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Abstract

As a prominent Parameter-Efficient Fine-
Tuning (PEFT) method, LoRA is widely used
for efficiently fine-tuning large language mod-
els (LLMs). However, LoRA’s uniform inser-
tion of trainable modules to target modules
across all layers often results in redundancy
in the number of trainable modules, and we
contend that reducing the number of these mod-
ules can further enhance the efficiency of PEFT.
To address this issue, we propose Gradient-
Guided Redundancy Reduction (G?R?), a
novel module-level approach that adaptively
prunes redundant LoRA modules, which boosts
fine-tuning efficiency while preserving or even
improving performance. Specifically, G>R>
evaluates the contribution and redundancy of
trainable modules using a Gradient-Based Re-
dundancy Evaluation score, which leverages
gradient information to achieve this. Based
on this score, G2R? progressively eliminates
redundant LoRA modules through a Three-
Stage Redundancy Reduction Strategy. Exten-
sive experiments demonstrate that G2R? not
only boosts fine-tuning efficiency but also main-
tains or even surpasses state-of-the-art methods
across commonsense reasoning and natural lan-
guage understanding tasks.

1 Introduction

Fine-tuning large language models (LLMs) is es-
sential for adapting them to diverse applications,
including instruction tuning, preference alignment,
and domain adaptation. However, full fine-tuning
requires updating all parameters, leading to sub-
stantial memory and computational costs. To ad-
dress this, Parameter-Efficient Fine-Tuning (PEFT)
methods (Vucetic et al., 2022; Houlsby et al., 2019;
Zi et al., 2023; Zhang et al., 2024; Yang et al.,
2023; Ding et al., 2023; Chen et al., 2023) freeze
most model parameters and introduce a small num-
ber of trainable ones into specific modules, signifi-
cantly reducing resource consumption. LoRA (Hu
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Figure 1: Traditional LoRA (left) suffers from high re-
dundancy and longer fine-tuning time. G2R? (right)
reduces redundancy, prunes redundant LoRA modules,
and accelerates fine-tuning while improving perfor-
mance. Where py < 1.

et al., 2022) is the most widely used method to
reduce parameters by reparameterizing AW. And
then, many methods seek to further reduce trainable
prameters by refining reparameterization strategies,
e.g. VeRA (Kopiczko et al., 2023), DoRA (Liu
et al., 2024a), AdaLoRA (Zhang et al., 2023) and
HRA (Yuan et al., 2024).

However, LoRA’s strategy of uniformly inserting
trainable parameters into all target modules across
each layer frequently leads to redundancy in the
number of trainable module (refer to the left figure
in Figure 1). We contend that reducing the num-
ber of these trainable modules not only decreases
the total trainable parameters but also further en-
hances the efficiency of PEFT. To address these
issues, we propose a novel parameter reduction
method, Gradient-Guided Redundancy Reduction
Method (G?R?), which adaptively reduces redun-
dant training parameters at the module level while
maintaining, or even improving training quality
(refer to the right figure in Figure 1).

Our G?R? is built on two key components:
Gradient-Based Redundancy Evaluation Scores
and a module-level Three-Stage Redundancy Re-
duction Strategy, which ensure both the stability
and accuracy of the pruning process. The Gradient-
Based Redundancy Evaluation score exploit gra-



dient information to quantify the contribution of
each LoRA module, enbling a precise measure of
module-level redundancy. Modules that exhibit
high scores are identified as redundant and targeted
for pruning. Building on this evaluation, the Three-
Stage Redundancy Reduction Strategy systemati-
cally reduces redundancy in three phases: Warmup
Stage, Progressive Pruning Stage and Fine-Tuning
Refinement Stage. In first stage, all LORA modules
are initially assessed to identify potentially less con-
tributive ones. In second stage, redundant modules
are progressively pruned over several steps, ensur-
ing that the reduction process is gradual and does
not disrupt convergence. In third stage, remaining
modules are further optimized to maximize their
effectiveness on the target task. By focusing on
module-level pruning instead of element-level pa-
rameter removal, G2R2 achieves a more efficient
reduction in trainable parameters while maintaining
robust convergence and performance—a critical ad-
vantage for large-scale model fine-tuning.

We conduct extensive experiments across di-
verse tasks and model architectures to thor-
oughly evaluate the effectiveness and efficiency of
G?R2. Specifically, we benchmark our method
on commonsense reasoning using LLaMA2-7B
and LLaMA3-8B, and on natural language under-
standing (GLUE) with DeBERTaV3-base. The
experimental results demonstrate that G2R? not
only achieves state-of-the-art performance (+0.4
on LLaMA?2-7B, +7.1 on LLaMA3-8B and +0.44
on DeBERTaV3) but also significantly improves
the efficiency of parameter-efficient fine-tuning by
reducing training time (-11.6%) and decreasing
memory usage (-22.1%). The contributions of our
work are as follows:

* We introduce a gradient-driven metric to as-
sess the redundancy of LoRA modules. By
focusing on module contributions inferred
through gradient information, our approach
enables precise identification of less critical
components, laying a solid foundation for ef-
ficient module-level pruning.

* We design a module-level pruning framework
encompassing three phases, Warmup, Progres-
sive Pruning, and Fine-Tuning Refinement,
that incrementally remove redundant modules
without causing catastrophic failure. This
strategy preserves stable convergence, reduces
overall training time, and avoids significant
memory overhead.

* We have conducted extensive experiments on
commonsense reasoning and natural language
understanding, and the results show that our
G?R? achieves state-of-the-art performance
with higher fine-tuning efficiency.

2 Related Work

Parameter Efficient Fine-Tuning. Parameter-
Efficient Fine-Tuning (PEFT) methods have gar-
nered considerable attention. Houlsby et al. (2019)
introduced bottleneck-shaped modules inserted af-
ter attention and FFN layers, and Pfeiffer et al.
(2021b) found that a single adapter after the self-
attention layer can achieve performance compa-
rable to placing two adapters per Transformer
block. Prompt-based methods, such as Lester
et al. (2021), prepend trainable “soft prompts” to
the model’s input embeddings while keeping the
main weights frozen. Some approaches fine-tune
only specific subsets of existing parameters (e.g.,
biases in BitFit (Zaken et al., 2022), or crucial
parameters as in DiffPruning (Guo et al., 2021)
and FAR (Vucetic et al., 2022)). Aghajanyan
et al. (2021) introduced the concept of intrinsic
dimensionality, showing that larger models can be
tuned in lower-dimensional subspaces. Building
on this insight, LoORA (Hu et al., 2022) factorizes
weight updates into low-rank matrices. Later ex-
tensions include MAM Adapter (He et al., 2022),
which combines scaling parallel adapters with soft
prompts; AdalLoRA (Zhang et al., 2023), allocat-
ing parameter budgets based on importance scores;
DyLoRA (Valipour et al., 2023), training a range
of ranks simultaneously; and LongLLoRA (Chen
et al., 2023), extending context sizes for large lan-
guage models. Currently, many studies aim to de-
vise more parameter-efficient low-rank decompo-
sition strategies to further reduce the total num-
ber of parameters, e.g. DoRA (Liu et al., 2024a),
VeRA (Kopiczko et al., 2023), BOFT (Liu et al.,
2024b) and HRA (Yuan et al., 2024).

Parameter Pruning. Pruning methods typically
begin by evaluating the importance of each pa-
rameter, then removing those deemed less critical.
While a common metric is parameter magnitude (Li
et al., 2018; Lee et al., 2021; Han et al., 2015; Pa-
ganini and Forde, 2020; Zafrir et al., 2021a), large
weights are not always crucial, and small weights
can be indispensable. An alternative is sensitivity-
based scoring, which measures the change in loss
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Figure 2: Overview of the Three-Stage Redundancy Reduction Strategy. Warmup: All LoRA modules are inserted
to target modules, and redundancy is evaluated with Smoothing and Stability Estimation. Progressive Pruning:
High-redundancy modules are gradually pruned. Fine-Tuning Refinement: Only low-redundancy modules remain
for final tuning, ensuring efficiency without compromising performance.

resulting from pruning a parameter (Molchanov
et al., 2019; Sanh et al., 2020; Liang et al., 2021;
Zhang et al., 2022; Ma et al., 2023). Molchanov
et al. (2019) approximate the pruning error using
a first-order Taylor expansion to avoid computing
the Hessian, while Zhang et al. (2022) propose
PLATON, which accounts for both sensitivity and
estimation uncertainty to stabilize training. In the
context of large language models, Ma et al. (2023)
introduce LLM-Pruner, extending pruning tech-
niques to these massive architectures.

3 Method

In this section, we introduce our Gradient-Guided
Redundancy Reduction Method (G?R?), designed
to address the redundant allocation of trainable pa-
rameters and improve efficiency of PEFT. (G2R?)
achieve this by leveraging a Three-Stage Redun-
dancy Reduction Strategy: Warmup, Progressive
Pruning, and Fine-Tuning Refinement (see Fig-
ure 2). In the Warmup stage, LoRA modules are
inserted at all target positions and their module-
level redundancy is measured using our Gradient-
Based Redundancy Evaluation Score. Next, dur-
ing the Progressive Pruning stage, modules with
high redundancy are gradually pruned based on
a dynamic threshold. Finally, in the Fine-Tuning
Refinement stage, only the retained modules are
updated, reducing computational cost and resource
usage compared to the original LoRA method. For
more details, please refer to the following sections.

3.1 Low-Rank Adaptations

LoRA (Hu et al., 2022) proposes to adapt a pre-
trained model by injecting low-rank updates into
certain weight matrices, thereby reducing the num-
ber of trainable parameters. Given a pre-trained
weight matrix Wy € R?**, instead of updating
Wy during fine-tuning, LoRA keeps W), frozen and
learns a low-rank update AW such that:
AW = AB, @)
where A € R¥?" and B € R™*, with r <
min(d, k). The adapted weight is then given by:
W =Wy + AW =W, + AB. 2)
For a given input x, the forward pass is computed
as:

h=xzWy+s-xAB, 3)

where s > 1 is a tunable scalar hyperparameter.
During training, only the low-rank matrices A and
B are updated, while W, remains fixed. In this
work, we focus on this simplest form of low-rank
adaptation as proposed in LoRA.

3.2 Gradient-Based Redundancy Evaluation

To accurately evaluate the redundancy of low-rank
modules, we draw inspiration from the importance
assessment techniques in parameter pruning and
propose Gradient-Based Redundancy Evaluation.
We consider a LoORA module defined as L = AB,
where L € R>* A € R¥" and B € R™*¥. Sup-
pose that given a dataset D = {z;,y;}Y ;, where



N is the number of samples. We denote that [;;
is the element in the i-th row and j-th column of
matrix L. Before evaluating the redundancy of a
LoRA module, we first measure the sensitivity of
each parameter within the module to the loss (Le-
Cun et al., 1989; Molchanov et al., 2019). The
sensitivity of /;; is approximated by the change in
loss when [;; is zeroed out. According to this, the
change in loss can be formulated as:

S(lij) = |AL(D)| = [L1,;(D) = Li;;=0(D)| 4)

Where L represents the loss function. Calculating
S(l;;) for each parameter directly using Formula
(4) is computationally expensice since for each
module, an extra computation is needed to compute
the network’s loss after setting that parameter to
zero. We can utilize first-order Taylor expansion to
approximate the calculation of S(l;;), which will
effectively reduce the computational complexity.

st =150 v o (1) | o
(]
Now all we need to do is calculate the gradient
of lij. Given that lij = Z:n:l Aimij, the
subscripts indicate the corresponding rows and
columns. On the basis of the existing deep learn-
ing framework, e.g., Pytorch, it is easy for us to
obtain aﬁaf) and 8‘553?). Based on the rules of

differentiation, we can get that:

OL(D) ~~ 1 9L(D) <~ 1 9L(D)
6lij N m—1 Bm]’ 8Alm N m—1 Azm 8Bm]
(6)

By substituting (6) into (5), we obtain S(l;;) for
each parameter in the LoORA module. We then
define a module-level redundancy measure:

dxk
S Yk S(ly)

as the redundancy of LoRA module L. If the av-
erage sensitivity of the elements within a LoRA
module to the loss is low, we infer that the module
contributes minimally to the model’s adaptation for
the specific downstream task. Such modules can be
pruned with minimal impact on the model’s overall
performance.

R(L) = (7

3.3 Three-Stage Redundancy Reduction
Strategy

To ensure the stability of the pruning process
and avoid catastrophic failure during fine-tuning,

we propose a Three-Stage Redundancy Reduction
Strategy. Our Three-Stage Redundancy Reduction
Strategy systematically eliminates redundant LoRA
modules while preserving those with lower redun-
dancy, thereby enhancing fine-tuning efficiency.
This process unfolds in three stages: Warmup, Pro-
gressive Pruning, and Fine-Tuning Refinement.

3.3.1 Warmup Stage

In the initial Warmup phase, it can gather sufficient
gradient information on each module’s contribu-
tion to the task, enabling more informed pruning
decisions later. At each training step ¢, we com-
pute a module-level redundancy measure R(L!,)
for each LoRA module L,,, using the method de-
scribed in Section 3.2. However, due to gradient
descent randomness, Dropout, and other stochastic
factors, R(L!,) may fluctuate considerably (Zhang
et al., 2022).

To stabilize R(Lg,tl)), we follow (Zhang et al.,
2022) and maintain an exponential moving average
of the redundancy measure to achieve Redundancy
Smoothing

R(LL,) = B RLEY) + (1—-B1) R(LL,), (8)

and we also apply Redundancy Stability Estimation
to quantify fluctutations between R(Lj,) and its
smoothed value R(L!,)

= |R(L,) — R(Ly,)|,
U(Ly) = ULy + (1= B2) U(Ly,),
©)
where 35 € (0,1) governs the impact of past sta-
bilities.

We then combine the smoothed redundancy mea-
sure with its stability estimation to obtain the final
module-level redundancy at step ¢:

R(Ly,) = R(Ly,) - U(Ly,).  (10)

Modules with higher values of R(L! ) are re-
garded as more redundant, whereas modules with
lower values are likely more beneficial and thus
retained.

3.3.2 Progressive Pruning

After the Warmup phase, we have stabilized redun-
dancy measures ﬁ(Lfn) In the Progressive Prun-
ing stage, we gradually remove the most redundant
LoRA modules using a threshold scheduler to en-
sure stability. Let p! denote the retention threshold
at training step t. We initialize p° = pg, keeping



most modules active at the start. Following a Spar-
sity Step Schedule (Zhu and Gupta, 2018; Zafrir
etal., 2021b), p! decreases from pg to p » determin-
ing the fraction of modules to retain. At each step,
we rank modules in ascending order of R(L!) (i.e.,
from less redundant to more redundant) and retain
only the lowest p'%. The remaining modules are
pruned by zeroing out their trainable parameters.
Concretely, let AY, and B!, be the trainable pa-
rameters of L!  at step ¢t. The update rule is:

(ALY BIHY = T(LL,, R(LL,))

) [AL, —nVaL, Bl —nVBL] Lowest p'%,
10,0 otherwise.
[0,0]
(1)

Once both AtF! and BAH! are zero, the module
L,, is effectively pruned at timestep ¢. By grad-
ually reducing p, the model adapts smoothly to
the removal of redundant modules, preserving con-
vergence stability. At the end of this stage (which
means that p’ reach to p 1), we set the parameters’
requires_grad=False in redundant LoRA module
and delete them. This allows the subsequent fine-
tuning stage to involve fewer trainable parameters
and a lower memory usage, thus increasing the
efficiency of fine-tuning.

3.3.3 Fine-Tuning Refinement

Finally, once p' reaches p #» the Fine-Tuning Re-
finement stage begins. Only the LoRA modules
with the lowest redundancy remain, typically con-
stituting p ¢ % of the original module count. In this
stage, there is no additional computation compared
with LoRA, which notably reduces both GPU mem-
ory usage and running time compared to original
LoRA method. We continue training retained mod-
ules to refine key parameters and preserve or im-
prove performance. By the end of Fine-Tuning
Refinement, our GZR? framework yields a more
compact model that maintains robust performance
with significantly fewer trainable parameters.

3.4 Memory Usage and Time Complexity
Analysis

We analyze the additional computational cost and
memory requirements introduced by G>R? com-
pared to LoRA, and how these are offset by effi-
ciency gains in the Fine-Tuning Refinement stage.

Computational Overhead vs. Savings. Our
method introduces extra computations in the

Algorithm 1 G?>R?

1: Input: LoRA modules { L, m=M. thresholds po — p IS
three stage iterations 1%, T}, T’

: Output: Fine-tuned model with pruned LoRA modules

: Stagel: Warmup

fort =0 — T, do R

Compute R(L%,), smooth & combine for R(L%,)

end for

Stage2: Progressive Pruning

cfort=Ty,+1—T,+1T,do

Compute p* from schedule

10:  Rank modules by }:E(Lﬁn) (ascending), keep top p' %,

prune rest

11: end for

12: Stage3: Fine-Tuning Refinement

13: fort=Tw+T,+1—=>Tyw+Tp,+T-do

14:  No further pruning; train only retained modules

15: end for

16: return Fine-tuned model

R AR Al

Warmup and Progressive Pruning stages. Specifi-
cally, computing the redundancy measure R(L) for
each module requires calculating element-wise sen-
sitivity 1(l;;), costing O(rdk) per module. With
M LoRA modules, the total overhead across T, +
T, iterations is O((Ty, + T),)Mrdk). Addition-
ally, module ranking in Progressive Pruning has a
cost of O(T,, M log M), which is negligible when
M < d, k.

In the Fine-Tuning Refinement stage, only a frac-
tion py of LORA modules remain active. Given that
a full LoRA update per iteration costs O(Mrdk),
pruning reduces this to O(pyMrdk), yielding to-
tal savings of O(T,(1 — py)Mrdk). Thus, our
method reduces overall computational cost com-
pared to LoRA when T}.(1 — py) > Ty, + T)p. This
condition implies that if the Fine-Tuning Refine-
ment stage dominates the total training iterations
and a significant portion of modules are pruned,
our G>R? framework achieves a net reduction in
computational cost compared to maintaining all
modules in the original LoORA method.

Memory Usage Analysis. G?R? introduces min-
imal memory overhead. Throughout training, we
store only three scalar redundancy values per mod-
ule: R, R, and R, which do not significantly in-
crease memory usage. The main additional mem-
ory usage arises during sensitivity computation,
where intermediate values S([;;) must be temporar-
ily stored. However, since these are computed per
module and discarded afterward, they do not per-
sistently impact overall memory consumption. By
pruning redundant modules, our method further
reduces memory usage in the Fine-Tuning Refine-
ment stage, leading to lower VRAM requirements



Model PEFT Method # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
LoRA 0.83 653 73.6 715 83.6 84.3 77.4 61.8 71.6 744

LLaMA2-7B DoRA 0.84 699 776 716 824 80.7 80.2 64.6 80.0 76.6
QQRS_Z 0.83—0.17 704 80.0 775 79.7 81.3 82.3 67.2 776 77.0

LoRA 0.70 70.2  81.7 78.7 88.8 83.7 83.9 71.9 79.6  79.8

LLaMA3-8B DoRA 0.71 70.5 834 752 79.3 79.3 84.0 66.5 798 713
G*R2, 0.70—0.14 73.8 87,5 798 94.6 85.1 90.1 79.0 85.6 844

Table 1: Accuracy comparison of LLaMA2-7B, and LLaMA3-8B with various PEFT methods on eight commonsense
reasoning datasets. The best results on each dataset are shown in bold.

compared to standard LoRA fine-tuning.

4 Experiments

We conduct a variety of experiments to show-
case the efficacy of G?R? on various tasks in-
cluding Commonsense Reasoning and Natural
Language Understanding (NLU) (We also con-
duct experiments on Question Answering and Nat-
ural Language Generation, please refer to A.3
and A.2). Firstly, we evaluate G>R? against
LoRA (Hu et al., 2022) and DoRA (Liu et al.,
2024a) on commonsense reasoning task. Subse-
quently, we compare G2R? with Full fine-tuning,
BitFit (Zaken et al., 2022), HAdapter (Houlsby
et al., 2019), PAdapter (Pfeiffer et al., 2021a),
LoRA (Hu et al., 2022), AdaLoRA (Zhang et al.,
2023) and PiSSA (Meng et al., 2024) on natural
language understanding task. Following this, we
explore the fine-tuning efficiency of G2R? through
comparing time comsumption and memory usage
with LoRA (Hu et al., 2022). Finally, we perform a
series of ablation studies to demonstrate the effec-
tiveness of two components of GZR?.

Implementation Details. We integrate G°R?
with LoRA (Hu et al., 2022) to enhance its ef-
ficiency by selectively reducing redundant train-
able modules. All methods are implemented us-
ing PyTorch (Paszke et al., 2019) and the Hug-
gingface PEFT library (Mangrulkar et al., 2022).
Experiments are conducted on a cluster of 8x
NVIDIA RTX 3090 GPUs and a cluster of 8x
NVIDIA A800 GPUs. For optimization, we use
AdamW (Loshchilov and Hutter, 2019) with a
weight decay of 0.05 for commonsense reasoning
and 0.01 for NLU. We initialize pg = 1.0 for all
tasks and py = 0.2 for commonsense reasoning
tasks, py € {0.2,0.7} for NLU. The exponential
moving average parameters are set as 51 = 0.85
and B2 = 0.95 for all experiments. For more train-
ing details, please refer to A.7.

4.1 Commonsense Reasoning

Models and Datasets. We evaluate G>R? on
LLaMA2-7B and LLaMA3-8B using common-
sense reasoning tasks. The commonsense reason-
ing tasks comprise 8 sub-tasks, each with a prede-
fined training and testing set. We follow the setting
of (Hu et al., 2023) and amalgamate the training
datasets from all 8 tasks to create the final training
dataset and conduct evaluations on the individual
testing dataset for each task. We set batch size to
16 for all methods, and fine-tune 1 epoch. And then
we evaluate the fine-tuned model on 8 reasoning
tasks.

Main Results. Table 1 presents the accuracy
comparison of LoRA, DoRA, and our proposed
G?*R? across multiple commonsense reasoning
benchmarks using LLaMA2-7B and LLaMA3-8B.
The results demonstrate that GZR?2 consistently
outperforms both LoRA and DoRA while utiliz-
ing fewer trainable parameters. Specifically, for
LLaMAZ2-7B, our method achieves an average ac-
curacy of 77.0%, representing a +2.6% improve-
ment over LORA (74.4%) and a +0.4% gain over
DoRA (76.6%). Similarly, for LLaMA3-8B, our
method significantly boosts the average accuracy
to 84.4%, yielding a +4.6% increase compared to
LoRA (79.8%) and a +7.1% increase over DoRA
(77.3%). These improvements highlight the ef-
fectiveness of our redundancy-aware fine-tuning
strategy in enhancing model performance while
reducing the number of trainable parameters.
Notably, these gains are obtained after 1 train-
ing epoch, demonstrating that G2R? accelerates
convergence while enhancing performance. This
aligns with intuition: after the first two stages,
G?R? significantly reduces the number of train-
able parameters (e.g., from 0.83% — 0.17% in
LLaMAZ2-7B), making the model easier to opti-
mize and getting good performance. As a result,
our method can achieve comparable or superior
performance in significantly less training time.



Method | #Params(%) | MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B All
Full FT | 100 | 89.90 95.63 69.19 9240 94.03 8375 89.46 91.60 88.25
BitFit | 005 | 89.37 94.84 66.96 88.41 9224 7870 87.75 9135 86.22
HAdapter 0.66 90.13 9553 68.64 9191 94.11 84.48 89.95 91.48 88.28
PAdapter 0.64 90.33 95.61 6877 92.04 9429 8520 89.46 91.54 8841
LoRA,—s 0.72 90.65 94.95 69.82 91.99 93.87 8520 89.95 91.60 88.50
AdaLoRA 0.69 90.76 96.10 7145 9223 94.55 88.09 90.69 91.84 89.46
PiSSA 0.72 9043 9587 72.64 9226 9429 87.00 91.67 91.88 89.50
G°R%. | 072015 | 9032 9644 71.64 92.65 94.60 88.45 9142 92.17 89.71
G°R%.7 | 072051 | 9043 9633 7224 9236 9438 89.17 92.60 92.06 89.94

Table 2: Results with DeBERTaV3-base on GLUE development set. The best results on each dataset are shown in bold. We
report the average correlation for STS-B and accuracy for MRPC. We report mean of 5 runs using different random seeds.

Method Total Time (s) Peak / Final Mem (MB)

LoRA 638.35 7156/7156
G2R2, 564.14 7156/5578
A —11.6% +0%/—22.1%

Table 3: Comparison of fine-tuning time and peak memory
usage between LoRA and G>R? on the MRPC dataset using
DeBERTaV3-base.

4.2 Natural Language Understanding

Model and Datasets. We evaluate the fine-tuning
performance of DeBERTaV3-base (He et al., 2021)
using G2R? algorithm. We conduct experiments
on the General Language Understanding Evalua-
tion (GLUE (Wang et al., 2019)) benchmark. The
benchmark includes two single-sentence classifi-
cation tasks, three similarity and paraphrase tasks
and four natural language inference tasks.

Main Results. Table 2 compares G?R? with
baseline methods across different trainable param-
eter scales on the GLUE development set. Our
approach consistently achieves superior or compet-
itive performance across all datasets. For instance,
with only 0.15% trainable parameters, G2R? out-
performs PiSSA (0.72% parameters) on 5 out of
8 datasets, achieving a 0.21% improvement on
average scores of all 8 tasks. Moreover, as the
number of trainable parameters increases, G2R?
maintains its advantage, demonstrating stable and
efficient parameter utilization. For example, when
fine-tuning with 0.51% parameters, our method
surpasses PiSSA (0.72% parameters) with notable
gains of +0.44% on average scores of all 8 tasks.

4.3 Efficiency Analysis

To evaluate the efficiency of our proposed method,
we conduct a comparative analysis of fine-tuning
time and memory consumption. We fine-tune the
DeBERTaV3 model on the MRPC dataset for 20

epochs using both G2R? and LoRA, measuring
per-epoch time consumption, memory usage, and
validation performance. The experimental results
are presented in Figure 3 and Table 3.

Time comsuption. As shown in Figure 3, during
the Warmup and Progressive Pruning stages, the
per-epoch time consumption of G2R? is slightly
higher than that of LoRA due to redundancy eval-
uation and module selection. However, upon en-
tering the Fine-Tuning Refinement stage, the sub-
stantial reduction in trainable parameters leads to
a significant drop in per-epoch time consumption.
Given our experimental setting of T3, + 7}, = 5 and
T, = 15, the total fine-tuning time for G2R? is no-
tably lower than that of LoRA (11.6% fine-tuning
time saved), as reflected in Table 3.

Memory Usage. The bar plots in Figure 3 repre-
sent memory consumption per epoch. In the first
two stages, although redundancy evaluation intro-
duces additional computations, the memory over-
head remains minimal since the majority of stored
values are scalars. When entering the Fine-Tuning
Refinement stage, the drastic reduction in trainable
parameters results in a substantially lower memory
footprint compared to LoRA. From Table 3, we
observe that in this stage, GZR? reduces memory
usage by approximately 22.1% relative to LoRA.

Furthermore, in terms of validation accuracy
per epoch, G>R? consistently outperforms LoRA
throughout training. Given that our method
achieves better accuracy while requiring less to-
tal training time and memory, these results strongly
validate the effectiveness of G>R? in enhancing
fine-tuning efficiency without sacrificing and even
improving task performance.



| MRPC

\ RTE

Py | 01 02
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Random
R(L) = R(A) x R(B)
g27z2
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90.44 91.18 91.19 89.46|87.73 88.09 87.00 85.92
90.93 91.42 92.15 92.60 | 88.45 88.45 88.08 89.17

Table 4: Comparison of different importance metrics for G>R2.

G?*R? vs LoRA: Memory, Time and Accuracy Comparison

Warmup | Prog. Pruning FT Refinement Progressive vs Adrupt Pruning Comparison
0.92 _[Warm(Prog. Pruning FT Refinemen B
8000
0.9
0.90 WA
& 7000 40 / /
s 310.88 0.8// |
2 = / L
26000 080865 oo |
3 5000 e 5 ¢ iH
D5 20842 £ b
g 202 ¢ 8Os i
£ 4000 210.82 < b
§ 3000 G?R? Memory ==~ LoRA Time 10 = 0.80 0.5 IHv e TEIPTOgrEsSivE
LoRA Memory == G2R2 Acc . i RTE Adrupt
—— G’R? Time =+ LoRA Acc 0.78 0.4 I:II —— MRPC Progressive
2000 0 1 -~ MRPC Adrupt
0123456 7 8 91011121314 1516 17 1819 034 T 1 5 15 50

Epoch

Figure 3: Memory usage, fine-tuning time per epoch, and accuracy comparison
between G>R? and LoRA on the MRPC dataset using DeBERTa. The background
is segmented into three stages of GZR?: Warmup, Progressive Pruning, and Fine-

Tuning Refinement.

4.4 Ablation Study

Effectiveness of Gradient-Based Redundancy
Evaluation. To validate the effectiveness of our
proposed Gradient-Based Redundancy Evaluation,
we compare two alternative redundancy calcula-
tion methods in Table 4: (1) R(L) = Random,
where redundancy scores are randomly assigned;
(2) R(L) = R(A) x R(B), where redundancy is
computed as the product of the individual redun-
dancy scores of A and B. Results on the MRPC
and RTE datasets show that our method achieves
the highest accuracy and exhibits the most stable
performance across different final thresholds py.
The random redundancy assignment completely
fails on MRPC, while the alternative method results
in a noticeable performance drop, highlighting the
necessity of our redundancy evaluation strategy.

Effectiveness of Three-Stage Redundancy Re-
duction Strategy. To validate the effectiveness
of our three-stage pruning method, we compare it
with an adrupt pruning strategy on the MRPC and
RTE datasets useing DeBERTaV3-base model. In
our G?>R?, redundancy reduction is completed at
epochb, so for a fair comparison, we apply adrupt
pruning to the baseline method at the same epoch.
The experimental results are presented in Figure
4. As shown in Figure 4, our progressive pruning

2 456 8
Adrupt Prune Epoch

Figure 4: Comparison of progressive
pruning and adrupt pruning on the MRPC
and RTE datasets.

strategy ensures a smooth training process with-
out causing sudden drops in performance. In con-
trast, adrupt pruning results in a sharp performance
degradation (catastrophic failure) at the pruning
step. Although the baseline method gradually re-
covers in later epochs, its final performance re-
mains consistently lower than that achieved by
G?>R2. This demonstrates that our pruning strat-
egy effectively mitigates the instability introduced
by parameter reduction, leading to superior overall
fine-tuning stability and final performance.

5 Conclusion

We propose G>R2, a novel approach designed
to mitigate redundancy in LoRA-based PEFT.
By evaluating module-level redundancy with a
Gradient-Based Redundancy Evaluation score and
pruning less critical modules through a Three-Stage
Redundancy Reduction Strategy, G2R? effectively
enhancing the efficiency of PEFT while preserv-
ing or improving performance. G2R? accelerate
convergence by running fewer fine-tuning steps,
achieving competitive performance and further im-
proving fine-tuning efficiency. Our extensive exper-
iments on commonsense reasoning and natural lan-
guage understanding tasks underscore the method’s
efficiency and robustness, outperforming existing
baselines.



6 Limitations

While GZR? improves fine-tuning efficiency, it in-
troduces additional computations in early training
stages. It is specifically designed for LoRA and
may require adaptation for other PEFT methods.
Moreover, its effectiveness depends on the accuracy
of redundancy estimation, which could be further
optimized. Future work will focus on enhancing
efficiency and extending applicability.
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A Appendix

A.1 Sparsity Step Schedule

Sparsity Step Scheduling dynamically evolves the
value of threshold p(*) based on the relationship
between the current time ¢ and the total time 7.
The exact formula is as follows:

o 0<t<ty,
t—t;—t
p® = prt+ o —pp)(1— 7= =£)° i<t <T—ty,
P [ORYA

(12)
Where ¢; and ¢ ¢ are our hyperparameters to control
each fine-tuning eopchs of three stages.

A.2 GLUE Benchmark

GLUE benchmark (Wang et al., 2019) is a wide-
ranging collection of natural language understand-
ing tasks. It includes MNLI (Williams et al.,
2018) (inference), SST-2 (Socher et al., 2013)
(sentiment analysis), MRPC (Dolan and Brock-
ett, 2005) (paraphrase detection), CoLA (Warstadt
et al., 2019) (linguistic acceptability), QNLI (Ra-
jpurkar et al., 2018a) (inference), QQP(question-
answering), RTE (inference), and STS-B (Cer et al.,
2017) (textual similarity). Please refer to Table 5
for details.

A.3 Question Answering

Model and Datasets. We evaluate G>R? on two
question answering benchmarks: SQuADvI1.1 (Ra-
jpurkar et al., 2016) and SQuADv2.0 (Rajpurkar
et al., 2018b), using DeBERTaV3-base (He et al.,
2021) as the base model. Both tasks are formulated
as sequence labeling problems, where the model
predicts the start and end positions of the answer
span.

Stanford Question Answering Dataset (SQuAD)
is a reading comprehension dataset, consisting
of questions posed by crowdworkers on a set of
Wikipedia articles, where the answer to every ques-
tion is a segment of text, or span, from the corre-
sponding reading passage, or the question might be

12

unanswerable. SQuAD2.0 combines the 100,000
questions in SQuADI1.1 with over 50,000 unan-
swerable questions written adversarially by crowd-
workers to look similar to answerable ones. The
statistics of question answering datasets are sum-
marized in Table 7.

Main Results. Table 6 presents the results of fine-
tuning DeBERTaV3-base with G?R? at different
trainable parameter scales. Our method consis-
tently outperforms existing approaches in both Ex-
act Match (EM) and F1 scores across most param-
eter scales on both datasets. Notably, GZR? main-
tains strong performance even with fewer train-
able parameters, often matching or surpassing base-
lines with larger parameter budgets. These results
demonstrate the effectiveness of our redundancy-
aware module selection, which optimally allocates
trainable parameters across different tasks, maxi-
mizing fine-tuning efficiency.

A.4 Natural Language Generation

Model and Datasets. Having demonstrated that
G?R? achieves state-of-the-art performance on
NLU and QA tasks, we further investigate its ef-
fectiveness on natural language generation (NLG).
To this end, we conduct experiments on the
XSum (Narayan et al., 2018) dataset, a benchmark
for abstractive single-document summarization, us-
ing BART-large (Lewis et al., 2020) as the base
model.

The Extreme Summarization (XSum) dataset
is a dataset for evaluation of abstractive single-
document summarization systems. The goal is
to create a short, one-sentence new summary an-
swering the question “What is the article about?”.
The dataset consists of 226,711 news articles ac-
companied with a one-sentence summary. The ar-
ticles are collected from BBC articles (2010 to
2017) and cover a wide variety of domains (e.g.,
News, Politics, Sports, Weather, Business, Tech-
nology, Science, Health, Family, Education, En-
tertainment and Arts). The official random split
contains 204,045 (90%), 11,332 (5%) and 11,334
(5%) documents in training, validation and test sets,
respectively.

Main Results. Table 8 presents the experimental
results across different trainable parameter scales.
G?R? consistently outperforms all baseline meth-
ods, with its advantage becoming more pronounced
as the trainable parameter budget decreases. For in-
stance, at a trainable parameter scale of 0.13%, our
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Corpus | Task | #Train  #Dev #Test #Label | Metrics
CoLA | Acceptability | 8.5k 1k 1k 2| Matthews corr
SST | Sentiment | 67k 872 1.8k 2| Accuracy
MNLI ‘ NLI ‘ 393k 20k 20k 3 ‘ Accuracy
RTE | NLI | 2.5k 276 3k 2| Accuracy
QQP | Paraphrase | 364k 40k 391k 2| Accuracy/F1
MRPC | Paraphrase | 3.7k 408 1.7k 2| Accuracy/F1
QNLI ‘ QA/NLI ‘ 108k 5.7k 5.7k 2 ‘ Accuracy
STS-B | Similarity | 7k 1.5k 14k 1 | Pearson/Spearman corr
Table 5: Summary of the GLUE benchmark.
| SQuADv1.1 \ SQuADv2.0
Full FT | 86.0/92.7 | 85.4/88.4
# Params ‘ 0.08% 0.16% 0.32% 0.65% ‘ 0.08% 0.16% 0.32% 0.65%
HAdapter | 84.4/91.5 85.3/92.1 86.1/92.7 86.7/92.9 | 83.4/86.6 84.3/87.3 84.9/87.9 85.4/88.3
PAdapter | 84.4/91.7 85.9/92.5 86.2/92.8 86.6/93.0 | 84.2/87.2 84.5/87.6 84.9/87.8 84.5/87.5
LoRA 86.4/92.8 86.6/92.9 86.7/93.1 86.7/93.1 | 84.7/87.5 83.6/86.7 84.5/87.4 85.0/88.0
Adal.oRA | 87.2/93.4 87.5/93.6 87.5/93.7 87.6/93.7 | 85.6/88.7 85.7/88.8 85.5/88.6 86.0/88.9
G*R? 88.0/93.7 88.4/94 87.9/93.7 88.0/93.7 ‘ 85.8/88.8 85.8/88.8 85.4/88.5 86.1/88.9

Table 6: Results with DeBERTaV3-base on SQuAD v1.1 and SQuADV2.0. Here # Params is the number of trainable parameters
relative to that in full fine-tuning. We report EM/F1. The best results in each setting are shown in bold.

‘ # Train  # Validation
SQuAD vl.1 | 87,599 10,570
SQuAD v2.0 | 130,319 11,873

Table 7: Statistics of the SQuAD dataset.

MRPC

Figure 5: Stability performance under different number of
learnable parameters.

method improves ROUGE-1/2/L. scores by 1.06,
1.12, and 1.13 points, respectively, over AdaLoRA.
Moreover, GZR? exhibits greater stability across
different parameter scales. We attribute this to the
fact that only a few insertion positions significantly
impact fine-tuning performance for summarization
tasks. Once LoRA modules are placed at these
key positions, additional insertions or removals at
other positions have minimal effect on overall per-
formance.
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Method | #Params | Rouge-1 Rouge-2 Rouge-L
FulFT | 100% | 4549 22.33 37.26
LoRA 43.95 20.72 35.68
AdaLoRA | 2.20% 44.72 21.46 36.46
G*R? 44.74 21.51 36.57
LoRA 43.40 20.20 35.20
AdaLoRA | 1.10% 4435 21.13 36.13
G*R? 44.43 21.20 36.26
LoRA 43.18 19.89 34.92
AdaLoRA | 0.26% 43.55 20.17 35.20
G*R? 44.23 21.12 36.17
LoRA 42 81 19.68 34.73
AdaLoRA | 0.13% 43.29 19.95 35.04
G*R? 44.35 21.07 36.17

Table 8: Results with BART-large on XSum. Here # Params
is the number of trainable parameters relative to that in full
fine-tuning. We report R-1/2/L. The best results are shown in
bold.

A.5 Robustness of Different p

Figure 5 compares the performance of G2R? and
LoRA across different trainable parameter scales
on the MRPC and RTE datasets. Even when
the trainable parameter ratio varies significantly
from 0.18% to 2.8%, our method maintains consis-
tently superior and stable performance. In contrast,
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[CLS] Prior to Super Bowl 50 , when were the Broncos last there ?
[SEP] For the third straight season , the number one seeds from both
conferences met in the Super Bowl . The Carolina Panthers became
one of only ten teams to have completed a regular season with only
one loss , and one of only six teams to have acquired a 15 1 record
, while the Denver Broncos became one of four teams to have made
eight appearances in the Super Bowl . The Broncos made their second
Super Bowl appearance in three years , having reached Super Bowl XL
VIII , while the Panthers made their second Super Bowl appearance in
franchise history , their other appearance being Super Bowl XXX VIII
. Coincidentally , both teams were coached by John Fox in their last
Super Bowl appearance prior to Super Bowl 50 . [SEP] [PAD]

Q: Prior to Super Bowl 50, when were the Broncos last there?
Answer: Super Bowl XLVIII
G2R?: Super Bowl XLVIII

(a) G*R?

[CLS] Prior to Super Bowl 50 , when were the Broncos last there ?
[SEP] For the third straight season , the number one seeds from both
conferences met in the Super Bowl . The Carolina Panthers became
one of only ten teams to have completed a regular season with only
one loss , and one of only six teams to have acquired a 15 1 record
, while the Denver Broncos became one of four teams to have made
eight appearances in the Super Bowl . The Broncos made their second
Super Bowl appearance in three years , having reached Super Bowl XL
VIII , while the Panthers made their second Super Bowl appearance in
franchise history , their other appearance being Super Bowl XXX VIII
. Coincidentally , both teams were coached by John Fox in their last
Super Bowl appearance prior to Super Bowl 50 . [SEP] [PAD]

Q: Prior to Super Bowl 50, when were the Broncos last there?
Answer: Super Bowl XLVIII x
LoRA: John Fox

(b) LoRA

Figure 6: Visualization of some results. The shades of red
indicate the degree of emphasis that the fine-tuned model
places on different words.

LoRA exhibits higher variance, confirming that our
redundancy-aware selection mechanism not only
enhances fine-tuning efficiency but also ensures
robust performance across different parameter bud-
gets.

A.6 Visualization of Results.

We further analyze the prediction performance of
G?R2 compared to LoRA on the SQuADv1 dataset.
Out of 10,756 test samples, our method correctly
predicts 496 more samples than LoRA. As illus-
trated in Figure 6, our importance-guided adapta-
tion better captures semantic relevance in complex
text environments. For instance, in the question
“Prior to Super Bowl 50, when were the Broncos
last there?”, our method correctly identifies “Super
Bowl XLVIII” as the answer, whereas LoRA incor-
rectly assigns the highest attention to “John Fox,”
leading to an incorrect prediction. This demon-
strates that G2R? effectively selects insertion posi-
tions that enhance semantic representation, improv-
ing the model’s ability to capture critical informa-
tion for downstream tasks.
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A.7 Experiments Hyperparameters

A.7.1 Hyperparameters for Commonsense
Reasoning Tasks

We have detailed the hyperparameters required for
fine-tuning LLaMA2-7B and LLaMA3-8B using
G2R? on the commonsense reasoning tasks in Ta-

ble 10.
Hyperparameters \ LLaMA2-7B LLaMA3-8B
Rank r 16 32 16 32
@ 32 64 32 64
Dropout 0.05
Optimizer AdamW
LR 2e-4  2e-4 le-4 le4
LR Scheduler Linear
Batch size 16
Micro batch size 4
Warmup Steps 7%, 4000
Prog. Pruning Steps 7T}, 4000
Refinement Steps 7’ 34570
b1 0.85
B2 0.95
Epochs 1
Total Steps 34570
Where Q.K,V,Up,Down

Table 9: Hyperparameter configurations of G2R? for
LLaMA2-7B and LLaMA3-8B on the commonsense
reasoning tasks.

A.7.2 Hyperparameters for NLU Tasks

We have detailed the hyperparameters required for
fine-tuning DeBERTa-V3 (He et al., 2021) using
G?>R? on the GLUE benchmark in Table 10. For
the GLUE benchmark, py = 0.2 corresponds to
0.15% trainable parameters, and py = 0.7 corre-
sponds to 0.51% trainable parameters.

A.8 Hyperparameter for QA and NLG Tasks

We have detailed the hyperparameters required for
fine-tuning DeBERTa-V3 (He et al., 2021) using
G?R? on the QA dataset in Table 11, as well as the
hyperparameters required for fine-tuning BART-
large (Lewis et al., 2020) using G2R? on the NLG
dataset.



Dataset | MNLI SST-2 MRPC CoLA QNLI  QQP RTE STS-B
Optimizer AdamW

Warmup Ratio 0.06

LR Schedule Linear

Batch Size 8 8 16 16 16 16 16 16
# Epochs 10 30 30 40 10 10 40 40
Learning Rate 1E-04 1.5E-04 2E-04 3E-04 2E-04 12E-04 4E-04 2E-04
LoRA Module Dim. 8

Max Seq. Len. 512

Initial Threshold 1.0

Warmup Epochs T, 1 3 3 4 1 1 4 4
Prog.Pruning Epochs T, 1 3 3 4 1 1 4 4
Refinement Epochs 7’ 8 24 24 32 8 8 32 32
B1 0.85

B2 0.95

Table 10: The hyperparameters we used for fine-tuning DeBERTa-V3 with G2R? on the GLUE benchmark.

Dataset ‘ SQuADvl.l SQuADv2.0 XSum
Optimizer AdamW

Warmup Ratio 0.06

LR Schedule Linear

Batch Size 16 16 8
# Epochs 15 15 20
Learning Rate 1.5E-04 1.5E-04 8E-5
LoRA Module Dim. 8

Max Seq. Len. 384

Initial Threshold 1.0

Warmup Epochs T, 2 2 3
Prog.Pruning Epochs T, 2 2 3
Refinement Epochs 7’ 11 11 14
B 0.85

B2 0.95

Table 11: The hyperparameters we used for fine-tuning
DeBERTa-V3 with G2R? on the QA tasks and fine-
tuning BART-large with G2R? on the NLG task.
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