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Abstract

Large language models (LLMs) have achieved impressive performance in a variety
of natural language processing (NLP) tasks. However, when applied to long-
context scenarios, they face two challenges, i.e., low computational efficiency and
much redundant information. This paper introduces GMSA, a context compression
framework based on the encoder-decoder architecture, which addresses these chal-
lenges by reducing input sequence length and redundant information. Structurally,
GMSA has two key components: Group Merging and Layer Semantic Align-
ment (LSA). Group merging is used to effectively and efficiently extract summary
vectors from the original context. Layer semantic alignment, on the other hand,
aligns the high-level summary vectors with the low-level primary input semantics,
thus bridging the semantic gap between different layers. In the training process,
GMSA first learns soft tokens that contain complete semantics through autoencoder
training. To furtherly adapt GMSA to downstream tasks, we propose Knowledge
Extraction Fine-tuning (KEFT) to extract knowledge from the soft tokens for
downstream tasks. We train GMSA by randomly sampling the compression rate
for each sample in the dataset. Under this condition, GMSA not only significantly
outperforms the traditional compression paradigm in context restoration but also
achieves stable and significantly faster convergence with only a few encoder layers.
In downstream question-answering (QA) tasks, GMSA can achieve approximately
a 2x speedup in end-to-end inference while outperforming both the original input
prompts and various state-of-the-art (SOTA) methods by a large margin.

1 Introduction

Thanks to powerful reasoning and generalization capabilities, large language models (LLMs) have
achieved remarkable performance across various natural language processing (NLP) tasks [23}26].
However, directly applying LLMs to long-context scenarios presents two challenges: (1) Compu-
tational efficiency. When processing long prompts, the quadratic complexity of the Transformer’s
attention mechanism [27] results in long inference latency. (2) Redundant information. Much
redundant information in long-context scenarios can degrade model performance [[10].

Prompt compression methods address these two challenges by significantly reducing input length
and removing redundant information. Prompt compression can be categorized into hard prompt
compression [[14} [11} 2110} 251 38} 3} 14} 137]] and soft prompt compression [20}, 16} 7, 34} [16]. Hard
prompt compression involves deleting certain tokens from the original context to achieve compression.
However, this explicit compression approach inevitably compromises semantic integrity. In contrast,
leveraging the inherent redundancy in semantic vectors, soft prompt compression learns a set of soft

'Our code and models will be released after acceptance.
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Figure 1: Traditional Compression Paradigm v.s. Compression by GMSA. (a) visualizes the
attention matrix when processing Life and love. <CT1> <CT2>, where <CTI1> and <CT2> are
randomly initialized tokens. Original shows the attention changes during processing of life and
love. (b) represents the traditional compression paradigm. It first learns summary vectors in an
autoregressive manner layer by layer, and then completes coarse-grained semantic alignment through
a multi-layer perceptron (MLP), where Ng,. denotes the number of encoder layers. (c) denotes the
compression paradigm of GMSA, which first learns summary vectors through group merging and
completes semantic alignment between different layers through the Layer Semantic Alignment (LSA)
module.

tokens with a length much shorter than the original context, enabling compression while preserving
complete semantics.

Although existing soft prompt compression methods can effectively reduce the number of input
tokens, they have two limitations: (1) Uneven semantics learning and non-parallelism. As shown in
Figure[T] in the traditional compression paradigm, the appending randomly initialized tokens learn
summary vectors layer by layer in an autoregressive manner. LLM tends to aggregate information on
a few anchor tokens [36| 29| 9] [28]]. The semantics of anchor tokens (i.e., Life and .) are emphasized
layer by layer, resulting in the semantics of the summary vectors being dominated by them while the
semantics of other tokens are diluted (i.e., uneven semantics learning). This limits the retention of
complete semantics, and the process cannot be parallelized. (2) Ignoring the significant gap between
the semantic representations of different layers in LLMs [12| [19]]. The summary vectors, which
represent high-level semantics and are highly abstract, are directly treated as ordinary tokens (i.e.,
as low-level semantic information) and input into the decoder during training and testing, resulting
in a large semantic gap. Therefore, two questions naturally arise: (1) How can we effectively and
efficiently learn summary vectors? (2) How can we bridge the significant semantic gap between
different layers?

To address the aforementioned limitations, we propose GMSA, a context compression framework
based on the encoder-decoder architecture, which innovatively resolves these limitations from a
structural perspective. Specifically, we tackle the first limitation through Group Merging. Group
merging performs grouping and merging on the last hidden state of the encoder (see Figure [I).
To avoid dilution and achieve more uniform semantic learning, group merging equally considers
each group, and within each group, all tokens are merged via averaging pooling. Group merging
is conducive to retaining complete semantic information and supports parallelization for effective
and efficient semantic extraction. Subsequently, to address the second limitation, we bridge the
gap between highly abstract high-level semantic information and low-level primary input semantics
by passing the summary vectors through the Layer Semantic Alignment (LSA) module, which
is composed of several Transformer blocks initialized with the weights of lower-layer decoder
blocks (see Figure[2). This step allows the summary vectors containing high-level abstract semantic
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information to be mapped into a low-level semantic space, thereby bridging the semantic gap between
different layers.

During the training process, GMSA first employs the autoencoder training to ensure that the generated
soft tokens contain complete semantic representations. Building on this foundation, we further pro-
pose Knowledge Extraction Fine-tuning (KEFT) to adapt GMSA to downstream tasks. Specifically,
we freeze the encoder and LSA (which, after autoencoder training, can already produce soft tokens
containing complete semantics) and fine-tune the decoder to enhance its ability to extract knowledge
from the soft tokens.

Our contributions are threefold: (1) Structurally, we introduce the GMSA, which effectively and
efficiently learns summary vectors through group merging and bridges the semantic gap between
different layers via a layer semantic alignment (LSA) module. (2) In the training process, we propose
Knowledge Extraction Fine-tuning (KEFT) to guide the decoder to extract the knowledge required
by downstream tasks from soft tokens. (3) Experimental results in context restoration and multi-
document question answering demonstrate the effectiveness and superiority of our method, e.g., on
NaturalQuestions with an 8x compression constraint, GMSA achieves approximately 36% higher
Exact Match compared to the original input prompt, while also realizing a 2x end-to-end speedup.

2 Problem Formulation

Given a retrieval-augmented prompt X = (X X4 . Xde  Xdx X9) where X9,
{ X }E |, and X9 represent the instruction, context, and input question respectively. The prompt

has a total token length L. The key aspect of the context compression system lies in generating a
compressed prompt X with length L, where the compression rate is defined as 7 = % Let y denote

the ground truth answer given the original input X, and i denote the answer generated by the large
language model (LLM) when input with the compressed prompt . We aim for the distributions of y
and y to be similar under high compression rates 7. This can be formulated as:

winKL (P (5] X).P(y] X)) )

Due to space limitations, we introduce related work in Appendix [A]

3 Method

3.1 GMSA Architecture

In this section, we elaborate on the architecture of our proposed context compression framework,
GMSA, which includes two key components: group merging and layer semantic alignment (LSA).
GMSA undergoes a two-stage training process: autoencoder training (see Figure 2)) and knowledge
extraction fine-tuning (KEFT) (see Figure[3)). First, GMSA ensures that the generated soft tokens
contain the complete semantic representation of the original text through the autoencoder training
process. Then, it applies the knowledge contained in the soft tokens to downstream tasks via KEFT.

3.2 Group Merging

Extraction of Semantic Features. First, we extract the semantic features of the original text
through a k-layer language modeling model as the encoder. The encoder is trained using LoRA.

H = Encodery(X), )
where X is the original text and H is the obtained last hidden state.

Merging. We divide the obtained H into several groups according to the size of the compression
limit, as the group length L (e.g., when the compression rate is 4, the group length is also 4). To
this end, original text representations are organized as follows:

H = [HngHGN}

= [Hing, - H(j—1)xLajxLar s HNa—Lo4+1:Na) -
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Figure 2: The Autoencoder Training Process of GMSA. GMSA consists of an encoder and a
decoder, trained in an autoencoder manner using cross-entropy loss. GMSA first generates a set of
summary vectors that meet the compression rate by performing group merging on the last hidden
state of the encoder, and then achieves cross-layer semantic alignment through the Layer Semantic
Alignment (LSA) module, which is composed of several Transformer blocks initialized with the
weights of lower-layer decoder blocks. Remarkably, we find that using just a single layer of LSA can
achieve excellent semantic preservation (see Appendix , hence kpsa << Npec.

We take the average of each dimension of each group token to obtain the initial compressed represen-
tation.

I =[Ag,,..He,, ... Ha,]

1 1 1
|:ng G 7LGZ G ;LGZ GN:|
, where H is the obtained initial compressed representation.

3.3 Layer Semantic Alignment

The layer semantic alignment (LSA) module is used to complete the alignment from the soft tokens
generated by the encoder (high-level semantics) to the primary semantics of the decoder. Given the
significant differences in semantic representation between different layers of large language models
(LLMs), the LSA is trained via full fine-tuning.

m = ]:kLSA (ﬁ)7 (3)

where H is the final compressed representation, Fy, , denotes Transformer blocks initialized with
the weights from the first & layers of the decoder, and m denotes the generated soft tokens. Just one
layer of LSA is sufficient to achieve excellent semantic preservation (for space limitations, please
refer to Appendix [B), so in this work, we can just set kpsa = 1.

3.4 Autoencoder Training

The Autoencoder Training process, which aims to encode the complete information of the original
text into memory embeddings, is achieved through autoencoder-based training. We hope to minimize
the loss of the reconstructed text, which can be expressed as:

ﬁAE _ Zlogp¢ (xZ | ﬁl, Xins’ $<i) , (4)
=1

where pg(-) is the decoder probability distribution obtained after the softmax function, and z; is the
i-th token in the original text.
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3.5 Knowledge Extraction

3.5.1 Knowledge Extraction Process

Through autoencoder training, we can ensure that the soft tokens obtained via the encoder and LSA
contain complete semantic information. Therefore, the next challenge to address is: how to extract
knowledge from the existing soft tokens?

To guarantee that the generated soft tokens always retain adequate information, we freeze the encoder
and LSA during the knowledge extraction process, allowing the decoder to complete knowledge
extraction (KE).

We only train the decoder’s self-attention module. As shown in Figure [3] the i-th token decoding
progress can be formulated as:

Decoder(fnl, m27m3, 7%4, ...,fnk,l,fnk, q1,492,...y4n,0a1,02, ..., G,Z',l). (5)

soft tokens from the encoder question tokens answer tokens

Let d denote the decoder’s hidden size, H € R(E+n+i=1)xd denote input hidden states to the self-
attention module of the decoder in an arbitrary layer. The above hidden states will be projected into
queries, keys, and values as follows:

Q=WoH, K=WgH, V=WyH, ©6)

where Wq, Wk, and Wy are the projection heads for knowledge extraction. Thus, we now
formally present our self-attention computation:

T
V' = softmax <mask (%)) Vv, @)

where V'’ denotes the output of the self-attention mechanism, which is a refined, context-aware
representation of the input values V' after applying attention weights.

3.5.2 Knowledge Extraction Fine-tuning

After completing autoencoder training, we need to teach the decoder how to utilize the soft tokens.
We achieve this by performing full fine-tuning of the Wg, Wi, and Wy, projection matrices in
each layer of the decoder, which can be specifically expressed as:

n
‘CKE - _Zlogptﬁ (ai ‘ m7Q17q27"'7qn7a<i>7 (8)
i=1
where py () is the decoder probability distribution obtained after the softmax function, and a; denotes
the i-th token in the predicted answer.

4 Experiments

In this section, we attempt to answer the following research questions (RQs): (1) How effective is
GMSA in context restoration? (RQ1) (2) How does GMSA utilize knowledge compared with other
baselines? (RQ2) (3) How effective are the individual components of GMSA? (RQ3)

4.1 Settings

Training. GMSA involves a two-stage training process: autoencoder training and knowledge
extraction fine-tuning (KEFT). We use four datasets: PwC [[7]], NaturalQuestions [18]], 2WikiMQA [8]],
and HotpotQA [31]] (For more details about the dataset, please refer to Appendix [D). Among them,
we use PwC to evaluate the performance of context restoration, while the three QA datasets are
employed to measure downstream knowledge application. We conduct two separate trainings on
the PwC dataset and another on a mixed dataset composed of NaturalQuestions, 2WikiMQA, and
HotpotQA. During training, we randomly sampled compression rates (i.e., 4x compression and 8x
compression) for each training sample. Due to space constraints, detailed training settings can be
found in Appendix [C]
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Figure 3: The process of Knowledge Extraction Fine-tuning (KEFT). By fine-tuning only the
W, Wk, and Wy in the attention module of the decoder while keeping other modules frozen, the
decoder performs teacher-forcing training using soft tokens 1, question tokens, and the ground truth
answer.

Implementation. GMSA is implemented based on LLaMA-2-7B (Chatf] and Qwen2.5-7B (In-
struct). The maximum input length was set to 512 for PwC training and 3072 for NaturalQuestions,
2WikiMQA, and HotpotQA training. To ensure fair comparison, all baseline results are obtained
from our re-implementations based on official open-source code.

Evaluation Metrics. For the context restoration task on the PwC dataset, we use BLEU [22]], Prefix
Exact Match, BERT Score [35], and ROUGE [17] for evaluation. For the QA tasks on Natural
Questions, TriviaQA, and 2WikiMQA, we use Acc [18]], Exact Match (EM) [13]], and F1 [31]] for
evaluation.

Baselines. For the task of context restoration, we train a Traditional Compression Paradigm
AutoEncoder (i.e., TCP-AE, see Appendix [E] for details) as a baseline using autoencoder training
and the same training hyperparameters as GMSA. In terms of downstream knowledge application,
we conduct comprehensive comparisons with various methods in text compression and KV-cache
compression fields, including: hard prompt compression (e.g., LongLLMLingua [[10], LLMLingua-2-
large [21]), soft prompt compression (e.g., AutoCompressor [6], ICAE [7]]), and KV-cache compres-
sion approaches (e.g., StreamLLM [29], SnapKV [15]], Activation Beacon [34]).

4.2 Main Result

We highlight the findings of GMSA in two aspects: context restoration and downstream knowledge
application.

For RQ1, in the context restoration task, GMSA-AE significantly outperforms the Traditional
Compression Paradigm AutoEncoder (TCP-AE) in multiple aspects, including restoration
quality (see Figure[), convergence speed, and robustness (see Figure5). As shown in Figure[d]
GMSA-AE outperforms TCP-AE in all evaluation metrics. BLEU Score [22]], Prefix Exact Match®|
and ROUGE [[17]] are token-matching-based metrics, and GMSA-AE’s performance in these metrics
is at least 20% higher than TCP-AE under all compression constraints, indicating that GMSA-AE
has a stronger ability to precisely remember each token. The BERT Score F1 [35], which measures
semantic similarity and reflects the model’s ability to remember overall semantics, is also about 5%
higher for GMSA-AE than TCP-AE. As shown in Figure[5] GMSA-AE converges much faster than

*We use LLaMA-2 as the default base model unless otherwise specified, because AutoCompressor, ICAE,
and Activation Beacon are all based on it, and they are all important baseline models.

3Prefix Exact Match represents the ratio of the correctly matched prefix length to the total length. For
example, in a 512-token sequence, if the first 128 tokens are an exact match but the 129th token is not, the Prefix
Exact Match score is calculated as 128/512 = 0.25.
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Performance Metrics Across Different Sequence Lengths and Compression Rates
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Figure 4: GMSA-AE v.s. TCP-AE on the context restoration task. Sequence Length represents
different context restoration lengths (i.e., 128, 256, 512), and the models are trained with a maximum
length of 512.

TCP-AE. GMSA-AE convergence around 1000 training steps, while TCP-AE has not fully converged
even after 5000 steps. Moreover, significantly reducing the number of encoder layers (e.g., to 8
encoder layers) makes TCP-AE converge much more slowly. In contrast, GMSA-AE demonstrates
robustness under different settings. In terms of convergence speed, reducing the number of encoder
layers even further accelerates the convergence of GMSA-AE: versions with 8 or 16 encoder layers
converge faster than those with 32 layers, possibly because the cross-layer semantic alignment
challenge is alleviated with fewer encoder layers. From the perspective of semantic retention, the
Average BERT Score F1 of different encoder layers remains consistent under various compression
rates, indicating that even with a small number of encoder layers (e.g., 8 layers), GMSA-AE can still
effectively retain semantic information and complete high-quality memory tasks. We also evaluate the
quality of the reconstructed text using perplexity, and the results show that GMSA-AE significantly
outperforms TCP-AE (see Appendix [). Moreover, we conduct specific case studies to further verify
the performance gap between GMSA-AE and TCP-AE (see Appendix [H).

For RQ2, GMSA demonstrates significantly better performance than other baselines under
various compression rate constraints (see Table |I[) In the KV-cache compression methods, the
compressed representation and the target model must be consistent. Although this avoids the problem
of cross-layer semantic alignment, it severely limits the flexibility of applying the compressed
representation. Compared with the KV-cache compression methods (i.e., streamLLM, SnapKYV,
and Activation Beacon), GMSA achieves the best performance while maintaining flexibility. In
contrast to prompt-based compression algorithms, whether they are query-independent prompt
compression algorithms (i.e., ICAE, AutoCompressor, and LLMLingua-2-large) or query-dependent
LongLLLMLingua, their performance is far below that of GMSA. It is worth noting that GMSA adopts
a query-independent compression mechanism and still significantly outperforms the query-dependent
LongLLMLingua, which sufficiently illustrates the effectiveness and superiority of GMSA.

4.3 Efficiency Analysis

In this section, we discuss the efficiency of our proposed method. By using soft tokens instead of the
long original context to enhance the inference process, our method reduces the inference cost of the
original context during the generation process by a factor of r. The overall floating-point operations
(FLOPs) are calculated through two processes: compression and generation.
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Figure 5: Analysis of the Effectiveness of Different Encoder Layers. (a) represents the comparison
of convergence speed between GMSA-AE with different encoder layers and TCP-AE. (b) denotes the
impact of different encoder layers on the semantic retention of GMSA-AE. The average BERT Score
F1 refers to the average F1 score across different context restoration lengths (i.e., 128, 256, and 512).

Table 1: Experimental results on three QA benchmark datasets. We bold the optimal and underline
the suboptimal of baselines. Acc refers to accuracy, EM refers to exact match, and F1 refers to the
F1 score. Closed-book indicates using only the input question as the input, while Original Prompt
indicates using all retrieved documents as the input.

Methods ‘ NaturalQuestions 2WikiMQA HotpotQA

‘ Acc EM F1 Acc EM F1 Acc EM F1
Closed-book 24.14 2023 21.88 2537 2496 27.82 1834 1722 24.02
Original Prompt 5540 15.07 26.81 37.54 30.84 37.79 4421 3435 4749

4x compression constraint

KV-cache Compression Methods

StreamLLM [29] 2953  7.87 1538 2847 2649 30.78 2890 23.87 34.32
SnapKV [13]] 58.64 1258 23.07 29.86 27.61 32.62 37.35 30.51 42.08
Activation Baecon [34] 56.20 25.65 34.17 3445 2442 3205 4445 2580 39.82

Prompt Compression Methods

AutoCompressor [6] 13.79  0.00 1.34  41.56 0.00 8.07 2098 0.01 6.80
ICAE [7] 1733 124 7.05 3517 1025 22.04 3416 13.02 26.69
LongLLMLingua [10] 5341 39.62 43.03 3388 31.71 37.05 4031 3555 48.68
LLMLingua-2-large 4177 2949 3479 31.07 2888 33.37 33.15 2880 40.89

GMSA ‘69.98 58.12 57.59 5595 49.55 57.17 5352 44.60 59.31

8x compression constraint

KV-cache Compression Methods

StreamLLM [29] 3122 772 1493 2743 2582 29.76 2658 21.78 32.21
SnapKV [13]] 5721 11.86 2249 28.19 2656 3097 3454 28.10 40.16
Activation Baecon [34] 51.22  23.01 3145 3320 25.12 3220 40.30 2440 37.63

Prompt Compression Methods

AutoCompressor [6]] 17.51  0.00 1.63 41.76  0.00 8.09 22.04 0.00 6.93
ICAE [7] 1774 0.72 323 3356 574 17.19 3040 442 15.80
LongLLMLingua [10] 46.55 36.65 40.72 3153 2993 34.08 3473 31.60 43.85
LLMLingua-2-large [21] | 30.73 21.92 27.61 2745 2657 29.64 2414 2211 31.69

GMSA ‘62.34 51.00 53.09 51.33 46.67 5422 46.52 3839 53.77

The compression process can be expressed as:

FLOPs®™P — FEncoder(L) + FLSA <’VL-‘)
r

8
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Here, L denotes the original context length, L, denotes the question length, and F*(-) represents the
FLOPs complexity measure for module %, with the specific calculation process detailed in Appendix [F|
The symbol x* indicates the architectural components, where * € {Decoder, Encoder, LSA}. For
the generation process, assuming the answer length is L,, the generation process requires L, forward
passes. The FLOPs for the ¢-th forward pass are given by:

FLOPS{orward — FDecoder <’VL-‘ 7Lq7i>
r

Combining the costs of all components, the total FLOPs complexity is:
LC!,
FLOPs = » FLOPs™" + FLOPs“"”
i=1

Thanks to the ability to retain complete semantics with only a few encoder layers (e.g., 8 layers),
GMSA achieves the lowest end-to-end inference latency, which is approximately 2x faster than
other methods (see Appendix[G).

4.4 Ablation Study

For RQ3, to investigate the impact of

each component in GMSA, we conduct ) ) ]
the following four ablation experiments Table 2: The impact of different components in GMSA

(see Table [2): (1) Ours w/o Autoen- ©ON the PwC test set under 4x compression constraint,
coder Training refers to performing know]- measured by BERT Score F1.

edge extraction fine-tuning on GMSA di- Method | BERT Score F1
rectly without knowledge memory train-

ing. (2) Ours w/o Knowledge Extrac- Default | 091
tion Fine-tuning means only performing  W/0 Autoencoder Training 0.87
Autoencoder-Training on GMSA. (3) Ours w/o Knowledge ]_Extraction Fine-tuning 0.83
w/o Group Merging indicates that we re- ~ W/0 Group Merging 0.82

w/o Layer Secmantic Alignment 0.84

place group merging with appending mean-
ingless learnable tokens when generating ~ w Qwen2.5-7B-Instruct | 0.91
summary vectors. (4) Ours w/o Layer Se-
mantic Alignment means we do not use the
Layer Semantic Alignment module and directly employ summary vectors as soft tokens. (5) Ours w/
Qwen2.5-7B-Instruct refers to replacing the decoder with Qwen2.5-7B-Instruct.

In summary, the removal of any single component leads to a significant drop in performance,
which fully demonstrates the necessity and effectiveness of each component. Removing Autoen-
coder Training makes it difficult for GMSA to generate summary vectors that encompass complete
semantics, while eliminating Knowledge Extraction Fine-tuning causes GMSA to lose its ability to ex-
tract knowledge in downstream tasks, both of which would deteriorate performance. Replacing Group
Merging with appending learnable tokens would increase the difficulty of learning, and discarding
the Layer Semantic Alignment module would result in misalignment between the high-level semantic
information represented by summary vectors and the low-level semantic space of the decoder’s input.
When the encoder and decoder are different, GMSA can still maintain high performance, which fully
demonstrates its robustness and generalization ability.

5 Conclusion

This paper introduces GMSA, a context compression framework based on an encoder-decoder
structure. It effectively and efficiently learns summary vectors and bridges the significant gap
between the semantics representation of different layers via group merging, and a layer semantic
alignment (LSA) module. GMSA first undergoes autoencoder training to ensure that the generated
soft tokens contain complete semantics, and then adapts to downstream tasks through knowledge
extraction fine-tuning (KEFT). Experiments demonstrate that GMSA converges quickly, can stably
converge even with random sampling compression rates for each sample and using only a few encoder
layers, and has excellent context restoration capabilities. It outperforms existing baselines by a large
margin in downstream tasks, paving the way for the efficient application of LLMs.
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A Related Works

Hard Prompt Compression. Hard prompt compression refers to the removal of some less im-
portant tokens from the original prompt or the generation of summaries to achieve compression.
The compressed prompt is explicit text. It can mainly be divided into the following four cate-
gories: (1) Perplexity-based methods. Selective-Context [14]] removes certain lexical units based
on perplexity, while methods such as LLMLingua [11], LongLLMLingua [10], and Perception
Compressor [25] adopt a coarse-to-fine framework to gradually eliminate less important parts. (2)
Bidirectional semantic-based methods. Considering the unidirectional nature of perplexity, some
approaches employ bidirectional semantic information for compression, such as LLMLingua-2 [21]],
MOOSComp [38]], and EFPC [3]]. (3) Methods based on intrinsic attention mechanisms. Compression
is achieved through the intrinsic attention mechanisms of LLMs, such as PIS [4] and AttnComp [37].
(4) Summary generation. This involves generating linguistic summaries that contain useful infor-
mation for long text content, such as CompACT [33]] and RECOMP [30]. Although these methods
improve the computational efficiency of inference through prompt compression, they compromise
the semantic integrity of the original prompt.

Soft Prompt Compression. Soft prompt compression has become a research hotspot in the field
of Natural Language Processing (NLP). The goal of soft prompt compression is to learn a set of
soft tokens (with a sequence length much shorter than the original text) to achieve compression,
where the compressed soft prompts cannot be explicitly converted into text. Among existing methods,
xRAG [3] focuses on processing short texts and extreme compression. More mainstream methods,
such as GIST [20], AutoCompressor [6], 500xCompressor [16], ICAE [7] and VoCo-LLaMA [32],
learn soft tokens in an autoregressive manner by appending randomly initialized additional tokens.
This leads to the semantics of anchor tokens in the input sequence being increasingly emphasized
layer by layer, while the semantics of other tokens are diluted and cannot be fully preserved in the
summary vectors. Moreover, these methods only use Multilayer Perceptrons (MLPs) for coarse-
grained semantic alignment when semantic alignment is required, ignoring the significant differences
in representations across different layers of large models. Our proposed method efficiently and
effectively extracts summary vectors through group merging. By employing a group average pooling
merging strategy, it addresses the issue of uneven semantic retention. Additionally, it bridges the
semantic gap between different layers of large models through a Layer Semantic Alignment (LSA)
module.

KV-cache Compression. Research in this direction focuses on directly compressing the KV-cache
in each transformer layer, considering factors such as layer-wise compression, attention heads,
the importance of different KVs, or token-level approaches. Examples include CLA [2f], which
shares KV-cache across layers; GQA [[1]] and MQA [24], which reduce the number of heads for
keys and values; StreamLLM [29] and SnapKV [15]], which discard unimportant KVs for efficient
compression; and Activation Beacon, which appends some meaningless tokens (shorter than the
original length) and learns compressed representations in the KV-cache of these tokens for each layer.
While KV-cache-based compression methods can accelerate inference, they require the compression
and response models to be identical. This limitation restricts practical applications and increases
resource consumption—for instance, in prompt compression for large models (e.g., 70B), a smaller
model (e.g., 7B) cannot be used as the compression model; instead, the same oversized model must
be employed.
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Figure 6: The impact of different layers of LSA on semantic retention in GMSA-AE. Sequence
Length represents different context restoration lengths (i.e., 128, 256, 512), and the model is trained
with a maximum length of 512.

B Impact of different Layer Semantic Alignment layers

We conduct experiments to investigate the impact of layer semantic alignment (LSA) module with
varying numbers of layers on the retention of complete semantics, and the results are shown in
Figure[] We can draw the following conclusions: (1) Only one layer of LSA is sufficient to achieve
good retention of complete semantics (with a BERT Score F1 close to 1, and it already performs
the best among different numbers of LSA layers). (2) When the number of LSA layers becomes too
high, e.g., using five layers of LSA, it may actually lead to a decrease in the GMSA’s ability to retain
semantics. This is likely because as the LSA module becomes deeper, it contains more high-layer
semantics and fewer low-layer semantics, thereby increasing the difficulty of semantic alignment.

C Implementation Details

We train GMSA on two NVIDIA A100 GPUs (80GB) using bf16 precision. For the PwC dataset, we
train on the full dataset with 10,000 steps for Autoencoder Training and 5,000 steps for Knowledge
Extraction Fine-tuning (KEFT). For the QA datasets (i.e., NaturalQuestions, 2WikiMQA, and
HotpotQA), we sample 15,000 examples from each to form the training set, using 20,000 steps for
Autoencoder Training and 1,000 steps for KEFT, respectively. Other parameters are listed in Table[C}
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Table 3: Training Hyperparameters.

Hyperparameter Value
Optimizer AdamW
Learning Rate 1 x 10~* (Autoencoder Training)
1 x 10~° (KEFT)
Batch Size 4 (Autoencoder Training)
16 (KEFT)
Scheduler Linear
Gradient Clip Norm 2.0

D Datasets Details

PwC dataset. In the PwC dataset [7], each sample is a triplet (context, prompt, answer), where the
context is sampled from the Pile and the prompt and answer are generated by GPT-4. The training set
contains 241,564 samples, the test set contains 18,146 samples, and the average token length of the
dataset is 60@

NaturalQuestions. NaturalQuestions [18]], in which each question corresponds to 20 relevant
documents, 19 of which are distractors and only one contains the ground truth answer. The training
set contains 75,322 samples, the test set contains 2,655 samples, and the average token length of the
dataset is 3,253.

HotpotQA. HotpotQA [31] is a two-hop reasoning dataset, where the answers are scattered across
two documents. Specifically, each question corresponds to 10 relevant documents, two of which are
the ground truth documents. The training set contains 89,609 samples, the test set contains 7,345
samples, and the average token length of the dataset is 1,567.

2WikiMQA. Compared with HotpotQA, 2WikiMQA [8] includes more complex reasoning paths,
and the combination of structured and unstructured data, usually involving two or more hops and
having higher difficulty. The training set contains 167,454 samples, the test set contains 12,576
samples, and the average token length of the dataset is 1098.

E Traditional Compression Paradigm Autoencoder Training

As shown in Figure[7] to fully measure the context restoration capability of GMSA after Autoencoder
Training, we conduct Autoencoder Training following the traditional compression paradigm, using the
same training method as GMSA (i.e., randomly sampling compression rates for training examples and
other hyperparameters in the training process are also the same) to obtain Traditional Compression
Paradigm Autoencoder (TCP-AEﬂ

F FLOPs Calculation

Let L;, denote the input sequence length. We calculate the floating-point operations (FLOPs) for a
single layer can be decomposed into Attention and Feed Forward Network (FFN) operations. The
calculation process for the Attention operation is:

“We uniformly use the tokenizer of LLaMA-2-7B (chat) to calculate the token length of the text.
5The entire structure is similar to the pretraining structure of ICAE, but the training paradigm is different.
For example, we randomly sample the compression rate for training, which increases the difficulty of training.
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Figure 7: The training process of Traditional Compression Paradigm Autoencoder (TCP-AE).
The traditional compression paradigm first adds appending tokens after the Original Context, then
employs an encoder (e.g., LLaMA) to autoregressively learn summary vectors. These summary
vectors are then processed through a Multilayer Perceptron (MLP) layer to achieve coarse-grained
semantic alignment, resulting in soft tokens. On the decoder side, context restoration training is
conditioned on soft tokens, with cross-entropy used as the final loss.

(Lin)
FR (L) = 2><Lm><D><d><hq+2><2><Lm><D><d><h’“
F*(Liy) =2 x h? X Ly x Lip x d ©
Feoftmaz (.Y — b9 x Ly, X Li
F(Lin) =2 x h? x Ly x Lip x d
FOU(Lin) =2 X Lin x d x h? x D

The calculation process for the FFN can be formulated as:

FFFN(Lin) — Fup(L]_n) + Fdown(Lin)
FY(Lin) =2 X Lin x Dx2x 1 (10)
Flown (i) =2 x Lip x D x I

Denote the original context length as L, the compression rate as r, question length as L, answer
length as L, the number of layers in the LSA as N ga, the number of decoder layers as Npe, the
number of encoder layers as Vg, query head number as h?, key/value head number as hE. the
hidden size as D, head dimension as d, intermediate size as I, and vocabulary size as V. Therefore,
the FLOPs of the encoder, LSA, and decoder can be expressed as:

FEncoder (FAttentwn FFFN(L)) X NEnc
FLSA L/’/‘ (FAttentzon |VL/T‘-|) + FFN([L/T-‘)) X Nisa
L,
FDecoder(I‘L/,r Lq7L Z FAttentzon L/T‘~|,Lq7 ) FFFN((L/T-I,Lq,Z’)) X Npec
=1

(11)
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Table 4: Latency Evaluation. Latency evaluation of different methods under varying compression
constraints on the Natural Questions dataset. The symbol X indicates that the specific processing time
is unavailable.

Method ‘ Compression Time  Decoding Time End-to-End Inference Time

Original Context ‘ - 1.14 1.14

4x compression constraint

StreamLLM X X 1.47
SnapKV X X 0.99
Activation Beacon X X 3.06
ICAE 0.73 1.06 1.79
GMSA 0.27 0.18 0.45

8x compression constraint

StreamLLM X X 1.41
SnapKV X X 0.99
Activation Beacon X X 1.92
ICAE 0.56 2.60 3.16
GMSA 0.27 0.15 0.42

where Ngpc < N uses only shallow layers (e.g., 8/32 in LLaMA), Nyga is generally set to
1 follows from LSA’s layer-agnostic property (see Appendix [B), and r > 1 represents standard
compression rates.

G Latency Evaluation

We conduct an empirical test on the Natural Questions dataset to evaluate the impact of GMSA on
inference efficiency under 4x and 8x compression constraintsﬁ] In this efficiency test, we fix the
generation length to 100. Table ] shows that the context compression by GMSA helps improve the
inference efficiency of LLMs. Compared with all settings, including the original prompt, Kv-cache
compression algorithms (i.e., StreamLLLM, SnapKYV, and Activation Beacon), and the encoder-decoder-
based ICAE, GMSA achieves more than a 2x end-to-end inference speedup.

H Perplexity Evaluation

For the task of context restoration, we evaluate model performance from the perspective of perplexity.
The experimental results are shown in Table[5] Based on our analysis, we have two key findings: (1)
Under different compression constraints and restoration lengths, the perplexity of the recovered text
conditioned on TCP-AE-generated soft tokens is significantly higher than that of the recovered text
conditioned on the Original Context. (2) Except for the case where the compression constraint is 8x
and the restoration length is 512, where GMSA-AE’s recovered text perplexity is slightly lower than
that of the Original Context (by only 0.02), in all other cases, GMSA-AE’s recovered text perplexity
is lower than that of the Original Context. Furthermore, in all scenarios, GMSA-AE’s recovered text
perplexity is significantly lower than that of the recovered text conditioned on TCP-AE-generated
soft tokens.

I Case Study

As shown in Table[6] we use the restoration of a specific text to study the performance of GMSA-AE
in context restoration. In the restored text, GMSA-AE only has the last word inconsistent with the

*We test the latency on two NVIDIA A800 GPUs (80G).
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Table 5: Comparison of the average token perplexity under different condition types on the PwC
test set. "Condition Type" represents the basic conditions under which the large language models
(LLMs) recovers the text, which are divided into three types: recovering from the Original Context,
recovering from the soft tokens generated by TCP-AE, and recovering from the soft tokens generated
by GMSA-AE. Different Sequence Lengths represent different lengths of the context restoration task.

Condition Type ‘ Sequence Length

| 128 256 512
Original Context | 112 1.06  1.03

4x compression constraint

TCP-AE \1.36 134 135

GMSA-AE ‘1.01 1.01  1.00

8x compression constraint

TCP-AE | 136 134 135
GMSA-AE | 1.08 106 1.05

original text, i.e., restoring "it" to its plural form "they". In contrast, TCP-AE not only exhibits
inconsistencies in some word expressions (such as "medication" and "drugs") but also displays large
segments of discrepancies with the original text.

J Limitations

Although GMSA demonstrates strong performance and achieves significant inference acceleration, it
requires two-stage training, i.e., autoencoder training and knowledge extraction fine-tuning (KEFT),
to adapt to downstream tasks. Therefore, GMSA has certain requirements for GPU resources.
Due to limited computational resources, i.e., two NVIDIA A800 80G GPUs, GMSA is evaluated
on sequences shorter than 5K in length. In future work, assuming access to more computational
resources, we plan to evaluate GMSA on longer sequences.
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Table 6: An example showing GMSA-AE and TCP-AE’s context restoration performance. Text
highlighted in yellow indicates discrepancies from the Original Context.

Origin Context

| GMSA-AE

| TCP-AE
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The Trump administration is mak-
ing good on its latest effort to lower
out-of-pocket medication costs for
Medicare recipients, but its approach
could also limit drug options or
even risk eliminating coverage of
some prescriptions. The Centers for
Medicare and Medicaid Services pro-
posed late Monday changes to Medi-
care Advantage and Medicare Part D.
Among the changes, it would allow
insurers to stop covering certain "pro-
tected" drugs used to treat common
ailments like depression, cancer and
HIV. The Centers for Medicare and
Medicaid Services proposed changes
to Medicare Advantage and Medi-
care Part D. Among the changes, it
would allow insurers to stop cover-
ing certain drugs that are used to
treat common ailments like depres-
sion, cancer and HIV. The proposal
would have added a prescription drug
benefit to Medicare Part B, which
currently covers only doctor visits
and lab tests. Congress added the pre-
scription drug benefit in 2003 to re-
quire insurers to cover at least two
different drugs to treat any of the "es-
sential drugs" offered to seniors, re-
gardless of whether they were cov-
ered by Medicare
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the

paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline the paper’s contributions, scope,

accurately reflecting the content and claims made in the paper.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims

made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or

NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how

much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals

are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results are accompanied by clearly stated assumptions and
proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides sufficient details on datasets, model architectures, and
hyperparameters to allow for the reproduction of the main experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: We will release our code and models upon the acceptance of our paper.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and testing details, including hyperparameters and optimization
settings, are clearly specified in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Error bars are not reported because the experimental results are significantly
higher than existing baselines across all tasks.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence groups, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper details the computational resources used, including hardware
specifications for each experiment.

Guidelines:

* The answer NA means that the paper does not include experiments.

22



715
716
77
718
719
720
721

722

723
724

725

726
727

728

729
730
731
732
733

734

735
736

737

738
739

740

741

742
743

744
745
746
747

748
749
750
751
752

754
755
756
757
758

760
761
762

763

764
765
766

9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics, with no deviations or
special circumstances reported.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper does not discuss societal impacts as the work is foundational and
not tied to specific applications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: The paper does not involve high-risk data or models requiring safeguards for
responsible release.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have correctly cited all the data, scripts, and models we used.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new datasets, code, or models requiring docu-
mentation.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

24


paperswithcode.com/datasets

818

819

821

822

823
824

825
826
827
828
829
830
831
832
833

834
835

836
837
838
839

840

841

842

843

844

845
846
847
848
849
850

851

853

854
855
856
857

858

859
860

861

862
863
864
865

14.

15.

16.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research does not involve crowdsourcing or human subjects, making this
question not applicable.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The study does not involve human subjects, so IRB approval was not required.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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