
Low rank softmax can have unargmaxable classes in theory
but rarely in practice

Anonymous ACL submission

Abstract

Classifiers in natural language processing001
(NLP) often have a large number of output002
classes. For example, neural language models003
(LMs) and machine translation (MT) models004
both predict tokens from a vocabulary of thou-005
sands. The softmax output layer of these mod-006
els typically receives as input a dense feature007
representation, which has much lower dimen-008
sionality than the output. In theory, the result009
is some words may be impossible to predict010
via argmax, irrespective of input features, and011
empirically, this has been shown to happen in012
small language models (Demeter et al., 2020).013
In this paper we ask whether it can happen014
in practical large language models and transla-015
tion models. To do so, we develop algorithms016
to detect such unargmaxable tokens in public017
models. We find that that 13 out of 150 models018
do indeed have such tokens; however, they are019
very infrequent and unlikely to impact model020
quality. We release our algorithms and code to021
the public.1022

1 Introduction023

Probabilistic classifiers with a large number of024

output classes are commonplace in NLP. For ex-025

ample, the vocabulary size of contemporary LMs026

and MT models varies from tens to hundreds of027

thousands (Liu et al., 2020). Recent advances028

in modelling such large vocabularies have mostly029

been made by improving neural network feature030

encoders (Devlin et al., 2019; Liu et al., 2019; Con-031

neau et al., 2020). But irrespective of the encoder’s032

usefulness, projecting lower dimensional features033

to higher dimensional outputs constrains expressiv-034

ity, with consequences that are not well understood.035

In this work we elaborate on the consequences036

that arise when the number of output classes |C| is037

greater than the dimensionality d of the classifica-038

tion layer inputs. For example, MT models often039

1Code available at REDACTED

Figure 1: Illustration of Stolen Probability: Class c4
can never be predicted using argmax for this softmax
classifier with |C| = 4 classes in d = 2 dimensions. On
the left, each input point x is colored according to the
class assigned the largest probability; note that while
c1, c2 and c3 surface as regions, c4 does not. On the
right we similarly show that there is no direction in the
input space for which c4 has the largest probability.

have subword vocabularies of size |C| ≈ 30000, 040

but have d ≈ 1024. These models are low rank 041

and thus less expressive (Yang et al., 2018; Ganea 042

et al., 2019); more importantly, they cannot repre- 043

sent some outputs. Demeter et al. (2020) recently 044

highlighted that this weakness2 occurs in softmax 045

LMs, showing that, in theory, some tokens can 046

never be assigned the highest probability for any 047

input, a phenomenon they call Stolen Probability. 048

Figure 1 illustrates how it occurs. 049

While Demeter et al. (2020) highlighted the the- 050

oretical problem and showed that it occurs in small 051

LMs, they were unable to test larger LMs. In this 052

paper we ask: Does Stolen Probability arise in 053

large models used in practice? To answer this ques- 054

tion, we develop algorithms to identify unargmax- 055

able tokens. We tested 7 LMs and 143 MT models. 056

Out of those, only 13 of the MT models exhibit 057

Stolen Probability, and even for those cases the 058

tokens are all noisy and infrequent. We conclude 059

that most practictioners do not need to worry about 060

Stolen Probability, and we provide new tools so 061

2This problem was highlighted by Cover (1967) and has
an interesting history of independent discovery (Smith, 2014).

1

that they can confirm this on their own models.062

Our contributions are the following:063

• We explain how Stolen Probability can arise064

as a consequence of a rank constrained soft-065

max layer.066

• We extend the work in (Demeter et al., 2020)067

with algorithms that provide an exact answer068

rather than an approximate one while also in-069

cluding the softmax bias term in the analysis.070

• We verify a large number of commonly used071

publicly available language and translation072

models for Stolen Probability.073

• We release our algorithm so that others can074

inspect their models.075

2 The Softmax Bottleneck and Stolen076

Probability077

2.1 Softmax Bottleneck078

Neural network layers with more outputs than in-079

puts impose low rank constraints.3 Such constraints080

commonly exist as bottlenecks in hidden neural081

network layers, e.g. eutoencoders (Hinton and082

Zemel, 1994) and projection heads in multi-head083

transformers (Vaswani et al., 2017) among others.084

While bottlenecks make a model less expressive by085

restricting the functions it can represent, they are086

desirable both computationally and as a form of087

regularisation that can improve modelling.088

In contrast, herein we focus on the undesirable089

properties of a softmax output layer with a low rank090

parametrisation, also known as a Softmax Bottle-091

neck (Yang et al., 2018). The crucial difference is092

that a Softmax Bottleneck is usually not followed093

by a non-linear transformation, and as such the rank094

constraint limits expressivity in a very rigid way by095

restricting outputs to a subspace.4 This constraint096

was shown to hurt LM perplexity (Yang et al., 2018)097

and non-linear augmentations have been proposed098

as improvements (Yang et al., 2018; Kanai et al.,099

2018; Ganea et al., 2019). Ganea et al. (2019, Theo-100

rem 2) further elaborated on the loss of expressivity101

due to the Softmax Bottleneck by showing that the102

minimum cross entropy loss that can be achieved103

by a rank constrained softmax is greater or equal to104

that obtained by a softmax with increased rank. In105

3A layer can also be made low rank if any weight vectors
are made collinear, but we do not consider this case here.

4A linear subspace if no bias term is present and an affine
subspace otherwise.

Figure 2: Illustration of the culprit softmax weights for
Stolen Probability in Figure 1. On the left each vector is
a row of the softmax weights W ∈ R4×2. c4 is interior
to the convex hull, the triangle formed by c1, c2 and c3.

this work we discretise the output space of softmax 106

and quantify the loss in expressivity more tangibly 107

by thinking in terms of unrealisable class rankings. 108

From this interpretable perspective we will see that 109

a fixed number of rankings is not realisable and 110

Stolen Probability can arise as a consequence. 111

2.2 Stolen Probability 112

Demeter et al. (2020) analyse what happens if a 113

class weight vector of a softmax layer is interior 114

to the convex hull of all other class weight vec- 115

tors. They show that the interior class probability 116

is bounded above by the probability of at least one 117

class on the convex hull, making it unargmaxable 118

(see Figure 2 and Cover, 1967, Figure 1). However, 119

in their analysis they did not address softmax layers 120

that include a bias term. We address this limitation 121

in Section 3, thus enabling us to search for Stolen 122

Probability in any released model. 123

To detect whether Stolen Probability arises in 124

models without a bias term, the authors introduce 125

an approximate algorithm that asserts whether a 126

weight vector is internal to the convex hull. It is 127

approximate since their method had a precision 128

approaching 100% but 68% recall when compared 129

to an exact algorithm (Qhull Barber et al., 1996) 130

on the first 10 dimensions of a softmax LM. In 131

Section 3.3 we introduce an exact algorithm to 132

detect unargmaxable tokens with certainty. 133

The authors use their approximate algorithm to 134

show that AWD-LSTM LMs (Merity et al., 2018) 135

“steal” probability from candidate bounded words 136

when contrasted to the probabilities assigned by 137

a smoothed n-gram LM. However, they find that 138

as they increase the dimensionality d of the soft- 139

max weights to 200, the effect of Stolen Probabil- 140

ity begins to dissipate. This raises the question 141

of whether Stolen Probability is of importance for 142

2

neural models used in practice which also have143

larger softmax weight dimensionality. In this paper144

we address this question for MT models of dimen-145

sionality d ∈ [256, 512, 1024]. We choose MT146

models since they have more practical use cases147

than (generative) LMs: if Stolen Probability exists148

in an MT model, then the affected tokens can never149

be produced when using greedy decoding. In our150

experiments we find that Stolen Probability arises151

in limited cases, which however are not of grave152

importance.153

3 Detecting Stolen Probability154

In order to quantify whether Stolen Probability155

arises in released LMs and MT models, we first156

need to introduce tractable algorithms for detecting157

it. In this section we explain how Stolen Probabil-158

ity can arise when we have a Softmax Bottleneck.159

Then, we introduce a fast approximate algorithm160

and a slow exact algorithm which we combine to161

detect vocabulary tokens that cannot be predicted.162

3.1 Definitions163

3.1.1 Softmax164

A softmax layer gives us the probability assigned to165

a target class ct for an input feature vector x ∈ Rd166

as follows:167

P (C = ct | x) =
ew

>
ct
x+bct∑

i e
w>

ci
x+bci

168

= softmax(Wx+ b)ct169

where W ∈ R|C|×d are the class weight vectors170

stacked row by row, and b ∈ R|C| is the bias term.171

The above are used to compute the logits y =172

Wx + b. In what follows, we will refer to the173

feature activations x in Rd as the input space and174

the logits y in R|C| as the output space of the175

softmax layer.176

3.1.2 Discretising the output space into177

Permutations178

As we saw in Figure 1, there are certain arrange-179

ments of softmax weights for which a target class180

ct cannot be surfaced as the argmax. To understand181

this phenomenon, it will be helpful to discretise the182

outputs to a finer granularity: rankings. In order183

for a classifier to predict a class ct it must rank ct184

above all other classes by assigning it the largest185

probability. From this perspective, a classifier as-186

signs each input x a permutation π that ranks the187

class indices in increasing order of probability. 188

π : P (cπ[1]
| x) < P (cπ[2]

| x) < . . . < P (cπ[|C|] | x) 189

As an example, if we have 4 classes and obtain 190

probabilities P (C | x) =
[
.2 .4 .1 .3

]> we 191

assign x the permutation π3142 , since P (c3 | x) < 192

P (c1 | x) < P (c4 | x) < P (c2 | x). We can 193

readily obtain the coarser argmax decision (c2) by 194

reading off the last index of the permutation. 195

3.2 How can Stolen Probability arise? 196

Stolen probability arises for class ct when all per- 197

mutations that rank ct above the rest cannot be 198

realised due to rank constraints. We explain how 199

by combining the following two observations. 200

Observation 1. We can discretise R|C| into re- 201

gions corresponding to permutations by segment- 202

ing the space with hyperplanes. 203

The hyperplanes that partition space into re- 204

gionsRπ corresponding to permutations are a well 205

known structure in Combinatorics, the Braid Hy- 206

perplane Arrangement 5 (Stanley, 2004). The 207

Braid Arrangement for 3 and 4 classes is illustrated 208

in rows 1 and 2 of Figure 3 respectively. 209

In order to be able to rank the classes according 210

to permutation Rπ , our network needs to be able 211

to map an input x to regionRπ in the output space. 212

However, this is not always possible when we have 213

a Softmax Bottleneck as we elaborate below. 214

Observation 2. When we have rank constraints 215

only a subspace of R|C| is feasible. 216

Case i) softmax(Wx). By calculating y = 217

Wx, the class logits y are a linear combination 218

of d columns of W. Therefore, when d < |C| 219

we can only represent a d-dimensional subspace of 220

R|C| at best. This feasible subspace is illustrated as 221

a grey plane in the middle column of Figure 3. 222

Case ii) softmax(Wx + b). If we also have a 223

bias term b the model can choose how to offset 224

the subspace. When the bias term b is not in the 225

column space of W the zero vector 0 is no longer a 226

feasible y and instead of a linear subspace we have 227

an affine subspace. See Figure 7 in the Appendix 228

for an illustration comparing the two cases. 229

Corollary 1. A softmax classifier parametrised 230

by W and b can rank classes in the order of per- 231

mutation π iff the affine subspace spanned by W 232

5See Appendix B for more details on hyperplane arrange-
ments and the Braid Arrangement specifically.

3

Observation (1):
Discretise R|C| into permutations

Rπ123 Rπ321

Rπ312Rπ132

Rπ213 Rπ231

|C
|=

3
Observation (2):

Observe rank constraints
Feasible logits

(1) & (2) =⇒ Corollary 1:
Feasible permutations

Rπ312 Rπ321

Rπ231

Rπ213Rπ123

Rπ132

Rπ1342
Rπ1324

|C
|=

4

Rπ1342

Rπ1432

Rπ1423

Rπ1243

Rπ2143
Rπ2413Rπ2431

Rπ2341

Rπ3241

Rπ3421

Rπ3412

Rπ3142

Figure 3: Illustration of Corollary 1 (3rd column) as a result of Observation 1 (1st column) and Observation 2 (2nd

column) for softmax(Wx), W ∈ R|C|×d, d = 2. Planes truncated for ease of visualisation. Top row: In the left
column we see the Braid Arrangement for 3 classes partitioning the output space into 6 regions that correspond to
permutations: class rankings in increasing order of probability. In the middle column we see that because d = 2
we can only map x to the feasible logits, a plane (grey) defined by W. Therefore, in the right column we see that
we can only represent permutations that correspond to the regions we can intersect with this plane. For |C| = 3 we
can still represent all 6 rankings of 3 classes since any plane in general position will intersect all 6 regions. Bottom
row: The Braid Arrangement for 4 classes. Since d < |C|−1 the plane can only intersect 12 regions so only 12/24
permutations are feasible. As an example, we see that the plane intersects regionRπ1342 but notRπ1324 and hence
π1342 is feasible while π1324 is not. In fact, the orientation of the plane is such that none of the 6Rπ∗4 regions are
intersected, so as in Figures 1 and 2 c4 cannot be ranked above c1, c2 and c3 and Stolen Probability arises.

and b intersects region Rπ of the Braid Arrange-233

ment 6. When d < |C| − 1 there are regions that234

cannot be intersected 7. The feasible permutations235

in our example correspond to the sections formed236

on the grey plane illustrated in the rightmost col-237

umn of Figure 3. Note that for |C| = 4 only 12 out238

of 24 regions can be intersected.239

As we make the Softmax Bottleneck narrower240

by reducing the dimension d of the softmax inputs,241

more permutations become infeasible (Good and242

Tideman, 1977; Kamiya and Takemura, 2005). Im-243

portantly, if we choose |C| and d and whether to244

use a bias term, changing the values of the softmax245

weights changes the set of feasible permutations but246

not the cardinality of the set (Cover, 1967; Smith,247

2014). See Appendix C for more details.248

Corollary 2. Stolen Probability occurs for class249

6This insight of slicing the Braid Arrangement was intro-
duced in Kamiya et al. (2011).

7When d = C−1 we can still intersect all regions, because
the Braid Arrangement always has rank |C|−1 (all its normal
vectors are perpendicular to the 1 vector).

ct when any permutation that would rank class 250

ct above all other classes is infeasible. 251

3.2.1 Effect of softmax bias term 252

Without a bias term the regions corresponding to 253

permutations are unbounded (see the rightmost col- 254

umn of Figure 3). As such, imposing any range 255

restrictions on the softmax layer inputs x does not 256

change the feasible regions as long as the restriction 257

includes the origin. However, when we introduce a 258

bias term we also get bounded regions (see Figure 7 259

in the Appendix that contrasts the two situations). 260

Therefore, in this case the scale of the inputs to 261

the softmax layer also matters. If the inputs do not 262

have a large enough range, there will be regions that 263

exist but cannot be reached by the feature encoder. 264

3.3 Exact algorithm 265

Given a softmax layer parametrised by W and b, 266

is there a class ct that has Stolen Probability? First 267

we describe a slow but exact algorithm. 268

An exact algorithm will either prove class ct has 269

4

no Stolen Probability by returning a feasible point270

x : argmax (Wx+ b) = ct or it will prove ct is271

bounded by verifying no such point exists.272

To check if a region exists that ranks ct above273

all others, we need to find an input x ∈ Rd that274

satisfies the following constraints:275

P (ci | x) < P (ct | x), ∀i : 1 ≤ i ≤ |C|, i 6= t276

Each of the above constraints is equivalent to re-277

stricting x to a halfspace (see Appendix A). Hence,278

to enforce all above inequalities x is restricted to279

an intersection of halfspaces.280

(wci −wct)
>x+ (bci − bct) < 0

∀i : 1 ≤ i ≤ |C|, i 6= t
(1)281

If the intersection of halfspaces is empty, there282

is no x for which class ct can be ranked above283

all others - and hence Stolen Probability occurs.284

Finding a point in an intersection of halfspaces can285

be solved via linear programming, albeit we found286

the algorithm to be slow in practice for d > 100.287

3.3.1 Chebyshev Center linear programme288

The Chebyshev center of a polytope (Boyd et al.,289

2004, p. 417) is the center of the largest ball of290

radius r that can be embedded within the polytope.291

We can find the Chebyshev center xc and the radius292

r with the following linear programme.293

maximise r294

subject to w>i xc + r‖wi‖2 ≤ bi, 1≤i≤|C|−1295

xc ≤ 100296

xc ≥ −100297

r > 0298

Where wi = wci − wct and bi = bci − bct , ∀i :299

ci 6= ct. We further constrain xc to guarantee the300

feasible set is bounded, since the Chebyshev center301

is not defined otherwise. This constraint also cap-302

tures the fact that neural network activations cannot303

be arbitrarily large.304

If the above linear programme is feasible, we305

know that class ct is unbounded and we also get a306

lower bound on the volume of the region for which307

it is solvable by inspecting r. On the other hand, if308

the linear programme is infeasible, ct is bounded309

in probability.310

3.4 Approximate algorithm311

The exact algorithm was too slow to run for the312

whole vocabulary. In order to avoid running the ex-313

act algorithm for every single vocabulary item, we314

Input: W, b, ct

Approximate
Algorithm

Exact
Algorithm

ct = approx bounded

ct = unboundedct = bounded

found

no
t

fo
un

d

feasible

not
feasible

Figure 4: Algorithm to detect Stolen Probability for
class ct. We first run the approximate algorithm, which
quickly proves most vocabulary tokens are unbounded.
If it fails to find a solution in N steps, we rely on the
exact algorithm to either find a solution or prove there
is no solution and the token is bounded.

developed an incomplete algorithm (Kautz et al., 315

2009) with a one-sided error, which can quickly 316

rule out most tokens, leaving only a small number 317

to be checked by the exact algorithm. It proves that 318

ct is unbounded by finding an input x for which 319

ct has the largest activation. Unlike the exact algo- 320

rithm, if no solution exists it cannot prove that the 321

token is bounded. Hence we terminate our search 322

after a predetermined number of steps. However, 323

not finding a solution does not necessarily mean 324

that this token is bounded. We denote any tokens 325

not found to be bounded by the approximate al- 326

gorithm as approx bounded and we run the exact 327

algorithm on them. An illustration of the way we 328

combine the exact and approximate algorithms to 329

decide whether class ct is bounded in probability 330

can be found in Figure 4. 331

3.4.1 Braid Reflect 332

The idea behind this approximate algorithm is to 333

use the Braid Hyperplane Arrangement as a map 334

to guide us towards a point x for which ct has 335

the largest activation. To show that class ct is not 336

bounded, it suffices to find an input x for which the 337

largest probability is assigned to ct. Empirically 338

we found this to be easy for most classes. 339

We begin by interpreting the actual weight vec- 340

tor as the candidate input x = W>
ct:. We do so 341

since the dot product of two vectors is larger when 342

5

Algorithm 1: Braid reflection step

Data: Class index ct, x ∈ Rd,
W ∈ R|C|×d, b ∈ R|C|

1 ci = argmax(Wx+ b)
2 w = (Wct: −Wci:)

>

3 b = bct − bci
4 w′ = w

‖w‖2
5 d = w′>x

6 x = x− 2(d+ b
‖w‖2

)w′

Figure 5: Move x to region where P (ct) > P (ci).

the two vectors point in the same direction8. While343

the magnitude of the vectors affects the dot prod-344

uct, we found the above initialisation worked well345

empirically. When ct is not the argmax for x and346

ci is instead, Relation 1 for ci and ct will have the347

wrong sign. The sign of this relation defines which348

side of the Braid hyperplane for ci and ct we are349

on. To correct the sign, we construct the normal350

vector and offset (Lines 2, 3 in Figure 5) of the351

Braid hyperplane, compute the distance of x from352

it (Line 5), and reflect x across it (Line 6). We353

repeat the above operation until we get ct to be the354

argmax or we give up after N steps.355

4 Experiments356

Do publicly released LMs and MT models have357

classes that are bounded in probability? In this358

section we use the combined algorithm introduced359

in Figure 4 to search models for Stolen Probability.360

We test 7 LMs and 143 MT models. We find that361

Stolen Probability only occurs in 13 MT models,362

but this mostly affects infrequent and noisy vocab-363

ulary tokens. We therefore do not expect Stolen364

Probability to affect translation quality per se.365

We also find that nearly all vocabulary tokens of366

LMs and student MT models can be verified with367

less than 10 steps of the approximate algorithm. In368

contrast, other MT models need thousands of steps369

and also rely on the exact algorithm. In this sense,370

models that need few steps of the approximate al-371

gorithm are easy to verify: the search problem for372

their arrangement of softmax weights is easier.373

Throughout the following experiments we as-374

sumed the softmax inputs were bounded in magni-375

tude for all dimensions −100 ≤ xi ≤ 100. As we376

mentioned in Subsection 3.2.1, if we have a soft-377

8a>b = ‖a‖2 ‖b‖2 cos θ is maximised for θ = 0

max bias term, there are bounded regions. If the 378

bounded regions are large, even though the outputs 379

are not theoretically bounded, they are practically 380

bounded since neural network feature encoders can- 381

not produce arbitrarily large activations and some 382

regions may be unreachable9. For the approximate 383

algorithm, we search for a solution with a patience 384

of N = 2500 steps and resort to the exact algo- 385

rithm if the approximate method fails or returns a 386

point outside the aforementioned bounds. We use 387

Gurobi (Gurobi Optimization, 2021) as the linear 388

programme solver. The experiments took 3 days 389

to run on an AMD 3900X 12-core CPU using 10 390

threads and 64Gb of RAM. 391

4.1 Language Models (0/7 bounded) 392

We checked 7 widely used Language Models for 393

Stolen Probability. While some of these models 394

such as BERT (Devlin et al., 2019) are not directly 395

used for generation, a recent trend is to use these 396

large LMs as prompt models (Liu et al., 2021) for 397

few shot learning. A prompt model obviates the 398

need for a separate classifier by rephrasing a clas- 399

sification task as slot filling given a task specific 400

template. Prompt approaches commonly choose 401

the answer for the slot by argmaxing the softmax 402

distribution obtained by a LM. Hence we verify 403

that there are no answers that are unargmaxable. 404

BERT, RoBERTa (Liu et al., 2019), XLM- 405

RoBERTa (Conneau et al., 2020) and GPT2 (Rad- 406

ford et al., 2019) did not exhibit any bounded 407

tokens and can be assessed without resorting to 408

the exact algorithm (see Table 4 in the Appendix). 409

Moreover, the LMs were very easy to verify with 410

the approximate algorithm requiring less than 1.2 411

steps per token on average. 412

4.2 Machine Translation (13/143 bounded) 413

model source Helsinki FAIR Edinburgh Bergamot

bounded 13/32 0/4 0/82 0/25
dataset OPUS WMT’19 WMT’17 multiple10

architecture Transf Transf LSTM Transf
input dim 512 1024 500,512 256,512,1024
softmax bias 3 7 3 3

tied embeds enc+dec+out dec+out dec+out enc+dec+out

Table 1: Results for the MT models we verified.

We first focus on models which we found to have 414

Stolen Probability (bounded) and then briefly de- 415

9The validity of our assumption is only relevant for models
we find to be bounded. We therefore verified that −100 ≤
x ≤ 100 holds for two of them, see Appendix G.

10https://github.com/browsermt/students

6

https://github.com/browsermt/students

scribe models that were not. A summary of the re-416

sults and characteristics of the models we checked417

can be seen in Table 1. More detailed results can418

be found in Tables 5, 6, 7 and 8 in the Appendix.419

Helsinki NLP OPUS (13/32 bounded). The 32420

models we use for this subset of experiments are421

MT models released through Hugging Face (Wolf422

et al., 2020). We use models introduced in Tiede-423

mann and Thottingal (2020). These models are424

trained on subsets of OPUS. All models are trans-425

former models trained using Marian (Junczys-426

Dowmunt et al., 2018). They include a bias term427

and have tied encoder, decoder and output embed-428

dings of dimensionality 512.429

Stolen Probability, if present, will affect gener-430

ation in the target language. We therefore restrict431

our analysis to the target language vocabulary. To432

facilitate this, we inspect translation models for433

which the source and target languages have differ-434

ent scripts. We explore 32 models with source and435

target pairs amongst Arabic (ar), Hebrew (he), En-436

glish (en), German (de), French(fr), Spanish (es),437

Finnish (fi), Polish (pl), Greek (el), Russian (ru),438

Bulgarian (bg), Korean (ko) and Japanese (ja). We439

rely on the script to disambiguate between source440

and target language and discard irrelevant tokens441

from other languages. We also ignore vocabulary442

tokens containing digits and punctuation.443

In Figure 6 we can see the number of Byte Pair444

Encoding (BPE) (Sennrich et al., 2016) tokens that445

were bounded for these models, sorted in decreas-446

ing order. As can be seen, Stolen Probability does447

not occur for any tokens for 19/32 language pairs.448

For the remaining 13 languages, while there can449

be quite a few bounded tokens, most would not be450

expected to affect translation quality.451

Out of the set of 427 unique bounded BPE to-452

kens, 307/476 are single character subword tokens453

and only 2 are word stem BPE segments: erecti (bg-454

en) and Предварительны (en-ru) which means455

“preliminary” in Russian. The rest include the456

<unk> token and what seem to be noisy subword457

unicode tokens such as ќЌЌќ, ὶῖῖ and ἀὐῇ.458

On closer inspection of the SentencePiece to-459

keniser we found that both Предварительны460

and erecti come up as tokenisation alternatives461

that make them rare and irregular. We found462

that the Предварительны token was rare since463

it is capitalised and only occurs once, while an-464

other occurrence was caused by a BPE segmen-465

tation corner case due to Unicode token variation466

Figure 6: 13/32 HelsinkiNLP models have vocabulary
tokens that cannot be predicted using greedy decoding.

of Предварительны-e. Other mentions having 467

Предварительны as a substring were split differ- 468

ently. In a similar vein, we found that the erecti 469

token occurred due to BPE corner cases for erecti-0- 470

n, erecti-lis-), erecti-l, erecti-. and erecti-cle many 471

of which are misspellings or rare word forms from 472

clinical text. As such, the impact of these tokens 473

being bounded is small since there are alternative 474

ones the MT model can prefer over them which 475

could even correct spelling mistakes. 476

FAIR WMT’19 (0/4 bounded). We checked 4 477

FAIR models (en-ru, ru-en, en-de, de-en) submitted 478

to WMT’19 (Ng et al., 2019). These transformer 479

models have softmax weights of dimensionality 480

1024 and no softmax bias term. 481

None of the FAIR models were found to have 482

Stolen Probability, but for some tokens we had to 483

rely on the exact algorithm to show this. 484

Edinburgh WMT’17 (0/82 bounded). These 485

WMT’17 submissions (Sennrich et al., 2017) were 486

ensembles of left-to-right trained models (l2r) 487

and right-to-left trained models (r2l). These 488

were LSTMs trained with Nematus using softmax 489

weight dimensionality 500 or 512 and softmax 490

weights tied with the decoder input embeddings. 491

The models include a bias term. 492

None of the models have Stolen Probability. 493

However, we found that models that comprise an 494

ensemble varied a lot in how easy it was to show 495

that the vocabulary was unbounded, despite them 496

differing solely in the random seed used for weight 497

initialisation. As an example, zh-en.l2r(1) had 8 to- 498

kens that needed to be verified with the exact algo- 499

rithm, zh-en.l2r(2) had 3 and zh-en.l2r(3) had 366. 500

This highlights that random initialisation alone is 501

enough to lead to very different arrangements of 502

softmax weights. 503

Bergamot (0/25 bounded). The Bergamot 504

project11 model repository contains both large 505

11https://browser.mt

7

https://browser.mt

transformer-base and transformer-big teacher mod-506

els, as well as small knowledge distilled (Kim and507

Rush, 2016) student models. Student models have508

d = 256 (tiny) or d = 512 (base), while teacher509

models have d = 1024. Interestingly, we find510

that it is easier to show that student models are511

unbounded when compared to teacher models, de-512

spite student models having softmax weights 1/2513

or 1/4 the dimensions of the teacher model.514

5 Discussion515

We conclude from our experiments that Stolen516

Probability is possible, but it rarely occurs in prac-517

tice for tokens that would lead to irrecoverable518

errors in the MT models we checked. It is chal-519

lenging to make exact claims about why Stolen520

Probability occurs because the models we tested521

varied in so many ways. However, we observed522

some general trends which we outline below.523

5.1 Infrequent tokens are the victims524

The most general observation is that the tokens that525

are more likely to be bounded or are hard to prove526

to be unbounded are the infrequent ones. This527

can be seen in Figures 12 and 13 in the Appendix,528

where the x-axis contains the vocabulary of the529

models sorted left to right by increasing frequency.530

Each dot represents the number of steps needed to531

check whether a token is bounded or not, and as532

can be seen the values to the right are generally533

much higher than those to the left.534

5.2 Some models are easier to verify535

We found that the LMs and student MT model536

vocabularies can be shown to be unbounded with537

one step of the approximate algorithm on average.538

On the other hand, for Helsinki NLP and FAIR MT539

models more than 10 steps were needed.540

To put the above observations into context, we541

also check the behaviour of our algorithms on ran-542

domly initialised parameters. If we initialise a543

softmax layer of |C| = 10000 classes using a uni-544

form distribution U(−1, 1) we do not expect Stolen545

Probability to occur after d = 30 (see Figure 11 in546

the Appendix). Moreover, any randomly initialised547

parameters can be checked using the approximate548

algorithm with fewer steps as we increase d.549

From this perspective it is therefore surprising550

that student models were easier to show to be un-551

bounded than the teacher models, despite the soft-552

max weight dimensionality of the student models553

being much lower (256 for tiny, versus 1024 for 554

teacher). This shows that effective neural MT mod- 555

els do not need to be hard to check, but nevertheless 556

neural models trained on the original data can some- 557

times converge to such an arrangement of weights. 558

6 Related Work 559

Other works have observed limitations of the soft- 560

max layer when modelling infrequent classes for 561

image classification (Kang et al., 2020) and rare 562

words for MT (Nguyen and Chiang, 2018; Rau- 563

nak et al., 2020). They show that normalising the 564

magnitude of the softmax weight vectors improves 565

predictions for infrequent classes. However, the 566

motivation for weight normalisation is guided em- 567

pirically. From the perspective of this work, weight 568

normalisation provably prevents Stolen Probability 569

from arising when a softmax layer has no bias term. 570

For more details, see Section D in the Appendix. 571

7 Conclusions and Future Work 572

In this work we discretised the outputs of soft- 573

max and showed how dimensionality constraints 574

shrink the set of feasible class rankings and can 575

lead to some classes being impossible to predict 576

using argmax. In our experiments we demonstrated 577

that while neural MT models can have vocabu- 578

lary tokens that are bounded in probability, this 579

does not occur often in our experiments. Moreover, 580

for the models we tested we would not expect dis- 581

cernible differences in translation quality because 582

the bounded tokens are noisy and infrequent. We 583

release an algorithm for detecting whether some 584

classes are bounded in probability with the hope 585

that this will be helpful to the wider community 586

working on a plethora of different models where 587

the observed phenomena may vary. 588

In future work we aim to investigate any learn- 589

ability consequences more closely. As we saw, 590

when using an approximate search algorithm, some 591

models are much harder to show to be bounded 592

than others. Since gradient descent algorithms are 593

also iterative search algorithms seeking optimal pa- 594

rameters, we hypothesise that it will be challenging 595

to train neural network encoders to map activations 596

to regions of the input space that a search algorithm 597

cannot find easily. Hence, while Stolen Probability 598

may not be present because of constraints imposed 599

by the softmax parameters of the last layer, it may 600

practically be present because of difficulties en- 601

countered by the encoder. 602

8

References603

C. Barber, D. Dobkin, and Hannu Huhdanpaa. 1996.604
The quickhull algorithm for convex hulls. ACM605
Trans. Math. Softw., 22:469–483.606

Stephen Boyd, Stephen P Boyd, and Lieven Vanden-607
berghe. 2004. Convex optimization. Cambridge uni-608
versity press.609

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,610
Vishrav Chaudhary, Guillaume Wenzek, Francisco611
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-612
moyer, and Veselin Stoyanov. 2020. Unsupervised613
cross-lingual representation learning at scale. In614
Proceedings of the 58th Annual Meeting of the Asso-615
ciation for Computational Linguistics, pages 8440–616
8451, Online. Association for Computational Lin-617
guistics.618

Thomas M. Cover. 1967. The number of linearly in-619
ducible orderings of points in d-space*. Siam Jour-620
nal on Applied Mathematics, 15:434–439.621

David Demeter, Gregory Kimmel, and Doug Downey.622
2020. Stolen probability: A structural weakness623
of neural language models. In Proceedings of the624
58th Annual Meeting of the Association for Compu-625
tational Linguistics, pages 2191–2197, Online. As-626
sociation for Computational Linguistics.627

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and628
Kristina Toutanova. 2019. BERT: Pre-training of629
deep bidirectional transformers for language under-630
standing. In Proceedings of the 2019 Conference631
of the North American Chapter of the Association632
for Computational Linguistics: Human Language633
Technologies, Volume 1 (Long and Short Papers),634
pages 4171–4186, Minneapolis, Minnesota. Associ-635
ation for Computational Linguistics.636

Octavian Ganea, Sylvain Gelly, Gary Bécigneul, and637
Aliaksei Severyn. 2019. Breaking the softmax638
bottleneck via learnable monotonic pointwise non-639
linearities. In ICML, pages 2073–2082.640

I.J Good and T.N Tideman. 1977. Stirling numbers and641
a geometric ,structure from voting theory. Journal642
of Combinatorial Theory, Series A, 23(1):34–45.643

Gurobi Optimization. 2021. Gurobi Optimizer Refer-644
ence Manual.645

Sibylle Hess, Wouter Duivesteijn, and Decebal Con-646
stantin Mocanu. 2020. Softmax-based classification647
is k-means clustering: Formal proof, consequences648
for adversarial attacks, and improvement through649
centroid based tailoring. ArXiv, abs/2001.01987.650

Geoffrey E Hinton and Richard Zemel. 1994. Autoen-651
coders, minimum description length and helmholtz652
free energy. In Advances in Neural Information Pro-653
cessing Systems, volume 6. Morgan-Kaufmann.654

Marcin Junczys-Dowmunt, Roman Grundkiewicz,655
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,656

Tom Neckermann, Frank Seide, Ulrich Germann, 657
Alham Fikri Aji, Nikolay Bogoychev, André F. T. 658
Martins, and Alexandra Birch. 2018. Marian: Fast 659
neural machine translation in C++. In Proceedings 660
of ACL 2018, System Demonstrations, pages 116– 661
121, Melbourne, Australia. Association for Compu- 662
tational Linguistics. 663

Hidehiko Kamiya and Akimichi Takemura. 2005. 664
Characterization of rankings generated by linear dis- 665
criminant analysis. Journal of multivariate analysis, 666
92(2):343–358. 667

Hidehiko Kamiya, Akimichi Takemura, and Hiroaki 668
Terao. 2011. Ranking patterns of unfolding models 669
of codimension one. Advances in Applied Mathe- 670
matics, 47(2):379–400. 671

Sekitoshi Kanai, Yasuhiro Fujiwara, Yuki Yamanaka, 672
and Shuichi Adachi. 2018. Sigsoftmax: Reanalysis 673
of the softmax bottleneck. In Advances in Neural 674
Information Processing Systems, volume 31. Curran 675
Associates, Inc. 676

Bingyi Kang, Saining Xie, Marcus Rohrbach, 677
Zhicheng Yan, Albert Gordo, Jiashi Feng, and 678
Yannis Kalantidis. 2020. Decoupling representation 679
and classifier for long-tailed recognition. In Interna- 680
tional Conference on Learning Representations. 681

Henry A. Kautz, Ashish Sabharwal, and Bart Selman. 682
2009. Incomplete algorithms. In Handbook of Satis- 683
fiability. 684

Yoon Kim and Alexander M. Rush. 2016. Sequence- 685
level knowledge distillation. In Proceedings of the 686
2016 Conference on Empirical Methods in Natu- 687
ral Language Processing, pages 1317–1327, Austin, 688
Texas. Association for Computational Linguistics. 689

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, 690
Hiroaki Hayashi, and Graham Neubig. 2021. Pre- 691
train, prompt, and predict: A systematic survey of 692
prompting methods in natural language processing. 693
ArXiv, abs/2107.13586. 694

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar 695
Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke 696
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: 697
A robustly optimized bert pretraining approach. 698
ArXiv, abs/1907.11692. 699

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey 700
Edunov, Marjan Ghazvininejad, Mike Lewis, and 701
Luke Zettlemoyer. 2020. Multilingual denoising 702
pre-training for neural machine translation. Transac- 703
tions of the Association for Computational Linguis- 704
tics, 8:726–742. 705

Stephen Merity, Nitish Shirish Keskar, and Richard 706
Socher. 2018. Regularizing and optimizing LSTM 707
language models. In International Conference on 708
Learning Representations. 709

9

https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.198
https://doi.org/10.18653/v1/2020.acl-main.198
https://doi.org/10.18653/v1/2020.acl-main.198
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://proceedings.mlr.press/v97/ganea19a.html
http://proceedings.mlr.press/v97/ganea19a.html
http://proceedings.mlr.press/v97/ganea19a.html
http://proceedings.mlr.press/v97/ganea19a.html
http://proceedings.mlr.press/v97/ganea19a.html
https://doi.org/https://doi.org/10.1016/0097-3165(77)90077-2
https://doi.org/https://doi.org/10.1016/0097-3165(77)90077-2
https://doi.org/https://doi.org/10.1016/0097-3165(77)90077-2
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com
https://proceedings.neurips.cc/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://doi.org/https://doi.org/10.1016/j.aam.2010.11.002
https://doi.org/https://doi.org/10.1016/j.aam.2010.11.002
https://doi.org/https://doi.org/10.1016/j.aam.2010.11.002
https://proceedings.neurips.cc/paper/2018/file/9dcb88e0137649590b755372b040afad-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/9dcb88e0137649590b755372b040afad-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/9dcb88e0137649590b755372b040afad-Paper.pdf
https://openreview.net/forum?id=r1gRTCVFvB
https://openreview.net/forum?id=r1gRTCVFvB
https://openreview.net/forum?id=r1gRTCVFvB
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,710
Michael Auli, and Sergey Edunov. 2019. Facebook711
FAIR’s WMT19 news translation task submission.712
In Proceedings of the Fourth Conference on Ma-713
chine Translation (Volume 2: Shared Task Papers,714
Day 1), pages 314–319, Florence, Italy. Association715
for Computational Linguistics.716

Toan Nguyen and David Chiang. 2018. Improving lex-717
ical choice in neural machine translation. In Pro-718
ceedings of the 2018 Conference of the North Amer-719
ican Chapter of the Association for Computational720
Linguistics: Human Language Technologies, Vol-721
ume 1 (Long Papers), pages 334–343, New Orleans,722
Louisiana. Association for Computational Linguis-723
tics.724

Alec Radford, Jeff Wu, Rewon Child, David Luan,725
Dario Amodei, and Ilya Sutskever. 2019. Language726
models are unsupervised multitask learners.727

Vikas Raunak, Siddharth Dalmia, Vivek Gupta, and728
Florian Metze. 2020. On long-tailed phenomena in729
neural machine translation. In Findings of the As-730
sociation for Computational Linguistics: EMNLP731
2020, pages 3088–3095, Online. Association for732
Computational Linguistics.733

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich734
Germann, Barry Haddow, Kenneth Heafield, An-735
tonio Valerio Miceli Barone, and Philip Williams.736
2017. The University of Edinburgh’s neural MT737
systems for WMT17. In Proceedings of the Sec-738
ond Conference on Machine Translation, pages 389–739
399, Copenhagen, Denmark. Association for Com-740
putational Linguistics.741

Rico Sennrich, Barry Haddow, and Alexandra Birch.742
2016. Neural machine translation of rare words743
with subword units. In Proceedings of the 54th An-744
nual Meeting of the Association for Computational745
Linguistics (Volume 1: Long Papers), pages 1715–746
1725, Berlin, Germany. Association for Computa-747
tional Linguistics.748

Warren D. Smith. 2014. D-dimensional orderings and749
stirling numbers. [Online; accessed 05-November-750
2021].751

Richard P. Stanley. 2004. An introduction to hyper-752
plane arrangements. In Lecture notes, IAS/Park City753
Mathematics Institute.754

Jörg Tiedemann. 2020. The Tatoeba Translation Chal-755
lenge – Realistic data sets for low resource and multi-756
lingual MT. In Proceedings of the Fifth Conference757
on Machine Translation, pages 1174–1182, Online.758
Association for Computational Linguistics.759

Jörg Tiedemann and Santhosh Thottingal. 2020.760
OPUS-MT – building open translation services for761
the world. In Proceedings of the 22nd Annual Con-762
ference of the European Association for Machine763
Translation, pages 479–480, Lisboa, Portugal. Euro-764
pean Association for Machine Translation.765

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 766
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 767
Kaiser, and Illia Polosukhin. 2017. Attention is all 768
you need. In Advances in Neural Information Pro- 769
cessing Systems, volume 30. Curran Associates, Inc. 770

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 771
Chaumond, Clement Delangue, Anthony Moi, Pier- 772
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow- 773
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 774
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 775
Teven Le Scao, Sylvain Gugger, Mariama Drame, 776
Quentin Lhoest, and Alexander M. Rush. 2020. 777
Transformers: State-of-the-art natural language pro- 778
cessing. In Proceedings of the 2020 Conference on 779
Empirical Methods in Natural Language Processing: 780
System Demonstrations, pages 38–45, Online. Asso- 781
ciation for Computational Linguistics. 782

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and 783
William W. Cohen. 2018. Breaking the softmax bot- 784
tleneck: A high-rank RNN language model. In Inter- 785
national Conference on Learning Representations. 786

A Halfspace interpretation 787

As promised, here is the derivation showing that if 788

P (ci | x) < P (cj | x) then x is constrained to a 789

halfspace. 790

We have:

P (ci | x) < P (cj | x) ⇐⇒

ew
>
ci
x+bci∑

i′ e
w>

ci′
x+bci′

<
e
w>

cj
x+bcj∑

i′ e
w>

ci′
x+bci′

⇐⇒

ew
>
ci
x+bci < e

w>
cj
x+bcj ⇐⇒

ew
>
ci
x+bci

e
w>

cj
x+bcj

< 1 ⇐⇒

e(wci−wcj)
>x+(bci−bcj) < e0 ⇐⇒

(wci −wcj)
>x+ (bci − bcj) < 0

x is therefore constrained to a halfspace defined by 791

normal vector wci − wcj and offset by bci − bcj . 792

This linear form defined by the normal vector and 793

offset is the “shadow” in the input dimension of 794

our friend, the Braid Arrangement, as we will make 795

clear in the next section (see Derivation 2). 796

B Hyperplane Arrangements 797

Excellent resources to learn more about hyper- 798

plane arrangements are Stanley (2004) and Fed- 799

erico Ardila’s lectures on polytopes (see Lecture 800

34 onwards). We give a brief introduction below. 801

A hyperplane in a vector space Rd is an affine 802

subspace of dimension d − 1. The hyperplane H 803

10

https://doi.org/10.18653/v1/W19-5333
https://doi.org/10.18653/v1/W19-5333
https://doi.org/10.18653/v1/W19-5333
https://doi.org/10.18653/v1/N18-1031
https://doi.org/10.18653/v1/N18-1031
https://doi.org/10.18653/v1/N18-1031
https://doi.org/10.18653/v1/2020.findings-emnlp.276
https://doi.org/10.18653/v1/2020.findings-emnlp.276
https://doi.org/10.18653/v1/2020.findings-emnlp.276
https://doi.org/10.18653/v1/W17-4739
https://doi.org/10.18653/v1/W17-4739
https://doi.org/10.18653/v1/W17-4739
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://rangevoting.org/WilsonOrder.html
https://rangevoting.org/WilsonOrder.html
https://rangevoting.org/WilsonOrder.html
https://www.aclweb.org/anthology/2020.wmt-1.139
https://www.aclweb.org/anthology/2020.wmt-1.139
https://www.aclweb.org/anthology/2020.wmt-1.139
https://www.aclweb.org/anthology/2020.wmt-1.139
https://www.aclweb.org/anthology/2020.wmt-1.139
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://openreview.net/forum?id=HkwZSG-CZ
https://openreview.net/forum?id=HkwZSG-CZ
https://openreview.net/forum?id=HkwZSG-CZ
http://math.sfsu.edu/federico/Clase/Polytopes/polytopes.html
http://math.sfsu.edu/federico/Clase/Polytopes/polytopes.html
http://math.sfsu.edu/federico/Clase/Polytopes/polytopes.html
http://math.sfsu.edu/federico/Clase/Polytopes/polytopes.html
http://math.sfsu.edu/federico/Clase/Polytopes/polytopes.html

(a) Input space b = 0 (b) Output space b = 0 (c) Input space b 6= 0 (d) Output space b 6= 0

Figure 7: Effect of bias term b on feasible permutations of softmax(Wx + b), W ∈ R|C|×d, d = 2, |C| = 4.
Having a bias term offsets the grey plane and allows it to not pass through the origin. This increases the number
of regions by creating bounded regions seen in subfigures c and d. Each region intersected by the grey 2D plane
corresponds to a feasible permutation. We therefore obtain 18/24 feasible permutations if we include a bias term,
compared to 12/24 without one.

has one degree of freedom removed by specifying804

a constraint: a normal vector w ∈ Rd to which it is805

perpendicular. The hyperplane may also be offset806

by b in that directionH = {x ∈ Rd : w>x = b}.807

A real hyperplane arrangementA is defined as a808

set of n hyperplanes in Rd, A = {H1,H2 . . .Hn}.809

The regions R defined by a hyperplane arrange-810

ment A are the connected components X of Eu-811

clidean space Rd left when we remove the hyper-812

planes A, namely X = Rd −
⋃
H∈AH. As an813

example, subfigure (a) in Figure 7 has 12 regions814

while subfigure (c) has 18 regions.815

B.1 Braid Arrangement816

The Braid Arrangement Bn is a hyperplane arrange-
ment that partitions space into n! regions corre-
sponding to permutations. It can be constructed
in Rn from the standard basis, the columns of the
identity matrix (e1, e2 . . . en), ei ∈ Rn, by taking
all
(
n
2

)
pairs of differences between them, each dif-

ference defining the normal vector of a hyperplane
Hi,j of the Braid Arrangement.

Bn = {Hi,j ∀i, j : 1 ≤ i < j ≤ n},

Hi,j = {x ∈ Rn : (ei − ej)
>x = 0}

The Braid Arrangement for n = 3 and n = 4 can817

be seen in Figure 3. It has
(
n
2

)
hyperplanes, one per818

pair of dimensions in Rn. Hence there are 3 hyper-819

planes for |C| = 3 and 6 hyperplanes for |C| = 4.820

As an example, when we have 4 classes the normal821

vector for H1,3 is w1,3 =
[
1 0 −1 0

]>. As822

can be verified by taking the dot product w>i,jx,823

the result is positive if xi > xj and negative if vice824

versa. Therefore, each hyperplane bisects space825

into two regions one for each possible ranking of 826

the pair of coordinates. 827

To see how the hyperplanes intersect to give us a
regionRπ , we express a permutation (total order)
over |C| classes, such as that in Relation 3.1.2,
using a chain of |C| − 1 pairwise inequalities.

P (cπi | x) < P (cπi+1 | x), 1 ≤ i ≤ |C| − 1

Each above constraint is equivalent to choosing a 828

side of a braid hyperplane. By imposing all con- 829

straints, we obtain a regionRπ as the intersection 830

of |C| − 1 halfspaces. There is therefore bijec- 831

tion between permutations and regions of the Braid 832

Arrangement π ↔ Rπ . 833

B.2 Restricting the Braid Arrangement to 834

lower dimensions 835

In the softmax classification layer of a neural net-
work we often compute the output space activations
y ∈ Rn by applying a final affine layer to the soft-
max input space x ∈ Rd.

y = Wx+ b, W ∈ Rn×d,b ∈ Rn

What do the Braid Arrangement hyperplanes look 836

like in the input dimension d? Let us start from the 837

output space Rn and work backwards towards the 838

input space Rd. 839

yi < yj =⇒ (ei − ej)
>y < 0 840

e>i y − e>j y < 0 841

e>i (Wx+ b)− e>j (Wx+ b) < 0 842

w>i x+ bi −w>j x− bj < 0 843

(wi −wj)
>x+ (bi − bj) < 0 844

(2) 845

11

We therefore see that if d < n we can think of846

how the Braid Arrangement classifies outputs into847

permutations from two equivalent perspectives:848

• In the output space Rn not all y are feasible,849

we can only classify an input x as a permu-850

tation π if the affine layer can map x to Rπ .851

This can be seen in subfigures b and d of Fig-852

ure 7 where the feasible outputs are a plane853

that intersects the Braid Arrangement.854

• In the input space Rd all x are feasible but we855

only see the projection of the Braid Arrange-856

ment in this lower dimension. This can be857

seen in subfigures a and c of Figure 7.858

The above gives us a recipe for building the859

Braid Arrangement in the input space when the860

outputs are an affine function of the inputs. This861

construction is illustrated in Figure 8, albeit with-862

out the bias term.863

C Number of Regions (Feasible864

Permutations) of the restricted Braid865

Arrangement866

The number of feasible permutations is invariant to867

specific choices of W and b (Cover, 1967; Smith,868

2014) and only depends on the dimensionality of869

the softmax inputs d, the number of classes |C|870

and whether we specify a bias term b not in the871

columnspace of W. Namely, the cardinality of872

the set of feasible permutations does not change,873

but the members of the set do - they depend on874

the specific values in W and b. There exists a875

recurrence formula to obtain the number of feasible876

permutations for a particular |C| and d (Good and877

Tideman, 1977; Kamiya and Takemura, 2005). See878

our code and the relations in (Smith, 2014) for879

more details.880

C.1 Softmax with no bias term881

The number of feasible permutations as a function882

of |C| and d when we have a softmax with no bias883

term can be seen in Table 2. When d ≥ |C| − 1 all884

permutations corresponding to ways of ranking |C|885

classes are feasible (table cells with d = |C| − 1886

are highlighted in bold). However, as we make887

the Softmax Bottleneck narrower, we can represent888

less permutations, as can be seen from the numbers889

reported below the diagonal.890

Figure 8: Constructing the Braid Arrangement in the
input space for |C| = 3 classes and d = 2. Top left:
The softmax weights W ∈ R|C|×d for 3 classes, a, b, c.
Each vector is a row of the weight matrix. Top right:
We form the normal vectors for the braid hyperplanes
by taking all pairs of differences between the basis vec-
tors. Bottom left: The Braid hyperplanes are perpen-
dicular to the normal vectors. Each hyperplane bisects
space into two regions, one comprises the set of x for
which class i has a larger activation that class j and
the second vice versa. Bottom right: The hyperplanes
partition space into 3! = 6 regions corresponding to
permutations. Each permutation contains the indices
that sort the activations over classes in increasing order.
Softmax decision boundaries are unions of two regions,
e.g. regions cba and bca for class a.

C.2 Softmax with bias term 891

The number of feasible permutations as a function 892

of |C| and d when we have a softmax with a bias 893

term is larger as can be seen in Table 3. As we 894

saw in Figure 7, this is because a bias term can 895

offset the representible linear subspace to an affine 896

subspace which can intersect more regions of the 897

Braid Arrangement. 898

12

BOTTLENECK DIMENSIONALITY d
1 2 3 4 5 6 7 8 9 10

N
U

M
B

E
R

C
L

A
S

S
E

S
|C
| 2 2 2 2 2 2 2 2 2 2 2

3 2 6 6 6 6 6 6 6 6 6
4 2 12 24 24 24 24 24 24 24 24
5 2 20 72 120 120 120 120 120 120 120
6 2 30 172 480 720 720 720 720 720 720
7 2 42 352 1512 3600 5040 5040 5040 5040 5040
8 2 56 646 3976 14184 30240 40320 40320 40320 40320
9 2 72 1094 9144 45992 143712 282240 362880 362880 362880
10 2 90 1742 18990 128288 557640 1575648 2903040 3628800 3628800

Table 2: Number of permutation regions defined by a bottlenecked softmax layer Softmax(Wx) with no bias
term. When d ≥ |C| − 1 all permutations corresponding to ways of ranking |C| classes are feasible. 12 in italics
corresponds to the number of regions shown in the left subfigure of Figure 7. https://oeis.org/A071223.

BOTTLENECK DIMENSIONALITY d
1 2 3 4 5 6 7 8 9 10

N
U

M
B

E
R

C
L

A
S

S
E

S
|C
| 2 2 2 2 2 2 2 2 2 2 2

3 4 6 6 6 6 6 6 6 6 6
4 7 18 24 24 24 24 24 24 24 24
5 11 46 96 120 120 120 120 120 120 120
6 16 101 326 600 720 720 720 720 720 720
7 22 197 932 2556 4320 5040 5040 5040 5040 5040
8 29 351 2311 9080 22212 35280 40320 40320 40320 40320
9 37 583 5119 27568 94852 212976 322560 362880 362880 362880
10 46 916 10366 73639 342964 1066644 2239344 3265920 3628800 3628800

Table 3: Number of permutation regions defined by a bottlenecked softmax layer Softmax(Wx + b). When
d ≥ |C| − 1 all permutations corresponding to ways of ranking |C| classes are feasible. 18 in italics corresponds
to the number of regions shown in the right subfigure of Figure 7.

13

https://oeis.org/A071223

D Preventing Stolen Probability899

While Stolen Probability does not seem to occur in900

practice for MT models, there are solutions if we901

want to guarantee it cannot occur: we can force the902

decision boundaries of the softmax layer to create903

a Voronoi Tesselation in the output space.904

A Voronoi Tesselation formed for a set of |C|905

generating points partitions space into |C| convex906

regions, one per point. A region created from a gen-907

erating point contains any point in space for which908

the Euclidean distance to the generating point is909

smaller than the distance to all other generating910

points. Since all generating points form a region,911

this guarantees that all classes can be predicted.912

The decision boundaries of softmax always form913

a Voronoi Tesselation when W is full rank (Hess914

et al., 2020, Theorem 1), as was shown by identify-915

ing the centroids of the tesselation as the softmax916

weights offset by a vector u. When W is low rank,917

however, we will need to constrain the parameters918

of softmax in order to obtain a Voronoi Tesselation.919

A summary of constraints we will show are920

needed are:921

• If Softmax has no bias term, normalise the
weight vectors 12

‖wi‖2 = const 1 ≤ i ≤ C

• If Softmax has a bias term, then set the bias
terms to:

bi = −
‖wi‖22

2
1 ≤ i ≤ C

Derivation: For any pair (i, j) of classes, we922

can construct an auxiliary pairwise classifier using923

the corresponding softmax weights (wi,wj). This924

auxiliary binary classifier w′ = wi −wj decides925

for each input x whether the activation for class i926

is greater than that for class j or not.927

The decision boundary for this binary classifier928

will be the points x for which:929

(wi −wj)
>x = 0

The region of x for which a multi-class classifier930

assigns class i as the argmax (a cone if no bias931

term) can be found using a combination of such932

binary classifiers:933

For class i to be the argmax, require:934

12This is also clear from Hess et al. (2020, Theorem 1)

wi

wj

wi −wj

wi+wj

2

Figure 9: We can be certain that all classes are repre-
sentable if we force each decision boundary formed by
a braid vector to also be a perpendicular bisector of the
line segment joining the two classes.

(wi −wj)
>x > 0

(wi −wk)
>x > 0

. . .

(wi −wn)
>x > 0

To obtain a Voronoi Tesselation, we want all 935

the auxiliary classifier decision boundaries to be 936

the perpendicular bisectors of the line segments 937

joining their corresponding weight vectors wi and 938

wj . If we require this for all possible pairs of 939

classes, the hyperplanes that define the boundaries 940

of the softmax regions will also satisfy this property 941

and classification will be equivalent to assigning 942

an input to the class weight having the smallest 943

Euclidean distance with it. 944

Therefore, let us force a point x of the decision 945

boundary to be a point on the perpendicular bi- 946

sector of the line segments connecting all pairs of 947

class weights and see where this leads us. In the 948

plot below, the orange line is both the perpendicu- 949

lar bisector of the line segment having wi and wj 950

as endpoints, as well as the decision boundary for 951

the auxiliary classifier since w′ = wi −wj is the 952

normal vector. 953

D.1 Softmax without a bias term 954

Let us start with the scenario where we have a 955

softmax layer with no bias vector. We pick x to be 956

the midpoint of the line segment joining wi and wj . 957

This way x will be both on the decision boundary 958

as well as on the perpendicular bisector. 959

14

(wi −wj)
>x = 0 =⇒

(wi −wj)
>
(
wi +wj

2

)
= 0 =⇒

w>i wi +w>i wj −w>j wi −w>j wj

2
= 0 =⇒

‖wi‖22 − ‖wj‖22
2

= 0 =⇒

‖wi‖2 = ‖wj‖2

The above would need to be true for all pairs960

(i, j). Therefore, we see that if the weight vectors961

for all classes are equal (or normalised to 1) we962

get a Voronoi tesselation with the weight vectors963

as centroids. Such a normalisation step has been964

carried out in the literature (Nguyen and Chiang,965

2018; Raunak et al., 2020), but not justified from966

this point of view, to our knowledge.967

D.2 Softmax with a bias term968

Alternatively, if we had a softmax layer with a bias969

term, we would have the following changes:970

The auxiliary pairwise classifier decision bound-
aries would be:

(wi −wj)
>x+ bi − bj = 0

Following the same steps as above we would
arrive at:

(wi −wj)
>x+ bi − bj = 0 =⇒

bi − bj =
‖wj‖22 − ‖wi‖22

2

We can obtain the above condition for all auxil-971

iary classifier pairs by setting the bias term of each972

weight vector depending on the norm of the weight973

vector:974

bi = −
‖wi‖22

2

E Braid Reflect Approximate Algorithm 975

Algorithm 2: Braid reflect
Data: Class index ct,

W ∈ R|C|×d, b ∈ R|C|
Result: Whether ct is bounded

1 bounded = true
2 patience = 2500
3 x = W>

ct:

4 while patience do
5 ci = argmax(Wx+ b)
6 if ci = ct then
7 bounded = false
8 break
9 else

10 w = (Wct: −Wci:)
>

11 b = bct − bci
12 w′ = w

‖w‖2
13 xp = w′>x

14 x = x− 2(xp +
b
‖w‖2

)w′

15 patience = patience - 1
16 end
17 end

Figure 10: Approximate algorithm to detect whether
class ct has Stolen Probability.

F Stolen probability search results 976

model # approx bounded # bounded

bert-base-cased 0 0
bert-base-uncased 0 0

roberta-base 0 0
roberta-large 0 0

xlm-roberta-base 0 0
xlm-roberta-large 0 0

gpt2 0 0

Table 4: Stolen Probability search results for Language
Models. approx bounded is the number of tokens
that the approximate algorithm failed to prove were un-
bounded. bounded is the number of bounded tokens
according to the exact algorithm. No tokens were found
to be bounded.

15

source model # approx bounded # bounded

Helsinki
NLP

opus-mt-ja-en 109 2
opus-mt-ru-en 90 159
opus-mt-bg-en 93 53

opus-mt-ja-en(2) 14 0
opus-mt-ar-en 40 184
opus-mt-en-el 75 42
opus-mt-de-el 115 6
opus-mt-ar-el 41 0
opus-mt-es-el 67 32
opus-mt-fi-el 57 8
opus-mt-ar-he 3 0
opus-mt-de-he 4 0
opus-mt-es-he 3 0
opus-mt-fr-he 1 0
opus-mt-fi-he 7 0
opus-mt-ja-he 0 0
opus-mt-en-ar 21 2
opus-mt-el-ar 12 0
opus-mt-es-ar 17 1
opus-mt-fr-ar 17 0
opus-mt-he-ar 7 0
opus-mt-it-ar 8 0
opus-mt-ja-ar 4 0
opus-mt-pl-ar 52 0
opus-mt-ru-ar 8 0
opus-mt-en-ru 98 34
opus-mt-es-ru 42 18
opus-mt-fi-ru 1 0
opus-mt-fr-ru 34 43
opus-mt-he-ru 5 0
opus-mt-ja-ru 13 0
opus-mt-ko-ru 2 0

Table 5: Stolen Probability search results for Helsinki
NLP OPUS models. approx bounded is the num-
ber of tokens that the approximate algorithm failed to
prove were unbounded. bounded is the number of
bounded tokens according to the exact algorithm. For
13/32 models some infrequent tokens were found to be
bounded.

source model # approx bounded # bounded

FAIR

facebook/wmt19-en-ru 5 0
facebook/wmt19-ru-en 64 0
facebook/wmt19-de-en 173 0
facebook/wmt19-en-de 184 0

Table 6: Stolen Probability search results for FAIR
WMT’19 models. approx bounded is the number of
tokens that the approximate algorithm failed to prove
were unbounded. bounded is the number of bounded
tokens according to the exact algorithm. No tokens
were found to be bounded.

source model # approx bounded # bounded

Bergamot

cs-en.student.base 0 0
es-en.teacher.bigx2(1) 0 0
es-en.teacher.bigx2(2) 0 0
en-es.teacher.bigx2(1) 0 0
en-es.teacher.bigx2(2) 0 0
et-en.teacher.bigx2(1) 2 0
et-en.teacher.bigx2(2) 1 0
en-et.teacher.bigx2(1) 1 0
en-et.teacher.bigx2(2) 1 0
nb-en.teacher.base 0 0
nn-en.teacher.base 0 0
is-en.teacher.base 0 0
cs-en.student.base 0 0
cs-en.student.tiny11 0 0
en-cs.student.base 0 0
en-cs.student.tiny11 0 0
en-de.student.base 0 0
en-de.student.tiny11 0 0
es-en.student.tiny11 0 0
en-es.student.tiny11 0 0
et-en.student.tiny11 0 0
en-et.student.tiny11 0 0
is-en.student.tiny11 0 0
nb-en.student.tiny11 0 0
nn-en.student.tiny11 0 0

Table 7: Stolen Probability search results for Berg-
amot models. approx bounded is the number of to-
kens that the approximate algorithm failed to prove
were unbounded. bounded is the number of bounded
tokens according to the exact algorithm. No tokens
were found to be bounded. Interestingly, student mod-
els were much easier to prove unbounded than teacher
models, despite student model softmax weights being
lower dimensional.

16

source model # approx bounded # bounded

WMT’17
Edinburgh

en-cs.l2r(1-4) ≤ 2 0
en-cs.r2l(1-4) ≤ 1 0
cs-en.l2r(1-4) ≤ 2 0
cs-en.r2l(1-4) 0 0
en-de.l2r(1-4) ≤ 1 0
en-de.r2l(1-4) ≤ 2 0
de-en.l2r(1-4) ≤ 2 0
de-en.r2l(1-4) 0 0
en-ru.l2r(1-4) 0 0
ru-en.l2r(1-4) 0 0
ru-en.r2l(1-4) 0 0
en-tr.l2r(1-4) ≤ 5 0
en-tr.r2l(1-4) ≤ 4 0
lv-en.l2r(1-4) 0 0
lv-en.r2l(1-4) ≤ 1 0

tr-en.l2r(1) 2 0
tr-en.l2r(2) 8 0
tr-en.l2r(3) 6 0
tr-en.l2r(4) 2 0
tr-en.r2l(1) 4 0
tr-en.r2l(2) 0 0
tr-en.r2l(3) 6 0
tr-en.r2l(4) 4 0
en-zh.l2r(1) 3 0
en-zh.l2r(2) 3 0
en-zh.l2r(3) 14 0
en-zh.l2r(4) 1 0
en-zh.r2l(1) 2 0
en-zh.r2l(2) 0 0
en-zh.r2l(3) 7 0
en-zh.r2l(4) 7 0
zh-en.l2r(1) 8 0
zh-en.l2r(2) 3 0
zh-en.l2r(3) 366 0

zh-en.r2l(1-3) ≤ 3 0

Table 8: Stolen Probability search results for Edin-
burgh WMT’17 submission (ensemble) models. ap-
prox bounded is the number of tokens that the ap-
proximate algorithm failed to prove were unbounded.
bounded is the number of bounded tokens according
to the exact algorithm. r2l and l2r refer to training di-
rection, with l2r denoting training left to right and r2l
right to left. Models submitted were ensembles, hence
there are more than one model per language pair and
direction. When all models per language pair and direc-
tion had less than 5 counts, we summarise all models
with a single row, e.g. (1-4).

17

Figure 11: Illustration of softmax weight dimensionality affecting stolen probability when weights are randomly
initialised for a vocabulary of 10000. The softmax weights and bias term are initialised using a uniform U(−1, 1)
distribution. Stolen probability is unlikely to occur as we increase the dimensionality of the weight vectors. This
can be seen in the subplots from top-left to bottom-right as we increase the dimensionality. Moreover, the braid
reflect approximate algorithm fails less and needs less iterations to find an input that proves a token is unbounded.
For example, for the bottom right two figures most tokens are shown to be unbounded with 1 or 0 iterations.

18

Figure 12: Models from an ensemble can differ a lot in how easy they are to scan for stolen probability despite
their difference being solely the random seed used in initialisation. As can be seen, the right-most figure has 366
vocabulary tokens that are unbounded but the approximate algorithm fails to find a solution, compared to 8 and 3
for the other two models.

19

(a) The approximate algorithm needs more iterations to show that teacher models are unbounded despite the dimensionality
of the softmax weights being larger than the student models.

(b) Student models are very easy to show to be unbounded.

Figure 13: Number of iterations of the approximate algorithm needed to show that a vocabulary token is un-
bounded.

20

G Activation range of softmax layer977

inputs978

Neural network activations are bounded in magni-979

tude in practice, since larger activations can lead980

to larger gradients and instability during training.981

In this work, we made the assumption that the soft-982

max layer inputs x are bounded within a range for983

all dimensions: −100 ≤ x ≤ 100. Below we pro-984

vide some supporting empirical evidence that this985

assumption is reasonable.986

We checked this assumption on 2 Helsinki NLP987

OPUS models for en-ru and bg-en, which were988

found to have tokens bounded in probability. We989

took 10 million sentence pairs from OPUS as re-990

leased in Tiedemann (2020) for the corresponding991

language pairs and input them to the correspond-992

ing models, decoding using the gold translations.993

We then recorded the range of the minimum and994

maximum activation for the softmax layer inputs.995

Since our assumption is that all 512 dimensions996

are bounded between −100 and 100, we focus on997

the range of the minimum and maximum activation998

for each output token across all dimensions. We999

therefore calculate a 99 percentile for the min and1000

max activation per token across all dimensions as1001

well as the overall min and max activations overall.1002

The results can be seen in Table 9, from which we1003

can see that for these two models our assumption1004

holds for all activations produces for 10 million1005

sentences and the percentiles show that more than1006

99% of the extreme values fall within the [−50, 50]1007

range.1008

model min range max range min max

bg-en [−37.5,−9.4] [12.1, 40.3] −57.47 58.87
en-ru [−41.6,−9.9] [10.9, 36.4] −95.4 94.4

Table 9: Range of activations for softmax inputs as
calculated on 10 million sentence pairs from OPUS.
Ranges are 99 percentiles and min and max are the
largest activation across all dimensions for all sen-
tences.

21

