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Abstract

Financial markets present unique challenges for Federated Learning (FL) due to fragmented
datasets, dynamic participation, and the critical need for precise and reliable predictions.
Isolated local datasets often fail to capture the full spectrum of market dynamics, blocking
accurate realized volatility predictions. Unlike traditional FL methods that focus on improving
convergence during the training process, we propose Federated Learning with Adaptive
Robustness and Efficiency for Local Adaptation (FLARE-LA), a novel framework designed to
optimize predictive performance after the global training phase. FLARE-LA leverages Taylor-
based local linearization and probabilistic optimization to efficiently adapt global models
to local data distributions, enabling fast responsiveness to new market conditions. This
adaptability ensures trained local models align with real-world scenarios, making FLARE-LA
particularly suited to dynamic financial applications. Extensive experimental evaluations
demonstrate FLARE-LA’s superior performance, achieving a mean loss of 7.358 × 10−5,
VaR95% of 2.284 × 10−4, and CVaR95% of 3.978 × 10−4 with an order of magnitude
improvement over state-of-the-art FL algorithms. The results highlight FLARE-LA’s unique
ability to enhance post-FL performance, setting a new standard for FL in financial forecasting
and other high-stakes, rapidly evolving domains.

1 Introduction

Predicting realized volatility is a cornerstone of financial forecasting, essential for effective risk management
and informed investment strategies within the framework of deep hedging Buehler et al. (2019)Vuletić & Cont
(2023)Mueller et al. (2024). However, financial markets naturally generate fragmented and asynchronous
data across multiple trading venues. These platforms are unable to share data with third parties due to
stringent privacy concerns, regulatory constraints, and technical challenges Kairouz et al. (2021). The data
fragmentation poses significant obstacles to the accuracy and reliability of realized volatility predictions.
When data is distributed across multiple platforms, the collective market understanding becomes incomplete,
limiting the ability to accurately capture price movements and liquidity dynamics. Volatility prediction,
which depends on comprehensive market data, is particularly vulnerable to inaccuracies and biases under
these conditions. Furthermore, discrepancies in liquidity levels and pricing for the same asset across exchanges
exacerbate these challenges, potentially leading to incorrect volatility estimates when one platform’s data
fails to reflect broader market trends Otero (2002)Madhavan (2000). Federated Learning (FL) offers a
promising solution by enabling collaborative model training across distributed data sources while preserving
data privacy, which addresses key privacy and regulatory concerns by ensuring data remains local to each
trading platform Yang et al. (2019)Yu et al. (2020)Tan et al. (2022)Chen et al. (2023a)Meng et al. (2024).

Financial markets impose uniquely demanding requirements on FL due to the critical need for high precision,
reliability, and robustness. Unlike other domains, where minor inaccuracies may be tolerable, small errors
in financial forecasting can result in significant financial losses or missed opportunities Ning et al. (2023).
Volatility prediction, in particular, presents a highly challenging task as it requires models that not only
identify complex and rapidly evolving trends in market behavior but also provide robust and interpretable
risk estimates Bergeron et al. (2021). The fragmented nature of financial data intensifies these challenges.
Trading platforms operate independently, each generating datasets that reflect its unique market conditions,
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liquidity levels, and trading behaviors. The data decentralization introduces substantial obstacles to achieving
consistent, high-quality predictions across platforms.

While data heterogeneity and dynamic participation are common challenges in FL, their impact is amplified
in financial markets. The inherent variability in datasets across trading platforms leads to significant
discrepancies in local and global data distributions. Additionally, trading platforms frequently enter and
exit the training process due to operational constraints, creating a dynamic and unpredictable training
environment. Maintaining robustness under such conditions is essential to ensuring consistent model
performance across all participants. Beyond these technical challenges, the necessity for interpretable and
trustworthy predictions is particularly acute in financial applications. Models must go beyond delivering
accurate forecasts, which must also quantify uncertainties effectively, enabling informed decision-making in
high-stakes environments. Traditional FL methods often lack the precision, adaptability, and interpretability
required for such applications, limiting their practical utility in financial forecasting.

To address these challenges, we introduce Federated Learning with Adaptive Robustness and Efficiency for
Local Adaptation (FLARE-LA), a cutting-edge framework designed to address the distinct requirements of
financial markets. FLARE-LA utilizes Taylor-based linearization to achieve computationally efficient and
accurate local adaptations, effectively aligning the global model with platform-specific datasets. Moreover, it
incorporates a probabilistic mechanism that leverages the Jacobian matrix of the global model, facilitating
localized optimization and delivering interpretable uncertainty quantification to enhance reliability and
support informed decision-making. This integrated approach ensures robust performance in dynamic and
fragmented environments while maintaining computational efficiency. By blending global insights with
fine-tuned local adjustments, FLARE-LA substantially improves the accuracy of realized volatility predictions,
satisfying the stringent precision and reliability demands of financial forecasting.

Although FLARE-LA is rigorously evaluated within the context of financial markets, its underlying principles,
such as efficient local adaptation and uncertainty-aware predictions, are broadly applicable to a wide range
of domains. The financial market serves as a challenging and representative scenario that underscores
the framework’s capabilities, providing valuable insights into its potential for other complex and dynamic
environments. Experimental evaluations demonstrate that FLARE-LA consistently outperforms state-of-the-
art baselines, achieving lower mean loss, Value at Risk (VaR95%), and Conditional Value at Risk (CVaR95%)
across diverse platform distributions and participation rates. These results highlight the framework’s
scalability, adaptability, and robustness, making it well-suited for general federated learning tasks where data
heterogeneity, dynamic participation, and computational efficiency are critical.

In the following sections, we provide an overview of related work in Section 2, positioning our contributions
within the broader landscape of FL and financial forecasting. Section 3 introduces the fragmented nature
of financial markets and formulates the problem addressed by our framework. In Section 4, we detail our
proposed approach, highlighting the integration of probabilistic frameworks and efficient local adaptation
techniques. Empirical evaluations of our method, showcasing its effectiveness and robustness across various
scenarios, are detailed in Section 5. Finally, we summarize our findings, and outline potential directions for
future research in Section 6.

2 Related Work

In the context of financial markets, predicting realized volatility using order book data is a challenging task
due to the decentralized nature of data acquisition Banabilah et al. (2022). Order books, which capture buy
and sell orders for securities, form a dynamic and fragmented data environment, often referred to as "data
islands." These characteristics make FL an appealing approach for such environments Hasbrouck (2007). FL
enables collaborative model training across distributed data sources while preserving data privacy, a critical
requirement in financial markets.

Existing FL methods face specific challenges when applied to predicting realized volatility in financial markets,
such as high data heterogeneity, rapid changes in data patterns, and the need for timely model updates.
Methods like FedProx Li et al. (2020), which introduces a proximal term to the local objective function to
stabilize optimization, mitigate the effects of heterogeneity by reducing the impact of local updates that
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deviate significantly from the global model. However, while FedProx offers stability, its proximal term may
not fully capture the dynamic nature of financial data, and it can slow convergence, a critical drawback
in fast-paced trading environments Arthur et al. (2018)Cantillon & Yin (2011). To address local-global
mis-alignments, SCAFFOLD Karimireddy et al. (2020) incorporates control variates to correct the drift in
local updates, improving alignment with the global model. However, the rapidly evolving financial landscape
can still lead to misalignments that adversely affect prediction accuracy Boukherouaa et al. (2021). While
effective in certain scenarios, the introduction of control variates increases computational complexity and
communication overhead, posing challenges for deployment in high-frequency trading environments.

Personalized FL methods, such as FedPer Arivazhagan et al. (2019), decouple shared global parameters
from client-specific local parameters to provide personalization. Despite this, the high variability and
unpredictability in financial markets require frequent adjustments to personalized models, making the process
resource-intensive and limiting scalability in large-scale financial networks. Similarly, LG-FedAvg Liang et al.
(2020), APFL Deng et al. (2020), and pFedMe T Dinh et al. (2020) adopt approaches to balance global and
local knowledge but face challenges in handling the feature and distributional heterogeneity prevalent in
financial markets.

Recent innovations, including Ditto Li et al. (2021), FedRep Collins et al. (2021), and SuPerFed Hahn et al.
(2022), have explored various personalization techniques, such as interpolating global and local models or
applying proximity regularization. These methods highlight progress in adapting global models to client-
specific data. However, they often require fine-tuning or additional computational resources for new clients,
reducing scalability in highly dynamic environments like financial trading. Meng et al. (2024) explores
techniques to enhance global generalization and local personalization through adaptive aggregation and dual
optimization, which aligns with our goal of striking a balance between global insights and local adaptations
in heterogeneous FL settings. While their work focuses on representation learning and aggregation strategies,
our method introduces a Taylor-based linearization approach combined with a probabilistic framework to
achieve more precise and interpretable local adaptation. Tan et al. (2022) provides insights into handling
client-specific model updates using personalized layers and meta-learning, offering a solution for improving
local performance in non-IID settings. This is relevant to our method in FLARE-LA, which also aims to
achieve strong local adaptation but does so through efficient linearized updates and probabilistic adjustments,
eliminating the need for additional network layers or meta-learning components. Chen et al. (2023a) focuses
on sparse model adaptation to enhance scalability and computational efficiency in personalized FL, a strategy
particularly useful in resource-constrained environments. Similarly, Yu et al. (2020) highlights the importance
of localized training adjustments to address the limitations of federated aggregation in heterogeneous datasets.
Both approaches emphasize the need for effective local training, which resonates with our method’s focus on
dynamic participation and efficient adaptation. However, our approach extends these ideas by leveraging
Jacobian-based linearization and uncertainty quantification, enabling robust local updates tailored to the
fragmented and rapidly changing nature of financial data.

Advances in neural network behavior further inspire solutions for FL. Research has revealed that infinitely wide
deep neural networks (DNNs) exhibit behaviors similar to their Taylor expansions around initialization Chizat
et al. (2019). Extensions of this analysis to finite-width DNNs demonstrate that their training dynamics
resemble linear models Seleznova & Kutyniok (2022), while the inductive biases of linearized neural networks
effectively summarize full network functions Maddox et al. (2021). These findings motivate the development
of FL approaches that better address the unique characteristics of local trading platforms, where global
models often fail to capture localized data patterns.

To address these challenges, the proposed FLARE-LA framework introduces adaptive local training mechanisms
that go beyond traditional FL approaches by focusing on post-training performance optimization. FLARE-LA
leverages insights from neural network linearization to enable precise and computationally efficient local
adaptations, ensuring that global models are effectively refined to meet the specific needs of individual trading
platforms. Unlike existing methods, FLARE-LA is designed to address the dynamic and heterogeneous nature
of financial markets by rapidly adapting to new data and evolving conditions, ensuring that local models
remain robust and aligned with real-world scenarios. The proposed innovative approach is a transformative
solution for achieving high-precision and reliable predictions in decentralized and fragmented financial
environments.
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3 Fragmented Financial Markets

3.1 Background

In financial markets, trading occurs across a wide range of exchanges and platforms, resulting in highly
fragmented datasets. Each platform independently maintains transaction and order book data, capturing
buy and sell orders as well as their execution details. This fragmentation provides an incomplete view of
market activity for any given asset, with notable variations in pricing, liquidity, and order depth across
platforms Hasbrouck (2007).

The order book plays a critical role in market analysis, offering traders insights into short-term trading
dynamics. By displaying order imbalances and identifying potential support and resistance levels for a stock,
the order book supports informed trading decisions. Heightened market activity and uncertainty are often
reflected in increased realized volatility, which arises from frequent directional price movements. Trading
data, which records executed transactions, complements the order book by offering valuable insights into
market dynamics, such as price trends, trading volumes, and liquidity conditions.

Predicting short-term realized volatility is essential for effective risk management and the development of
trading strategies Chen et al. (2023b). By analyzing order book and trade data over fixed time intervals,
traders and institutions can forecast future volatility levels, enabling improved decision-making and enhanced
risk mitigation. Realized volatility predictions help market participants manage exposure, optimize portfolio
allocations, and design robust trading strategies.

Extracting meaningful insights from order book data is vital for understanding market dynamics and assessing
stock values. Key metrics, such as the bid-ask spread, weighted average price, and volume-related indicators,
provide a wealth of information about market liquidity and potential volatility. However, the fragmented
nature of financial markets poses significant challenges for comprehensive analysis, as data silos limit access
to the full scope of market activity.

3.2 Problem Formulation

By leveraging diverse data sources, FL facilitates the development of a robust global model that enhances
local predictions, preserving both data privacy and confidentiality, which allows trading platforms to benefit
from a comprehensive understanding of market dynamics while maintaining compliance with regulatory
requirements and addressing privacy concerns.

Consider a distributed dataset consisting of n data sample pairs {xi, yi}n
i=1 across |E| trading platforms.

Each data sample pair represents features extracted from order book and trading data, with xi denoting the
feature vector and yi representing the corresponding label, which is the volatility. There are 363 features
for each sample generated from order book and trading data, capturing essential market dynamics such as
bid-ask spreads, price movements, and trading volumes.

We denote the local dataset of the c-th trading platform as Pc, which contains nc training samples. The union
of all local datasets from each trading platform, P1 ∪ P2 ∪ · · · ∪ P|E|, covers the entire dataset, guaranteeing
that each sample is assigned to exactly one trading platform’s dataset. For trading platform c, the labels
{yi}i∈Pc represent the volatility levels observed in the corresponding platform’s trading data. These volatility
labels are used as the ground truth for training the predictive model.

We aim to develop a predictive model, represented by a deep neural network function f , which maps an input
feature vector x to an output volatility prediction y. The model is trained using the distributed dataset
across multiple trading platforms, leveraging the features extracted from order book and trading data to
predict future volatility levels accurately. The local objective function for trading platform c is defined as

minimize
w

Lc(w) = 1
2

∑
i∈Pc

(f(xi, w)− yi)2 for c = 1, · · · , |E|, (1)
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where w represents the trainable parameters of the model. Meanwhile, the global objective function,
aggregating the local objectives across all trading platforms, is given by

minimize
w

L(w) = 1
|E|

|E|∑
c=1

Lc(w). (2)

Realized volatility prediction poses unique challenges due to the fragmented nature of financial data, and
the rapidly evolving market conditions. Each platform’s dataset captures only a localized perspective of the
broader market, leading to non-IID data distributions that complicate the development of a unified model.
Furthermore, the predictive task demands a model capable of capturing complex, non-linear interactions
between features to provide reliable and interpretable outputs. By leveraging FL, trading platforms can
train a global model that integrates diverse data sources, improving predictive accuracy while maintaining
data privacy. This collaborative framework enables financial institutions to optimize their trading strategies,
enhance risk management, and make informed decisions in volatile market conditions.

4 Federated Learning with Adaptive Robustness and Efficiency for Local Adaptation

In this section, we introduce our proposed approach FLARE-LA, a framework designed to address the
challenges posed by heterogeneous local datasets and dynamic participation in financial markets. While
the global objective function in (2) captures general patterns across all trading platforms, it may fail to
fully represent the unique characteristics of each platform’s local dataset, potentially resulting in suboptimal
performance for individual platforms as outlined in (1). To overcome this limitation, FLARE-LA provides an
innovative mechanism for trading platforms to adapt the globally trained model to their specific local data.

The FLARE-LA framework operates through a two-stage process. In the initial stage, trading platforms
collaboratively train a global model while ensuring strict data privacy. This is accomplished by aggregating
model updates from each platform without transmitting raw data, thereby preserving confidentiality and
compliance with privacy regulations. The global model, built from the collective knowledge of all participating
platforms, effectively captures shared patterns and structures across the distributed datasets. This stage
provides a robust baseline for subsequent local adaptation. Moreover, FLARE-LA is designed to seamlessly
integrate advanced federated learning techniques into this collaborative training stage, enhancing flexibility
and adaptability to various use cases.

In the second stage, FLARE-LA introduces an innovative local adaptation mechanism that fine-tunes the
globally trained model to align with the specific characteristics of each trading platform’s dataset. This process
leverages Taylor-based linearization and probabilistic frameworks to achieve computational efficiency and
precision. By utilizing the Jacobian matrix of the global model, FLARE-LA integrates localized optimization
with interpretable uncertainty quantification, enabling platforms to adapt the global model dynamically while
maintaining robustness in predictive accuracy. This approach ensures that FLARE-LA excels in addressing
the challenges of non-IID data distributions, enhancing model performance in diverse and fragmented
environments.

By combining the strengths of FL with tailored local adaptations, FLARE-LA effectively addresses the
inherent heterogeneity of financial market datasets and accommodates the dynamic participation of trading
platforms. This dual-stage approach ensures that each platform benefits from the collaborative insights of FL
while achieving optimal performance for its specific market conditions.

4.1 Federated Training equipped with Efficient Local Adaptation for Financial Market Dynamics

The initialization of model weights plays a pivotal role in determining the efficiency and stability of the
training process. Arbitrary or poorly chosen initialization methods can hinder progress, leading to issues
such as slow convergence or training stagnation Xie et al. (2017). To address these challenges, it is essential
to ensure that the activation distributions maintain consistent variance as the network deepens, preventing
common pitfalls like vanishing or exploding gradients.
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To achieve this, the initial weights are drawn from a Gaussian distribution with a mean of zero and a standard
deviation inversely proportional to the square root of the number of input units feeding into the layer, which
can be expressed as

w0 ∼ N
(

0,
1
√

nin

)
, (3)

where w0 denotes the initial weight vector, and nin represents the number of input units in the layer. This
tailored initialization ensures a balanced variance in the activation distributions across layers, fostering a
smoother gradient flow and more stable training dynamics.

Federated training unfolds in a dynamically evolving environment where the participation of trading platforms
fluctuates unpredictably. At each training round, a subset of trading platforms, denoted as St ⊆ |E|, is selected
to participate. This dynamic subset mirrors real-world scenarios where platform availability is influenced
by operational constraints, market activity, or other factors. To simulate such dynamic participation, the
set St is sampled from a predefined distribution. In this work, we explore several distributions, including
Exponential, Geometric, Gamma, and Chi-square, to capture a variety of participation patterns.

The dynamic nature of platform participation introduces additional complexity to the federated training
process, as the global model must adapt to fluctuating contributions without compromising performance.
By incorporating realistic participation patterns into our simulation, we ensure that the training procedure
reflects the challenges of real-world financial environments, enhancing the robustness and applicability of our
approach.

Upon determining the active participants for round t, the current global model wt is distributed to the
selected trading platforms in St. Each platform initializes its local model for the training round as

{wt
c,0 = wt}c∈St , (4)

where wt
c,0 represents the initial local model weights for trading platform c at the onset of round t. This

initialization ensures that all participating platforms begin the round with identical copies of the global
model, fostering a collaborative and unified starting point in the dynamic participation environment.

During local training on trading platform c, which involves financial market data, the model undergoes
iterative updates. The k-th step of this update process is defined as

wt
c,k+1 = wt

c,k − αl∇Lc(wt
c,k), (5)

where αl denotes the local learning rate, which is specifically tailored to the unique dynamics and characteristics
of each platform’s dataset. This localized learning process allows each platform to refine the model in alignment
with its own market conditions.

The local training procedure continues for K iterations, resulting in a final local model given by

wt
c,K = wt −

K∑
k=1

αl∇Lc(wt
c,k), (6)

which integrates the cumulative effects of gradient-based updates performed over all local steps. This
formulation highlights how each platform adapts the global model to its specific data through weighted
gradient descents.

To quantify the divergence between the locally adapted model and the initial global model, we define the
model discrepancy for trading platform c after K iterations as

△wt
c = wt

c,K −wt. (7)

This term measures the extent to which each platform’s local updates diverge from the global model parameters,
reflecting the influence of its unique market data on the learning process.

The aggregated local updates are used to compute the global model for the next iteration, as follows

wt+1 ← wt +
αt

g

|St|
∑
c∈St

△wt
c, (8)

6



Under review as submission to TMLR

where αt
g is the global learning rate for round t, and the contribution of each local model is normalized by

the number of participating platforms |St|. This normalization ensures equitable integration of local updates
into the global model, promoting fairness and robustness across platforms. The updated global model wt+1

marks the conclusion of the t-th round of training and serves as the starting point for the next round of FL.

The above iterative process allows FLARE-LA to adaptively refine the global model by incorporating diverse
contributions from participating platforms within the dynamic and heterogeneous environment of financial
markets. Crucially, the federated iterations in FLARE-LA are designed to be modular, enabling the seamless
integration of any advanced FL solutions. This flexibility enhances the scalability and generalization of the
framework, allowing it to adapt to evolving methods and leverage state-of-the-art advancements in FL. By
combining tailored local training with equitable aggregation, FLARE-LA effectively addresses the challenges
of data heterogeneity and fluctuating participation rates, ensuring robust performance and broad applicability.

The global model w∗, obtained after FL training, may not be fully optimized or may exhibit poor local
performance due to the diverse nature of local datasets and the dynamic participation. Nonetheless, it serves
as the baseline for adaptive local training. To derive the local adaptive training strategy, we consider a given
neural network model function f . We can approximate f around the trained model parameters w∗ using a
Taylor expansion

f(x; w) ≈ f(x; w∗) + Jw∗(x)T (w −w∗), (9)

where Jw∗(x) denotes the Jacobian matrix of partial derivatives of f with respect to the model parameters at
w∗, with dimensions p× |Pc|. This Jacobian represents the sensitivity of the output with respect to changes
in the model parameters near w∗.

We formulate the probabilistic model governing the output y, given input features x extracted from order
book and trading data, and model parameters w as

p(y |x, w) = N
(
f(x; w), σ2

c

)
= 1√

2πσ2
c

e
− (y−f(x;w))2

2σ2
c , (10)

where σ2
c represents the variance associated with the Gaussian noise, capturing the inherent uncertainty and

noise in the model predictions of volatility. This distribution’s mean is specified by the linear approximation
obtained from the Taylor expansion of f , with a variance σ2

c .

For volatility prediction in financial markets using FL, deviations from the baseline global model w∗ influence
the mean prediction through the Jacobian adjustment, while the Gaussian term N (0, σ2

c ) accounts for the
stochastic nature of the predictions. This framework establishes a robust basis for trading platforms to adapt
and retrain the global model locally, ensuring performance optimization tailored to the unique characteristics
of individual datasets.

For each trading platform c with its local dataset {(xi, yi)}|Pc|
i=1 , the likelihood function quantifies the probability

of observing the given data. It incorporates both the individual variances from the Gaussian noise and the
deviations of the model predictions from actual data points. This integration is captured by the model’s
output and its linear approximation around w∗ which is formulated as

Pc(w) = 1
(2πσ2

c )
|Pc|

2

exp

− 1
2σ2

c

|Pc|∑
i=1

(yi − (f(xi; w∗) + Jw∗(xi)T (w −w∗)))2

 . (11)

This formulation enables trading platforms to effectively assess the fit between their local data and the global
model, guiding them in refining the model parameters to better capture the underlying patterns in volatility
dynamics.

For rapid local adaptation within our financial market volatility prediction, we transform the likelihood
function into its logarithmic form as

log(Pc(w)) = −|Pc|
2 log(2πσ2

c )− 1
2σ2

c

|Pc|∑
i=1

(yi − (f(xi; w∗) + Jw∗(xi)T (w −w∗)))2, (12)
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which simplifies the expression by converting the product of probabilities into a sum of logarithms, lin-
earizing the effects of the parameters and enhancing the tractability of the optimization problem. Notably,
− 1

2σ2
c

∑|Pc|
i=1(yi − f(xi; w))2 represents the sum of squared residuals, adjusted by the inverse of the noise

variance σ2
c .

Therefore, the local adaptation process can be formulated as minimizing the following loss function

L̂c(w) = 1
2σ2

c

|Pc|∑
i=1

(yi − (f(xi; w∗) + Jw∗(xi)T (w −w∗)))2 + |Pc|
2 log(2πσ2

c ), (13)

which comprises a term that evaluates the sum of squared deviations between the predicted volatility and the
actual volatility, scaled by the noise variance σ2

c , and a constant term that standardizes the loss based on the
dataset size and noise level in the context of local financial market data.

We define Jw∗ = {Jw∗(xi)}Pc
i=1 as the collection of Jacobian matrices of the model’s predictions with respect

to the features generated from order book and trading data, evaluated at w∗. The sum of the outer products
of these Jacobian matrices across all data points forms a symmetric matrix, which can be expressed as

|Pc|∑
i=1

Jw∗(xi)Jw∗(xi)T = Jw∗JT
w∗ , (14)

which reflects the covariance structure of the gradients, capturing the sensitivity of the model’s predictions to
the features derived from the trading platforms’ data. To facilitate a clearer understanding and to simplify
computations in practice, this loss function can be reformulated as

L̂c(w) = (w −w∗)T 1
2σ2

c

Jw∗JT
w∗(w −w∗)− (w −w∗)T 1

σ2
c

Jw∗(yc − fc)

+ 1
2σ2

c

(yc − fc)T (yc − fc) + |Pc|
2 log(2πσ2

c ),
(15)

where fc = {f(xi; w∗)}Pc
i=1 and yc = {yi}Pc

i=1. It quantifies the balance between the model’s internal
predictions and the observed deviations from the actual volatility outcomes, scaled by the noise variance, σ2

c .
This local loss function is critical for adapting the global model to better fit the specific characteristics of the
local trading platform’s data. The local model adaptation is achieved by setting the gradient of the designed
local loss function, ▽▽▽L̂c(w), to zero as

▽▽▽L̂c(w) = 1
σ2

c

Jw∗JT
w∗(w −w∗)− 1

σ2
c

Jw∗(yc − fc) = 0. (16)

By solving this equation, we identify the stationary point, which is typically a minimum for a well-defined
convex function

w = (Jw∗JT
w∗)−1Jw∗(yc − fc) + w∗, (17)

which suggests that the local model adaptation is proportional to the pseudo-inverse of the aggregated
Jacobian product, adjusted by the residuals between the observed volatility and the model’s predicted
volatility. Importantly, the term (Jw∗JT

w∗)−1Jw∗ only needs to be computed once, providing significant
computational efficiency.

When predicting for a new data sample, xi derived from order book and trading data, the model leverages
both the learned parameters and the inherent variability in observations for making predictions by following
formulation

ŷi = f(xi; w∗) + Jw∗(xi)T (Jw∗JT
w∗)−1Jw∗(yc − fc) +N (0; σ2

c ). (18)

This formula represents the linearized update to the model’s prediction, adjusted by the newly optimized
parameters, and includes a Gaussian noise term, which accounts for the inherent uncertainty in the prediction.
It plays a crucial role in ensuring a realistic forecast of local volatility.
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By incorporating the baseline prediction using the global model parameters f(xi; w∗), the adjustment to the
prediction based on the local training data Jw∗(xi)T (Jw∗JT

w∗)−1Jw∗(yc − fc) and the inherent variability in
the predictions, we provide an adaptive approach to predicting volatility, tailored to the unique characteristics
of each trading platform’s data. This approach ensures that the predictions remain both accurate and robust,
even in the face of dynamic and heterogeneous market conditions. The convergence analysis is shown in
Appendix A.

4.2 Analysis of the FLARE-LA Approach

FLARE-LA provides an innovative solution to the critical challenges of FL in financial markets, where
high precision, robustness, and adaptability are paramount. By integrating federated training with an
advanced local adaptation mechanism, FLARE-LA effectively bridges the gap between collective insights from
distributed datasets and the need for platform-specific optimization. This unified approach ensures that the
framework addresses the complexities of fragmented, non-IID data environments and dynamic participation
rates in financial markets.

The federated training phase in FLARE-LA enables collaborative learning across decentralized trading
platforms, allowing the global model to capture shared patterns and insights while maintaining data privacy
and regulatory compliance. This phase establishes a robust baseline model that encapsulates market-wide
trends. Importantly, the federated training iterations in this phase are modular and can incorporate any
advanced federated learning solutions to enhance the scalability and generalization of the framework. By
accommodating diverse federated optimization techniques, FLARE-LA ensures its adaptability to evolving
FL methods and diverse application scenarios.

To complement the federated training phase, FLARE-LA introduces an advanced Taylor-based linearization
strategy for computationally efficient and precise local adaptations. By leveraging the Jacobian matrix
of the global model, FLARE-LA approximates complex local adjustments, enabling trading platforms to
quickly tailor the global model to their unique data distributions without extensive computational overhead.
Additionally, the framework integrates probabilistic modeling to capture prediction uncertainties, enhancing
interpretability and reliability, which is key for high-stakes financial decision-making. This modular and
extensible approach ensures that FLARE-LA remains a scalable, adaptive, and generalizable framework for
FL in financial markets and beyond.

5 Experimental Evaluation

This experimental evaluation validates the efficacy and adaptability of the proposed FLARE-LA framework
in addressing the challenges of FL across both domain-specific and general scenarios. Our primary focus lies
in the financial domain, where the demands for high precision, robustness, and scalability are particularly
pronounced. We first utilize a dataset for realized volatility prediction, consisting of order book and trade
data from multiple trading platforms. These experiments aim to demonstrate FLARE-LA’s ability to handle
extreme data heterogeneity, dynamic participation, and the fragmented nature of financial datasets while
maintaining robust predictive performance.

To further evaluate the generalizability of FLARE-LA, we extend our experiments to CIFAR10 and MNIST,
two well-established datasets in FL research. These datasets allow us to test FLARE-LA’s performance under
non-IID data distributions, varying client participation rates, and label noise scenarios, mimicking real-world
challenges. By incorporating these datasets, we provide complementary evidence of FLARE-LA’s versatility
and scalability, demonstrating its utility across diverse applications beyond financial forecasting.

In our experiments, client participation is dynamically regulated using a participation ratio, simulating high
variability in client engagement during federated training. Non-IID data distributions are modeled using a
Dirichlet distribution, with the concentration parameter α controlling the heterogeneity of client data. For
α → 0, clients primarily have data from a single class, while α → ∞ results in a uniform distribution of
classes across clients. We evaluate the performance of FLARE-LA against several state-of-the-art FL methods,
including FedProx Li et al. (2020), SCAFFOLD Karimireddy et al. (2020), FedPer Arivazhagan et al. (2019),
LG-FedAvg Liang et al. (2020), pFedMe T Dinh et al. (2020), Ditto Li et al. (2021), FedRep Collins et al.
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(2021), and SuPerFed Hahn et al. (2022). For local training, we utilize the ResNet model, which provides a
robust architecture for handling diverse data distributions. The evaluation metrics include mean loss, Value
at Risk (VaR95%), and Conditional Value at Risk (CVaR95%), offering a comprehensive assessment of model
performance. These metrics underscore FLARE-LA’s ability to deliver superior predictive accuracy, adapt
effectively to dynamic environments, and maintain computational efficiency, even in challenging FL scenarios.

5.1 Experiments on Realized Volatility Prediction

We aim to forecast short-term volatility for stocks spanning multiple sectors Andrew Meyer (2021). The
dataset comprises both order book and trade data for these stocks, aggregated into multiple time buckets.
The values in the order book represent the latest snapshots of market activity, taken at one-second intervals.
Each time bucket comprises order book data spanning the 600 seconds. Our experiments involve predicting
the volatility for each time bucket of the stocks. There are 428, 932 samples in the entire dataset, where
107 of the stocks have data for 3830 time buckets, while 3 stocks have data for 3829 time buckets, 1 stock
has data for 3820 time buckets, and another stock has data for 3815 time buckets. The entire dataset is
divided into 10, 000 trading platforms based on a Dirichlet distribution-based non-IID setting Hsu et al.
(2019). The Dirichlet distribution’s concentration parameter, α, determines the stock distribution for each
trading platform which is set to 0.5 in our experiments. Each trading platform randomly splits its data into a
training set and a test set, with 20% allocated for testing. This setup allows us to estimate the performance
of each FL algorithm on each trading platform’s test set using its personalized model.

5.1.1 Performance Comparison
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Figure 1: Comparison of FLARE-LA with Individual Train and other FL baselines (FedProx, SCAFFOLD, and FedPer) across
different epochs, demonstrating the superiority of FLARE-LA in federated settings.

In Fig. 1, we compare the performance of FLARE-LA against Individual Train and baseline FL methods
as FedProx, SCAFFOLD, and FedPer over 50 epochs as shown in Fig. 1(a) and 200 epochs as shown in
Fig. 1(b). The Individual Train baseline performs training independently for each trading platform without
leveraging federated collaboration. Despite identical numbers of parameter updates, FLARE-LA demonstrates
significantly superior performance, emphasizing the value of FL in leveraging global insights while tailoring
models to local data.

As shown in Fig. 1(a), after 50 epochs, FLARE-LA achieves a remarkably lower mean loss of 7.726× 10−5

compared to Individual Train (0.0132), FedProx (0.0031), SCAFFOLD (0.0015), and FedPer (0.0017). In
Fig. 1(b), after 200 epochs, FLARE-LA continues to outperform all baselines, maintaining its lead in terms of
mean loss, VaR95%, and CVaR95%. The results highlight FLARE-LA’s ability to balance global knowledge
with precise local adaptation, resulting in superior performance in federated settings. This demonstrates that
FLARE-LA not only accelerates convergence but also ensures higher accuracy and robustness compared to
individual and baseline federated training methods.
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Figure 2: Performance comparison with varying participation rates and training rounds on realized volatility prediction.

Across all experimental settings as shown in Fig. 2, FLARE-LA consistently outperforms baseline methods,
including FedProx, SCAFFOLD, FedPer, and SuPerFed, in terms of Mean Loss, VaR95%, and CVaR95% for
realized volatility prediction tasks.

With low client participation rates as10%, FLARE-LA demonstrates exceptional robustness and precision.
As shown in Fig. 2(a), after 5 training rounds, FLARE-LA achieves a Mean Loss of approximately 0.0001,
compared to significantly higher values for SuPerFed (0.0008), FedPer (0.0017), SCAFFOLD (0.0031), and
FedProx (0.004). The advantage becomes even more pronounced in risk-sensitive metrics such as VaR95%
and CVaR95%, where FLARE-LA achieves much lower values, highlighting its ability to effectively manage
tail risks even with limited trading platforms participation. These trends persist in Fig. 2(b), with 20 training
rounds further consolidating FLARE-LA’s dominance in all metrics.

When the participation rate increases to 30% as shown in Figs. 2(c) and 2(d), the overall model performance
improves across all methods. However, FLARE-LA retains a clear advantage, achieving substantially
lower Mean Loss values. For instance, in Fig. 2(d), FLARE-LA reaches a Mean Loss of approximately
0.00005, outperforming SuPerFed (0.0003), FedPer (0.0005), SCAFFOLD (0.0010), and FedProx (0.002). The
improvement in FLARE-LA’s performance with higher participation rates underscores its ability to fully
leverage the increased availability of local data while maintaining its computational efficiency and accuracy.

Furthermore, the impact of increasing the number of federated training rounds is evident. FLARE-LA
demonstrates rapid convergence to low loss values within a few rounds, significantly reducing the computational
burden compared to other methods. Even after just 5 training rounds, FLARE-LA achieves results comparable
to or better than the baseline methods after 20 rounds, as shown in Figs. 2(b) and 2(d). This efficiency
highlights FLARE-LA’s capability to deliver robust performance even in scenarios with limited training
rounds or participation rates.
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Figure 3: Illustrations of distributions: (a) Exponential, (b) Geometric, (c) Gamma, and (d) Chi-square.

As shown in Fig. 3, we provide the comparative analysis across various participation distributions to evaluate
the efficacy of FLARE-LA in addressing the inherent challenges of FL with dynamic participation. The
experiments were conducted with a 20% participation rate, 10 federated rounds, and 10 local epochs in each
round. As shown in Fig. 3(a) where trading platforms are sampled from an exponential distribution, with a
scale parameter of 1.0, FLARE-LA demonstrates a remarkable ability to achieve a mean loss of 7.358× 10−5,
VaR95% of 2.284× 10−4, and CVaR95% of 3.978× 10−4, outperforming FedProx, SCAFFOLD, and FedPer
by an order. As shown in Fig. 3(b), where trading platforms are sampled from a geometric distribution with a
probability of success of an individual trial set at 0.35, FLARE-LA once again emerges as the top-performing
algorithm. Fig. 3(c) explores the performance of algorithms when trading platforms are sampled from a
Gamma distribution, with a shape parameter of 2.0 and a scale parameter of 1.0. In Fig. 3(d), where trading
platforms are sampled from a chi-square distribution with the number of degrees of freedom set at 2.0,
FLARE-LA continues to outshine the baseline algorithms.

By consistently delivering superior performance metrics, FLARE-LA showcases its adaptability in scenarios
characterized by varying levels of data availability and participation. By consistently achieving lower mean
loss, VaR95%, and CVaR95% values, FLARE-LA underscores its resilience and adaptability in optimizing
federated model training across a spectrum of trading platform distributions. These results demonstrate
FLARE-LA’s capability in managing volatile market conditions and optimizing federated model training
despite unpredictable trading platform participation patterns.

5.1.2 Computation Cost Comparison

The computation cost comparison for one round of FL is presented in Table 1, showcasing FLARE-LA’s
computational efficiency across varying participation rates. All experiments were conducted on an experimental
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Table 1: The Computation Cost Comparison for One Round

Participation Rate Fedprox (s) SCAFFOLD (s) FedPer (s) SuPerFed (s) FLARE-LA (s)
30% 74.39 105.9 46.18 99.63 48.16
60% 144.83 208.51 90.42 186.67 94.43

platform featuring an 8-core CPU, a 14-core GPU, and 16GB of RAM. This setup ensures consistent
benchmarking across all evaluated FL methods.

At a participation rate of 30%, FLARE-LA achieves a computation time of 48.16 seconds, significantly
outperforming SCAFFOLD (105.9 seconds) and SuPerFed (99.63 seconds). While FedPer demonstrates a
slightly faster computation time of 46.18 seconds, its slower convergence rate necessitates more training
rounds to achieve comparable results, thereby increasing the overall computational burden. FLARE-LA’s
superior balance between computational demands and model accuracy ensures efficient and timely model
updates, even under challenging participation scenarios.

When the participation rate increases to 60%, FLARE-LA continues to excel with a computation time of
94.43 seconds, outperforming Fedprox (144.83 seconds) and SCAFFOLD (208.51 seconds) by substantial
margins. Although FedPer achieves a comparable time of 90.42 seconds, FLARE-LA’s faster convergence
significantly reduces the total training cost, making it a more efficient and scalable solution for large-scale FL
applications in financial markets.

The experimental results demonstrate FLARE-LA’s robustness and adaptability in addressing challenges
such as fragmented datasets and irregular client participation. By achieving competitive computation
times, FLARE-LA ensures privacy-preserving collaboration and timely model updates, addressing critical
requirements for FL in decentralized financial environments. Its ability to provide reliable volatility predictions
is particularly valuable for effective risk management and investment decision-making in dynamic financial
markets.

5.2 Experiments with CIFAR10 and MNIST

To extend our evaluation beyond the financial domain, we conducted experiments using the CIFAR10 and
MNIST datasets, partitioned into 1000 clients. These datasets serve as benchmarks to demonstrate the
generalizability and robustness of FLARE-LA in broader FL scenarios.

To simulate real-world challenges, we introduced artificial label noise into the training sets, employing two
commonly used noise schemes: pairwise flipping Han et al. (2018) and symmetric flipping Van Rooyen
et al. (2015). The pairwise flipping scheme models scenarios where labels transition to semantically similar
neighboring labels with a noise ratio ϵ, while retaining the correct label with a probability of 1 − ϵ. The
symmetric flipping scheme assumes uniform mislabeling across all incorrect labels, distributing the noise ratio
ϵ evenly among them, while preserving the correct label with a probability of 1− ϵ.

For both schemes, the test sets remain clean to ensure a fair and accurate evaluation of model performance.
This setup allows us to rigorously assess FLARE-LA’s ability to handle noisy labels, which is a critical
capability for FL applications in dynamic and unpredictable environments. By addressing label noise
effectively, FLARE-LA demonstrates its robustness and adaptability in diverse scenarios, further validating
its utility across domains.

5.2.1 Convergence Analysis

The experiments on the CIFAR10 dataset assess the convergence performance of FLARE-LA in comparison
to state-of-the-art FL methods, including FedRep, Ditto, and SuPerFed, across various training rounds. Fig. 4
presents the model performance in terms of Mean Loss, VaR95%, and CVaR95% after 300, 400, 500, and 600
training rounds, highlighting the consistent superiority of FLARE-LA, particularly in handling non-IID data
and dynamic participation.
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At 300 training rounds as shown in Fig. 4(a), FLARE-LA achieves a Mean Loss of approximately 1.2,
significantly outperforming SuPerFed (2.1), Ditto (2.7), and FedRep (4.3). FLARE-LA also demonstrates a
clear advantage in VaR95% and CVaR95%, showcasing its ability to effectively manage tail risks in the early
training stages.

As training progresses to 400 and 500 rounds shown in Figs. 4(b) and 4(c), FLARE-LA maintains its lead
across all metrics. By 600 training rounds as shown in Fig. 4(d), FLARE-LA achieves a Mean Loss of
approximately 0.8, solidifying its position as the best-performing method. The consistent reduction in
VaR95% and CVaR95% further emphasizes FLARE-LA’s robustness and reliability in FL settings.

Compared to SuPerFed, Ditto, and FedRep, FLARE-LA demonstrates faster convergence and superior
overall performance. While SuPerFed performs competitively, it lags in handling label noise and dynamic
participation. Ditto, despite its strength in personalization, struggles to balance global generalization with
local adaptation. FedRep, on the other hand, exhibits slower convergence due to less effective local adaptation
mechanisms.
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Figure 4: Convergence analysis of model performance across different federated training rounds using the CIFAR10 dataset.

Fig. 5 showcases the convergence performance of FLARE-LA compared to LG-FedAvg, pFedMe, and FedRep
across various federated training rounds using the MNIST dataset. These experiments evaluate FLARE-LA’s
ability to handle FL challenges, such as data heterogeneity and dynamic participation, while maintaining
robust convergence with MNIST dataset.

At 300 training rounds as shown in Fig. 5(a), FLARE-LA achieves the lowest Mean Loss and significantly
reduced VaR95% and CVaR95% compared to the baseline methods. Specifically, FLARE-LA attains a
Mean Loss of approximately 0.3, whereas LG-FedAvg and FedRep exhibit higher values around 1.0 and 0.8,
respectively. Although pFedMe performs competitively, it falls short of FLARE-LA’s efficiency in managing
early-stage convergence, highlighting the superior adaptability of FLARE-LA to non-IID data distributions.
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As the training progresses to 400 and 500 rounds as shown in Figs. 5(b) and 5(c), FLARE-LA’s advantage
becomes more pronounced. By 500 rounds, FLARE-LA achieves a Mean Loss of approximately 0.2, whereas
LG-FedAvg and FedRep remain at 0.7 and 0.6, respectively. While pFedMe narrows the gap slightly, it
continues to lag behind FLARE-LA, particularly in managing tail risks, as indicated by higher VaR95% and
CVaR95% values. These results emphasize FLARE-LA’s robustness in both accuracy and risk management,
supported by its efficient local adaptation mechanism.

At 600 training rounds as shown in Fig. 5(d), FLARE-LA maintains its dominance across all metrics, achieving
a Mean Loss of approximately 0.1, compared to 0.5 for FedRep and 0.6 for LG-FedAvg. The continued
reduction in VaR95% and CVaR95% underscores FLARE-LA’s capability to ensure precise and stable
predictions, even under prolonged training scenarios. This performance demonstrates FLARE-LA’s scalability
and ability to sustain improvements over extended training, making it highly suitable for applications requiring
prolonged federated training.
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Figure 5: Convergence analysis of model performance across different federated training rounds using the MNIST dataset.

5.2.2 Analysis of Label Noise

Fig. 6 evaluates the robustness of FLARE-LA under symmetric label noise conditions, comparing its
performance against FedRep, Ditto, and SuPerFed. These experiments examine noise levels ranging from 0.2
to 0.8, demonstrating the resilience of FLARE-LA in maintaining strong performance under progressively
challenging noisy label scenarios.

At a noise ratio of 0.2 as shown in Fig. 6(a), FLARE-LA achieves the best performance among all methods,
with a significantly lower Mean Loss, VaR95%, and CVaR95%. Specifically, FLARE-LA reports a Mean
Loss of approximately 1.5, outperforming SuPerFed (2.3), Ditto (2.0), and FedRep (3.2). This demonstrates
FLARE-LA’s ability to handle modest label noise while preserving high predictive accuracy and robust risk
estimates.
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As the noise ratio increases to 0.4 as shown in Fig. 6(b), FLARE-LA continues to demonstrate a competitive
edge, maintaining its superior performance across all metrics. For instance, FLARE-LA achieves a Mean
Loss of approximately 2.0, while Ditto and SuPerFed report higher losses around 2.5 and 3.0, respectively.
FedRep experiences further degradation, with a Mean Loss exceeding 4.0, highlighting its vulnerability to
intermediate noise levels.

At higher noise ratios of 0.6 and 0.8 as shown in Figs. 6(c) and 6(d), FLARE-LA’s resilience becomes even
more pronounced. At a noise ratio of 0.6, FLARE-LA achieves a VaR95% of 2.8, compared to SuPerFed
(3.5), Ditto (3.8), and FedRep (5.0). When the noise ratio reaches 0.8, FLARE-LA demonstrates remarkable
robustness, maintaining strong performance despite challenging conditions. In contrast, the baseline methods
exhibit notable performance degradation, highlighting their limited ability to handle severe label noise. This
comparison underscores FLARE-LA’s superior adaptability and resilience in mitigating the adverse effects of
extreme noise scenarios.
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Figure 6: Impact of varying symmetric label noise rates on model performance during federated training with the CIFAR10
dataset.

Fig. 7 evaluates the robustness of FLARE-LA under symmetric label noise conditions, comparing its
performance against LG-FedAvg, pFedMe, and FedRep with the MNIST dataset. The experiments simulate
varying levels of label noise, testing FLARE-LA’s resilience in handling noisy labels effectively.

At a noise ratio of 0.2, FLARE-LA demonstrates clear superiority over the baseline methods, achieving
robust performance and effectively managing risks even under moderate label noise. This result highlights
the framework’s ability to mitigate the adverse effects of noise through its probabilistic local adaptation
mechanism. As the noise ratio increases to 0.4, FLARE-LA continues to maintain its competitive edge,
outperforming the baselines in both predictive accuracy and risk-related metrics. Its adaptability ensures
that the framework remains reliable even as noise levels increase. At higher noise levels, such as 0.6 and 0.8,
the gap between FLARE-LA and the baseline methods widens significantly. FLARE-LA sustains strong
performance, while the baselines exhibit considerable degradation under extreme noise conditions. These
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findings underscore FLARE-LA’s resilience and its ability to handle challenging scenarios with noisy labels
effectively using the MNIST dataset.
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Figure 7: Impact of varying symmetric label noise rates on model performance during federated training with the MNIST
dataset.

Fig. 8 presents the results of federated training on the CIFAR10 dataset under pairwise label noise conditions.
The experiments compare the performance of FLARE-LA against FedRep, Ditto, and SuPerFed, with noise
ratios set to 0.2 and 0.6. These results evaluate the resilience of the models in scenarios where labels are
systematically flipped within similar classes, reflecting more structured and challenging noise patterns.

At a noise ratio of 0.2 as shown in Fig. 8(a), FLARE-LA achieves superior performance, with a Mean Loss
of approximately 2.2, compared to approximate 2.5 for both SuPerFed and Ditto, and 3.0 for FedRep. In
addition, FLARE-LA achieves substantially lower VaR95% and CVaR95% values, highlighting its ability to
manage risk effectively under moderate noise conditions. The probabilistic local adaptation mechanism in
FLARE-LA, which incorporates Jacobian-driven updates, enables it to leverage the structure of local data
distributions, mitigating the adverse effects of mislabeled data. As the noise ratio increases to 0.6 as shown
in Fig. 8(b), all methods experience performance degradation due to the increased label noise. However,
FLARE-LA continues to outperform the baselines, achieving a CVaR95% of approximately 3.5, compared to
3.8 for SuPerFed, 4.1 for Ditto, and 6.6 for FedRep.

5.2.3 Analysis of Local Data Heterogeneity

Fig. 9 illustrates the impact of local data heterogeneity on model performance during federated training
with the CIFAR10 dataset. The experiments evaluate two heterogeneity settings, controlled by the Dirichlet
distribution’s concentration parameter α = 10.0, representing moderate non-IID data as shown in Fig. 9(a),
and α = 1000.0, representing near-IID data as shown in Fig. 9(b). The performance of FLARE-LA is
compared against baseline methods, including FedRep, Ditto, and SuPerFed, across Mean Loss, VaR95%,
and CVaR95%.
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Figure 8: Impact of varying pairwise label noise rates on model performance during federated training with the CIFAR10 dataset.

In the moderately heterogeneous scenario with α = 10.0, FLARE-LA significantly outperforms the baseline
methods across all metrics. Specifically, FLARE-LA achieves a Mean Loss of approximately 1.2, while
SuPerFed, Ditto, and FedRep report higher values above 2.5. This underscores the robustness of FLARE-LA’s
probabilistic local adaptation mechanism in addressing the challenges of non-IID data distributions. VaR95%
and CVaR95% metrics also exhibit similar trends, with FLARE-LA consistently achieving lower values,
reflecting its effectiveness in mitigating tail risks. The baseline methods, particularly SuPerFed and FedRep,
demonstrate slower adaptation and less optimal performance due to their limited ability to balance local
adaptation and global generalization.

In the near-IID scenario as α = 1000.0, the reduced heterogeneity leads to improved performance across
all methods. However, FLARE-LA maintains its performance advantage, achieving the lowest Mean Loss
at approximately 1.5, compared to 2.6 for both SuPerFed and Ditto, and 3.0 for FedRep. VaR95% and
CVaR95% metrics further highlight FLARE-LA’s superior convergence and risk management capabilities.
These results demonstrate FLARE-LA’s adaptability to near-IID settings while continuing to outperform its
competitors with the CIFAR10 dataset.
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Figure 9: Impact of varying degrees of local data heterogeneity on model performance during federated training with the
CIFAR10 dataset.

Fig. 10 examines the impact of local data heterogeneity on model performance during federated training
with the MNIST dataset. The heterogeneity is controlled using the Dirichlet distribution’s concentration
parameter α, where smaller values of α correspond to higher heterogeneity, and larger values indicate more
homogeneous distributions across clients.
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In Fig. 10(a), with α = 10.0, representing a highly heterogeneous data setting, FLARE-LA significantly
outperforms baseline methods, including LG-FedAvg, pFedMe, and FedRep. FLARE-LA achieves the lowest
mean loss, demonstrating its ability to address the challenges posed by diverse data distributions across
clients. Its probabilistic adaptation framework and Taylor-based linearization allow it to adapt the global
model effectively to local data, ensuring robust and accurate predictions. The VaR95% and CVaR95% values
further highlight FLARE-LA’s superior risk management capabilities, with consistently lower values compared
to the baselines. In contrast, LG-FedAvg and FedRep struggle to generalize effectively in such non-IID
conditions, while pFedMe achieves competitive performance but lags behind FLARE-LA in convergence speed
and accuracy.

In Fig. 10(b), with α = 1000.0, the data distribution becomes more homogeneous across clients, resembling an
IID-like setting. Although the performance gap between FLARE-LA and the baselines narrows, FLARE-LA
continues to deliver the best results, particularly in terms of mean loss and risk metrics. This consistency
demonstrates FLARE-LA’s ability to generalize effectively even in less heterogeneous scenarios. The reduced
advantage of FLARE-LA in this setting is expected, as the uniformity in data distribution reduces the need
for sophisticated local adaptation. Nonetheless, FLARE-LA exhibits computational efficiency by achieving
strong performance with fewer training rounds compared to the baseline methods.
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(a) α = 10.0 (b) α = 1000.0

Figure 10: Impact of varying degrees of local data heterogeneity on model performance during federated training with the
MNIST dataset.

5.2.4 Analysis of Client Participation Rates

Fig. 11 examines the impact of varying client participation rates on model performance during federated
training with the CIFAR10 dataset. Two participation rates are evaluated, i.e., 1% and 2%, reflecting
scenarios where only a small subset of clients is involved in each round of training. These experiments assess
the ability of FLARE-LA to handle high dynamicity in client participation compared to FedRep, Ditto, and
SuPerFed.

At the 1% participation rate as shown in Fig. 11(a), FLARE-LA demonstrates remarkable robustness and
stability. Its performance significantly outpaces the baseline methods, underscoring its effectiveness in
scenarios with limited client engagement. The probabilistic local adaptation mechanism in FLARE-LA
allows participating clients to derive maximum benefit from the global model while effectively adapting it to
their local data, even under extreme participation constraints. In contrast, FedRep, Ditto, and SuPerFed
struggle to maintain stable performance, likely due to their reliance on higher client participation for effective
aggregation.

With a 2% participation rate as shown in Fig. 11(b), FLARE-LA continues to outperform the baselines,
achieving faster convergence and higher predictive accuracy. The increase in participation improves perfor-
mance across all methods; however, FLARE-LA maintains its competitive edge. Its efficient local adaptation
strategy ensures that even with a slightly larger subset of clients, the model remains robust to dynamic
participation.
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Figure 11: Impact of varying client participation rates on model performance during federated training with the CIFAR10
dataset.

Fig. 12 explores the impact of varying client participation rates on the performance of FLARE-LA, LG-FedAvg,
pFedMe, and FedRep during federated training on the MNIST dataset. Four participation rates are analyzed,
i.e., 0.5%, 1%, 1.5%, and 2.0%. These scenarios assess the robustness of the methods under dynamic client
participation, where only a small subset of clients is involved in each training round.

At the lowest participation rate of 0.5% as shown in Fig. 12(a), FLARE-LA achieves a mean loss of
approximately 0.2, significantly outperforming LG-FedAvg (1.4), pFedMe (0.6), and FedRep (0.4). Similarly,
for VaR95%, FLARE-LA records 0.2, while LG-FedAvg, pFedMe, and FedRep record 2.8, 1.2, and 2.5,
respectively. In terms of CVaR95%, FLARE-LA achieves 0.5, maintaining a substantial margin over LG-
FedAvg (3.2) and FedRep (3.0). These results demonstrate FLARE-LA’s ability to effectively leverage limited
client contributions, while the baseline methods struggle to adapt under such constraints.

As the participation rate increases to 1% as shown in Fig. 12(b), the performance of all methods improves,
with FLARE-LA continuing to lead with a mean loss of 0.15, compared to LG-FedAvg (1.3), pFedMe (0.8),
and FedRep (0.25). For VaR95%, FLARE-LA achieves 0.3, while LG-FedAvg and FedRep record 2.8 and 0.8,
respectively. For CVaR95%, FLARE-LA remains robust at 0.5, outperforming LG-FedAvg (3.2) and pFedMe
(1.3). This trend highlights FLARE-LA’s superior accuracy and convergence speed as participation increases.

At a participation rate of 1.5% as shown in Fig. 12(c), FLARE-LA continues to demonstrate superior
performance compared to LG-FedAvg, pFedMe, and FedRep. At the highest participation rate of 2.0% as
shown in Fig. 12(d), FLARE-LA achieves the most favorable results among the methods evaluated. It efficiently
leverages the increased client participation to deliver improved performance while maintaining robustness
across key performance metrics, which highlight FLARE-LA’s scalability and adaptability, underscoring its
ability to outperform baseline methods consistently. Its robust local adaptation mechanism ensures effective
handling of increased client engagement, maintaining strong predictive accuracy and resilience in FL scenarios.

6 Conclusions and Discussions

This work proposed FLARE-LA, a novel framework addressing the challenges of FL in diverse and dynamic
environments, particularly financial markets. By integrating Taylor-based linearization for efficient local
adaptation with a probabilistic mechanism leveraging the Jacobian matrix, FLARE-LA achieves precise
optimization, robust performance, and interpretable uncertainty quantification. Extensive experiments
demonstrated its superiority over state-of-the-art baselines, achieving higher accuracy, faster convergence,
and resilience to label noise and dynamic participation. In financial applications, FLARE-LA excelled in
metrics like mean loss, VaR95%, and CVaR95%, underscoring its suitability for high-stakes, heterogeneous
environments. With its ability to adapt global models to local distributions, handle fragmented datasets,
and ensure computational efficiency, FLARE-LA offers a scalable and versatile solution for FL challenges.
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Figure 12: Impact of varying client participation rates on model performance during federated training with the MNIST dataset.

Future directions include extending the framework to domains like healthcare and IoT, integrating advanced
optimization techniques, positioning FLARE-LA as a foundation for advancing FL innovations.
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A Convergence Analysis

In each training round t, we dynamically select a subset of trading platforms St ⊆ E, where |St| = S denotes
the number of participating platforms in that round. The current global model wt−1 is distributed to all
selected platforms. Each participating platform i initializes its local model with the received global model,
i.e., wt

i,0 = wt−1. The local models are then updated through K iterations of SGD-based on their local data.
The update rule for the local parameters at iteration k is given by

wt
i,k = wt

i,k−1 − αl∇Li(wt
i,k−1), (19)
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where αl is the local learning rate, and ∇Li(w) represents the stochastic gradient of the local loss function
Li at platform i. After K iterations, the final local model for platform i is

wt
i,K = wt−1 −

K−1∑
k=0

αl∇Li(wt
i,k). (20)

We assume that ∇Li(w) is an unbiased stochastic gradient with variance bounded by σ2. The global model
is updated by aggregating the updates from all selected local models. The update rule for the global model
with global step size αg is

wt = wt−1 + αg

S

∑
i∈St

(wt
i,K −wt−1) = wt−1 − αg

S

∑
i∈St

K−1∑
k=0

αl∇Li(wt
i,k). (21)

To facilitate the analysis, we define the effective step size as α̃ = Kαlαg. The update applied to the server
model in round t can be expressed as

δt−1 = − α̃

KS

∑
i∈St

K−1∑
k=0

∇Li(wt
i,k). (22)

The expectation of the server update, considering the participation of all platforms E, is

E[δt−1] = − α̃

K|E|
∑
i∈E

K−1∑
k=0

∇Li(wt
i,k). (23)

The reduction can be shown by examining the distance from the minimizer w∗

∥wt −w∗∥2 = ∥wt−1 + δt−1 −w∗∥2

= ∥wt−1 −w∗∥2 + 2
(
wt−1 −w∗)T

δt−1 + ∥δt−1∥2.
(24)

We use Et−1[·] to denote the expectation conditioned on all the randomness generated prior to round t. Thus,
we have

Et−1

[(
wt−1 −w∗)T

δt−1
]

= − α̃

K|E|
∑
i∈E

K−1∑
k=0

E
[
∇Li(wt

i,k)T
(
wt−1 −w∗)]

. (25)

We assume the eigenvalues of the Hessian of all {Li(w)}i∈E are bounded within (µ, β), and the quadratic
upper bound and quadratic lower bound for local objective function Li(wt−1) can be obtained as

Li(wt−1) ≤ Li(wt
i,k−1) + ▽▽▽Li(wt

i,k−1)T (wt−1 − wt
i,k−1) + β

2 ∥wt−1 − wt
i,k−1∥2, (26)

and
Li(w∗) ≥ Li(wt

i,k−1) + ▽▽▽Li(wt
i,k−1)T (w∗ − wt

i,k−1) + µ

2 ∥w∗ − wt
i,k−1∥2. (27)

Then, we can get

▽▽▽Li(wt
i,k−1)T (wt−1 − w∗) ≥ Li(wt−1)− Li(w∗) + µ

2 ∥w∗ − wt
i,k−1∥2 − β

2 ∥wt−1 − wt
i,k−1∥2. (28)

By Triangle inequality, we have

∥w∗ − wt
i,k−1∥2 ≥ 1

2∥w∗ − wt−1∥2 − ∥wt−1 − wt
i,k−1∥2. (29)

Combining with β ≥ µ, we can obtain

▽▽▽Li(wt
i,k−1)T (wt−1 − w∗) ≥ Li(wt−1)− Li(w∗) + µ

4 ∥w∗ − wt−1∥2 − β∥wt−1 − wt
i,k−1∥2. (30)
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Therefore, we have

Et−1
[
(wt−1 −w∗)T δt−1]

≤ − α̃

K|E|
∑
i∈E

K−1∑
k=0

(
Li(wt−1)− Li(w∗) + µ

4 ∥w
t−1 −w∗∥2 − β∥wt

i,k−1 −wt−1∥2
)

.
(31)

The drift of the local model from the global model is formulated as

ε = 1
K|E|

∑
i∈E

K−1∑
k=0
∥wt

i,k−1 −wt−1∥2, (32)

then we obtain

Et−1
[
(wt−1 −w∗)T δt−1]

≤ −α̃
(

L(wt−1)− L(w∗) + µ

4 ∥w
t−1 −w∗∥2

)
+ α̃βε. (33)

For the sequence of local gradients {∇Li(wt
i,k−1)} during the training procedure, the variance is defined by

E[∥∇Li(wt
i,k−1) − E[∇Li(wt

i,k−1)]∥2]
= E[∥∇Li(wt

i,k−1)∥2]− 2∥E[∇Li(wt
i,k−1)]∥2 + ∥E[∇Li(wt

i,k−1)]∥2

= E[∥∇Li(wt
i,k−1)∥2]− ∥E[∇Li(wt

i,k−1)]∥2.

(34)

Similarly, we can get that

E[∥ α̃

KS

S∑
i=1

K−1∑
k=0

(∇Li(wt
i,k−1)− E[∇Li(wt

i,k−1)])∥2]

= E[∥ α̃

KS

S∑
i=1

K−1∑
k=0

∇Li(wt
i,k−1)∥2]− ∥ α̃

KS

S∑
i=1

K−1∑
k=0

E[∇Li(wt
i,k−1)]∥2.

(35)

We assume the variance of local gradients is upper bounded by

E[∥∇Li(wt
i,k−1) − E[∇Li(wt

i,k−1)]∥2] ≤ γ2, (36)

and by Jensen’s inequality, we have that

∥ α̃

KS

S∑
i=1

K−1∑
k=0

(∇Li(wt
i,k−1)− E[∇Li(wt

i,k−1)])∥2

≤ α̃

KS

S∑
i=1

K−1∑
k=0
∥∇Li(wt

i,k−1)− E[∇Li(wt
i,k−1)]∥2.

(37)

Using the linearity of the expectation we have

E[∥ α̃

KS

S∑
i=1

K−1∑
k=0

(∇Li(wt
i,k−1)− E[∇Li(wt

i,k−1)])∥2]

≤ α̃

KS

S∑
i=1

K−1∑
k=0

E[∥∇Li(wt
i,k−1)− E[∇Li(wt

i,k−1)]∥2].

(38)

Then, we have the upper bound of Et−1
[
∥δt−1∥2]

as

Et−1

[
∥ α̃

KS

S∑
i=1

K−1∑
k=0

∇Li(wt
i,k−1)∥2

]
≤ ∥ α̃

KS

S∑
i=1

K−1∑
k=0

∇Li(wt
i,k−1)∥2 + α̃2γ2

KS
. (39)
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By the triangle inequality, we have

∥ α̃

KS

S∑
i=1

K−1∑
k=0

(
∇Li(wt

i,k−1)−∇Li(wt−1) + ∇Li(wt−1)
)
∥2

≤ 2∥ α̃

KS

S∑
i=1

K−1∑
k=0

(
∇Li(wt

i,k−1)−∇Li(wt−1)
)
∥2 + 2∥ α̃

S

S∑
i=1

∇Li(wt−1)∥2.

(40)

By Jensen’s inequality and the β-smoothness property, we have

∥ α̃

KS

S∑
i=1

K−1∑
k=0

(
∇Li(wt

i,k−1)−∇Li(wt−1)
)
∥2

≤ α̃

KS

S∑
i=1

K−1∑
k=0
∥∇Li(wt

i,k−1)−∇Li(wt−1)∥2

≤ α̃β2

KS

S∑
i=1

K−1∑
k=0
∥wt

i,k−1 −wt−1∥2.

(41)

We can also obtain

∥ α̃

S

S∑
i=1

∇Li(wt−1)∥2 = ∥ α̃

S

S∑
i=1

(
∇Li(wt−1)−∇L(wt−1)

)
+ ∇L(wt−1)∥2

≤ 2∥ α̃

S

S∑
i=1

(
∇Li(wt−1)−∇L(wt−1)

)
∥2 + 2∥α̃∇L(wt−1)∥2

≤ 2α̃2B + 4βα̃2 (
L(wt−1)− L(w∗)

)
,

(42)

by the triangle inequality, where we define the gradient dissimilarity is upper bounded by

∥ 1
S

S∑
i=1

(
∇Li(wt−1)−∇L(wt−1)

)
∥2 ≤ B. (43)

We can conclude that

Et−1[∥δt−1∥2] ≤ 2α̃β2ε + 4α̃2B + 8βα̃2 (
L(wt−1)− L(w∗)

)
+ α̃2γ2

KS
, (44)

and the improvement in one round is

Et−1[∥wt − w∗∥2] = ∥wt−1 − w∗∥2 + 2Et−1[(wt−1 − w∗)T δt−1] + Et−1[∥δt−1∥2]

≤ ∥wt−1 − w∗∥2 − 2α̃
(

L(wt−1)− L(w∗) + µ

2 ∥w
t−1 − w∗∥2

)
+ 2α̃βε + 2α̃β2ε + 4α̃2B + 8βα̃2 (

L(wt−1)− L(w∗)
)

+ α̃2γ2

KS

= (1− α̃µ)∥wt−1 − w∗∥2 + (8βα̃2 − 2α̃)
(
L(wt−1)− L(w∗)

)
+ 2α̃β(β + 1)ε + 4α̃2B + α̃2γ2

KS
.

(45)

Since the local updating is stochastic, and we have defined the variance of the sampled gradient from the full
local gradient as σ2

E∥gi(w)−∇Li(w)∥2 = σ2 = E∥gi(w)∥2 − ∥∇Li(w)∥2. (46)
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If we define a = 1
K−1 , then we can obtain the upper bound of the expectation

E∥wt
i,k −wt−1∥2 ≤

(
1 + 1

K − 1

)
E∥wt

i,k−1 −wt−1∥2 + Kα2
l E∥gi(wt

i,k−1)∥2

=
(

1 + 1
K − 1

)
E∥wt

i,k−1 −wt−1∥2 + Kα2
l ∥∇Li(wt

i,k−1)∥2 + Kα2
l σ2.

(47)

Then, we want to eliminate the gradients with the local updating model ∇Li(wt
i,k−1) by applying the

inequality
∥∇Li(wt

i,k−1)∥2 = ∥∇Li(wt
i,k−1)−∇Li(wt−1) +∇Li(wt−1)∥2

≤ 2∥∇Li(wt
i,k−1)−∇Li(wt−1)∥2 + 2∥∇Li(wt−1)∥2.

(48)

Based on the Lipschitz continuous gradient, we have

∥∇Li(wt
i,k−1)−∇Li(wt−1)∥2 ≤ β2∥wt

i,k−1 −wt−1∥2, (49)

and we can obtain

E∥wt
i,k −wt−1∥2 ≤

(
1 + 1

K − 1 + 2Kα2
l β2

)
E∥wt

i,k−1 −wt−1∥2

+ 2Kα2
l ∥∇Li(wt−1)∥2 + Kα2

l σ2.

(50)

To upper bound the drift over K local updates, we can unroll the recursion from wt
i,0 to wt

i,K−1. Since
wt

i,0 = wt−1, we can obtain

E∥wt
i,K −wt−1∥2 ≤

K−1∑
k=0

(
1 + 1

K − 1 + 2Kα2
l β2

)k

(2Kα2
l ∥∇Li(wt−1)∥2 + Kα2

l σ2). (51)

This upper bound is a geometric series where 2Kα2
l ∥∇Li(wt−1)∥2 + Kα2

l σ2 is the coefficient, and 1 + 1
K−1 +

2Kα2
l β2 is the common ratio between adjacent terms. This upper bound can also be written as

K−1∑
k=0

(1 + 1
K − 1 + 2Kα2

l β2)k(2Kα2
l ∥∇Li(wt−1)∥2 + Kα2

l σ2) = q(2Kα2
l ∥∇Li(wt−1)∥2 + Kα2

l σ2). (52)

where q is a constant with a fixed local learning rate αl and local updating iterations K defined as

q =
1−

(
1 + 1

K−1 + 2Kα2
l β2

)K

1−
(

1 + 1
K−1 + 2Kα2

l β2
) . (53)

Then, we come to analysis of the dynamic trading platform participation. According to the quadratic upper
bound and the linear lower bound of the local objective function, we can obtain the inequality as

Li(w∗)− Li(w) = Li(w∗)− Li(z) + Li(z)− Li(w)

≤∇Li(w∗)T (w∗ − z) + ∇Li(w)T (z − w) + β

2 ∥z − w∥2

= ∇Li(w∗)T (w∗ − w) + (∇Li(w∗) − ∇Li(w))T (w − z) + β

2 ∥z − w∥2.

(54)

We define
z = w − 1

β
(∇Li(w) − ∇Li(w∗)), (55)

and then, we have

(∇Li(w∗) − ∇Li(w))T (w − z) = − 1
β

∥∇Li(w∗) − ∇Li(w)∥2,

β

2 ∥z − w∥2 = 1
2β

∥∇Li(w∗) − ∇Li(w)∥2,

(56)
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hence,
Li(w∗)− Li(w) ≤∇Li(w∗)T (w∗ − w)− 1

2β
∥∇Li(w∗) − ∇Li(w)∥2, (57)

which leads to

Li(w)− Li(w∗)−∇Li(w∗)T (w − w∗) ≥ 1
2β

∥∇Li(w∗) − ∇Li(w)∥2. (58)

Since
1
|E|

∑
i∈E

(Li(w)− Li(w∗)) = L(w)− L∗, (59)

then, we have
2β(L(w)− L∗) ≥ 1

|E|
∑
i∈E

∥∇Li(w) − ∇Li(w∗)∥2. (60)

The bound on the local gradient can be found as

1
|E|

∑
i∈E

∥∇Li(w)∥2 = 1
|E|

∑
i∈E

∥∇Li(w) − ∇Li(w∗) + ∇Li(w∗)∥2

≤ 2
|E|

∑
i∈E

∥∇Li(w) − ∇Li(w∗)∥2 + 2
|E|

∑
i∈E

∥∇Li(w∗)∥2

≤ 4β(L(w)− L∗) + 2
|E|

∑
i∈E

∥∇Li(w∗)∥2.

(61)

And the upper bound of the local training drift is

ε ≤ 1
|E|

∑
i∈E

q
(
2Kα2

l ∥∇Li(wt−1)∥2 + Kα2
l σ2)

≤ 8qKα2
l β(L(w)− L∗) + 4qKα2

l

|E|
∑
i∈E

∥∇Li(w∗)∥2 + qKα2
l σ2.

(62)

The improvement in one round can be rewritten as

Et−1[∥wt − w∗∥2] ≤ (1− α̃µ)∥wt−1 − w∗∥2 + (8βα̃2 − 2α̃)(L(wt−1)− L(w∗))

+ 2α̃β(β + 1)ε + 4α̃2B + α̃2γ2

K|E|
≤ (1− α̃µ)∥wt−1 − w∗∥2 + c3(L(wt−1)− L(w∗))

+ 2α̃β(β + 1)c1 + c2,

(63)

where we define
c1 = 4qKα2

l

|E|
∑
i∈E

∥∇Li(w∗)∥2 + qKα2
l σ2,

c2 = 4α̃2B + α̃2γ2

K|E|
,

c3 = 16β2(β + 1)qKα̃α2
l + 8βα̃2 − 2α̃.

(64)

Then, we can obtain the following upper bound

Et−1[L(wt−1)− L(w∗)] ≤ Et−1

[
1
c3

(1− α̃µ)∥wt−1 − w∗∥2 − 1
c3

∥wt − w∗∥2
]

+ 2
c3

α̃β(β + 1)c1 + c2

c3
.

(65)
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We assume the eigenvalues of the Hessian of L̂i(w) are bounded within (µi, βi), i.e.,

µi ≤ ∥
1
σ2

i

Jw∗JT
w∗∥ ≤ βi. (66)

We assume the local gradient w.r.t w∗ is bounded by ϵi, i.e., ∥∇L̂i(w∗)∥ ≤ ϵi, and w∗
i is the optimal model

for trading platform i. The improvement of local adaptation in the model space can be bounded by

∥w − w∗
i ∥ = ∥w∗ − (∇2L̂i(w∗))−1∇L̂i(w∗) − w∗

i ∥
= ∥(∇2L̂i(w∗))−1[∇L̂i(w∗) + ∇2L̂i(w∗)(w∗

i − w∗)]∥.
(67)

Since
∇L̂i(w∗

i ) = ∇L̂i(w∗) + ∇2L̂i(w∗)(w∗
i − w∗), (68)

we obtain that

∥w − w∗
i ∥ = ∥(∇2L̂i(w∗))−1[∇L̂i(w∗

i ) − ∇L̂i(w∗)] + (∇2L̂i(w∗))−1∇L̂i(w∗)∥. (69)

We assume the local gradient w.r.t w∗ is bounded by ϵi. Then, we have

∥(∇2L̂i(w∗))−1∇L̂i(w∗)∥ ≤ ∥(∇2L̂i(w∗))−1∥∥∇L̂i(w∗)∥ ≤ ϵi

µi
. (70)

Furthermore, we have

∥(∇2L̂i(w∗))−1[∇L̂i(w∗
i ) − ∇L̂i(w∗)]∥ ≤ ∥(∇2L̂i(w∗))−1∥∥∇L̂i(w∗

i )−∇L̂i(w∗)∥

≤ βi

µi
∥w∗

i − w∗∥.
(71)

Therefore, we have
∥w − w∗

i ∥ ≤ βi

µi
∥w∗

i − w∗∥ + ϵi

µi
. (72)

By approximating the global model with a local linearization w.r.t each trading platform’s local dataset, the
model updates are tailored to the local data distribution. This leads to more accurate predictions for each
trading platform’s data, reducing overall prediction error. To obtain the decrement of objective function
L̂i(w), we first derive the second-order Taylor expansion of L̂i(w∗

i ) as

L̂i(w) = L̂i(w∗)−∇L̂i(w∗)T (∇2L̂i(w∗))−1∇L̂i(w∗)

+ 1
2∇L̂i(w∗)T (∇2L̂i(w∗))−1∇L̂i(w∗)

= L̂i(w∗)− 1
2∇L̂i(w∗)T (∇2L̂i(w∗))−1∇L̂i(w∗).

(73)

Local adaptation can significantly reduce the objective function L̂i(w), thereby decreasing the need for
additional rounds of FL. The second-order Taylor expansion shows that the loss reduction is proportional to
the squared norm of the residual yi − fi, bounded by curvature information from the Hessian matrix as

L̂i(w∗)− L̂i(w) = 1
2∇L̂i(w∗)T (∇2L̂i(w∗))−1∇L̂i(w∗)

≤ ∥(∇2L̂i(w∗))−1∥ · ∥∇L̂i(w∗)∥2

= σ2
i ∥(Jw∗JT

w∗)−1∥ · ∥ 1
σ2

i

Jw∗(yi − fi)∥2

≤ βi

σ2
i µi
· ∥(yi − fi)∥2.

(74)

By effectively reducing the local loss, each trading platform contributes more accurate volatility prediction.
Consequently, fewer communication rounds are needed, making the FL process more efficient and scalable.
This reduces the need for extensive FL rounds, ultimately leading to better performance in realized volatility
prediction.
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