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Fig. 1: Illustration of the ground truth stress and deformation
of the tactile sensor across different grasping poses. The first
row shows the ground truth, while the second row presents
the prediction from the Graph Neural Network.

I. INTRODUCTION

Physical simulation plays a crucial role in the development
of robotic manipulation methods, and its importance is even
greater when dealing with visual tactile sensors in contact-
rich scenarios. Despite years of research, simulating such
sensors remains highly challenging—both in terms of the
underlying physical dynamics and the rendering of tactile
images. In this work, we focus exclusively on the physical
simulation aspect, leaving the rendering problem outside the
scope of our study.

Related work on visual tactile sensor simulation can be
broadly divided into two categories: (i) rigid-body simula-
tions and (ii) soft-body simulations. Rigid-body simulations
prioritize execution speed, making them suitable for scenar-
ios requiring large-scale data generation, such as reinforce-
ment learning [6], [1]. In contrast, soft-body approaches offer
greater realism by capturing shear forces and deformations
under contact with external objects [8]. However, they are
significantly more computationally expensive and orders of
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magnitude slower than rigid-body simulations.

This work addresses the speed limitations of soft-
body simulations by leveraging Graph Neural Networks
(GNNs) [4]. We explore the use of GNN models for
simulating grasping interactions with visual tactile sensors,
achieving performance gains between 10?2 and 103 times
faster than traditional FEM simulations, while predicting
both deformation and stress on the sensor. The code is
available at: https://tacgraspnets.github.io

The main contributions of this paper are:

o The first application of GNN-based physics learning to
visual tactile sensor simulation.

o A prediction framework capable of accelerating grasp-
ing simulations by a factor of 102103 compared to
FEM, while generalizing to unseen grasping poses.

II. DATASET GENERATION

For dataset generation (Fig. [2), we employ a Finite Ele-
ment Method (FEM) simulation in Isaac Gym [7], building
on Defgraspsim [5] but extending it to dynamic grasping
scenarios using TacGraspSim [2]. This framework simulates
parallel grippers with GelSight Mini tactile sensors with
URDF format.

The simulation procedure is: (1) load object, (2) load
gripper at grasping position, (3) close gripper until contact
and (4) gradually increase grasp force to threshold N while
recording data. We save 50 frames per run, capturing: (i)
node-wise deformations, (ii) rigid body poses, (iii) stress
distributions and (iv) finger gripper translations for training.

III. GRAPH NEURAL NETWORK METHOD (GNN)

In this work, we employ a Graph Neural Network (GNN)
as the central component for learning the interactions be-
tween a deformable gripper and a rigid object. This choice
is motivated by the demonstrated performance of GNNs
in learning physics-based simulations, as seen in works
like DefGraspNet [4] and the improved baseline used in
this study [3]. GNNs are particularly suitable as they nat-
urally model a mesh as a graph. Furthermore, their internal
message-passing procedure propagates information through
the graph in a manner analogous to Finite Element Method
(FEM) simulations.

The graph structure contains nodes for both gripper (tetra-
hedral mesh vertices) and object geometry. Two edge types
capture different interactions: mesh edges connect neighbor-
ing nodes within each structure, while contact edges connect
object-gripper nodes to model contact (Fig. [2).
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Fig. 2: Pipeline illustrating: (a) dataset creation using FEM simulation [7], [5], [2] across 10 different objects and 100
grasping poses per object, and (b) construction of the Graph Neural Network with node and edge descriptions to predict

stress and deformation outputs.

Fig. 3: Visualization of the 10 objects used in the dataset

Following an Encode-Process-Decode scheme, node fea-
tures encode geometric state, type, and motion cues. Edge
features contain geometric information (mesh edges) and
force signals (contact edges). Multiple message-passing
rounds propagate deformation and stress information through
the graph structure.

An ablation study compares two input configurations:
force-only inputs (predicting gripper finger translation and
deformation) and pre-specified translation inputs (predicting
deformation only), with the latter simplifying the learning
task.

IV. RESULTS AND ANALYSIS

We evaluate the proposed model through a series of
experiments of increasing complexity.

First, we train the model on individual objects to verify its
ability to generalize to unseen grasping poses of known ge-
ometry. Table [l demonstrates that providing translation input
significantly reduces prediction error, as this simplification
focuses learning on deformation dynamics without the need
of predicting translation. This configuration also facilitates
future sim-to-real transfer by aligning with real-world control
paradigms.

Next, we scale to multi-object generalization using 10
objects (Fig. B). The model is trained on 80% of grasping
poses per object and tested on the remaining 20%. Figure [I]
and Tab [lIf shows predictions closely matching ground truth
in the same range of single object training, demonstrating

Class Trans  Mean Def MAE  Mean Stress MAE
potato  True 6.57e-05 372.7
potato  False 2.92e-04 382.8
apple True 7.20e-05 370.5
apple False 2.97e-04 4279
lemon True 5.40e-05 212.1
lemon  False 2.38e-04 265.6

TABLE I: Single-object training results comparing models
with and without translation input. Bold indicates superior
performance.

the GNN’s ability to generalize across objects with accuracy
comparable. Additionally, similarly to single-object training,
providing translation input reduces prediction error.

Class Trans  Mean Def MAE  Mean Stress MAE
Average  True 6.30e-05 360.3
False 2.69e-04 420.2

TABLE II: Multi-object training results averaged across all
objects.

V. LIMITATIONS AND FUTURE WORK

Two primary limitations are noted. First, the GNN’s gen-
eralization to novel objects and tactile sensor configurations
requires further evaluation. Expanding the model’s scope to
diverse geometries and sensor types would improve real-
world applicability. Second, the current implementation ne-
glects gravitational effects, which may affect force distribu-
tion predictions in dynamic scenarios.

VI. CONCLUSIONS

This work demonstrates that GNNs provide an efficient
alternative to FEM simulations for deformable tactile sensor
prediction. Our framework accurately models gripper-object
interactions, predicting both deformations and stress distribu-
tions while achieving 102~10%x speedup, enabling real-time
performance. This fast, accurate model facilitates advanced
grasp planning, tactile-based closed-loop control, and large-
scale data generation for robotic manipulation.
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