
Enhancing PEFT Efficiency by Adaptively Reducing Low-Rank Modules

Anonymous ACL submission

Abstract

As a prominent Parameter-Efficient Fine-001
Tuning (PEFT) method, LoRA is widely used002
for efficiently fine-tuning large language mod-003
els (LLMs). However, LoRA’s uniform inser-004
tion of trainable modules to target modules005
across all layers often results in redundancy006
in the number of trainable modules, and we007
contend that reducing the number of these mod-008
ules can further enhance the efficiency of PEFT.009
To address this issue, we propose Gradient-010
Guided Redundancy Reduction (G2R2), a011
novel module-level approach that adaptively012
prunes redundant LoRA modules, which boosts013
fine-tuning efficiency while preserving or even014
improving performance. Specifically, G2R2015
evaluates the contribution and redundancy of016
trainable modules using a Gradient-Based Re-017
dundancy Evaluation score, which leverages018
gradient information to achieve this. Based019
on this score, G2R2 progressively eliminates020
redundant LoRA modules through a Three-021
Stage Redundancy Reduction Strategy. Exten-022
sive experiments demonstrate that G2R2 not023
only boosts fine-tuning efficiency but also main-024
tains or even surpasses state-of-the-art methods025
across commonsense reasoning and natural lan-026
guage understanding tasks.027

1 Introduction028

Fine-tuning large language models (LLMs) is es-029

sential for adapting them to diverse applications,030

including instruction tuning, preference alignment,031

and domain adaptation. However, full fine-tuning032

requires updating all parameters, leading to sub-033

stantial memory and computational costs. To ad-034

dress this, Parameter-Efficient Fine-Tuning (PEFT)035

methods (Vucetic et al., 2022; Houlsby et al., 2019;036

Zi et al., 2023; Zhang et al., 2024; Yang et al.,037

2023; Ding et al., 2023; Chen et al., 2023) freeze038

most model parameters and introduce a small num-039

ber of trainable ones into specific modules, signifi-040

cantly reducing resource consumption. LoRA (Hu041

𝑊!❄ 𝑇 🔥 𝑊"❄ 𝑊#❄ 𝑇 🔥
𝑊$❄

𝑊%❄

𝑊&❄𝐿!
⨁ ⨁

𝑊!❄ 𝑇 🔥 𝑊"❄ 𝑊#❄ 𝑇 🔥
𝑊!❄

𝑊%❄

𝑊&❄𝐿!"#
⨁ ⨁

𝑊!❄ 𝑇 🔥 𝑊"❄ 𝑊#❄ 𝑇 🔥
𝑊$❄

𝑊%❄

𝑊&❄𝐿#
⨁ ⨁

…

 Frozen Parameter

Trainable Parameter

❄

🔥

𝑊!❄ 𝑊"❄ 𝑊#❄ 𝑇 🔥
𝑊$❄

𝑊%❄

𝑊&❄𝐿!"#
⨁

𝑊!❄ 𝑊"❄ 𝑊#❄

𝑊$❄

𝑊%❄

𝑊&❄𝐿#

…

𝑊!❄ 𝑇 🔥 𝑊"❄ 𝑊#❄

𝑊$❄

𝑊%❄

𝑊&❄𝐿!
⨁

𝒢!ℛ!

Traditional LoRA
𝟐×𝑳 Trainable Modules

LoRA combine 𝒢$ℛ$
𝟐×𝒑𝒇×𝑳 Trainable Modules

High Redundancy Long FT Time Low Redundancy Fewer FT Time
Better

Performance

Figure 1: Traditional LoRA (left) suffers from high re-
dundancy and longer fine-tuning time. G2R2 (right)
reduces redundancy, prunes redundant LoRA modules,
and accelerates fine-tuning while improving perfor-
mance. Where pf < 1.

et al., 2022) is the most widely used method to 042

reduce parameters by reparameterizing ∆W . And 043

then, many methods seek to further reduce trainable 044

prameters by refining reparameterization strategies, 045

e.g. VeRA (Kopiczko et al., 2023), DoRA (Liu 046

et al., 2024a), AdaLoRA (Zhang et al., 2023) and 047

HRA (Yuan et al., 2024). 048

However, LoRA’s strategy of uniformly inserting 049

trainable parameters into all target modules across 050

each layer frequently leads to redundancy in the 051

number of trainable module (refer to the left figure 052

in Figure 1). We contend that reducing the num- 053

ber of these trainable modules not only decreases 054

the total trainable parameters but also further en- 055

hances the efficiency of PEFT. To address these 056

issues, we propose a novel parameter reduction 057

method, Gradient-Guided Redundancy Reduction 058

Method (G2R2), which adaptively reduces redun- 059

dant training parameters at the module level while 060

maintaining, or even improving training quality 061

(refer to the right figure in Figure 1). 062

Our G2R2 is built on two key components: 063

Gradient-Based Redundancy Evaluation Scores 064

and a module-level Three-Stage Redundancy Re- 065

duction Strategy, which ensure both the stability 066

and accuracy of the pruning process. The Gradient- 067

Based Redundancy Evaluation score exploit gra- 068

1

dient information to quantify the contribution of069

each LoRA module, enbling a precise measure of070

module-level redundancy. Modules that exhibit071

high scores are identified as redundant and targeted072

for pruning. Building on this evaluation, the Three-073

Stage Redundancy Reduction Strategy systemati-074

cally reduces redundancy in three phases: Warmup075

Stage, Progressive Pruning Stage and Fine-Tuning076

Refinement Stage. In first stage, all LoRA modules077

are initially assessed to identify potentially less con-078

tributive ones. In second stage, redundant modules079

are progressively pruned over several steps, ensur-080

ing that the reduction process is gradual and does081

not disrupt convergence. In third stage, remaining082

modules are further optimized to maximize their083

effectiveness on the target task. By focusing on084

module-level pruning instead of element-level pa-085

rameter removal, G2R2 achieves a more efficient086

reduction in trainable parameters while maintaining087

robust convergence and performance—a critical ad-088

vantage for large-scale model fine-tuning.089

We conduct extensive experiments across di-090

verse tasks and model architectures to thor-091

oughly evaluate the effectiveness and efficiency of092

G2R2. Specifically, we benchmark our method093

on commonsense reasoning using LLaMA2-7B094

and LLaMA3-8B, and on natural language under-095

standing (GLUE) with DeBERTaV3-base. The096

experimental results demonstrate that G2R2 not097

only achieves state-of-the-art performance (+0.4098

on LLaMA2-7B, +7.1 on LLaMA3-8B and +0.44099

on DeBERTaV3) but also significantly improves100

the efficiency of parameter-efficient fine-tuning by101

reducing training time (-11.6%) and decreasing102

memory usage (-22.1%). The contributions of our103

work are as follows:104

• We introduce a gradient-driven metric to as-105

sess the redundancy of LoRA modules. By106

focusing on module contributions inferred107

through gradient information, our approach108

enables precise identification of less critical109

components, laying a solid foundation for ef-110

ficient module-level pruning.111

• We design a module-level pruning framework112

encompassing three phases, Warmup, Progres-113

sive Pruning, and Fine-Tuning Refinement,114

that incrementally remove redundant modules115

without causing catastrophic failure. This116

strategy preserves stable convergence, reduces117

overall training time, and avoids significant118

memory overhead.119

• We have conducted extensive experiments on 120

commonsense reasoning and natural language 121

understanding, and the results show that our 122

G2R2 achieves state-of-the-art performance 123

with higher fine-tuning efficiency. 124

2 Related Work 125

Parameter Efficient Fine-Tuning. Parameter- 126

Efficient Fine-Tuning (PEFT) methods have gar- 127

nered considerable attention. Houlsby et al. (2019) 128

introduced bottleneck-shaped modules inserted af- 129

ter attention and FFN layers, and Pfeiffer et al. 130

(2021b) found that a single adapter after the self- 131

attention layer can achieve performance compa- 132

rable to placing two adapters per Transformer 133

block. Prompt-based methods, such as Lester 134

et al. (2021), prepend trainable “soft prompts” to 135

the model’s input embeddings while keeping the 136

main weights frozen. Some approaches fine-tune 137

only specific subsets of existing parameters (e.g., 138

biases in BitFit (Zaken et al., 2022), or crucial 139

parameters as in DiffPruning (Guo et al., 2021) 140

and FAR (Vucetic et al., 2022)). Aghajanyan 141

et al. (2021) introduced the concept of intrinsic 142

dimensionality, showing that larger models can be 143

tuned in lower-dimensional subspaces. Building 144

on this insight, LoRA (Hu et al., 2022) factorizes 145

weight updates into low-rank matrices. Later ex- 146

tensions include MAM Adapter (He et al., 2022), 147

which combines scaling parallel adapters with soft 148

prompts; AdaLoRA (Zhang et al., 2023), allocat- 149

ing parameter budgets based on importance scores; 150

DyLoRA (Valipour et al., 2023), training a range 151

of ranks simultaneously; and LongLoRA (Chen 152

et al., 2023), extending context sizes for large lan- 153

guage models. Currently, many studies aim to de- 154

vise more parameter-efficient low-rank decompo- 155

sition strategies to further reduce the total num- 156

ber of parameters, e.g. DoRA (Liu et al., 2024a), 157

VeRA (Kopiczko et al., 2023), BOFT (Liu et al., 158

2024b) and HRA (Yuan et al., 2024). 159

Parameter Pruning. Pruning methods typically 160

begin by evaluating the importance of each pa- 161

rameter, then removing those deemed less critical. 162

While a common metric is parameter magnitude (Li 163

et al., 2018; Lee et al., 2021; Han et al., 2015; Pa- 164

ganini and Forde, 2020; Zafrir et al., 2021a), large 165

weights are not always crucial, and small weights 166

can be indispensable. An alternative is sensitivity- 167

based scoring, which measures the change in loss 168

2

×
!
"!×!

"!

Hidden States

Add & Layer Norm

Add & Layer Norm

×!
"!

!!
❄

×
!
"!

!"
❄

!#
❄

!$
❄

⨁ ⨁ ⨁

Attention

⨁

×
!
"!

!%
❄

⨁

×!
"!

!&
❄

⨁

×
!
"!×!

"!

Hidden States

Add & Layer Norm

Add & Layer Norm

×!
"!

!!
❄

×
!
"!

!"
❄

!#
❄

!$
❄

⨁ ⨁ ⨁

Attention

⨁

×
!
"!

!%
❄

⨁

×!
"!

!&
❄

⨁

𝑅"(𝐿!")

…
…

×
!
"!

×
!
"!

×
!
"!

×
!
"!

×
!
"!

Gradient-Based
Redundancy Evaluation

…
…

×
!
"!

×
!
"!

×
!
"!

×
!
"!

×
!
"!

𝑅"(𝐿!
#!$%)

Warmup 𝑇! steps

𝑅(𝐿!")

Redundancy Smoothing
and Stability Estimation

𝑅(𝐿!
#!$%)

…
…

×
!
"!

×
!
"!

×
!
"!

×
!
"!

×
!
"!

Gradient-Based
Redundancy Evaluation

𝑅(𝐿!
#!)

✂

…
…

×
!
"!

×
!
"!

×
!
"!

×
!
"!

×
!
"!

𝑅(𝐿!
#!&#")

✂

✂

Redundancy Smoothing
and Stability Estimation

𝑅"(𝐿!
#!) 𝑅"(𝐿!

#!&#")
Hidden States

×
!
"!

Add & Layer Norm

Add & Layer Norm

!!
❄

!"
❄

!#
❄

!$
❄

⨁

Attention

×
!
"!

!%
❄

⨁

!&
❄

Progress Pruning 𝑇" steps Fine-tuning Refinement 𝑇# steps

No Evaluation

No Pruning

Just PEFT

𝑇# ≫ 𝑇! + 𝑇"

Frozen

Trainable

❄

🔥

Stage1 Stage2 Stage3

✂

Pruning

Figure 2: Overview of the Three-Stage Redundancy Reduction Strategy. Warmup: All LoRA modules are inserted
to target modules, and redundancy is evaluated with Smoothing and Stability Estimation. Progressive Pruning:
High-redundancy modules are gradually pruned. Fine-Tuning Refinement: Only low-redundancy modules remain
for final tuning, ensuring efficiency without compromising performance.

resulting from pruning a parameter (Molchanov169

et al., 2019; Sanh et al., 2020; Liang et al., 2021;170

Zhang et al., 2022; Ma et al., 2023). Molchanov171

et al. (2019) approximate the pruning error using172

a first-order Taylor expansion to avoid computing173

the Hessian, while Zhang et al. (2022) propose174

PLATON, which accounts for both sensitivity and175

estimation uncertainty to stabilize training. In the176

context of large language models, Ma et al. (2023)177

introduce LLM-Pruner, extending pruning tech-178

niques to these massive architectures.179

3 Method180

In this section, we introduce our Gradient-Guided181

Redundancy Reduction Method (G2R2), designed182

to address the redundant allocation of trainable pa-183

rameters and improve efficiency of PEFT. (G2R2)184

achieve this by leveraging a Three-Stage Redun-185

dancy Reduction Strategy: Warmup, Progressive186

Pruning, and Fine-Tuning Refinement (see Fig-187

ure 2). In the Warmup stage, LoRA modules are188

inserted at all target positions and their module-189

level redundancy is measured using our Gradient-190

Based Redundancy Evaluation Score. Next, dur-191

ing the Progressive Pruning stage, modules with192

high redundancy are gradually pruned based on193

a dynamic threshold. Finally, in the Fine-Tuning194

Refinement stage, only the retained modules are195

updated, reducing computational cost and resource196

usage compared to the original LoRA method. For197

more details, please refer to the following sections.198

3.1 Low-Rank Adaptations 199

LoRA (Hu et al., 2022) proposes to adapt a pre- 200

trained model by injecting low-rank updates into 201

certain weight matrices, thereby reducing the num- 202

ber of trainable parameters. Given a pre-trained 203

weight matrix W0 ∈ Rd×k, instead of updating 204

W0 during fine-tuning, LoRA keeps W0 frozen and 205

learns a low-rank update ∆W such that: 206

∆W = AB, (1) 207

where A ∈ Rd×r and B ∈ Rr×k, with r ≪ 208

min(d, k). The adapted weight is then given by: 209

W = W0 +∆W = W0 +AB. (2) 210

For a given input x, the forward pass is computed 211

as: 212

h = xW0 + s · xAB, (3) 213

where s ≥ 1 is a tunable scalar hyperparameter. 214

During training, only the low-rank matrices A and 215

B are updated, while W0 remains fixed. In this 216

work, we focus on this simplest form of low-rank 217

adaptation as proposed in LoRA. 218

3.2 Gradient-Based Redundancy Evaluation 219

To accurately evaluate the redundancy of low-rank 220

modules, we draw inspiration from the importance 221

assessment techniques in parameter pruning and 222

propose Gradient-Based Redundancy Evaluation. 223

We consider a LoRA module defined as L = AB, 224

where L ∈ Rd×k, A ∈ Rd×r and B ∈ Rr×k. Sup- 225

pose that given a dataset D = {xi, yi}Ni=1, where 226

3

N is the number of samples. We denote that lij227

is the element in the i-th row and j-th column of228

matrix L. Before evaluating the redundancy of a229

LoRA module, we first measure the sensitivity of230

each parameter within the module to the loss (Le-231

Cun et al., 1989; Molchanov et al., 2019). The232

sensitivity of lij is approximated by the change in233

loss when lij is zeroed out. According to this, the234

change in loss can be formulated as:235

S(lij) = |∆L(D)| = |Llij (D)− Llij=0(D)| (4)236

Where L represents the loss function. Calculating237

S(lij) for each parameter directly using Formula238

(4) is computationally expensice since for each239

module, an extra computation is needed to compute240

the network’s loss after setting that parameter to241

zero. We can utilize first-order Taylor expansion to242

approximate the calculation of S(lij), which will243

effectively reduce the computational complexity.244

S(lij) = |∂L(D)

∂lij
lij +O

(
∥lij∥2

)
| (5)245

Now all we need to do is calculate the gradient246

of lij . Given that lij =
∑r

m=1AimBmj , the247

subscripts indicate the corresponding rows and248

columns. On the basis of the existing deep learn-249

ing framework, e.g., Pytorch, it is easy for us to250

obtain ∂L(D)
∂A and ∂L(D)

∂B . Based on the rules of251

differentiation, we can get that:252

∂L(D)

∂lij
=

r∑
m=1

1

Bmj

∂L(D)

∂Aim
=

r∑
m=1

1

Aim

∂L(D)

∂Bmj

(6)253

By substituting (6) into (5), we obtain S(lij) for254

each parameter in the LoRA module. We then255

define a module-level redundancy measure:256

R(L) =
d× k∑d

i=1

∑k
j=1 S(lij)

(7)257

as the redundancy of LoRA module L. If the av-258

erage sensitivity of the elements within a LoRA259

module to the loss is low, we infer that the module260

contributes minimally to the model’s adaptation for261

the specific downstream task. Such modules can be262

pruned with minimal impact on the model’s overall263

performance.264

3.3 Three-Stage Redundancy Reduction265

Strategy266

To ensure the stability of the pruning process267

and avoid catastrophic failure during fine-tuning,268

we propose a Three-Stage Redundancy Reduction 269

Strategy. Our Three-Stage Redundancy Reduction 270

Strategy systematically eliminates redundant LoRA 271

modules while preserving those with lower redun- 272

dancy, thereby enhancing fine-tuning efficiency. 273

This process unfolds in three stages: Warmup, Pro- 274

gressive Pruning, and Fine-Tuning Refinement. 275

3.3.1 Warmup Stage 276

In the initial Warmup phase, it can gather sufficient 277

gradient information on each module’s contribu- 278

tion to the task, enabling more informed pruning 279

decisions later. At each training step t, we com- 280

pute a module-level redundancy measure R(Lt
m) 281

for each LoRA module Lm, using the method de- 282

scribed in Section 3.2. However, due to gradient 283

descent randomness, Dropout, and other stochastic 284

factors, R(Lt
m) may fluctuate considerably (Zhang 285

et al., 2022). 286

To stabilize R(L
(t)
m), we follow (Zhang et al., 287

2022) and maintain an exponential moving average 288

of the redundancy measure to achieve Redundancy 289

Smoothing 290

R(Lt
m) = β1R(Lt−1

m) + (1−β1)R(Lt
m), (8) 291

and we also apply Redundancy Stability Estimation 292

to quantify fluctutations between R(Lt
m) and its 293

smoothed value R(Lt
m) 294

U(Lt
m) =

∣∣R(Lt
m) − R(Lt

m)
∣∣,

U(Lt
m) = β2 U(Lt−1

m) + (1− β2)U(Lt
m),

(9) 295

where β2 ∈ (0, 1) governs the impact of past sta- 296

bilities. 297

We then combine the smoothed redundancy mea- 298

sure with its stability estimation to obtain the final 299

module-level redundancy at step t: 300

R̂(Lt
m) = R(Lt

m) · U(Lt
m). (10) 301

Modules with higher values of R̂(Lt
m) are re- 302

garded as more redundant, whereas modules with 303

lower values are likely more beneficial and thus 304

retained. 305

3.3.2 Progressive Pruning 306

After the Warmup phase, we have stabilized redun- 307

dancy measures R̂(Lt
m). In the Progressive Prun- 308

ing stage, we gradually remove the most redundant 309

LoRA modules using a threshold scheduler to en- 310

sure stability. Let pt denote the retention threshold 311

at training step t. We initialize p0 = p0, keeping 312

4

most modules active at the start. Following a Spar-313

sity Step Schedule (Zhu and Gupta, 2018; Zafrir314

et al., 2021b), pt decreases from p0 to pf , determin-315

ing the fraction of modules to retain. At each step,316

we rank modules in ascending order of R̂(Lt
m) (i.e.,317

from less redundant to more redundant) and retain318

only the lowest pt%. The remaining modules are319

pruned by zeroing out their trainable parameters.320

Concretely, let At
m and Bt

m be the trainable pa-321

rameters of Lt
m at step t. The update rule is:322

[At+1
m , Bt+1

m] = T (Lt
m, R̂(Lt

m))

=

{
[At

m − η∇AL, Bt
m − η∇BL] Lowest pt%,

[0,0] otherwise.
(11)323

Once both At+1
m and Bt+1

m are zero, the module324

Lm is effectively pruned at timestep t. By grad-325

ually reducing pt, the model adapts smoothly to326

the removal of redundant modules, preserving con-327

vergence stability. At the end of this stage (which328

means that pt reach to pf), we set the parameters’329

requires_grad=False in redundant LoRA module330

and delete them. This allows the subsequent fine-331

tuning stage to involve fewer trainable parameters332

and a lower memory usage, thus increasing the333

efficiency of fine-tuning.334

3.3.3 Fine-Tuning Refinement335

Finally, once pt reaches pf , the Fine-Tuning Re-336

finement stage begins. Only the LoRA modules337

with the lowest redundancy remain, typically con-338

stituting pf% of the original module count. In this339

stage, there is no additional computation compared340

with LoRA, which notably reduces both GPU mem-341

ory usage and running time compared to original342

LoRA method. We continue training retained mod-343

ules to refine key parameters and preserve or im-344

prove performance. By the end of Fine-Tuning345

Refinement, our G2R2 framework yields a more346

compact model that maintains robust performance347

with significantly fewer trainable parameters.348

3.4 Memory Usage and Time Complexity349

Analysis350

We analyze the additional computational cost and351

memory requirements introduced by G2R2 com-352

pared to LoRA, and how these are offset by effi-353

ciency gains in the Fine-Tuning Refinement stage.354

Computational Overhead vs. Savings. Our355

method introduces extra computations in the356

Algorithm 1 G2R2

1: Input: LoRA modules {Lm}m=M
m=1 ; thresholds p0→pf ;

three stage iterations Tw, Tp, Tr

2: Output: Fine-tuned model with pruned LoRA modules
3: Stage1: Warmup
4: for t = 0 → Tw do
5: Compute R(Lt

m), smooth & combine for R̂(Lt
m)

6: end for
7: Stage2: Progressive Pruning
8: for t = Tw + 1 → Tw + Tp do
9: Compute pt from schedule

10: Rank modules by R̂(Lt
m) (ascending), keep top pt%,

prune rest
11: end for
12: Stage3: Fine-Tuning Refinement
13: for t = Tw + Tp + 1 → Tw + Tp + Tr do
14: No further pruning; train only retained modules
15: end for
16: return Fine-tuned model

Warmup and Progressive Pruning stages. Specifi- 357

cally, computing the redundancy measure R(L) for 358

each module requires calculating element-wise sen- 359

sitivity I(lij), costing O(rdk) per module. With 360

M LoRA modules, the total overhead across Tw + 361

Tp iterations is O((Tw + Tp)Mrdk). Addition- 362

ally, module ranking in Progressive Pruning has a 363

cost of O(TpM logM), which is negligible when 364

M ≪ d, k. 365

In the Fine-Tuning Refinement stage, only a frac- 366

tion pf of LoRA modules remain active. Given that 367

a full LoRA update per iteration costs O(Mrdk), 368

pruning reduces this to O(pfMrdk), yielding to- 369

tal savings of O(Tr(1 − pf)Mrdk). Thus, our 370

method reduces overall computational cost com- 371

pared to LoRA when Tr(1− pf) > Tw + Tp. This 372

condition implies that if the Fine-Tuning Refine- 373

ment stage dominates the total training iterations 374

and a significant portion of modules are pruned, 375

our G2R2 framework achieves a net reduction in 376

computational cost compared to maintaining all 377

modules in the original LoRA method. 378

Memory Usage Analysis. G2R2 introduces min- 379

imal memory overhead. Throughout training, we 380

store only three scalar redundancy values per mod- 381

ule: R, R, and R̂, which do not significantly in- 382

crease memory usage. The main additional mem- 383

ory usage arises during sensitivity computation, 384

where intermediate values S(lij) must be temporar- 385

ily stored. However, since these are computed per 386

module and discarded afterward, they do not per- 387

sistently impact overall memory consumption. By 388

pruning redundant modules, our method further 389

reduces memory usage in the Fine-Tuning Refine- 390

ment stage, leading to lower VRAM requirements 391

5

Model PEFT Method # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

LLaMA2-7B
LoRA 0.83 65.3 73.6 77.5 83.6 84.3 77.4 61.8 71.6 74.4
DoRA 0.84 69.9 77.6 77.6 82.4 80.7 80.2 64.6 80.0 76.6
G2R2

0.2 0.83→0.17 70.4 80.0 77.5 79.7 81.3 82.3 67.2 77.6 77.0

LLaMA3-8B
LoRA 0.70 70.2 81.7 78.7 88.8 83.7 83.9 71.9 79.6 79.8
DoRA 0.71 70.5 83.4 75.2 79.3 79.3 84.0 66.5 79.8 77.3
G2R2

0.2 0.70→0.14 73.8 87.5 79.8 94.6 85.1 90.1 79.0 85.6 84.4

Table 1: Accuracy comparison of LLaMA2-7B, and LLaMA3-8B with various PEFT methods on eight commonsense
reasoning datasets. The best results on each dataset are shown in bold.

compared to standard LoRA fine-tuning.392

4 Experiments393

We conduct a variety of experiments to show-394

case the efficacy of G2R2 on various tasks in-395

cluding Commonsense Reasoning and Natural396

Language Understanding (NLU) (We also con-397

duct experiments on Question Answering and Nat-398

ural Language Generation, please refer to A.3399

and A.2). Firstly, we evaluate G2R2 against400

LoRA (Hu et al., 2022) and DoRA (Liu et al.,401

2024a) on commonsense reasoning task. Subse-402

quently, we compare G2R2 with Full fine-tuning,403

BitFit (Zaken et al., 2022), HAdapter (Houlsby404

et al., 2019), PAdapter (Pfeiffer et al., 2021a),405

LoRA (Hu et al., 2022), AdaLoRA (Zhang et al.,406

2023) and PiSSA (Meng et al., 2024) on natural407

language understanding task. Following this, we408

explore the fine-tuning efficiency of G2R2 through409

comparing time comsumption and memory usage410

with LoRA (Hu et al., 2022). Finally, we perform a411

series of ablation studies to demonstrate the effec-412

tiveness of two components of G2R2.413

Implementation Details. We integrate G2R2414

with LoRA (Hu et al., 2022) to enhance its ef-415

ficiency by selectively reducing redundant train-416

able modules. All methods are implemented us-417

ing PyTorch (Paszke et al., 2019) and the Hug-418

gingface PEFT library (Mangrulkar et al., 2022).419

Experiments are conducted on a cluster of 8×420

NVIDIA RTX 3090 GPUs and a cluster of 8×421

NVIDIA A800 GPUs. For optimization, we use422

AdamW (Loshchilov and Hutter, 2019) with a423

weight decay of 0.05 for commonsense reasoning424

and 0.01 for NLU. We initialize p0 = 1.0 for all425

tasks and pf = 0.2 for commonsense reasoning426

tasks, pf ∈ {0.2, 0.7} for NLU. The exponential427

moving average parameters are set as β1 = 0.85428

and β2 = 0.95 for all experiments. For more train-429

ing details, please refer to A.7.430

4.1 Commonsense Reasoning 431

Models and Datasets. We evaluate G2R2 on 432

LLaMA2-7B and LLaMA3-8B using common- 433

sense reasoning tasks. The commonsense reason- 434

ing tasks comprise 8 sub-tasks, each with a prede- 435

fined training and testing set. We follow the setting 436

of (Hu et al., 2023) and amalgamate the training 437

datasets from all 8 tasks to create the final training 438

dataset and conduct evaluations on the individual 439

testing dataset for each task. We set batch size to 440

16 for all methods, and fine-tune 1 epoch. And then 441

we evaluate the fine-tuned model on 8 reasoning 442

tasks. 443

Main Results. Table 1 presents the accuracy 444

comparison of LoRA, DoRA, and our proposed 445

G2R2 across multiple commonsense reasoning 446

benchmarks using LLaMA2-7B and LLaMA3-8B. 447

The results demonstrate that G2R2 consistently 448

outperforms both LoRA and DoRA while utiliz- 449

ing fewer trainable parameters. Specifically, for 450

LLaMA2-7B, our method achieves an average ac- 451

curacy of 77.0%, representing a +2.6% improve- 452

ment over LoRA (74.4%) and a +0.4% gain over 453

DoRA (76.6%). Similarly, for LLaMA3-8B, our 454

method significantly boosts the average accuracy 455

to 84.4%, yielding a +4.6% increase compared to 456

LoRA (79.8%) and a +7.1% increase over DoRA 457

(77.3%). These improvements highlight the ef- 458

fectiveness of our redundancy-aware fine-tuning 459

strategy in enhancing model performance while 460

reducing the number of trainable parameters. 461

Notably, these gains are obtained after 1 train- 462

ing epoch, demonstrating that G2R2 accelerates 463

convergence while enhancing performance. This 464

aligns with intuition: after the first two stages, 465

G2R2 significantly reduces the number of train- 466

able parameters (e.g., from 0.83% → 0.17% in 467

LLaMA2-7B), making the model easier to opti- 468

mize and getting good performance. As a result, 469

our method can achieve comparable or superior 470

performance in significantly less training time. 471

6

Method # Params(%) MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B All

Full FT 100 89.90 95.63 69.19 92.40 94.03 83.75 89.46 91.60 88.25

BitFit 0.05 89.37 94.84 66.96 88.41 92.24 78.70 87.75 91.35 86.22

HAdapter 0.66 90.13 95.53 68.64 91.91 94.11 84.48 89.95 91.48 88.28
PAdapter 0.64 90.33 95.61 68.77 92.04 94.29 85.20 89.46 91.54 88.41
LoRAr=8 0.72 90.65 94.95 69.82 91.99 93.87 85.20 89.95 91.60 88.50
AdaLoRA 0.69 90.76 96.10 71.45 92.23 94.55 88.09 90.69 91.84 89.46
PiSSA 0.72 90.43 95.87 72.64 92.26 94.29 87.00 91.67 91.88 89.50

G2R2
0.2 0.72→0.15 90.32 96.44 71.64 92.65 94.60 88.45 91.42 92.17 89.71

G2R2
0.7 0.72→0.51 90.43 96.33 72.24 92.36 94.38 89.17 92.60 92.06 89.94

Table 2: Results with DeBERTaV3-base on GLUE development set. The best results on each dataset are shown in bold. We
report the average correlation for STS-B and accuracy for MRPC. We report mean of 5 runs using different random seeds.

Method Total Time (s) Peak / Final Mem (MB)

LoRA 638.35 7156/7156
G2R2

0.2 564.14 7156/5578

∆ −11.6% +0%/−22.1%

Table 3: Comparison of fine-tuning time and peak memory
usage between LoRA and G2R2 on the MRPC dataset using
DeBERTaV3-base.

4.2 Natural Language Understanding472

Model and Datasets. We evaluate the fine-tuning473

performance of DeBERTaV3-base (He et al., 2021)474

using G2R2 algorithm. We conduct experiments475

on the General Language Understanding Evalua-476

tion (GLUE (Wang et al., 2019)) benchmark. The477

benchmark includes two single-sentence classifi-478

cation tasks, three similarity and paraphrase tasks479

and four natural language inference tasks.480

Main Results. Table 2 compares G2R2 with481

baseline methods across different trainable param-482

eter scales on the GLUE development set. Our483

approach consistently achieves superior or compet-484

itive performance across all datasets. For instance,485

with only 0.15% trainable parameters, G2R2 out-486

performs PiSSA (0.72% parameters) on 5 out of487

8 datasets, achieving a 0.21% improvement on488

average scores of all 8 tasks. Moreover, as the489

number of trainable parameters increases, G2R2490

maintains its advantage, demonstrating stable and491

efficient parameter utilization. For example, when492

fine-tuning with 0.51% parameters, our method493

surpasses PiSSA (0.72% parameters) with notable494

gains of +0.44% on average scores of all 8 tasks.495

4.3 Efficiency Analysis496

To evaluate the efficiency of our proposed method,497

we conduct a comparative analysis of fine-tuning498

time and memory consumption. We fine-tune the499

DeBERTaV3 model on the MRPC dataset for 20500

epochs using both G2R2 and LoRA, measuring 501

per-epoch time consumption, memory usage, and 502

validation performance. The experimental results 503

are presented in Figure 3 and Table 3. 504

Time comsuption. As shown in Figure 3, during 505

the Warmup and Progressive Pruning stages, the 506

per-epoch time consumption of G2R2 is slightly 507

higher than that of LoRA due to redundancy eval- 508

uation and module selection. However, upon en- 509

tering the Fine-Tuning Refinement stage, the sub- 510

stantial reduction in trainable parameters leads to 511

a significant drop in per-epoch time consumption. 512

Given our experimental setting of Tw+Tp = 5 and 513

Tr = 15, the total fine-tuning time for G2R2 is no- 514

tably lower than that of LoRA (11.6% fine-tuning 515

time saved), as reflected in Table 3. 516

Memory Usage. The bar plots in Figure 3 repre- 517

sent memory consumption per epoch. In the first 518

two stages, although redundancy evaluation intro- 519

duces additional computations, the memory over- 520

head remains minimal since the majority of stored 521

values are scalars. When entering the Fine-Tuning 522

Refinement stage, the drastic reduction in trainable 523

parameters results in a substantially lower memory 524

footprint compared to LoRA. From Table 3, we 525

observe that in this stage, G2R2 reduces memory 526

usage by approximately 22.1% relative to LoRA. 527

Furthermore, in terms of validation accuracy 528

per epoch, G2R2 consistently outperforms LoRA 529

throughout training. Given that our method 530

achieves better accuracy while requiring less to- 531

tal training time and memory, these results strongly 532

validate the effectiveness of G2R2 in enhancing 533

fine-tuning efficiency without sacrificing and even 534

improving task performance. 535

7

MRPC RTE

pf 0.1 0.2 0.4 0.7 0.1 0.2 0.4 0.7

Random 68.38 68.38 68.38 68.38 62.09 63.17 60.06 60.29
R(L) = R(A)×R(B) 90.44 91.18 91.19 89.46 87.73 88.09 87.00 85.92

G2R2 90.93 91.42 92.15 92.60 88.45 88.45 88.08 89.17

Table 4: Comparison of different importance metrics for G2R2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epoch

2000

3000

4000

5000

6000

7000

8000

M
em

or
y

U
sa

ge
 (M

B
)

Warmup Prog. Pruning FT Refinement

2 2 Memory
LoRA Memory

2 2 Time

LoRA Time
2 2 Acc

LoRA Acc

0

10

20

30

40

Tr
ai

ni
ng

 T
im

e
(s

)

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Ac
cu

ra
cy

2 2 vs LoRA: Memory, Time and Accuracy Comparison

Figure 3: Memory usage, fine-tuning time per epoch, and accuracy comparison
between G2R2 and LoRA on the MRPC dataset using DeBERTa. The background
is segmented into three stages of G2R2: Warmup, Progressive Pruning, and Fine-
Tuning Refinement.

0 2 4 5 6 8 10 12 14 16 18 20
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Adrupt Prune

WarmupProg. Pruning FT Refinement
Progressive vs Adrupt Pruning Comparison

RTE Progressive
RTE Adrupt
MRPC Progressive
MRPC Adrupt

Figure 4: Comparison of progressive
pruning and adrupt pruning on the MRPC
and RTE datasets.

4.4 Ablation Study536

Effectiveness of Gradient-Based Redundancy537

Evaluation. To validate the effectiveness of our538

proposed Gradient-Based Redundancy Evaluation,539

we compare two alternative redundancy calcula-540

tion methods in Table 4: (1) R(L) = Random,541

where redundancy scores are randomly assigned;542

(2) R(L) = R(A) × R(B), where redundancy is543

computed as the product of the individual redun-544

dancy scores of A and B. Results on the MRPC545

and RTE datasets show that our method achieves546

the highest accuracy and exhibits the most stable547

performance across different final thresholds pf .548

The random redundancy assignment completely549

fails on MRPC, while the alternative method results550

in a noticeable performance drop, highlighting the551

necessity of our redundancy evaluation strategy.552

Effectiveness of Three-Stage Redundancy Re-553

duction Strategy. To validate the effectiveness554

of our three-stage pruning method, we compare it555

with an adrupt pruning strategy on the MRPC and556

RTE datasets useing DeBERTaV3-base model. In557

our G2R2, redundancy reduction is completed at558

epoch5, so for a fair comparison, we apply adrupt559

pruning to the baseline method at the same epoch.560

The experimental results are presented in Figure561

4. As shown in Figure 4, our progressive pruning562

strategy ensures a smooth training process with- 563

out causing sudden drops in performance. In con- 564

trast, adrupt pruning results in a sharp performance 565

degradation (catastrophic failure) at the pruning 566

step. Although the baseline method gradually re- 567

covers in later epochs, its final performance re- 568

mains consistently lower than that achieved by 569

G2R2. This demonstrates that our pruning strat- 570

egy effectively mitigates the instability introduced 571

by parameter reduction, leading to superior overall 572

fine-tuning stability and final performance. 573

5 Conclusion 574

We propose G2R2, a novel approach designed 575

to mitigate redundancy in LoRA-based PEFT. 576

By evaluating module-level redundancy with a 577

Gradient-Based Redundancy Evaluation score and 578

pruning less critical modules through a Three-Stage 579

Redundancy Reduction Strategy, G2R2 effectively 580

enhancing the efficiency of PEFT while preserv- 581

ing or improving performance. G2R2 accelerate 582

convergence by running fewer fine-tuning steps, 583

achieving competitive performance and further im- 584

proving fine-tuning efficiency. Our extensive exper- 585

iments on commonsense reasoning and natural lan- 586

guage understanding tasks underscore the method’s 587

efficiency and robustness, outperforming existing 588

baselines. 589

8

6 Limitations590

While G2R2 improves fine-tuning efficiency, it in-591

troduces additional computations in early training592

stages. It is specifically designed for LoRA and593

may require adaptation for other PEFT methods.594

Moreover, its effectiveness depends on the accuracy595

of redundancy estimation, which could be further596

optimized. Future work will focus on enhancing597

efficiency and extending applicability.598

References599

Armen Aghajanyan, Sonal Gupta, and Luke Zettle-600
moyer. 2021. Intrinsic dimensionality explains the601
effectiveness of language model fine-tuning. In Pro-602
ceedings of the 59th Annual Meeting of the Asso-603
ciation for Computational Linguistics and the 11th604
International Joint Conference on Natural Language605
Processing, ACL/IJCNLP 2021, (Volume 1: Long606
Papers), Virtual Event, August 1-6, 2021, pages 7319–607
7328. Association for Computational Linguistics.608

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo609
Lopez-Gazpio, and Lucia Specia. 2017. Semeval-610
2017 task 1: Semantic textual similarity multilingual611
and crosslingual focused evaluation. In Proceedings612
of the 11th International Workshop on Semantic Eval-613
uation, SemEval@ACL 2017, Vancouver, Canada,614
August 3-4, 2017, pages 1–14. Association for Com-615
putational Linguistics.616

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,617
Zhijian Liu, Song Han, and Jiaya Jia. 2023. Longlora:618
Efficient fine-tuning of long-context large language619
models. CoRR, abs/2309.12307.620

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen,621
Bowen Zhou, Zhiyuan Liu, and Maosong Sun. 2023.622
Sparse low-rank adaptation of pre-trained language623
models. In Proceedings of the 2023 Conference on624
Empirical Methods in Natural Language Process-625
ing, EMNLP 2023, Singapore, December 6-10, 2023,626
pages 4133–4145. Association for Computational627
Linguistics.628

William B. Dolan and Chris Brockett. 2005. Automati-629
cally constructing a corpus of sentential paraphrases.630
In Proceedings of the Third International Workshop631
on Paraphrasing, IWP@IJCNLP 2005, Jeju Island,632
Korea, October 2005, 2005. Asian Federation of Nat-633
ural Language Processing.634

Demi Guo, Alexander M. Rush, and Yoon Kim. 2021.635
Parameter-efficient transfer learning with diff prun-636
ing. In Proceedings of the 59th Annual Meeting of637
the Association for Computational Linguistics and638
the 11th International Joint Conference on Natural639
Language Processing, ACL/IJCNLP 2021, (Volume 1:640
Long Papers), Virtual Event, August 1-6, 2021, pages641
4884–4896. Association for Computational Linguis-642
tics.643

Song Han, Jeff Pool, John Tran, and William J. Dally. 644
2015. Learning both weights and connections for 645
efficient neural network. In Advances in Neural In- 646
formation Processing Systems 28: Annual Confer- 647
ence on Neural Information Processing Systems 2015, 648
December 7-12, 2015, Montreal, Quebec, Canada, 649
pages 1135–1143. 650

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg- 651
Kirkpatrick, and Graham Neubig. 2022. Towards a 652
unified view of parameter-efficient transfer learning. 653
In The Tenth International Conference on Learning 654
Representations, ICLR 2022, Virtual Event, April 25- 655
29, 2022. OpenReview.net. 656

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and 657
Weizhu Chen. 2021. Deberta: decoding-enhanced 658
bert with disentangled attention. In 9th International 659
Conference on Learning Representations, ICLR 2021, 660
Virtual Event, Austria, May 3-7, 2021. OpenRe- 661
view.net. 662

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 663
Bruna Morrone, Quentin De Laroussilhe, Andrea 664
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 665
Parameter-efficient transfer learning for nlp. In In- 666
ternational Conference on Machine Learning, pages 667
2790–2799. PMLR. 668

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 669
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 670
Weizhu Chen. 2022. Lora: Low-rank adaptation of 671
large language models. In The Tenth International 672
Conference on Learning Representations, ICLR 2022, 673
Virtual Event, April 25-29, 2022. OpenReview.net. 674

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee- 675
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po- 676
ria, and Roy Ka-Wei Lee. 2023. Llm-adapters: An 677
adapter family for parameter-efficient fine-tuning of 678
large language models. In Proceedings of the 2023 679
Conference on Empirical Methods in Natural Lan- 680
guage Processing, EMNLP 2023, Singapore, Decem- 681
ber 6-10, 2023, pages 5254–5276. Association for 682
Computational Linguistics. 683

Dawid Jan Kopiczko, Tijmen Blankevoort, and 684
Yuki Markus Asano. 2023. Vera: Vector-based ran- 685
dom matrix adaptation. CoRR, abs/2310.11454. 686

Yann LeCun, John S. Denker, and Sara A. Solla. 1989. 687
Optimal brain damage. In Advances in Neural In- 688
formation Processing Systems 2, [NIPS Conference, 689
Denver, Colorado, USA, November 27-30, 1989], 690
pages 598–605. Morgan Kaufmann. 691

Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and 692
Jinwoo Shin. 2021. Layer-adaptive sparsity for the 693
magnitude-based pruning. In 9th International Con- 694
ference on Learning Representations, ICLR 2021, Vir- 695
tual Event, Austria, May 3-7, 2021. OpenReview.net. 696

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 697
The power of scale for parameter-efficient prompt 698
tuning. In Proceedings of the 2021 Conference on 699
Empirical Methods in Natural Language Processing, 700

9

https://doi.org/10.18653/V1/2021.ACL-LONG.568
https://doi.org/10.18653/V1/2021.ACL-LONG.568
https://doi.org/10.18653/V1/2021.ACL-LONG.568
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.48550/ARXIV.2309.12307
https://doi.org/10.48550/ARXIV.2309.12307
https://doi.org/10.48550/ARXIV.2309.12307
https://doi.org/10.48550/ARXIV.2309.12307
https://doi.org/10.48550/ARXIV.2309.12307
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.252
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.252
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.252
https://aclanthology.org/I05-5002/
https://aclanthology.org/I05-5002/
https://aclanthology.org/I05-5002/
https://doi.org/10.18653/V1/2021.ACL-LONG.378
https://doi.org/10.18653/V1/2021.ACL-LONG.378
https://doi.org/10.18653/V1/2021.ACL-LONG.378
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.319
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.319
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.319
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.319
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.319
https://doi.org/10.48550/ARXIV.2310.11454
https://doi.org/10.48550/ARXIV.2310.11454
https://doi.org/10.48550/ARXIV.2310.11454
http://papers.nips.cc/paper/250-optimal-brain-damage
https://openreview.net/forum?id=H6ATjJ0TKdf
https://openreview.net/forum?id=H6ATjJ0TKdf
https://openreview.net/forum?id=H6ATjJ0TKdf
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243

EMNLP 2021, Virtual Event / Punta Cana, Domini-701
can Republic, 7-11 November, 2021, pages 3045–702
3059. Association for Computational Linguistics.703

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan704
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,705
Veselin Stoyanov, and Luke Zettlemoyer. 2020.706
BART: denoising sequence-to-sequence pre-training707
for natural language generation, translation, and com-708
prehension. In Proceedings of the 58th Annual Meet-709
ing of the Association for Computational Linguistics,710
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.711
Association for Computational Linguistics.712

Guiying Li, Chao Qian, Chunhui Jiang, Xiaofen Lu,713
and Ke Tang. 2018. Optimization based layer-wise714
magnitude-based pruning for DNN compression. In715
Proceedings of the Twenty-Seventh International716
Joint Conference on Artificial Intelligence, IJCAI717
2018, July 13-19, 2018, Stockholm, Sweden, pages718
2383–2389. ijcai.org.719

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming720
Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, and721
Weizhu Chen. 2021. Super tickets in pre-trained722
language models: From model compression to im-723
proving generalization. In Proceedings of the 59th724
Annual Meeting of the Association for Computational725
Linguistics and the 11th International Joint Confer-726
ence on Natural Language Processing, ACL/IJCNLP727
2021, (Volume 1: Long Papers), Virtual Event, Au-728
gust 1-6, 2021, pages 6524–6538. Association for729
Computational Linguistics.730

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo731
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting732
Cheng, and Min-Hung Chen. 2024a. Dora: Weight-733
decomposed low-rank adaptation. In Forty-first In-734
ternational Conference on Machine Learning, ICML735
2024, Vienna, Austria, July 21-27, 2024. OpenRe-736
view.net.737

Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan738
Xue, Longhui Yu, Haiwen Feng, Zhen Liu, Juyeon739
Heo, Songyou Peng, Yandong Wen, Michael J. Black,740
Adrian Weller, and Bernhard Schölkopf. 2024b.741
Parameter-efficient orthogonal finetuning via butter-742
fly factorization. In The Twelfth International Con-743
ference on Learning Representations, ICLR 2024,744
Vienna, Austria, May 7-11, 2024. OpenReview.net.745

Ilya Loshchilov and Frank Hutter. 2019. Decoupled746
weight decay regularization. In 7th International747
Conference on Learning Representations, ICLR 2019,748
New Orleans, LA, USA, May 6-9, 2019. OpenRe-749
view.net.750

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.751
Llm-pruner: On the structural pruning of large lan-752
guage models. In Advances in Neural Information753
Processing Systems 36: Annual Conference on Neu-754
ral Information Processing Systems 2023, NeurIPS755
2023, New Orleans, LA, USA, December 10 - 16,756
2023.757

Sourab Mangrulkar, Sylvain Gugger, Lysandre De- 758
but, Younes Belkada, Sayak Paul, and Benjamin 759
Bossan. 2022. Peft: State-of-the-art parameter- 760
efficient fine-tuning methods. https://github. 761
com/huggingface/peft. 762

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024. 763
Pissa: Principal singular values and singular vectors 764
adaptation of large language models. In Advances in 765
Neural Information Processing Systems 38: Annual 766
Conference on Neural Information Processing Sys- 767
tems 2024, NeurIPS 2024, Vancouver, BC, Canada, 768
December 10 - 15, 2024. 769

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri 770
Frosio, and Jan Kautz. 2019. Importance estimation 771
for neural network pruning. In IEEE Conference 772
on Computer Vision and Pattern Recognition, CVPR 773
2019, Long Beach, CA, USA, June 16-20, 2019, pages 774
11264–11272. Computer Vision Foundation / IEEE. 775

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. 776
2018. Don’t give me the details, just the summary! 777
topic-aware convolutional neural networks for ex- 778
treme summarization. In Proceedings of the 2018 779
Conference on Empirical Methods in Natural Lan- 780
guage Processing, Brussels, Belgium, October 31 - 781
November 4, 2018, pages 1797–1807. Association 782
for Computational Linguistics. 783

Michela Paganini and Jessica Zosa Forde. 2020. On 784
iterative neural network pruning, reinitialization, and 785
the similarity of masks. CoRR, abs/2001.05050. 786

Adam Paszke, Sam Gross, Francisco Massa, Adam 787
Lerer, James Bradbury, Gregory Chanan, Trevor 788
Killeen, Zeming Lin, Natalia Gimelshein, Luca 789
Antiga, Alban Desmaison, Andreas Köpf, Edward Z. 790
Yang, Zachary DeVito, Martin Raison, Alykhan Te- 791
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, 792
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An 793
imperative style, high-performance deep learning li- 794
brary. In Advances in Neural Information Processing 795
Systems 32: Annual Conference on Neural Informa- 796
tion Processing Systems 2019, NeurIPS 2019, De- 797
cember 8-14, 2019, Vancouver, BC, Canada, pages 798
8024–8035. 799

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, 800
Kyunghyun Cho, and Iryna Gurevych. 2021a. 801
Adapterfusion: Non-destructive task composition for 802
transfer learning. In Proceedings of the 16th Con- 803
ference of the European Chapter of the Association 804
for Computational Linguistics: Main Volume, EACL 805
2021, Online, April 19 - 23, 2021, pages 487–503. 806
Association for Computational Linguistics. 807

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, 808
Kyunghyun Cho, and Iryna Gurevych. 2021b. 809
Adapterfusion: Non-destructive task composition for 810
transfer learning. Preprint, arXiv:2005.00247. 811

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018a. 812
Know what you don’t know: Unanswerable questions 813
for squad. In Proceedings of the 56th Annual Meet- 814
ing of the Association for Computational Linguistics, 815

10

https://doi.org/10.18653/V1/2020.ACL-MAIN.703
https://doi.org/10.18653/V1/2020.ACL-MAIN.703
https://doi.org/10.18653/V1/2020.ACL-MAIN.703
https://doi.org/10.18653/V1/2020.ACL-MAIN.703
https://doi.org/10.18653/V1/2020.ACL-MAIN.703
https://doi.org/10.24963/IJCAI.2018/330
https://doi.org/10.24963/IJCAI.2018/330
https://doi.org/10.24963/IJCAI.2018/330
https://doi.org/10.18653/V1/2021.ACL-LONG.510
https://doi.org/10.18653/V1/2021.ACL-LONG.510
https://doi.org/10.18653/V1/2021.ACL-LONG.510
https://doi.org/10.18653/V1/2021.ACL-LONG.510
https://doi.org/10.18653/V1/2021.ACL-LONG.510
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=7NzgkEdGyr
https://openreview.net/forum?id=7NzgkEdGyr
https://openreview.net/forum?id=7NzgkEdGyr
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://papers.nips.cc/paper_files/paper/2023/hash/44956951349095f74492a5471128a7e0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/44956951349095f74492a5471128a7e0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/44956951349095f74492a5471128a7e0-Abstract-Conference.html
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
http://papers.nips.cc/paper_files/paper/2024/hash/db36f4d603cc9e3a2a5e10b93e6428f2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/db36f4d603cc9e3a2a5e10b93e6428f2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/db36f4d603cc9e3a2a5e10b93e6428f2-Abstract-Conference.html
https://doi.org/10.1109/CVPR.2019.01152
https://doi.org/10.1109/CVPR.2019.01152
https://doi.org/10.1109/CVPR.2019.01152
https://doi.org/10.18653/V1/D18-1206
https://doi.org/10.18653/V1/D18-1206
https://doi.org/10.18653/V1/D18-1206
https://doi.org/10.18653/V1/D18-1206
https://doi.org/10.18653/V1/D18-1206
https://arxiv.org/abs/2001.05050
https://arxiv.org/abs/2001.05050
https://arxiv.org/abs/2001.05050
https://arxiv.org/abs/2001.05050
https://arxiv.org/abs/2001.05050
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/V1/2021.EACL-MAIN.39
https://doi.org/10.18653/V1/2021.EACL-MAIN.39
https://doi.org/10.18653/V1/2021.EACL-MAIN.39
https://arxiv.org/abs/2005.00247
https://arxiv.org/abs/2005.00247
https://arxiv.org/abs/2005.00247
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124

ACL 2018, Melbourne, Australia, July 15-20, 2018,816
Volume 2: Short Papers, pages 784–789. Association817
for Computational Linguistics.818

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018b.819
Know what you don’t know: Unanswerable questions820
for squad. In Proceedings of the 56th Annual Meet-821
ing of the Association for Computational Linguistics,822
ACL 2018, Melbourne, Australia, July 15-20, 2018,823
Volume 2: Short Papers, pages 784–789. Association824
for Computational Linguistics.825

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and826
Percy Liang. 2016. Squad: 100, 000+ questions827
for machine comprehension of text. In Proceedings828
of the 2016 Conference on Empirical Methods in829
Natural Language Processing, EMNLP 2016, Austin,830
Texas, USA, November 1-4, 2016, pages 2383–2392.831
The Association for Computational Linguistics.832

Victor Sanh, Thomas Wolf, and Alexander M. Rush.833
2020. Movement pruning: Adaptive sparsity by fine-834
tuning. In Advances in Neural Information Process-835
ing Systems 33: Annual Conference on Neural In-836
formation Processing Systems 2020, NeurIPS 2020,837
December 6-12, 2020, virtual.838

Richard Socher, Alex Perelygin, Jean Wu, Jason839
Chuang, Christopher D. Manning, Andrew Y. Ng,840
and Christopher Potts. 2013. Recursive deep mod-841
els for semantic compositionality over a sentiment842
treebank. In Proceedings of the 2013 Conference on843
Empirical Methods in Natural Language Processing,844
EMNLP 2013, 18-21 October 2013, Grand Hyatt845
Seattle, Seattle, Washington, USA, A meeting of SIG-846
DAT, a Special Interest Group of the ACL, pages847
1631–1642. ACL.848

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan849
Kobyzev, and Ali Ghodsi. 2023. Dylora: Parameter-850
efficient tuning of pre-trained models using dynamic851
search-free low-rank adaptation. In Proceedings of852
the 17th Conference of the European Chapter of the853
Association for Computational Linguistics, EACL854
2023, Dubrovnik, Croatia, May 2-6, 2023, pages855
3266–3279. Association for Computational Linguis-856
tics.857

Danilo Vucetic, Mohammadreza Tayaranian, Maryam858
Ziaeefard, James J. Clark, Brett H. Meyer, and War-859
ren J. Gross. 2022. Efficient fine-tuning of BERT860
models on the edge. In IEEE International Sympo-861
sium on Circuits and Systems, ISCAS 2022, Austin,862
TX, USA, May 27 - June 1, 2022, pages 1838–1842.863
IEEE.864

Alex Wang, Amanpreet Singh, Julian Michael, Felix865
Hill, Omer Levy, and Samuel R. Bowman. 2019.866
GLUE: A multi-task benchmark and analysis plat-867
form for natural language understanding. In 7th In-868
ternational Conference on Learning Representations,869
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.870
OpenReview.net.871

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow- 872
man. 2019. Neural network acceptability judgments. 873
Trans. Assoc. Comput. Linguistics, 7:625–641. 874

Adina Williams, Nikita Nangia, and Samuel R. Bow- 875
man. 2018. A broad-coverage challenge corpus for 876
sentence understanding through inference. In Pro- 877
ceedings of the 2018 Conference of the North Amer- 878
ican Chapter of the Association for Computational 879
Linguistics: Human Language Technologies, NAACL- 880
HLT 2018, New Orleans, Louisiana, USA, June 1-6, 881
2018, Volume 1 (Long Papers), pages 1112–1122. 882
Association for Computational Linguistics. 883

Adam X. Yang, Maxime Robeyns, Xi Wang, and Lau- 884
rence Aitchison. 2023. Bayesian low-rank adaptation 885
for large language models. CoRR, abs/2308.13111. 886

Shen Yuan, Haotian Liu, and Hongteng Xu. 2024. 887
Bridging the gap between low-rank and orthogonal 888
adaptation via householder reflection adaptation. In 889
Advances in Neural Information Processing Systems 890
38: Annual Conference on Neural Information Pro- 891
cessing Systems 2024, NeurIPS 2024, Vancouver, BC, 892
Canada, December 10 - 15, 2024. 893

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen, 894
and Moshe Wasserblat. 2021a. Prune once for 895
all: Sparse pre-trained language models. CoRR, 896
abs/2111.05754. 897

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen, 898
and Moshe Wasserblat. 2021b. Prune once for 899
all: Sparse pre-trained language models. CoRR, 900
abs/2111.05754. 901

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. 902
2022. Bitfit: Simple parameter-efficient fine-tuning 903
for transformer-based masked language-models. In 904
Proceedings of the 60th Annual Meeting of the As- 905
sociation for Computational Linguistics (Volume 2: 906
Short Papers), ACL 2022, Dublin, Ireland, May 22- 907
27, 2022, pages 1–9. Association for Computational 908
Linguistics. 909

Qingru Zhang, Minshuo Chen, Alexander Bukharin, 910
Nikos Karampatziakis, Pengcheng He, Yu Cheng, 911
Weizhu Chen, and Tuo Zhao. 2023. Adalora: Adap- 912
tive budget allocation for parameter-efficient fine- 913
tuning. Preprint, arXiv:2303.10512. 914

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander 915
Bukharin, Pengcheng He, Weizhu Chen, and Tuo 916
Zhao. 2022. PLATON: pruning large transformer 917
models with upper confidence bound of weight im- 918
portance. In International Conference on Machine 919
Learning, ICML 2022, 17-23 July 2022, Baltimore, 920
Maryland, USA, volume 162 of Proceedings of 921
Machine Learning Research, pages 26809–26823. 922
PMLR. 923

Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and 924
Pengtao Xie. 2024. Autolora: Automatically tuning 925
matrix ranks in low-rank adaptation based on meta 926
learning. CoRR, abs/2403.09113. 927

11

https://doi.org/10.18653/V1/P18-2124
https://doi.org/10.18653/V1/P18-2124
https://doi.org/10.18653/V1/P18-2124
https://doi.org/10.18653/V1/D16-1264
https://doi.org/10.18653/V1/D16-1264
https://doi.org/10.18653/V1/D16-1264
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://doi.org/10.18653/V1/2023.EACL-MAIN.239
https://doi.org/10.18653/V1/2023.EACL-MAIN.239
https://doi.org/10.18653/V1/2023.EACL-MAIN.239
https://doi.org/10.18653/V1/2023.EACL-MAIN.239
https://doi.org/10.18653/V1/2023.EACL-MAIN.239
https://doi.org/10.1109/ISCAS48785.2022.9937567
https://doi.org/10.1109/ISCAS48785.2022.9937567
https://doi.org/10.1109/ISCAS48785.2022.9937567
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.48550/ARXIV.2308.13111
https://doi.org/10.48550/ARXIV.2308.13111
https://doi.org/10.48550/ARXIV.2308.13111
http://papers.nips.cc/paper_files/paper/2024/hash/cdd0640218a27e9e2c0e52e324e25db0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/cdd0640218a27e9e2c0e52e324e25db0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/cdd0640218a27e9e2c0e52e324e25db0-Abstract-Conference.html
https://arxiv.org/abs/2111.05754
https://arxiv.org/abs/2111.05754
https://arxiv.org/abs/2111.05754
https://arxiv.org/abs/2111.05754
https://arxiv.org/abs/2111.05754
https://arxiv.org/abs/2111.05754
https://doi.org/10.18653/V1/2022.ACL-SHORT.1
https://doi.org/10.18653/V1/2022.ACL-SHORT.1
https://doi.org/10.18653/V1/2022.ACL-SHORT.1
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://proceedings.mlr.press/v162/zhang22ao.html
https://proceedings.mlr.press/v162/zhang22ao.html
https://proceedings.mlr.press/v162/zhang22ao.html
https://proceedings.mlr.press/v162/zhang22ao.html
https://proceedings.mlr.press/v162/zhang22ao.html
https://doi.org/10.48550/ARXIV.2403.09113
https://doi.org/10.48550/ARXIV.2403.09113
https://doi.org/10.48550/ARXIV.2403.09113
https://doi.org/10.48550/ARXIV.2403.09113
https://doi.org/10.48550/ARXIV.2403.09113

Michael Zhu and Suyog Gupta. 2018. To prune, or928
not to prune: Exploring the efficacy of pruning for929
model compression. In 6th International Conference930
on Learning Representations, ICLR 2018, Vancouver,931
BC, Canada, April 30 - May 3, 2018, Workshop Track932
Proceedings. OpenReview.net.933

Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang,934
Kam-Fai Wong, and Lei Zhang. 2023. Delta-lora:935
Fine-tuning high-rank parameters with the delta of936
low-rank matrices. CoRR, abs/2309.02411.937

A Appendix938

A.1 Sparsity Step Schedule939

Sparsity Step Scheduling dynamically evolves the940

value of threshold p(t) based on the relationship941

between the current time t and the total time T .942

The exact formula is as follows:943

p(t) =


p0 0 ≤ t < ti,

pf + (p0 − pf)(1−
t−ti−tf
T−ti−tf

)3 ti ≤ t < T − tf ,

pf o.w.
(12)944

Where ti and tf are our hyperparameters to control945

each fine-tuning eopchs of three stages.946

A.2 GLUE Benchmark947

GLUE benchmark (Wang et al., 2019) is a wide-948

ranging collection of natural language understand-949

ing tasks. It includes MNLI (Williams et al.,950

2018) (inference), SST-2 (Socher et al., 2013)951

(sentiment analysis), MRPC (Dolan and Brock-952

ett, 2005) (paraphrase detection), CoLA (Warstadt953

et al., 2019) (linguistic acceptability), QNLI (Ra-954

jpurkar et al., 2018a) (inference), QQP(question-955

answering), RTE (inference), and STS-B (Cer et al.,956

2017) (textual similarity). Please refer to Table 5957

for details.958

A.3 Question Answering959

Model and Datasets. We evaluate G2R2 on two960

question answering benchmarks: SQuADv1.1 (Ra-961

jpurkar et al., 2016) and SQuADv2.0 (Rajpurkar962

et al., 2018b), using DeBERTaV3-base (He et al.,963

2021) as the base model. Both tasks are formulated964

as sequence labeling problems, where the model965

predicts the start and end positions of the answer966

span.967

Stanford Question Answering Dataset (SQuAD)968

is a reading comprehension dataset, consisting969

of questions posed by crowdworkers on a set of970

Wikipedia articles, where the answer to every ques-971

tion is a segment of text, or span, from the corre-972

sponding reading passage, or the question might be973

unanswerable. SQuAD2.0 combines the 100,000 974

questions in SQuAD1.1 with over 50,000 unan- 975

swerable questions written adversarially by crowd- 976

workers to look similar to answerable ones. The 977

statistics of question answering datasets are sum- 978

marized in Table 7. 979

Main Results. Table 6 presents the results of fine- 980

tuning DeBERTaV3-base with G2R2 at different 981

trainable parameter scales. Our method consis- 982

tently outperforms existing approaches in both Ex- 983

act Match (EM) and F1 scores across most param- 984

eter scales on both datasets. Notably, G2R2 main- 985

tains strong performance even with fewer train- 986

able parameters, often matching or surpassing base- 987

lines with larger parameter budgets. These results 988

demonstrate the effectiveness of our redundancy- 989

aware module selection, which optimally allocates 990

trainable parameters across different tasks, maxi- 991

mizing fine-tuning efficiency. 992

A.4 Natural Language Generation 993

Model and Datasets. Having demonstrated that 994

G2R2 achieves state-of-the-art performance on 995

NLU and QA tasks, we further investigate its ef- 996

fectiveness on natural language generation (NLG). 997

To this end, we conduct experiments on the 998

XSum (Narayan et al., 2018) dataset, a benchmark 999

for abstractive single-document summarization, us- 1000

ing BART-large (Lewis et al., 2020) as the base 1001

model. 1002

The Extreme Summarization (XSum) dataset 1003

is a dataset for evaluation of abstractive single- 1004

document summarization systems. The goal is 1005

to create a short, one-sentence new summary an- 1006

swering the question “What is the article about?”. 1007

The dataset consists of 226,711 news articles ac- 1008

companied with a one-sentence summary. The ar- 1009

ticles are collected from BBC articles (2010 to 1010

2017) and cover a wide variety of domains (e.g., 1011

News, Politics, Sports, Weather, Business, Tech- 1012

nology, Science, Health, Family, Education, En- 1013

tertainment and Arts). The official random split 1014

contains 204,045 (90%), 11,332 (5%) and 11,334 1015

(5%) documents in training, validation and test sets, 1016

respectively. 1017

Main Results. Table 8 presents the experimental 1018

results across different trainable parameter scales. 1019

G2R2 consistently outperforms all baseline meth- 1020

ods, with its advantage becoming more pronounced 1021

as the trainable parameter budget decreases. For in- 1022

stance, at a trainable parameter scale of 0.13%, our 1023

12

https://openreview.net/forum?id=Sy1iIDkPM
https://openreview.net/forum?id=Sy1iIDkPM
https://openreview.net/forum?id=Sy1iIDkPM
https://openreview.net/forum?id=Sy1iIDkPM
https://openreview.net/forum?id=Sy1iIDkPM
https://doi.org/10.48550/ARXIV.2309.02411
https://doi.org/10.48550/ARXIV.2309.02411
https://doi.org/10.48550/ARXIV.2309.02411
https://doi.org/10.48550/ARXIV.2309.02411
https://doi.org/10.48550/ARXIV.2309.02411

Corpus Task #Train #Dev #Test #Label Metrics

CoLA Acceptability 8.5k 1k 1k 2 Matthews corr

SST Sentiment 67k 872 1.8k 2 Accuracy

MNLI NLI 393k 20k 20k 3 Accuracy

RTE NLI 2.5k 276 3k 2 Accuracy

QQP Paraphrase 364k 40k 391k 2 Accuracy/F1

MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1

QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

Table 5: Summary of the GLUE benchmark.

SQuADv1.1 SQuADv2.0

Full FT 86.0 / 92.7 85.4 / 88.4

Params 0.08% 0.16% 0.32% 0.65% 0.08% 0.16% 0.32% 0.65%

HAdapter 84.4/91.5 85.3/92.1 86.1/92.7 86.7/92.9 83.4/86.6 84.3/87.3 84.9/87.9 85.4/88.3
PAdapter 84.4/91.7 85.9/92.5 86.2/92.8 86.6/93.0 84.2/87.2 84.5/87.6 84.9/87.8 84.5/87.5
LoRA 86.4/92.8 86.6/92.9 86.7/93.1 86.7/93.1 84.7/87.5 83.6/86.7 84.5/87.4 85.0/88.0
AdaLoRA 87.2/93.4 87.5/93.6 87.5/93.7 87.6/93.7 85.6/88.7 85.7/88.8 85.5/88.6 86.0/88.9

G2R2 88.0/93.7 88.4/94 87.9/93.7 88.0/93.7 85.8/88.8 85.8/88.8 85.4/88.5 86.1/88.9

Table 6: Results with DeBERTaV3-base on SQuAD v1.1 and SQuADv2.0. Here # Params is the number of trainable parameters
relative to that in full fine-tuning. We report EM/F1. The best results in each setting are shown in bold.

Train # Validation

SQuAD v1.1 87,599 10,570
SQuAD v2.0 130,319 11,873

Table 7: Statistics of the SQuAD dataset.

MRPC RTE

82

83

84

85

86

87

88

89

90

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00%

Ac
cu

ra
cy

 [%
]

Param (%)

IGAM

LoRA

82

84

86

88

90

92

94

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00%

Ac
cu

ra
cy

 [%
]

Param (%)

IGAM

LoRA

Figure 5: Stability performance under different number of
learnable parameters.

method improves ROUGE-1/2/L scores by 1.06,1024

1.12, and 1.13 points, respectively, over AdaLoRA.1025

Moreover, G2R2 exhibits greater stability across1026

different parameter scales. We attribute this to the1027

fact that only a few insertion positions significantly1028

impact fine-tuning performance for summarization1029

tasks. Once LoRA modules are placed at these1030

key positions, additional insertions or removals at1031

other positions have minimal effect on overall per-1032

formance.1033

Method # Params Rouge-1 Rouge-2 Rouge-L

Full FT 100% 45.49 22.33 37.26

LoRA
2.20%

43.95 20.72 35.68
AdaLoRA 44.72 21.46 36.46
G2R2 44.74 21.51 36.57

LoRA
1.10%

43.40 20.20 35.20
AdaLoRA 44.35 21.13 36.13
G2R2 44.43 21.20 36.26

LoRA
0.26%

43.18 19.89 34.92
AdaLoRA 43.55 20.17 35.20
G2R2 44.23 21.12 36.17

LoRA
0.13%

42.81 19.68 34.73
AdaLoRA 43.29 19.95 35.04
G2R2 44.35 21.07 36.17

Table 8: Results with BART-large on XSum. Here # Params
is the number of trainable parameters relative to that in full
fine-tuning. We report R-1/2/L. The best results are shown in
bold.

A.5 Robustness of Different pf 1034

Figure 5 compares the performance of G2R2 and 1035

LoRA across different trainable parameter scales 1036

on the MRPC and RTE datasets. Even when 1037

the trainable parameter ratio varies significantly 1038

from 0.18% to 2.8%, our method maintains consis- 1039

tently superior and stable performance. In contrast, 1040

13

Q: Prior to Super Bowl 50, when were the Broncos last there?
Answer: Super Bowl XLVIII
𝒢!ℛ!: Super Bowl XLVIII

[CLS] Prior to Super Bowl 50 , when were the Broncos last there ?
[SEP] For the third straight season , the number one seeds from both
conferences met in the Super Bowl . The Carolina Panthers became
one of only ten teams to have completed a regular season with only
one loss , and one of only six teams to have acquired a 15 1 record
, while the Denver Broncos became one of four teams to have made
eight appearances in the Super Bowl . The Broncos made their second
Super Bowl appearance in three years , having reached Super Bowl XL
VIII , while the Panthers made their second Super Bowl appearance in
franchise history , their other appearance being Super Bowl XXX VIII
. Coincidentally , both teams were coached by John Fox in their last
Super Bowl appearance prior to Super Bowl 50 . [SEP] [PAD]

✅

(a) G2R2

Q: Prior to Super Bowl 50, when were the Broncos last there?
Answer: Super Bowl XLVIII
LoRA: John Fox

[CLS] Prior to Super Bowl 50 , when were the Broncos last there ?
[SEP] For the third straight season , the number one seeds from both
conferences met in the Super Bowl . The Carolina Panthers became
one of only ten teams to have completed a regular season with only
one loss , and one of only six teams to have acquired a 15 1 record
, while the Denver Broncos became one of four teams to have made
eight appearances in the Super Bowl . The Broncos made their second
Super Bowl appearance in three years , having reached Super Bowl XL
VIII , while the Panthers made their second Super Bowl appearance in
franchise history , their other appearance being Super Bowl XXX VIII
. Coincidentally , both teams were coached by John Fox in their last
Super Bowl appearance prior to Super Bowl 50 . [SEP] [PAD]

❌

(b) LoRA

Figure 6: Visualization of some results. The shades of red
indicate the degree of emphasis that the fine-tuned model
places on different words.

LoRA exhibits higher variance, confirming that our1041

redundancy-aware selection mechanism not only1042

enhances fine-tuning efficiency but also ensures1043

robust performance across different parameter bud-1044

gets.1045

A.6 Visualization of Results.1046

We further analyze the prediction performance of1047

G2R2 compared to LoRA on the SQuADv1 dataset.1048

Out of 10,756 test samples, our method correctly1049

predicts 496 more samples than LoRA. As illus-1050

trated in Figure 6, our importance-guided adapta-1051

tion better captures semantic relevance in complex1052

text environments. For instance, in the question1053

“Prior to Super Bowl 50, when were the Broncos1054

last there?”, our method correctly identifies “Super1055

Bowl XLVIII” as the answer, whereas LoRA incor-1056

rectly assigns the highest attention to “John Fox,”1057

leading to an incorrect prediction. This demon-1058

strates that G2R2 effectively selects insertion posi-1059

tions that enhance semantic representation, improv-1060

ing the model’s ability to capture critical informa-1061

tion for downstream tasks.1062

A.7 Experiments Hyperparameters 1063

A.7.1 Hyperparameters for Commonsense 1064

Reasoning Tasks 1065

We have detailed the hyperparameters required for 1066

fine-tuning LLaMA2-7B and LLaMA3-8B using 1067

G2R2 on the commonsense reasoning tasks in Ta- 1068

ble 10. 1069

Hyperparameters LLaMA2-7B LLaMA3-8B

Rank r 16 32 16 32
α 32 64 32 64
Dropout 0.05
Optimizer AdamW
LR 2e-4 2e-4 1e-4 1e-4
LR Scheduler Linear
Batch size 16
Micro batch size 4
Warmup Steps Tw 4000
Prog. Pruning Steps Tp 4000
Refinement Steps Tr 34570
β1 0.85
β2 0.95
Epochs 1
Total Steps 34570
Where Q,K,V,Up,Down

Table 9: Hyperparameter configurations of G2R2 for
LLaMA2-7B and LLaMA3-8B on the commonsense
reasoning tasks.

A.7.2 Hyperparameters for NLU Tasks 1070

We have detailed the hyperparameters required for 1071

fine-tuning DeBERTa-V3 (He et al., 2021) using 1072

G2R2 on the GLUE benchmark in Table 10. For 1073

the GLUE benchmark, pf = 0.2 corresponds to 1074

0.15% trainable parameters, and pf = 0.7 corre- 1075

sponds to 0.51% trainable parameters. 1076

A.8 Hyperparameter for QA and NLG Tasks 1077

We have detailed the hyperparameters required for 1078

fine-tuning DeBERTa-V3 (He et al., 2021) using 1079

G2R2 on the QA dataset in Table 11, as well as the 1080

hyperparameters required for fine-tuning BART- 1081

large (Lewis et al., 2020) using G2R2 on the NLG 1082

dataset. 1083

14

Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear

Batch Size 8 8 16 16 16 16 16 16
Epochs 10 30 30 40 10 10 40 40
Learning Rate 1E-04 1.5E-04 2E-04 3E-04 2E-04 1.2E-04 4E-04 2E-04
LoRA Module Dim. 8
Max Seq. Len. 512
Initial Threshold 1.0
Warmup Epochs Tw 1 3 3 4 1 1 4 4
Prog.Pruning Epochs Tp 1 3 3 4 1 1 4 4
Refinement Epochs Tr 8 24 24 32 8 8 32 32
β1 0.85
β2 0.95

Table 10: The hyperparameters we used for fine-tuning DeBERTa-V3 with G2R2 on the GLUE benchmark.

Dataset SQuADv1.1 SQuADv2.0 XSum

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear

Batch Size 16 16 8
Epochs 15 15 20
Learning Rate 1.5E-04 1.5E-04 8E-5
LoRA Module Dim. 8
Max Seq. Len. 384
Initial Threshold 1.0
Warmup Epochs Tw 2 2 3
Prog.Pruning Epochs Tp 2 2 3
Refinement Epochs Tr 11 11 14
β1 0.85
β2 0.95

Table 11: The hyperparameters we used for fine-tuning
DeBERTa-V3 with G2R2 on the QA tasks and fine-
tuning BART-large with G2R2 on the NLG task.

15

	Introduction
	Related Work
	Method
	Low-Rank Adaptations
	Gradient-Based Redundancy Evaluation
	Three-Stage Redundancy Reduction Strategy
	Warmup Stage
	Progressive Pruning
	Fine-Tuning Refinement

	Memory Usage and Time Complexity Analysis

	Experiments
	Commonsense Reasoning
	Natural Language Understanding
	Efficiency Analysis
	Ablation Study

	Conclusion
	Limitations
	Appendix
	Sparsity Step Schedule
	GLUE Benchmark
	Question Answering
	Natural Language Generation
	Robustness of Different pf
	Visualization of Results.
	Experiments Hyperparameters
	Hyperparameters for Commonsense Reasoning Tasks
	Hyperparameters for NLU Tasks

	Hyperparameter for QA and NLG Tasks

