/paper/2018/file/9dcb88e0137649590b755372b040afad-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/9dcb88e0137649590b755372b040afad-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/9dcb88e0137649590b755372b040afad-Paper.pdf
https://openreview.net/forum?id=r1gRTCVFvB
https://openreview.net/forum?id=r1gRTCVFvB
https://openreview.net/forum?id=r1gRTCVFvB
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Facebook
FAIR’s WMT19 news translation task submission.
In Proceedings of the Fourth Conference on Ma-
chine Translation (Volume 2: Shared Task Papers,
Day 1), pages 314-319, Florence, Italy. Association
for Computational Linguistics.

Toan Nguyen and David Chiang. 2018. Improving lex-
ical choice in neural machine translation. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 334-343, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Vikas Raunak, Siddharth Dalmia, Vivek Gupta, and
Florian Metze. 2020. On long-tailed phenomena in
neural machine translation. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020, pages 3088-3095, Online. Association for
Computational Linguistics.

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich
Germann, Barry Haddow, Kenneth Heafield, An-
tonio Valerio Miceli Barone, and Philip Williams.
2017. The University of Edinburgh’s neural MT
systems for WMT17. In Proceedings of the Sec-
ond Conference on Machine Translation, pages 389—
399, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715-
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Warren D. Smith. 2014. D-dimensional orderings and
stirling numbers. [Online; accessed 05-November-
2021].

Richard P. Stanley. 2004. An introduction to hyper-
plane arrangements. In Lecture notes, IAS/Park City
Mathematics Institute.

Jorg Tiedemann. 2020. The Tatoeba Translation Chal-
lenge — Realistic data sets for low resource and multi-
lingual MT. In Proceedings of the Fifth Conference
on Machine Translation, pages 1174-1182, Online.
Association for Computational Linguistics.

Jorg Tiedemann and Santhosh Thottingal. 2020.
OPUS-MT - building open translation services for
the world. In Proceedings of the 22nd Annual Con-
ference of the European Association for Machine
Translation, pages 479-480, Lisboa, Portugal. Euro-
pean Association for Machine Translation.

10

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38—45, Online. Asso-
ciation for Computational Linguistics.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. 2018. Breaking the softmax bot-
tleneck: A high-rank RNN language model. In Inter-
national Conference on Learning Representations.

A Halfspace interpretation

As promised, here is the derivation showing that if
P(c; | x) < P(c; | x) then x is constrained to a

halfspace.
We have:
P(ci | x) < P(cj | x) <=
eW::rierbCi ewzjx+bc]~
wI,x—l—bci, < wI/x—FbcH
Zi’ € i Z’i’ e
T T
ewcz,x+bci < eWCj X+ij
T
ewCix—&-bc,L. .
— < <
ew;rjx—s—bcj
e(wcifwcj)—rpﬂ»(bcifbcj) < 60

(We, — wcj)Tx + (be; — be;) <0

x is therefore constrained to a halfspace defined by
normal vector w., — w,; and offset by be, — bcj.
This linear form defined by the normal vector and
offset is the “shadow” in the input dimension of
our friend, the Braid Arrangement, as we will make
clear in the next section (see Derivation 2).

B Hyperplane Arrangements

Excellent resources to learn more about hyper-
plane arrangements are Stanley (2004) and Fed-
erico Ardila’s lectures on polytopes (see Lecture
34 onwards). We give a brief introduction below.
A hyperplane in a vector space R is an affine
subspace of dimension d — 1. The hyperplane H

https://doi.org/10.18653/v1/W19-5333
https://doi.org/10.18653/v1/W19-5333
https://doi.org/10.18653/v1/W19-5333
https://doi.org/10.18653/v1/N18-1031
https://doi.org/10.18653/v1/N18-1031
https://doi.org/10.18653/v1/N18-1031
https://doi.org/10.18653/v1/2020.findings-emnlp.276
https://doi.org/10.18653/v1/2020.findings-emnlp.276
https://doi.org/10.18653/v1/2020.findings-emnlp.276
https://doi.org/10.18653/v1/W17-4739
https://doi.org/10.18653/v1/W17-4739
https://doi.org/10.18653/v1/W17-4739
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://rangevoting.org/WilsonOrder.html
https://rangevoting.org/WilsonOrder.html
https://rangevoting.org/WilsonOrder.html
https://www.aclweb.org/anthology/2020.wmt-1.139
https://www.aclweb.org/anthology/2020.wmt-1.139
https://www.aclweb.org/anthology/2020.wmt-1.139
https://www.aclweb.org/anthology/2020.wmt-1.139
https://www.aclweb.org/anthology/2020.wmt-1.139
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://openreview.net/forum?id=HkwZSG-CZ
https://openreview.net/forum?id=HkwZSG-CZ
https://openreview.net/forum?id=HkwZSG-CZ
http://math.sfsu.edu/federico/Clase/Polytopes/polytopes.html
http://math.sfsu.edu/federico/Clase/Polytopes/polytopes.html
http://math.sfsu.edu/federico/Clase/Polytopes/polytopes.html
http://math.sfsu.edu/federico/Clase/Polytopes/polytopes.html
http://math.sfsu.edu/federico/Clase/Polytopes/polytopes.html

(a) Input space b = 0

(b) Output space b = 0

Columnspace of W

Nullspace [
)< ~

(c) Input space b # 0 (d) Output space b # 0

Figure 7: Effect of bias term b on feasible permutations of softmax(Wx + b), W € RI¢Ixd g = 2 |C| = 4.
Having a bias term offsets the grey plane and allows it to not pass through the origin. This increases the number
of regions by creating bounded regions seen in subfigures ¢ and d. Each region intersected by the grey 2D plane
corresponds to a feasible permutation. We therefore obtain 18/24 feasible permutations if we include a bias term,

compared to 12/24 without one.

has one degree of freedom removed by specifying
a constraint: a normal vector w € R? to which it is
perpendicular. The hyperplane may also be offset
by b in that direction H = {x € R?: w'x = b}.

A real hyperplane arrangement A is defined as a
set of n hyperplanes in RY, A = {H1,Hs ... Hp}.
The regions R defined by a hyperplane arrange-
ment A are the connected components X of Eu-
clidean space R? left when we remove the hyper-
planes A, namely X = R? — UnecaH. As an
example, subfigure (a) in Figure 7 has 12 regions
while subfigure (c) has 18 regions.

B.1 Braid Arrangement

The Braid Arrangement 3,, is a hyperplane arrange-
ment that partitions space into n! regions corre-
sponding to permutations. It can be constructed
in R” from the standard basis, the columns of the
identity matrix (ej, ey ...e,), e; € R™, by taking
all (g) pairs of differences between them, each dif-
ference defining the normal vector of a hyperplane
H; ; of the Braid Arrangement.

BnZ{’Hi,j Vi,j: 1<i<j<n},

Hi;={xcR": (e, —ej) x=0}

The Braid Arrangement for n = 3 and n = 4 can
be seen in Figure 3. It has (') hyperplanes, one per
pair of dimensions in R™. Hence there are 3 hyper-
planes for |C'| = 3 and 6 hyperplanes for |C| = 4.
As an example, when we have 4 classes the normal
vector for Hyziswiz = [1 0 —1 O]T. As
can be verified by taking the dot product WZT e
the result is positive if z; > z; and negative if vice
versa. Therefore, each hyperplane bisects space

11

into two regions one for each possible ranking of
the pair of coordinates.

To see how the hyperplanes intersect to give us a
region R, we express a permutation (total order)
over |C| classes, such as that in Relation 3.1.2,
using a chain of |C| — 1 pairwise inequalities.

P(Cﬂ'i ‘ X) < P(CTFi+1 | X); 1 S 1 S ’C| -1

Each above constraint is equivalent to choosing a
side of a braid hyperplane. By imposing all con-
straints, we obtain a region R, as the intersection
of |C| — 1 halfspaces. There is therefore bijec-
tion between permutations and regions of the Braid
Arrangement 7 <> R.

B.2 Restricting the Braid Arrangement to
lower dimensions

In the softmax classification layer of a neural net-

work we often compute the output space activations

y € R" by applying a final affine layer to the soft-

max input space x € R%.

y=Wx+b, WecR™ beR"

What do the Braid Arrangement hyperplanes look
like in the input dimension d? Let us start from the
output space R" and work backwards towards the
input space R<.
i <y; = (e;—e;) y <0

eiT y — ejTy <0

e; (Wx+b)—e/ (Wx+b) <0

W;x+bi—ijx—bj <0

(Wi — Wj)TX + (bl — bj) <0

2

We therefore see that if d < n we can think of
how the Braid Arrangement classifies outputs into
permutations from two equivalent perspectives:

* In the output space R™ not all y are feasible,
we can only classify an input x as a permu-
tation 7r if the affine layer can map x to R .
This can be seen in subfigures b and d of Fig-
ure 7 where the feasible outputs are a plane
that intersects the Braid Arrangement.

In the input space R? all x are feasible but we
only see the projection of the Braid Arrange-
ment in this lower dimension. This can be
seen in subfigures a and c of Figure 7.

The above gives us a recipe for building the
Braid Arrangement in the input space when the
outputs are an affine function of the inputs. This
construction is illustrated in Figure 8, albeit with-
out the bias term.

C Number of Regions (Feasible
Permutations) of the restricted Braid
Arrangement

The number of feasible permutations is invariant to
specific choices of W and b (Cover, 1967; Smith,
2014) and only depends on the dimensionality of
the softmax inputs d, the number of classes |C|
and whether we specify a bias term b not in the
columnspace of W. Namely, the cardinality of
the set of feasible permutations does not change,
but the members of the set do - they depend on
the specific values in W and b. There exists a
recurrence formula to obtain the number of feasible
permutations for a particular |C| and d (Good and
Tideman, 1977; Kamiya and Takemura, 2005). See
our code and the relations in (Smith, 2014) for
more details.

C.1 Softmax with no bias term

The number of feasible permutations as a function
of |C| and d when we have a softmax with no bias
term can be seen in Table 2. When d > |C| — 1 all
permutations corresponding to ways of ranking |C|
classes are feasible (table cells with d = |C| — 1
are highlighted in bold). However, as we make
the Softmax Bottleneck narrower, we can represent
less permutations, as can be seen from the numbers
reported below the diagonal.

12

(@)
1

Figure 8: Constructing the Braid Arrangement in the
input space for |C| = 3 classes and d = 2. Top left:
The softmax weights W e RICIX4 for 3 classes, a, b, c.
Each vector is a row of the weight matrix. Top right:
We form the normal vectors for the braid hyperplanes
by taking all pairs of differences between the basis vec-
tors. Bottom left: The Braid hyperplanes are perpen-
dicular to the normal vectors. Each hyperplane bisects
space into two regions, one comprises the set of x for
which class ¢ has a larger activation that class j and
the second vice versa. Botfom right: The hyperplanes
partition space into 3! = 6 regions corresponding to
permutations. Each permutation contains the indices
that sort the activations over classes in increasing order.
Softmax decision boundaries are unions of two regions,
e.g. regions cba and bca for class a.

C.2 Softmax with bias term

The number of feasible permutations as a function
of |C|] and d when we have a softmax with a bias
term is larger as can be seen in Table 3. As we
saw in Figure 7, this is because a bias term can
offset the representible linear subspace to an affine
subspace which can intersect more regions of the
Braid Arrangement.

BOTTLENECK DIMENSIONALITY d

1 2 3 4 5 6 7 8 9 10
202 2 2 2 2 2 2 2 2 2

S 312 6 6 6 6 6 6 6 6 6

é 4 |2 24 24 24 24 24 24 24 24

2 5|2 2 72 120 120 120 120 120 120 120

g 6 [2 30 172 480 720 720 720 720 720 720

® 7 |2 42 352 1512 3600 5040 5040 5040 5040 5040

Z 8 |2 56 646 3976 14184 30240 40320 40320 40320 40320
5 9 |2 72 1094 9144 45992 143712 282240 362880 362880 362880
Z 10|2 90 1742 18990 128288 557640 1575648 2903040 3628800 3628800

Table 2: Number of permutation regions defined by a bottlenecked softmax layer Softmaz(Wa) with no bias
term. When d > |C| — 1 all permutations corresponding to ways of ranking |C| classes are feasible. 12 in italics
corresponds to the number of regions shown in the left subfigure of Figure 7. https://oeis.org/A071223.

BOTTLENECK DIMENSIONALITY d

37 583 5119 27568 94852 212976 322560 362880 362880 362880

1 2 3 4 5 6 7 8 9 10
202 2 2 2 2 2 2 2 2 2

O 3104 6 6 6 6 6 6 6 6 6

2 4 |7 24 24 24 24 24 24 24 24

2 5 |11 46 96 120 120 120 120 120 120 120
4 6 [16 101 326 600 720 720 720 720 720 720
% 7 |22 197 932 2556 4320 5040 5040 5040 5040 5040
28 |29 351 2311 9080 22212 35280 40320 40320 40320 40320
2 9

“

0] 46 916 10366 73639 342964 1066644 2239344 3265920 3628800 3628800

Table 3: Number of permutation regions defined by a bottlenecked softmax layer Softmaz(Wz + b). When

d > |C| — 1 all permutations corresponding to ways of ranking |C| classes are feasible. 18
to the number of regions shown in the right subfigure of Figure 7.

13

in italics corresponds

https://oeis.org/A071223

D Preventing Stolen Probability

While Stolen Probability does not seem to occur in
practice for MT models, there are solutions if we
want to guarantee it cannot occur: we can force the
decision boundaries of the softmax layer to create
a Voronoi Tesselation in the output space.

A Voronoi Tesselation formed for a set of |C|
generating points partitions space into |C'| convex
regions, one per point. A region created from a gen-
erating point contains any point in space for which
the Euclidean distance to the generating point is
smaller than the distance to all other generating
points. Since all generating points form a region,
this guarantees that all classes can be predicted.

The decision boundaries of softmax always form
a Voronoi Tesselation when W is full rank (Hess
et al., 2020, Theorem 1), as was shown by identify-
ing the centroids of the tesselation as the softmax
weights offset by a vector u. When W is low rank,
however, we will need to constrain the parameters
of softmax in order to obtain a Voronoi Tesselation.

A summary of constraints we will show are
needed are:

¢ If Softmax has no bias term, normalise the
weight vectors 2
|willy =const 1<i<C

¢ If Softmax has a bias term, then set the bias
terms to:

2
‘Wz‘Hz

bz:—‘ ;2 l<i<cC

Derivation: For any pair (7, j) of classes, we
can construct an auxiliary pairwise classifier using
the corresponding softmax weights (w;, w;). This
auxiliary binary classifier w' = w; — w; decides
for each input x whether the activation for class ¢
is greater than that for class j or not.

The decision boundary for this binary classifier
will be the points x for which:

)T

(w; —w;) x=0

The region of x for which a multi-class classifier
assigns class 7 as the argmax (a cone if no bias
term) can be found using a combination of such
binary classifiers:

For class ¢ to be the argmax, require:

2This is also clear from Hess et al. (2020, Theorem 1)

14

Figure 9: We can be certain that all classes are repre-
sentable if we force each decision boundary formed by
a braid vector to also be a perpendicular bisector of the
line segment joining the two classes.

(Wz’ — Wj)TX >0

(Wi —wy) x>0

(Wi —wp) x>0

To obtain a Voronoi Tesselation, we want all
the auxiliary classifier decision boundaries to be
the perpendicular bisectors of the line segments
joining their corresponding weight vectors w; and
w;. If we require this for all possible pairs of
classes, the hyperplanes that define the boundaries
of the softmax regions will also satisfy this property
and classification will be equivalent to assigning
an input to the class weight having the smallest
Euclidean distance with it.

Therefore, let us force a point x of the decision
boundary to be a point on the perpendicular bi-
sector of the line segments connecting all pairs of
class weights and see where this leads us. In the
plot below, the orange line is both the perpendicu-
lar bisector of the line segment having w; and w;
as endpoints, as well as the decision boundary for
the auxiliary classifier since w' = w; — w; is the
normal vector.

D.1 Softmax without a bias term

Let us start with the scenario where we have a
softmax layer with no bias vector. We pick x to be
the midpoint of the line segment joining w; and w ;.
This way x will be both on the decision boundary
as well as on the perpendicular bisector.

(wi—w;)'x=0 =

(wi —w;)T (

Wi + Wj

T T T T
W, Wi+ W; Wj — W; W; — W; Wj 0
2
2 2
Iwills —lIwills _,
2
Iwilly = fw;ll,

The above would need to be true for all pairs
(i, 7). Therefore, we see that if the weight vectors
for all classes are equal (or normalised to 1) we
get a Voronoi tesselation with the weight vectors
as centroids. Such a normalisation step has been
carried out in the literature (Nguyen and Chiang,
2018; Raunak et al., 2020), but not justified from
this point of view, to our knowledge.

D.2 Softmax with a bias term

Alternatively, if we had a softmax layer with a bias
term, we would have the following changes:

The auxiliary pairwise classifier decision bound-
aries would be:

(Wi —w;) x+b —bj=0

Following the same steps as above we would
arrive at:

(Wi—Wj)TX-f-bi—bj:O —

2 2
[[wlly = lIwill3

E Braid Reflect Approximate Algorithm

Algorithm 2: Braid reflect
Data: Class index ¢,
W e RICIXd b e RICI
Result: Whether ¢; is bounded
1 bounded = true
2 patience = 2500
3 X = W;l;:
4 while patience do
5 ¢; = argmax(Wx + b)
if C;, = C¢t then
bounded = false
break

e e O &

else
10
11

W = (WCtZ - WCZ)T
b= b, — by,

i
/ w
A\%

12 = -
wll>

o as
zp=w x
— b
x =X —2(xp + ||w”2)w

13

14 !

15 patience = patience - 1

16 end

17 end

Figure 10: Approximate algorithm to detect whether
class c; has Stolen Probability.

F Stolen probability search results

model ‘ # approx bounded # bounded

b —bj = 5

We can obtain the above condition for all auxil-
iary classifier pairs by setting the bias term of each
weight vector depending on the norm of the weight
vector:

2
[[will5

b=

15

bert-base-cased 0
bert-base-uncased
roberta-base
roberta-large
xlm-roberta-base
xlm-roberta-large

gpt2

eNeBeoNoNoRoNa)
eNeBeoNoNeNe)

Table 4: Stolen Probability search results for Language
Models. approx bounded is the number of tokens
that the approximate algorithm failed to prove were un-
bounded. bounded is the number of bounded tokens
according to the exact algorithm. No tokens were found
to be bounded.

source model # approx bounded # bounded
opus-mt-ja-en 109 2
opus-mt-ru-en 90 159
opus-mt-bg-en 93 53
opus-mt-ja-en(2) 14 0
opus-mt-ar-en 40 184
opus-mt-en-el 75 42
opus-mt-de-el 115 6
opus-mt-ar-el 41 0
opus-mt-es-el 67 32
opus-mt-fi-el 57 8
opus-mt-ar-he 3 0
opus-mt-de-he 4 0
opus-mt-es-he 3 0
opus-mt-fr-he 1 0
opus-mt-fi-he 7 0
Helsinki opus-mt-ja-he 0 0
NLP opus-mt-en-ar 21 2
opus-mt-el-ar 12 0
opus-mt-es-ar 17 1
opus-mt-fr-ar 17 0
opus-mt-he-ar 7 0
opus-mt-it-ar 8 0
opus-mt-ja-ar 4 0
opus-mt-pl-ar 52 0
opus-mt-ru-ar 8 0
opus-mt-en-ru 98 34
opus-mt-es-ru 42 18
opus-mt-fi-ru 1 0
opus-mt-fr-ru 34 43
opus-mt-he-ru 5 0
opus-mt-ja-ru 13 0
opus-mt-ko-ru 2 0

Table 5: Stolen Probability search results for Helsinki
NLP OPUS models. approx bounded is the num-
ber of tokens that the approximate algorithm failed to
prove were unbounded. bounded is the number of
bounded tokens according to the exact algorithm. For
13/32 models some infrequent tokens were found to be
bounded.

source model # approx bounded # bounded
facebook/wmt19-en-ru 5 0
facebook/wmt19-ru-en 64 0

FAIR facebook/wmt19-de-en 173 0
facebook/wmt19-en-de 184 0

Table 6: Stolen Probability search results for FAIR
WMT’ 19 models. approx bounded is the number of
tokens that the approximate algorithm failed to prove
were unbounded. bounded is the number of bounded
tokens according to the exact algorithm. No tokens
were found to be bounded.

16

source model ‘ # approx bounded # bounded

(=]

cs-en.student.base
es-en.teacher.bigx2(1)
es-en.teacher.bigx2(2)
en-es.teacher.bigx2(1)
en-es.teacher.bigx2(2)
et-en.teacher.bigx2(1)
et-en.teacher.bigx2(2)
en-et.teacher.bigx2(1)
en-et.teacher.bigx2(2)
nb-en.teacher.base
nn-en.teacher.base
is-en.teacher.base
cs-en.student.base
cs-en.student.tiny11
en-cs.student.base
en-cs.student.tiny11
en-de.student.base
en-de.student.tiny11
es-en.student.tiny11
en-es.student.tiny11
et-en.student.tiny 11
en-et.student.tiny 11
is-en.student.tiny11
nb-en.student.tiny11
nn-en.student.tiny11

Bergamot

SO OO0, ~,NODOOOO

o
[=NeBoNel-l-NeBel=E=-NeeleBoBeleloE=R-Ro e -2 =N=]

(=Nl o]

Table 7: Stolen Probability search results for Berg-
amot models. approx bounded is the number of to-
kens that the approximate algorithm failed to prove
were unbounded. bounded is the number of bounded
tokens according to the exact algorithm. No tokens
were found to be bounded. Interestingly, student mod-
els were much easier to prove unbounded than teacher
models, despite student model softmax weights being
lower dimensional.

source model ‘ # approx bounded # bounded

en-cs.12r(1-4) <2 0
en-cs.r21(1-4) <1

cs-en.12r(1-4) <2

cs-en.r2l(1-4) 0

en-de.12r(1-4) <1

en-de.r21(1-4) <2

de-en.12r(1-4) <2

de-en.r21(1-4)
en-ru.l2r(1-4)
ru-en.12r(1-4)
ru-en.r21(1-4)
en-tr.12r(1-4)
en-tr.r21(1-4)
lv-en.12r(1-4)
WMT’17 lv-en.r2l(1-4)
Edinburgh (r-en.12r(1)
tr-en.12r(2)
tr-en.12r(3)
tr-en.12r(4)
tr-en.r21(1)
tr-en.r21(2)
tr-en.r21(3)
tr-en.r21(4)
en-zh.12r(1)
en-zh.12r(2)
en-zh.12r(3)
en-zh.12r(4)
en-zh.r21(1)
en-zh.r21(2)
en-zh.r21(3)
en-zh.r21(4)
zh-en.12r(1)
zh-en.12r(2)
zh-en.12r(3)
zh-en.r21(1-3)

;uw#oo#mo\mm‘/\o‘ﬁ‘aoooo

o))

[=NeNoBolcRololo o Bolo oo E-NeloNoBoRolo oo Ro oo o oo e = Ne N X =]

INQ
QWO NN O N —

(95)

Table 8: Stolen Probability search results for Edin-
burgh WMT’17 submission (ensemble) models. ap-
prox bounded is the number of tokens that the ap-
proximate algorithm failed to prove were unbounded.
bounded is the number of bounded tokens according
to the exact algorithm. r2l and 12r refer to training di-
rection, with 12r denoting training left to right and r2l
right to left. Models submitted were ensembles, hence
there are more than one model per language pair and
direction. When all models per language pair and direc-
tion had less than 5 counts, we summarise all models
with a single row, e.g. (1-4).

17

® Unbounded
Unbounded but approx alg failed
e Bounded

Softmax W dim=2 Softmax W dim=4 Softmax W dim=6 Softmax W dim=8 Softmax W dim=10

Random uniform initialisation with vocab=10000

2500 2500 = - 2500 —— = - 2500 —— 2500

2000 2000 2000 2000 2000

1500 1500 1500 1500 1500

1000 1000 1000 1000 1000

500 500

Iterations of Approx Algorithm
Iterations of Approx Algorithm
Iterations of Approx Algorithm
Iterations of Approx Algorithm
Tterations of Approx Algorithm

0 0 0 0 0
o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
Vocabulary Index Vocabulary Index Vocabulary Index Vocabulary Index Vocabulary Index
Softmax W dim=15 Softmax W dim=20 Softmax W dim=30 Softmax W dim=40 Softmax W dim=50
2500 |- s —— | 2500 : 8

2000 2000

1500

1500

1000

1000

500

Iterations of Approx Algorithm
[terations of Approx Algorithm
Iterations of Approx Algorithm
Iterations of Approx Algorithm
Iterations of Approx Algorithm

o
o
o
°
°

o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
Vocabulary Index Vocabulary Index Vocabulary Index Vocabulary Index Vocabulary Index

Figure 11: Illustration of softmax weight dimensionality affecting stolen probability when weights are randomly
initialised for a vocabulary of 10000. The softmax weights and bias term are initialised using a uniform U(—1, 1)
distribution. Stolen probability is unlikely to occur as we increase the dimensionality of the weight vectors. This
can be seen in the subplots from top-left to bottom-right as we increase the dimensionality. Moreover, the braid
reflect approximate algorithm fails less and needs less iterations to find an input that proves a token is unbounded.
For example, for the bottom right two figures most tokens are shown to be unbounded with 1 or O iterations.

18

® Unbounded

Identical models from an ensemble differ Unbounded but approx alg failed
zh-en.12r.ensl zh-en.|2r.ens2 zh-en.12r.ens3
® num=64155 ® num=64160 ® num=63797
® num=8 ® num=3 ® num=366
2500 2500 - 2500 —
2000 2000 2000

1500 1500 1500

1000 10004 1000

Iterations of Approx Algorithm
Iterations of Approx Algorithm
Iterations of Approx Algorithm

500+ 500

0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
Vocabulary Index Vocabulary Index Vocabulary Index

Figure 12: Models from an ensemble can differ a lot in how easy they are to scan for stolen probability despite
their difference being solely the random seed used in initialisation. As can be seen, the right-most figure has 366
vocabulary tokens that are unbounded but the approximate algorithm fails to find a solution, compared to 8 and 3
for the other two models.

19

enet.teacher.bigl

enet.teacher.big2

Teacher models
nben.teacher.base

nnen.teacher.base

® Unbounded
@ Unbounded but approx alg failed

isen.teacher.base

2500

2000

1500

1000

Iterations of Approx Algorithm

500

® num=31999
o num=1
2500

2000

1500

1000

Iterations of Approx Algorithm

® num=31999
e num=1

® num=16000

Iterations of Approx Algorithm

@ num=16000

250

I 3
g H

Iterations of Approx Algorithm
5
g

e num=32000

120

100

3

Iterations of Approx Algorithm
£ 23

10000 20000
Vocabulary Index

30000 [

10000 20000
Vocabulary Index

30000

0 5000 10000 15000

Vocabulary Index

0 5000 10000
Vocabulary Index

15000

0 10000 20000
Vocabulary Index

30000

(a) The approximate algorithm needs more iterations to show that teacher models are unbounded despite the dimensionality
of the softmax weights being larger than the student models.

enet.student.tiny1l

nben.student.tinyll

Student models

nnen.student.tinyll

® Unbounded

isen.student.tinyll

® num=32000

Iterations of Approx Algorithm
-
|

4 —_—

® num=16000

® num=16000

Iterations of Approx Algorithm

Iterations of Approx Algorithm
IS

Iterations of Approx Algorithm
-

® num=32000

5000 10000 15000 20000 25000 30000
Vocabulary Index

2500 5000 7500 10000 12500 15000 0
Vocabulary Index

2500 5000 7500 10000 12500 15000 0
Vocabulary Index

0 5000 10000 15000 20000 25000 30000 0
Vocabulary Index

(b) Student models are very easy to show to be unbounded.

Figure 13: Number of iterations of the approximate algorithm needed to show that a vocabulary token is un-
bounded.

20

G Activation range of softmax layer
inputs

Neural network activations are bounded in magni-
tude in practice, since larger activations can lead
to larger gradients and instability during training.
In this work, we made the assumption that the soft-
max layer inputs x are bounded within a range for
all dimensions: —100 < x < 100. Below we pro-
vide some supporting empirical evidence that this
assumption is reasonable.

We checked this assumption on 2 Helsinki NLP
OPUS models for en-ru and bg-en, which were
found to have tokens bounded in probability. We
took 10 million sentence pairs from OPUS as re-
leased in Tiedemann (2020) for the corresponding
language pairs and input them to the correspond-
ing models, decoding using the gold translations.
We then recorded the range of the minimum and
maximum activation for the softmax layer inputs.

Since our assumption is that all 512 dimensions
are bounded between —100 and 100, we focus on
the range of the minimum and maximum activation
for each output token across all dimensions. We
therefore calculate a 99 percentile for the min and
max activation per token across all dimensions as
well as the overall min and max activations overall.
The results can be seen in Table 9, from which we
can see that for these two models our assumption
holds for all activations produces for 10 million
sentences and the percentiles show that more than
99% of the extreme values fall within the [—50, 50]
range.

model ‘ min range max range min max

bg-en | [-37.5,—9.4] [12.1,40.3] —57.47 58.87
en-ru | [-41.6,-9.9] [10.9,36.4] —954 944

Table 9: Range of activations for softmax inputs as
calculated on 10 million sentence pairs from OPUS.
Ranges are 99 percentiles and min and max are the
largest activation across all dimensions for all sen-
tences.

21

