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Abstract

Large language models (LLMs) have achieved impressive performance in a variety1

of natural language processing (NLP) tasks. However, when applied to long-2

context scenarios, they face two challenges, i.e., low computational efficiency and3

much redundant information. This paper introduces GMSA, a context compression4

framework based on the encoder-decoder architecture, which addresses these chal-5

lenges by reducing input sequence length and redundant information. Structurally,6

GMSA has two key components: Group Merging and Layer Semantic Align-7

ment (LSA). Group merging is used to effectively and efficiently extract summary8

vectors from the original context. Layer semantic alignment, on the other hand,9

aligns the high-level summary vectors with the low-level primary input semantics,10

thus bridging the semantic gap between different layers. In the training process,11

GMSA first learns soft tokens that contain complete semantics through autoencoder12

training. To furtherly adapt GMSA to downstream tasks, we propose Knowledge13

Extraction Fine-tuning (KEFT) to extract knowledge from the soft tokens for14

downstream tasks. We train GMSA by randomly sampling the compression rate15

for each sample in the dataset. Under this condition, GMSA not only significantly16

outperforms the traditional compression paradigm in context restoration but also17

achieves stable and significantly faster convergence with only a few encoder layers.18

In downstream question-answering (QA) tasks, GMSA can achieve approximately19

a 2x speedup in end-to-end inference while outperforming both the original input20

prompts and various state-of-the-art (SOTA) methods by a large margin. 121

1 Introduction22

Thanks to powerful reasoning and generalization capabilities, large language models (LLMs) have23

achieved remarkable performance across various natural language processing (NLP) tasks [23, 26].24

However, directly applying LLMs to long-context scenarios presents two challenges: (1) Compu-25

tational efficiency. When processing long prompts, the quadratic complexity of the Transformer’s26

attention mechanism [27] results in long inference latency. (2) Redundant information. Much27

redundant information in long-context scenarios can degrade model performance [10].28

Prompt compression methods address these two challenges by significantly reducing input length29

and removing redundant information. Prompt compression can be categorized into hard prompt30

compression [14, 11, 21, 10, 25, 38, 3, 4, 37] and soft prompt compression [20, 6, 7, 34, 16]. Hard31

prompt compression involves deleting certain tokens from the original context to achieve compression.32

However, this explicit compression approach inevitably compromises semantic integrity. In contrast,33

leveraging the inherent redundancy in semantic vectors, soft prompt compression learns a set of soft34

1Our code and models will be released after acceptance.
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Figure 1: Traditional Compression Paradigm v.s. Compression by GMSA. (a) visualizes the
attention matrix when processing Life and love. <CT1> <CT2>, where <CT1> and <CT2> are
randomly initialized tokens. Original shows the attention changes during processing of life and
love. (b) represents the traditional compression paradigm. It first learns summary vectors in an
autoregressive manner layer by layer, and then completes coarse-grained semantic alignment through
a multi-layer perceptron (MLP), where NEnc denotes the number of encoder layers. (c) denotes the
compression paradigm of GMSA, which first learns summary vectors through group merging and
completes semantic alignment between different layers through the Layer Semantic Alignment (LSA)
module.

tokens with a length much shorter than the original context, enabling compression while preserving35

complete semantics.36

Although existing soft prompt compression methods can effectively reduce the number of input37

tokens, they have two limitations: (1) Uneven semantics learning and non-parallelism. As shown in38

Figure 1, in the traditional compression paradigm, the appending randomly initialized tokens learn39

summary vectors layer by layer in an autoregressive manner. LLM tends to aggregate information on40

a few anchor tokens [36, 29, 9, 28]. The semantics of anchor tokens (i.e., Life and .) are emphasized41

layer by layer, resulting in the semantics of the summary vectors being dominated by them while the42

semantics of other tokens are diluted (i.e., uneven semantics learning). This limits the retention of43

complete semantics, and the process cannot be parallelized. (2) Ignoring the significant gap between44

the semantic representations of different layers in LLMs [12, 19]. The summary vectors, which45

represent high-level semantics and are highly abstract, are directly treated as ordinary tokens (i.e.,46

as low-level semantic information) and input into the decoder during training and testing, resulting47

in a large semantic gap. Therefore, two questions naturally arise: (1) How can we effectively and48

efficiently learn summary vectors? (2) How can we bridge the significant semantic gap between49

different layers?50

To address the aforementioned limitations, we propose GMSA, a context compression framework51

based on the encoder-decoder architecture, which innovatively resolves these limitations from a52

structural perspective. Specifically, we tackle the first limitation through Group Merging. Group53

merging performs grouping and merging on the last hidden state of the encoder (see Figure 1).54

To avoid dilution and achieve more uniform semantic learning, group merging equally considers55

each group, and within each group, all tokens are merged via averaging pooling. Group merging56

is conducive to retaining complete semantic information and supports parallelization for effective57

and efficient semantic extraction. Subsequently, to address the second limitation, we bridge the58

gap between highly abstract high-level semantic information and low-level primary input semantics59

by passing the summary vectors through the Layer Semantic Alignment (LSA) module, which60

is composed of several Transformer blocks initialized with the weights of lower-layer decoder61

blocks (see Figure 2). This step allows the summary vectors containing high-level abstract semantic62
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information to be mapped into a low-level semantic space, thereby bridging the semantic gap between63

different layers.64

During the training process, GMSA first employs the autoencoder training to ensure that the generated65

soft tokens contain complete semantic representations. Building on this foundation, we further pro-66

pose Knowledge Extraction Fine-tuning (KEFT) to adapt GMSA to downstream tasks. Specifically,67

we freeze the encoder and LSA (which, after autoencoder training, can already produce soft tokens68

containing complete semantics) and fine-tune the decoder to enhance its ability to extract knowledge69

from the soft tokens.70

Our contributions are threefold: (1) Structurally, we introduce the GMSA, which effectively and71

efficiently learns summary vectors through group merging and bridges the semantic gap between72

different layers via a layer semantic alignment (LSA) module. (2) In the training process, we propose73

Knowledge Extraction Fine-tuning (KEFT) to guide the decoder to extract the knowledge required74

by downstream tasks from soft tokens. (3) Experimental results in context restoration and multi-75

document question answering demonstrate the effectiveness and superiority of our method, e.g., on76

NaturalQuestions with an 8x compression constraint, GMSA achieves approximately 36% higher77

Exact Match compared to the original input prompt, while also realizing a 2x end-to-end speedup.78

2 Problem Formulation79

Given a retrieval-augmented prompt X = (X ins, Xd1 , ..., Xdk , ..., XdK , Xq), where Xins,80

{Xdk}Kk=1, and Xq represent the instruction, context, and input question respectively. The prompt81

has a total token length L. The key aspect of the context compression system lies in generating a82

compressed prompt X̃ with length L̃, where the compression rate is defined as τ = L

L̃
. Let y denote83

the ground truth answer given the original input X , and ỹ denote the answer generated by the large84

language model (LLM) when input with the compressed prompt x̃. We aim for the distributions of y85

and ỹ to be similar under high compression rates τ . This can be formulated as:86

min
x̃,τ

KL
(
P
(
ỹ | X̃

)
, P (y | X)

)
(1)

Due to space limitations, we introduce related work in Appendix A.87

3 Method88

3.1 GMSA Architecture89

In this section, we elaborate on the architecture of our proposed context compression framework,90

GMSA, which includes two key components: group merging and layer semantic alignment (LSA).91

GMSA undergoes a two-stage training process: autoencoder training (see Figure 2) and knowledge92

extraction fine-tuning (KEFT) (see Figure 3). First, GMSA ensures that the generated soft tokens93

contain the complete semantic representation of the original text through the autoencoder training94

process. Then, it applies the knowledge contained in the soft tokens to downstream tasks via KEFT.95

3.2 Group Merging96

Extraction of Semantic Features. First, we extract the semantic features of the original text97

through a k-layer language modeling model as the encoder. The encoder is trained using LoRA.98

H = Encoderk(X), (2)
where X is the original text and H is the obtained last hidden state.99

Merging. We divide the obtained H into several groups according to the size of the compression100

limit, as the group length LG (e.g., when the compression rate is 4, the group length is also 4). To101

this end, original text representations are organized as follows:102

H =
[
H1 , . . . ,HGj , . . . ,HGNg

]
=
[
H1:LG

, . . . ,H(j−1)×LG:j×LG
, . . . ,HNd−LG+1:Nd

]
.

3



Teacher-forcing

 Restate the aforementioned Text.  

Decoder     

Encoder Tokenizer    

Encoder     LoRA  

Decoder Tokenizer    

Restatement InstructionLSA   

Original Context 

Layer k+1

Layer 1

Input

Layer N

Layer k
(k << N)

Decoder

Teacher-forcing

 Restate the aforementioned Text.  

Decoder     

Encoder Tokenizer    

Encoder     LoRA  

Decoder Tokenizer    

Restatement InstructionLSA   

Original Context 

Layer k+1

Layer 1

Input

Layer N

Decoder

Layer k
(k << N)

Teacher-forcing

 Restate the aforementioned Text.  

Decoder     

Encoder Tokenizer    

Encoder     LoRA  

Decoder Tokenizer    

Restatement InstructionLSA   

Original Context 

Layer k+1

Layer 1

Input

Layer N

Layer k
(k << N)

Decoder

Teacher-forcing

 Restate the aforementioned Text.  

Decoder     

Encoder Tokenizer    

Encoder     LoRA  

Decoder Tokenizer    

Restatement InstructionLSA   

Original Context 

Layer +1

Layer 1

Input

Layer 

Decoder

Layer 

Figure 2: The Autoencoder Training Process of GMSA. GMSA consists of an encoder and a
decoder, trained in an autoencoder manner using cross-entropy loss. GMSA first generates a set of
summary vectors that meet the compression rate by performing group merging on the last hidden
state of the encoder, and then achieves cross-layer semantic alignment through the Layer Semantic
Alignment (LSA) module, which is composed of several Transformer blocks initialized with the
weights of lower-layer decoder blocks. Remarkably, we find that using just a single layer of LSA can
achieve excellent semantic preservation (see Appendix B), hence kLSA << NDec.

We take the average of each dimension of each group token to obtain the initial compressed represen-103

tation.104

H̃ =
[
H̄G1

, ..., H̄Gi
, ..., H̄GN

]
=

[
1

LG

∑
HG1

, ...,
1

LG

∑
HGi

, ...,
1

LG

∑
HGN

]
, where H̃ is the obtained initial compressed representation.105

3.3 Layer Semantic Alignment106

The layer semantic alignment (LSA) module is used to complete the alignment from the soft tokens107

generated by the encoder (high-level semantics) to the primary semantics of the decoder. Given the108

significant differences in semantic representation between different layers of large language models109

(LLMs), the LSA is trained via full fine-tuning.110

m̃ = FkLSA(H̃), (3)

where H is the final compressed representation, FkLSA denotes Transformer blocks initialized with111

the weights from the first k layers of the decoder, and m̃ denotes the generated soft tokens. Just one112

layer of LSA is sufficient to achieve excellent semantic preservation (for space limitations, please113

refer to Appendix B), so in this work, we can just set kLSA = 1.114

3.4 Autoencoder Training115

The Autoencoder Training process, which aims to encode the complete information of the original116

text into memory embeddings, is achieved through autoencoder-based training. We hope to minimize117

the loss of the reconstructed text, which can be expressed as:118

LAE = −
∑
i=1

log pϕ
(
xi | m̃,X ins, x<i

)
, (4)

where pϕ(·) is the decoder probability distribution obtained after the softmax function, and xi is the119

i-th token in the original text.120
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3.5 Knowledge Extraction121

3.5.1 Knowledge Extraction Process122

Through autoencoder training, we can ensure that the soft tokens obtained via the encoder and LSA123

contain complete semantic information. Therefore, the next challenge to address is: how to extract124

knowledge from the existing soft tokens?125

To guarantee that the generated soft tokens always retain adequate information, we freeze the encoder126

and LSA during the knowledge extraction process, allowing the decoder to complete knowledge127

extraction (KE).128

We only train the decoder’s self-attention module. As shown in Figure 3, the i-th token decoding129

progress can be formulated as:130

Decoder(m̃1, m̃2, m̃3, m̃4, ..., m̃k−1, m̃k︸ ︷︷ ︸
soft tokens from the encoder

, q1, q2, ..., qn︸ ︷︷ ︸
question tokens

, a1, a2, ..., ai−1︸ ︷︷ ︸
answer tokens

). (5)

Let d denote the decoder’s hidden size, H ∈ R(k+n+i−1)×d denote input hidden states to the self-131

attention module of the decoder in an arbitrary layer. The above hidden states will be projected into132

queries, keys, and values as follows:133

Q = WQH, K = WKH, V = W V H, (6)

where WQ, WK , and W V are the projection heads for knowledge extraction. Thus, we now134

formally present our self-attention computation:135

V ′ = softmax

(
mask

(
QKT

√
d

))
V , (7)

where V ′ denotes the output of the self-attention mechanism, which is a refined, context-aware136

representation of the input values V after applying attention weights.137

3.5.2 Knowledge Extraction Fine-tuning138

After completing autoencoder training, we need to teach the decoder how to utilize the soft tokens.139

We achieve this by performing full fine-tuning of the WQ, WK , and WV projection matrices in140

each layer of the decoder, which can be specifically expressed as:141

LKE = −
n∑

i=1

log pϕ (ai | m̃, q1, q2, ..., qn, a<i) , (8)

where pϕ(·) is the decoder probability distribution obtained after the softmax function, and ai denotes142

the i-th token in the predicted answer.143

4 Experiments144

In this section, we attempt to answer the following research questions (RQs): (1) How effective is145

GMSA in context restoration? (RQ1) (2) How does GMSA utilize knowledge compared with other146

baselines? (RQ2) (3) How effective are the individual components of GMSA? (RQ3)147

4.1 Settings148

Training. GMSA involves a two-stage training process: autoencoder training and knowledge149

extraction fine-tuning (KEFT). We use four datasets: PwC [7], NaturalQuestions [18], 2WikiMQA [8],150

and HotpotQA [31] (For more details about the dataset, please refer to Appendix D). Among them,151

we use PwC to evaluate the performance of context restoration, while the three QA datasets are152

employed to measure downstream knowledge application. We conduct two separate trainings on153

the PwC dataset and another on a mixed dataset composed of NaturalQuestions, 2WikiMQA, and154

HotpotQA. During training, we randomly sampled compression rates (i.e., 4x compression and 8x155

compression) for each training sample. Due to space constraints, detailed training settings can be156

found in Appendix C.157
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Figure 3: The process of Knowledge Extraction Fine-tuning (KEFT). By fine-tuning only the
WQ, WK , and W V in the attention module of the decoder while keeping other modules frozen, the
decoder performs teacher-forcing training using soft tokens m̃, question tokens, and the ground truth
answer.

Implementation. GMSA is implemented based on LLaMA-2-7B (Chat)2 and Qwen2.5-7B (In-158

struct). The maximum input length was set to 512 for PwC training and 3072 for NaturalQuestions,159

2WikiMQA, and HotpotQA training. To ensure fair comparison, all baseline results are obtained160

from our re-implementations based on official open-source code.161

Evaluation Metrics. For the context restoration task on the PwC dataset, we use BLEU [22], Prefix162

Exact Match, BERT Score [35], and ROUGE [17] for evaluation. For the QA tasks on Natural163

Questions, TriviaQA, and 2WikiMQA, we use Acc [18], Exact Match (EM) [13], and F1 [31] for164

evaluation.165

Baselines. For the task of context restoration, we train a Traditional Compression Paradigm166

AutoEncoder (i.e., TCP-AE, see Appendix E for details) as a baseline using autoencoder training167

and the same training hyperparameters as GMSA. In terms of downstream knowledge application,168

we conduct comprehensive comparisons with various methods in text compression and KV-cache169

compression fields, including: hard prompt compression (e.g., LongLLMLingua [10], LLMLingua-2-170

large [21]), soft prompt compression (e.g., AutoCompressor [6], ICAE [7]), and KV-cache compres-171

sion approaches (e.g., StreamLLM [29], SnapKV [15], Activation Beacon [34]).172

4.2 Main Result173

We highlight the findings of GMSA in two aspects: context restoration and downstream knowledge174

application.175

For RQ1, in the context restoration task, GMSA-AE significantly outperforms the Traditional176

Compression Paradigm AutoEncoder (TCP-AE) in multiple aspects, including restoration177

quality (see Figure 4), convergence speed, and robustness (see Figure 5). As shown in Figure 4,178

GMSA-AE outperforms TCP-AE in all evaluation metrics. BLEU Score [22], Prefix Exact Match3,179

and ROUGE [17] are token-matching-based metrics, and GMSA-AE’s performance in these metrics180

is at least 20% higher than TCP-AE under all compression constraints, indicating that GMSA-AE181

has a stronger ability to precisely remember each token. The BERT Score F1 [35], which measures182

semantic similarity and reflects the model’s ability to remember overall semantics, is also about 5%183

higher for GMSA-AE than TCP-AE. As shown in Figure 5, GMSA-AE converges much faster than184

2We use LLaMA-2 as the default base model unless otherwise specified, because AutoCompressor, ICAE,
and Activation Beacon are all based on it, and they are all important baseline models.

3Prefix Exact Match represents the ratio of the correctly matched prefix length to the total length. For
example, in a 512-token sequence, if the first 128 tokens are an exact match but the 129th token is not, the Prefix
Exact Match score is calculated as 128/512 = 0.25.
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Figure 4: GMSA-AE v.s. TCP-AE on the context restoration task. Sequence Length represents
different context restoration lengths (i.e., 128, 256, 512), and the models are trained with a maximum
length of 512.

TCP-AE. GMSA-AE convergence around 1000 training steps, while TCP-AE has not fully converged185

even after 5000 steps. Moreover, significantly reducing the number of encoder layers (e.g., to 8186

encoder layers) makes TCP-AE converge much more slowly. In contrast, GMSA-AE demonstrates187

robustness under different settings. In terms of convergence speed, reducing the number of encoder188

layers even further accelerates the convergence of GMSA-AE: versions with 8 or 16 encoder layers189

converge faster than those with 32 layers, possibly because the cross-layer semantic alignment190

challenge is alleviated with fewer encoder layers. From the perspective of semantic retention, the191

Average BERT Score F1 of different encoder layers remains consistent under various compression192

rates, indicating that even with a small number of encoder layers (e.g., 8 layers), GMSA-AE can still193

effectively retain semantic information and complete high-quality memory tasks. We also evaluate the194

quality of the reconstructed text using perplexity, and the results show that GMSA-AE significantly195

outperforms TCP-AE (see Appendix I). Moreover, we conduct specific case studies to further verify196

the performance gap between GMSA-AE and TCP-AE (see Appendix H).197

For RQ2, GMSA demonstrates significantly better performance than other baselines under198

various compression rate constraints (see Table 1). In the KV-cache compression methods, the199

compressed representation and the target model must be consistent. Although this avoids the problem200

of cross-layer semantic alignment, it severely limits the flexibility of applying the compressed201

representation. Compared with the KV-cache compression methods (i.e., streamLLM, SnapKV,202

and Activation Beacon), GMSA achieves the best performance while maintaining flexibility. In203

contrast to prompt-based compression algorithms, whether they are query-independent prompt204

compression algorithms (i.e., ICAE, AutoCompressor, and LLMLingua-2-large) or query-dependent205

LongLLMLingua, their performance is far below that of GMSA. It is worth noting that GMSA adopts206

a query-independent compression mechanism and still significantly outperforms the query-dependent207

LongLLMLingua, which sufficiently illustrates the effectiveness and superiority of GMSA.208

4.3 Efficiency Analysis209

In this section, we discuss the efficiency of our proposed method. By using soft tokens instead of the210

long original context to enhance the inference process, our method reduces the inference cost of the211

original context during the generation process by a factor of r. The overall floating-point operations212

(FLOPs) are calculated through two processes: compression and generation.213
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Figure 5: Analysis of the Effectiveness of Different Encoder Layers. (a) represents the comparison
of convergence speed between GMSA-AE with different encoder layers and TCP-AE. (b) denotes the
impact of different encoder layers on the semantic retention of GMSA-AE. The average BERT Score
F1 refers to the average F1 score across different context restoration lengths (i.e., 128, 256, and 512).

Table 1: Experimental results on three QA benchmark datasets. We bold the optimal and underline
the suboptimal of baselines. Acc refers to accuracy, EM refers to exact match, and F1 refers to the
F1 score. Closed-book indicates using only the input question as the input, while Original Prompt
indicates using all retrieved documents as the input.

Methods
NaturalQuestions 2WikiMQA HotpotQA

Acc EM F1 Acc EM F1 Acc EM F1

Closed-book 24.14 20.23 21.88 25.37 24.96 27.82 18.34 17.22 24.02
Original Prompt 55.40 15.07 26.81 37.54 30.84 37.79 44.21 34.35 47.49

4x compression constraint

KV-cache Compression Methods
StreamLLM [29] 29.53 7.87 15.38 28.47 26.49 30.78 28.90 23.87 34.32
SnapKV [15] 58.64 12.58 23.07 29.86 27.61 32.62 37.35 30.51 42.08
Activation Baecon [34] 56.20 25.65 34.17 34.45 24.42 32.05 44.45 25.80 39.82

Prompt Compression Methods
AutoCompressor [6] 13.79 0.00 1.34 41.56 0.00 8.07 20.98 0.01 6.80
ICAE [7] 17.33 1.24 7.05 35.17 10.25 22.04 34.16 13.02 26.69
LongLLMLingua [10] 53.41 39.62 43.03 33.88 31.71 37.05 40.31 35.55 48.68
LLMLingua-2-large [21] 41.77 29.49 34.79 31.07 28.88 33.37 33.15 28.80 40.89

GMSA 69.98 58.12 57.59 55.95 49.55 57.17 53.52 44.60 59.31

8x compression constraint

KV-cache Compression Methods
StreamLLM [29] 31.22 7.72 14.93 27.43 25.82 29.76 26.58 21.78 32.21
SnapKV [15] 57.21 11.86 22.49 28.19 26.56 30.97 34.54 28.10 40.16
Activation Baecon [34] 51.22 23.01 31.45 33.20 25.12 32.20 40.30 24.40 37.63

Prompt Compression Methods
AutoCompressor [6] 17.51 0.00 1.63 41.76 0.00 8.09 22.04 0.00 6.93
ICAE [7] 17.74 0.72 3.23 33.56 5.74 17.19 30.40 4.42 15.80
LongLLMLingua [10] 46.55 36.65 40.72 31.53 29.93 34.08 34.73 31.60 43.85
LLMLingua-2-large [21] 30.73 21.92 27.61 27.45 26.57 29.64 24.14 22.11 31.69

GMSA 62.34 51.00 53.09 51.33 46.67 54.22 46.52 38.39 53.77

The compression process can be expressed as:

FLOPscomp = FEncoder(L) + FLSA

(⌈
L

r

⌉)
8



Here, L denotes the original context length, Lq denotes the question length, and F ∗(·) represents the
FLOPs complexity measure for module ∗, with the specific calculation process detailed in Appendix F.
The symbol ∗ indicates the architectural components, where ∗ ∈ {Decoder,Encoder,LSA}. For
the generation process, assuming the answer length is La, the generation process requires La forward
passes. The FLOPs for the i-th forward pass are given by:

FLOPsforward
i = FDecoder

(⌈
L

r

⌉
, Lq, i

)
Combining the costs of all components, the total FLOPs complexity is:

FLOPs =

La∑
i=1

FLOPsforward
i + FLOPscomp

Thanks to the ability to retain complete semantics with only a few encoder layers (e.g., 8 layers),214

GMSA achieves the lowest end-to-end inference latency, which is approximately 2x faster than215

other methods (see Appendix G).216

4.4 Ablation Study217

Table 2: The impact of different components in GMSA
on the PwC test set under 4x compression constraint,
measured by BERT Score F1.

Method BERT Score F1

Default 0.91

w/o Autoencoder Training 0.87
w/o Knowledge Extraction Fine-tuning 0.83
w/o Group Merging 0.82
w/o Layer Secmantic Alignment 0.84

w Qwen2.5-7B-Instruct 0.91

For RQ3, to investigate the impact of218

each component in GMSA, we conduct219

the following four ablation experiments220

(see Table 2): (1) Ours w/o Autoen-221

coder Training refers to performing knowl-222

edge extraction fine-tuning on GMSA di-223

rectly without knowledge memory train-224

ing. (2) Ours w/o Knowledge Extrac-225

tion Fine-tuning means only performing226

Autoencoder-Training on GMSA. (3) Ours227

w/o Group Merging indicates that we re-228

place group merging with appending mean-229

ingless learnable tokens when generating230

summary vectors. (4) Ours w/o Layer Se-231

mantic Alignment means we do not use the232

Layer Semantic Alignment module and directly employ summary vectors as soft tokens. (5) Ours w/233

Qwen2.5-7B-Instruct refers to replacing the decoder with Qwen2.5-7B-Instruct.234

In summary, the removal of any single component leads to a significant drop in performance,235

which fully demonstrates the necessity and effectiveness of each component. Removing Autoen-236

coder Training makes it difficult for GMSA to generate summary vectors that encompass complete237

semantics, while eliminating Knowledge Extraction Fine-tuning causes GMSA to lose its ability to ex-238

tract knowledge in downstream tasks, both of which would deteriorate performance. Replacing Group239

Merging with appending learnable tokens would increase the difficulty of learning, and discarding240

the Layer Semantic Alignment module would result in misalignment between the high-level semantic241

information represented by summary vectors and the low-level semantic space of the decoder’s input.242

When the encoder and decoder are different, GMSA can still maintain high performance, which fully243

demonstrates its robustness and generalization ability.244

5 Conclusion245

This paper introduces GMSA, a context compression framework based on an encoder-decoder246

structure. It effectively and efficiently learns summary vectors and bridges the significant gap247

between the semantics representation of different layers via group merging, and a layer semantic248

alignment (LSA) module. GMSA first undergoes autoencoder training to ensure that the generated249

soft tokens contain complete semantics, and then adapts to downstream tasks through knowledge250

extraction fine-tuning (KEFT). Experiments demonstrate that GMSA converges quickly, can stably251

converge even with random sampling compression rates for each sample and using only a few encoder252

layers, and has excellent context restoration capabilities. It outperforms existing baselines by a large253

margin in downstream tasks, paving the way for the efficient application of LLMs.254
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A Related Works411

Hard Prompt Compression. Hard prompt compression refers to the removal of some less im-412

portant tokens from the original prompt or the generation of summaries to achieve compression.413

The compressed prompt is explicit text. It can mainly be divided into the following four cate-414

gories: (1) Perplexity-based methods. Selective-Context [14] removes certain lexical units based415

on perplexity, while methods such as LLMLingua [11], LongLLMLingua [10], and Perception416

Compressor [25] adopt a coarse-to-fine framework to gradually eliminate less important parts. (2)417

Bidirectional semantic-based methods. Considering the unidirectional nature of perplexity, some418

approaches employ bidirectional semantic information for compression, such as LLMLingua-2 [21],419

MOOSComp [38], and EFPC [3]. (3) Methods based on intrinsic attention mechanisms. Compression420

is achieved through the intrinsic attention mechanisms of LLMs, such as PIS [4] and AttnComp [37].421

(4) Summary generation. This involves generating linguistic summaries that contain useful infor-422

mation for long text content, such as CompACT [33] and RECOMP [30]. Although these methods423

improve the computational efficiency of inference through prompt compression, they compromise424

the semantic integrity of the original prompt.425

Soft Prompt Compression. Soft prompt compression has become a research hotspot in the field426

of Natural Language Processing (NLP). The goal of soft prompt compression is to learn a set of427

soft tokens (with a sequence length much shorter than the original text) to achieve compression,428

where the compressed soft prompts cannot be explicitly converted into text. Among existing methods,429

xRAG [5] focuses on processing short texts and extreme compression. More mainstream methods,430

such as GIST [20], AutoCompressor [6], 500xCompressor [16], ICAE [7] and VoCo-LLaMA [32],431

learn soft tokens in an autoregressive manner by appending randomly initialized additional tokens.432

This leads to the semantics of anchor tokens in the input sequence being increasingly emphasized433

layer by layer, while the semantics of other tokens are diluted and cannot be fully preserved in the434

summary vectors. Moreover, these methods only use Multilayer Perceptrons (MLPs) for coarse-435

grained semantic alignment when semantic alignment is required, ignoring the significant differences436

in representations across different layers of large models. Our proposed method efficiently and437

effectively extracts summary vectors through group merging. By employing a group average pooling438

merging strategy, it addresses the issue of uneven semantic retention. Additionally, it bridges the439

semantic gap between different layers of large models through a Layer Semantic Alignment (LSA)440

module.441

KV-cache Compression. Research in this direction focuses on directly compressing the KV-cache442

in each transformer layer, considering factors such as layer-wise compression, attention heads,443

the importance of different KVs, or token-level approaches. Examples include CLA [2], which444

shares KV-cache across layers; GQA [1] and MQA [24], which reduce the number of heads for445

keys and values; StreamLLM [29] and SnapKV [15], which discard unimportant KVs for efficient446

compression; and Activation Beacon, which appends some meaningless tokens (shorter than the447

original length) and learns compressed representations in the KV-cache of these tokens for each layer.448

While KV-cache-based compression methods can accelerate inference, they require the compression449

and response models to be identical. This limitation restricts practical applications and increases450

resource consumption—for instance, in prompt compression for large models (e.g., 70B), a smaller451

model (e.g., 7B) cannot be used as the compression model; instead, the same oversized model must452

be employed.453
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Figure 6: The impact of different layers of LSA on semantic retention in GMSA-AE. Sequence
Length represents different context restoration lengths (i.e., 128, 256, 512), and the model is trained
with a maximum length of 512.

B Impact of different Layer Semantic Alignment layers454

We conduct experiments to investigate the impact of layer semantic alignment (LSA) module with455

varying numbers of layers on the retention of complete semantics, and the results are shown in456

Figure 6. We can draw the following conclusions: (1) Only one layer of LSA is sufficient to achieve457

good retention of complete semantics (with a BERT Score F1 close to 1, and it already performs458

the best among different numbers of LSA layers). (2) When the number of LSA layers becomes too459

high, e.g., using five layers of LSA, it may actually lead to a decrease in the GMSA’s ability to retain460

semantics. This is likely because as the LSA module becomes deeper, it contains more high-layer461

semantics and fewer low-layer semantics, thereby increasing the difficulty of semantic alignment.462

C Implementation Details463

We train GMSA on two NVIDIA A100 GPUs (80GB) using bf16 precision. For the PwC dataset, we464

train on the full dataset with 10,000 steps for Autoencoder Training and 5,000 steps for Knowledge465

Extraction Fine-tuning (KEFT). For the QA datasets (i.e., NaturalQuestions, 2WikiMQA, and466

HotpotQA), we sample 15,000 examples from each to form the training set, using 20,000 steps for467

Autoencoder Training and 1,000 steps for KEFT, respectively. Other parameters are listed in Table C.468
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Table 3: Training Hyperparameters.

Hyperparameter Value
Optimizer AdamW
Learning Rate 1× 10−4 (Autoencoder Training)

1× 10−5 (KEFT)
Batch Size 4 (Autoencoder Training)

16 (KEFT)
Scheduler Linear
Gradient Clip Norm 2.0

D Datasets Details469

PwC dataset. In the PwC dataset [7], each sample is a triplet (context, prompt, answer), where the470

context is sampled from the Pile and the prompt and answer are generated by GPT-4. The training set471

contains 241,564 samples, the test set contains 18,146 samples, and the average token length of the472

dataset is 6094.473

NaturalQuestions. NaturalQuestions [18], in which each question corresponds to 20 relevant474

documents, 19 of which are distractors and only one contains the ground truth answer. The training475

set contains 75,322 samples, the test set contains 2,655 samples, and the average token length of the476

dataset is 3,253.477

HotpotQA. HotpotQA [31] is a two-hop reasoning dataset, where the answers are scattered across478

two documents. Specifically, each question corresponds to 10 relevant documents, two of which are479

the ground truth documents. The training set contains 89,609 samples, the test set contains 7,345480

samples, and the average token length of the dataset is 1,567.481

2WikiMQA. Compared with HotpotQA, 2WikiMQA [8] includes more complex reasoning paths,482

and the combination of structured and unstructured data, usually involving two or more hops and483

having higher difficulty. The training set contains 167,454 samples, the test set contains 12,576484

samples, and the average token length of the dataset is 1098.485

E Traditional Compression Paradigm Autoencoder Training486

As shown in Figure 7, to fully measure the context restoration capability of GMSA after Autoencoder487

Training, we conduct Autoencoder Training following the traditional compression paradigm, using the488

same training method as GMSA (i.e., randomly sampling compression rates for training examples and489

other hyperparameters in the training process are also the same) to obtain Traditional Compression490

Paradigm Autoencoder (TCP-AE)5.491

F FLOPs Calculation492

Let Lin denote the input sequence length. We calculate the floating-point operations (FLOPs) for a493

single layer can be decomposed into Attention and Feed Forward Network (FFN) operations. The494

calculation process for the Attention operation is:495

4We uniformly use the tokenizer of LLaMA-2-7B (chat) to calculate the token length of the text.
5The entire structure is similar to the pretraining structure of ICAE, but the training paradigm is different.

For example, we randomly sample the compression rate for training, which increases the difficulty of training.
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Figure 7: The training process of Traditional Compression Paradigm Autoencoder (TCP-AE).
The traditional compression paradigm first adds appending tokens after the Original Context, then
employs an encoder (e.g., LLaMA) to autoregressively learn summary vectors. These summary
vectors are then processed through a Multilayer Perceptron (MLP) layer to achieve coarse-grained
semantic alignment, resulting in soft tokens. On the decoder side, context restoration training is
conditioned on soft tokens, with cross-entropy used as the final loss.

FAttention(Lin) = F qkv(Lin) + F qk(Lin) + F softmax(Lin) + F av(Lin) + F out(Lin)

F qkv(Lin) = 2× Lin ×D × d× hq + 2× 2× Lin ×D × d× hk

F qk(Lin) = 2× hq × Lin × Lin × d

F softmax(Lin) = hq × Lin × Lin

F av(Lin) = 2× hq × Lin × Lin × d

F out(Lin) = 2× Lin × d× hq ×D

(9)

The calculation process for the FFN can be formulated as:496

FFFN (Lin) = Fup(Lin) + F down(Lin)

Fup(Lin) = 2× Lin ×D × 2× I

F down(Lin) = 2× Lin ×D × I

(10)

Denote the original context length as L, the compression rate as r, question length as Lq, answer497

length as La, the number of layers in the LSA as NLSA, the number of decoder layers as NDec, the498

number of encoder layers as NEnc, query head number as hq, key/value head number as hk, the499

hidden size as D, head dimension as d, intermediate size as I , and vocabulary size as V . Therefore,500

the FLOPs of the encoder, LSA, and decoder can be expressed as:501

FEncoder(L) =
(
FAttention(L) + FFFN

E (L)
)
×NEnc

FLSA(⌈L/r⌉) =
(
FAttention
L (⌈L/r⌉) + FFFN

L (⌈L/r⌉)
)
×NLSA

FDecoder (⌈L/r⌉, Lq, La) =

La∑
i=1

(
FAttention
D (⌈L/r⌉, Lq, i) + FFFN

D (⌈L/r⌉, Lq, i)
)
×NDec

(11)
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Table 4: Latency Evaluation. Latency evaluation of different methods under varying compression
constraints on the Natural Questions dataset. The symbol ✗ indicates that the specific processing time
is unavailable.

Method Compression Time Decoding Time End-to-End Inference Time

Original Context - 1.14 1.14

4x compression constraint

StreamLLM ✗ ✗ 1.47
SnapKV ✗ ✗ 0.99
Activation Beacon ✗ ✗ 3.06
ICAE 0.73 1.06 1.79

GMSA 0.27 0.18 0.45

8x compression constraint

StreamLLM ✗ ✗ 1.41
SnapKV ✗ ✗ 0.99
Activation Beacon ✗ ✗ 1.92
ICAE 0.56 2.60 3.16

GMSA 0.27 0.15 0.42

where NEnc ≪ Ntotal uses only shallow layers (e.g., 8/32 in LLaMA), NLSA is generally set to502

1 follows from LSA’s layer-agnostic property (see Appendix B), and r > 1 represents standard503

compression rates.504

G Latency Evaluation505

We conduct an empirical test on the Natural Questions dataset to evaluate the impact of GMSA on506

inference efficiency under 4x and 8x compression constraints.6 In this efficiency test, we fix the507

generation length to 100. Table 4 shows that the context compression by GMSA helps improve the508

inference efficiency of LLMs. Compared with all settings, including the original prompt, Kv-cache509

compression algorithms (i.e., StreamLLM, SnapKV, and Activation Beacon), and the encoder-decoder-510

based ICAE, GMSA achieves more than a 2x end-to-end inference speedup.511

H Perplexity Evaluation512

For the task of context restoration, we evaluate model performance from the perspective of perplexity.513

The experimental results are shown in Table 5. Based on our analysis, we have two key findings: (1)514

Under different compression constraints and restoration lengths, the perplexity of the recovered text515

conditioned on TCP-AE-generated soft tokens is significantly higher than that of the recovered text516

conditioned on the Original Context. (2) Except for the case where the compression constraint is 8x517

and the restoration length is 512, where GMSA-AE’s recovered text perplexity is slightly lower than518

that of the Original Context (by only 0.02), in all other cases, GMSA-AE’s recovered text perplexity519

is lower than that of the Original Context. Furthermore, in all scenarios, GMSA-AE’s recovered text520

perplexity is significantly lower than that of the recovered text conditioned on TCP-AE-generated521

soft tokens.522

I Case Study523

As shown in Table 6, we use the restoration of a specific text to study the performance of GMSA-AE524

in context restoration. In the restored text, GMSA-AE only has the last word inconsistent with the525

6We test the latency on two NVIDIA A800 GPUs (80G).
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Table 5: Comparison of the average token perplexity under different condition types on the PwC
test set. "Condition Type" represents the basic conditions under which the large language models
(LLMs) recovers the text, which are divided into three types: recovering from the Original Context,
recovering from the soft tokens generated by TCP-AE, and recovering from the soft tokens generated
by GMSA-AE. Different Sequence Lengths represent different lengths of the context restoration task.

Condition Type
Sequence Length

128 256 512

Original Context 1.12 1.06 1.03

4x compression constraint

TCP-AE 1.36 1.34 1.35

GMSA-AE 1.01 1.01 1.00

8x compression constraint

TCP-AE 1.36 1.34 1.35

GMSA-AE 1.08 1.06 1.05

original text, i.e., restoring "it" to its plural form "they". In contrast, TCP-AE not only exhibits526

inconsistencies in some word expressions (such as "medication" and "drugs") but also displays large527

segments of discrepancies with the original text.528

J Limitations529

Although GMSA demonstrates strong performance and achieves significant inference acceleration, it530

requires two-stage training, i.e., autoencoder training and knowledge extraction fine-tuning (KEFT),531

to adapt to downstream tasks. Therefore, GMSA has certain requirements for GPU resources.532

Due to limited computational resources, i.e., two NVIDIA A800 80G GPUs, GMSA is evaluated533

on sequences shorter than 5K in length. In future work, assuming access to more computational534

resources, we plan to evaluate GMSA on longer sequences.535
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Table 6: An example showing GMSA-AE and TCP-AE’s context restoration performance. Text
highlighted in yellow indicates discrepancies from the Original Context.

Origin Context GMSA-AE TCP-AE
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