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Fig. 1: Illustration of the ground truth stress and deformation
of the tactile sensor across different non-grasping poses.
The first row shows the ground truth, while the second row
presents the prediction from the Graph Neural Network.

I. INTRODUCTION

Physical simulation plays a crucial role in the development
of robotic manipulation methods, and its importance is even
greater when dealing with visual tactile sensors in contact-
rich scenarios. Despite years of research, simulating such
sensors remains highly challenging—both in terms of the
underlying physical dynamics and the rendering of tactile
images. In this work, we focus exclusively on the physical
simulation aspect, leaving the rendering problem outside the
scope of our study.

Related work on visual tactile sensor simulation can be
broadly divided into two categories: (i) rigid-body simula-
tions and (ii) soft-body simulations. Soft-body approaches
offer higher realism by capturing shear forces and de-
formations under contact with external objects. However,
they are significantly more computationally expensive and
orders of magnitude slower than rigid-body simulations. In
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contrast, rigid-body simulations prioritize execution speed,
making them suitable for scenarios requiring large-scale data
generation, such as reinforcement learning.

This work addresses the speed limitations of soft-body
simulations by leveraging Graph Neural Networks (GNNs),
which have been successfully applied to learning the physics
of deformable objects [2]. We explore the use of GNN
models for simulating grasping interactions with visual tac-
tile sensors, achieving performance gains between 102 and
104 times faster than traditional FEM simulations, while
predicting both deformation and stress on the sensor.

The main contributions of this paper are:
• The first application of GNN-based physics learning to

visual tactile sensor simulation.
• A simulation framework capable of accelerating grasp-

ing simulations by a factor of 102–103 compared to
FEM, while generalizing to unseen grasping poses.

II. DATASET GENERATION

For dataset generation2, we employ a Finite Element
Method (FEM) simulation within Isaac Gym [4], which has
been shown to offer an effective trade-off between simula-
tion speed and quality [5]. While prior work has proposed
FEM-based simulations [5] for visual tactile sensors pressed
against indenters, these approaches primarily focus on static
object–sensor interactions. In contrast, we adopt Tacgrsp-
Sim [1], which enables the loading of predefined grasping
poses for a given object and simulates parallel grasping
scenarios involving rigid objects and deformable tactile sen-
sors. The simulation uses a parallel gripper equipped with
two visual tactile sensors—specifically, the GelSight Mini,
one of the most widely used and commercially available
sensors—facilitating reproducibility. It is worth noting that
both the dataset generation pipeline and the subsequent GNN
framework are compatible with arbitrary tactile sensors,
provided that their meshes are available and can be converted
into tetrahedral .tet files.

The simulation process follows a consistent procedure:
(1) load the rigid object, (2) position the gripper at a
specified grasping pose, (3) close the gripper until contact
is detected, and (4) gradually increase the grasping force
applied to the object until a target force N is reached.
Data is recorded during phase 4. The simulation terminates
once the predefined force threshold N is achieved. During
each run, we save 50 simulation frames corresponding to
progressively increasing grasping forces. For each frame, the
simulator records (i) the node-by-node deformation of the



Fig. 2: Pipeline illustrating: (a) dataset creation using FEM simulation [4], [3], [1] across 10 different objects and 100
grasping poses per object, and (b) construction of the Graph Neural Network with node and edge descriptions to predict
stress and deformation outputs.

Fig. 3: The 10 objects used in the dataset

soft components, (ii) the rigid body pose, and (iii) the stress
distribution within the soft body.

For the FEM parameters, we use pre-calibrated values
of Poisson’s ratio and Young’s modulus for the GelSight
Mini [5], in order to minimize the sim-to-real gap in de-
formation and stress patterns during grasping. The dataset
used for GNN training is based on the DefGraspNet data [2],
containing 10 objects, each with 100 grasping poses.

III. GNN

In this work, we employ a Graph Neural Network (GNN)
as the central component for learning the interaction between
a deformable gripper and a rigid object. Each node represents
either a vertex of the deformable gripper (interior or surface
of the tetrahedral mesh) or a vertex of the rigid object,
while two relation types are modelled: mesh edges that
connect neighbouring nodes within each structure to cap-
ture local geometric/mechanical dependencies, and contact
edges that connect nearby object–gripper nodes to model
contact as it can described in Fig 2. The network follows
an Encode–Process–Decode design. Node features combine
a compact geometric state, a node-type indicator, and a
directional cue for expected finger motion (zero on object
nodes, constant per finger on gripper nodes). Edge features
are purely geometric on mesh edges (relative offsets and
distances), and, on world edges, they additionally carry a
scalar force signal associated with the applied grasp. During
processing, several rounds of message passing compute edge-

based messages from sender/receiver states and edge features
and aggregate them at target nodes, allowing the model to ap-
proximate the propagation of deformation and stress through
the deformable structure and across the contact interface.
The decoder then outputs a 3D displacement field for the
gripper nodes—added to a fixed reference state—and a non-
negative stress field. The rigid object is treated distinctly:
its nodes are not deformed and remain aligned with known
rigid-body poses, ensuring that learning capacity is devoted
to the gripper’s non-linear behavior under contact. Training
uses supervision from physics-based simulation, minimizing
a normalized mean-squared error between predicted and
ground-truth node displacements, combined with an error
term on the stress field, promoting consistency between
predicted kinematics and internal mechanics. Overall, the
GNN provides a compact, expressive representation of de-
formable grasping, enabling accurate prediction of localized
deformations and stress distributions that are essential for
robust grasp planning and downstream control.

IV. RESULTS AND ANALYSIS

To evaluate the proposed model, we conducted a series
of experiments progressing from the simplest to the most
challenging scenarios.

First, we trained the model on a single object (out of a set
of eight) to verify its ability to accurately predict deformation
and stress for unseen grasping poses of the same object. This
step served as a proof of concept to confirm that the model
can generalize to new grasp configurations when the object
geometry remains constant.

Next, we performed a large-scale experiment on 10
objects3 to investigate the model’s performance in a more
challenging, data-limited regime. In this case, the goal was to
evaluate the model’s ability to predict deformation and stress
for completely unseen grasping poses, even when trained on
an early-generation dataset of limited size. The training data
consisted of 80% of the grasping poses for each object, with
the remaining 20% used for testing. Figure 1 shows that
the predictions closely follow the ground truth with high
accuracy.



V. LIMITATIONS AND FUTURE WORK

This study presents two primary limitations that open
avenues for future research. First, the generalization capa-
bility of the Graph Neural Network (GNN) remains to be
thoroughly evaluated on novel objects and across different
tactile sensor configurations. Extending the model to handle a
broader range of geometries and sensor modalities would en-
hance its robustness and applicability in real-world scenarios.
Second, the current GNN implementation does not account
for gravitational effects, which can lead to inaccuracies in
predicting force distribution across the tactile sensor.

VI. CONCLUSIONS

This work explores a promising approach using Graph
Neural Networks (GNNs) to replace computationally expen-
sive Finite Element Method (FEM) simulations, achieving
speed improvements of over 1000×.
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