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ABSTRACT

In this work, we investigate the causal reasoning abilities of large language mod-
els (LLMs) through the representative problem of inferring causal relationships
from narratives. We find that even state of the art language models rely heavily on
unreliable shortcuts, both in terms of the narrative presentation and their paramet-
ric knowledge. For example, LLMs tend to determine causal relationships based
on the topological ordering of events (i.e., earlier events cause later ones), result-
ing in lower performance whenever events are not narrated in their exact causal
order. Similarly, we demonstrate that LLMs struggle with long-term causal rea-
soning — they often fail when the narratives are longer and contain many events.
As an additional failure mode, we show LLMs appear to heavily rely on their
parametric knowledge at the expense of reasoning over the provided narrative.
This degrades their abilities whenever the narrative opposes parametric knowl-
edge. We extensively validate these failure modes through carefully controlled
synthetic experiments, as well as evaluations on real-world narratives. Finally, we
observe that explicitly generating a causal graph generally improves performance
while naive chain-of-thought is ineffective. Collectively, our results distill precise
failure modes of current state-of-the art models and can pave the way for future
techniques to enhance causal reasoning in LLMs.

1 INTRODUCTION

Causal reasoning is a core component of intelligence and decision-making, enabling an agent to
move beyond associations (i.e., events that are observed to occur together) to determine the con-
sequences of their actions (i.e., interventions) and answering what-if questions (counterfactuals).
Causal models have been widely studied in machine learning and artificial intelligence (Peters et al.,
2017; [Pearl, 2009) as well as in the context of human cognition (Waldmann, |2017). The advent of
Large Language Models (LLMs) has led to opportunities for leveraging large-scale textual data for
improving causal inference (Liu et al.| [2024; |Zhang et al.| [2023).

While many works have shown that LLMs are capable of memorizing and recalling causal knowl-
edge, they can fail at reliably leveraging that knowledge for reasoning (Jin et al., 2023} [Zecevic et al.,
2023). For example, when reading a news article or a story, understanding why a particular event
occurred requires reasoning over the causal structure of the events implied by the given narrative.
Similarly, determining which events in the narrative will be affected by certain actions requires rea-
soning about which events are causally downstream of that action. In such cases, simply recalling
parametric causal knowledge (that some event typically causes another event) may not suffice as the
agent must leverage the causal structure inherent to the specific narrative at hand.

In this work, we aim to understand the causal reasoning abilities of LLMs from textual narra-
tives. We consider settings where there is an (unknown) underlying causal chain graph of the form
Vi — Vo — ... — Vy, where each node V; has some semantic meaning (e.g., smoking), that is
verbalized in the form of a (realistic) narrative S. For a given narrative .S, we consider two kinds
of causal reasoning tasks: (1) Does V; have a causal effect on V;? and (2) Given the node iden-
tities (V1,...Vy), construct a causal chain graph faithful to the narrative. While these tasks do
not encompass all aspects of causal reasoning (e.g., counterfactual reasoning), they are important
primitives for successful causal reasoning.
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Our primary contribution is to shed light on the limitations and unreliable shortcuts that LLMs use
for these two causal reasoning tasks. We focus on the following failure modes. Firstly, we show that
LLMs heavily rely on the order in which the causal relationships are verbalized in the narrative. We
observe that when the narrative is constructed in the reverse topological order of the causal chain
(i.e., edge V; — V;4; is narrated before V;_; — V;), the performance of the LLM suffers as it
often assigns the cause to an earlier event and the effect to a later event in the narrative. Secondly,
we show that LLMs use their parametric causal knowledge (i.e., if an event typically causes another
event) as a shortcut to answer causal questions. Thus, when the cause-and-effect pairs implied
by the narrative conflict with the parametric knowledge, the LLM often ignores the specifics of
the narrative and defaults to its parametric knowledge. This occurs even when the narratives are
written to explicitly disagree with parametric knowledge and the LLM is prompted to ignore outside
information. Thirdly, we find that LLMs fail more often as the narratives become longer.

Perhaps surprisingly, we also find that the LLM’s answers to cause-and-effect queries, including
with Chain of Thought (CoT) (Wei et al.,|2022)) and In-Context Learning, do not have a high degree
of consistency with the causal graph that the LLM extracts from the narrative. On the other hand,
we observe that just using the extracted graph to make decisions often seems to alleviate the above
failure modes. This finding is notable as it suggests that the specific formatting of the causal graph
extraction task can more reliably elicit the language model’s causal reasoning capabilities relative to
the baseline of CoT prompting.

We first validate our findings through a series of carefully controlled experiments with synthetic
causal events and narratives (Sec.[3). We use the LLM to generate a causal chain of events that form
the ground truth causal graph. We then prompt the LLM to generate a narrative-based on that causal
graph. Next, we conduct experiments on narratives generated from real-world causal chain graphs
(Sec. E]) extracted from CauseNet (Heindorf et al.| |2020), a dataset of (claimed) causal relationships
between real-world concepts. We generate narratives for these chain graphs using the LLM as well
as from sentences in CauseNet, ensuring that the narrative as a whole remains coherent.

Leveraging the LLM to verbalize causal relationships leads to more natural-sounding narratives
(which is difficult with formulaic templates). Depending on the specific causal relationship, causal-
ity might be indicated using a phrase like ‘causes’, ‘leads to’, ‘resulted in’, etc. We focus on simple
chain graphs to isolate the simplest cases of the failure modes, demonstrating that the LLMs take
unreliable shortcuts on these simple graphs, both when the narratives are generated by the LLM
itself as well as narratives with real-world sentences.

Taken together, our work makes the following contributions:

1. We demonstrate that even state-of-the-art large language models are unreliable at extracting
causal relationships from realistic narratives expressing simple chain graphs.

2. Focusing on two key aspects of causal reasoning, we distill concrete failure modes to ac-
count for this unreliability: reliance on positional shortcuts, parametric knowledge, and
narrative length.

3. We investigate the impact of various prompting strategies on reasoning ability, finding that
incorporating the estimated causal graph structure is most helpful.

2 RELATED WORKS

Reasoning in Large Language Models Recently, there has been significant interest in evaluating
and improving the reasoning capabilities of large language models. Prior works have examined
reasoning in diverse settings including mathematics (Cobbe et al., 2021} |Hendrycks et al.| 2021},
social interactions (Sap et al., [2019),and common-sense tasks (Zellers et al., 2019). Through this
extensive investigation, large language models have demonstrated unreliable reasoning capabilities,
often failing unexpectedly on relatively straightforward queries (Wan et al.| 2024} |[Nezhurina et al.,
2024). Extensive prior work has also studied methods for improving the reasoning capabilities of
large language models such as by eliciting step-by-step explanations (Wei et al.| [2023)), finetuning
on reasoning traces (Zelikman et al., 2022)), and training models to find and correct errors (Kumar
et al.| [2024). In this work, we perform a comprehensive study of the causal reasoning capabilities of
large-language models, identifying the existence of key failure modes in state-of-the-art models.
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Figure 1: Summary of Synthetic Experiment Setup

Causal Reasoning in Large Language Models Prior works have also examined the causal ca-
pabilities of large-language models. [Jin et al.|(2023) develops a benchmark for testing the causal
reasoning in LLMs given causal graphs, finding that language models can struggle with the task.
However, the settings examined in Jin et al.| (2023) require computations based on probabilities
which is known to be challenging for LLMs. |Zecevi€ et al.[(2023)) hypothesizes that large language
model may only be “imitating” causal reasoning abilities from their pretraining corpus. Their work
additionally investigates what they call “natural word chains,” or how well the LLM is able to accu-
rately identify causation of events when they are linked together in chain graphs. Our paper builds
on this by performing various tests on narratives that correspond to graphs. Kiciman et al.|(2024)
shows that LLMs have strong abilities to generate causal texts. We make use of this generation for
narrative creation in our synthetic experiments. [Tan et al.| (2022) shows the capability of a neural
network trained on news data to label causal structures in individual sentences.

Parametric Knowledge Conflicts Large language models have been shown to memorize factual
knowledge present in their pretraining corpora, resulting in parametric knowledge (Petroni et al.|
2019; Jiang et al.l 2020). Prior works, however, have observed that language models can often
fail to use information provided in their context as a result of such memorized knowledge (Krishna
et al., 2021 |Longpre et al.,|2022). This has been identified as a significant hurdle in the reliability of
summarization and retrieval augmented-based systems (Rehman et al.l 2023} Jin et al.| 2024). Xie
et al.|(2024) finds that the coherence of provided context can control the extent to which parametric
knowledge is over-utilized. In this work, we examine the distinct setting of causal reasoning and
demonstrate that it can also be harmed by over-reliance on parametric knowledge.

3  EXPERIMENTS WITH SYNTHETIC DATA

3.1 DATA GENERATION PROCESS

In our synthetic experiments, we use two leading LLMs: OpenAI’s GPT-4 (OpenAl et al.|[2024) and
Anthropic’s Claude 3.5 Sonnet (Anthropic|[2024). The purpose of our synthetic setup is to carefully
control the conditions under which the LLMs are tested. In terms of the general setup of our fully
synthetic experiments, as we summarize in Figure[T] we first use the LLM to generate events (which
are real world phenomena like rain or plants growing). Then these events are linked together into
a chain graph G that acts as the causal ground truth. The LLM is given G and asked to create a
narrative that stays faithful to the causal relationships in G.

Providing only the narrative as input (and not ), we then ask the LLM to find G’, the prediction
of the underlying causal structure expressed by the narrative. Next, a series of causal questions is
created by randomly sampling 10 tuples of events from G and asking the LLM whether an event
in the tuple causes the other based on the narrative and/or G'. We also explore many mediums of
prompting including Chain of Thought (COT) ((Wei et al.| 2023))) and In-Context Learning ((Dong
et al.|[2024)) (prompts are in Appendix [A]and the supplement).

3.2 RELIANCE ON TOPOLOGICAL ORDERING

Our experiments show that LLMs rely on the ordering in which the events are verbalized in a narra-
tive when determining causal relationships. To investigate this, we started with randomly generated
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Figure 2: GPT-4 Test of the LLM’s ability to reason on narratives written in the Forward and Reverse
topological orientations. Chain size is the number of nodes in G. Forward/Reverse Chain - COT,
Forward/Reverse Mean -simple prompting strategy, Forward/Reverse Graph Mean - using only G’,
Forward/Reverse Graph/Narr Mean - prompting the LLM to consider both the narrative and G’,
Forward/Reverse Context Mean - In-Context Learning. Accuracy measures LLM answer agreement
with G, consistency measures agreement with G’. Shaded zone around lines is 95 % CI

events that were used to make a ground truth graph G. During the creation of the narrative, we
specified that the LLM either place the events in (1) the order that matches the topological causal
ordering of the graph (e.g., if event A causes B, then event A is mentioned before B in the narra-
tive), or (2) a way that runs opposite to the causal ordering (event B would be mentioned before
event A in the narrative even though A causes B). We refer to these as the Forward and a Reverse
topological ordering, respectively. Upon inspection of the generated narratives, human evaluators
(paper authors who were blinded to the causal graph) were able to properly extract the ground truth
causal graph (94% of the time out of 50 randomly sampled narratives). As an example, the following
is a GPT-4 generated Reverse topological narrative for the causal chain Film festival — Food truck
rally — Trampoline park party:

In a trampoline park party, guests bounced and laughed under the neon lights.
The high-flying event was made possible by the success of the food truck rally
that took place earlier in the day. Food trucks lined the streets, offering a variety
of delicious treats that fueled the fun and energy of the park party attendees. The
film festival set the stage for the rest of the events, creating a desire for cultural
experiences and community gatherings that ultimately led to the trampoline park

party.

Each edge in the narrative is verbalized in the opposite order to its place in the causal chain. All
narratives can be found within the attached code and files.

As can be seen in Figure [2] (left), in the Forward direction a simple question prompting strategy
asking causal questions (line labeled Forward Mean), naive CoT prompting (line labeled Forward-
Chain Mean) where we ask the LLM to think step-by-step, and an In-Context Learning prompt (line
labeled Forward-Context Mean) where we provide example narratives and causal answering all per-
form fairly well. This is in contrast to the Reverse orientation when we look at the performance
of the simple prompt (line labeled Reverse Mean), naive CoT prompt (line labeled Reverse-Chain
Mean), and In-Context Learning prompt (line labeled Reverse-Context Mean). From this plot, we
can note that naive COT prompting and In-Context Learning prompts do not seem to boost accuracy
under our conditions. Perhaps more interestingly, we find that the way the LLM answers questions
using the narratives is not consistent with the causal graph G’ that the LLM builds when asked to
predict the underlying graph structure (see consistency plot in bottom of Figure 2} where consis-
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those of Figure 2] Example illustration of how the G, the ground truth causality, is set up. Shaded
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tency measures agreement between the answers of the LLM and G’). Additionally, the trend of
those prompting strategies on the consistency plot for the Forward orientation narratives (compar-
ing performance to G’) mirrored their trend on the accuracy plot which compares performance to
ground truth G (left side).

This lead us to try using only G’ to answer causal questions and we found that it did significantly
better in the Forward direction than the other prompting strategies (line labeled Forward Graph
Mean), while doing no better in the Reverse direction (line labeled Reverse Graph Mean). In this
case, once G’ is extracted by the LLM it is not given to the LLM again to answer questions (but
rather used directly).

When prompted to use the narrative and G’ (the LLM is given G’ in this case in the prompt) to
answer questions for Forward direction narratives, the accuracy again increases. This technique
could be thought of as a type of CoT prompting strategy. In the Claude 3.5 Sonnet[d] The LLM also
does far better with the Forward topological ordering than it does for the Reverse ordering. For the
Forward ordering, the best performance again comes from using the extracted graph in concert with
the narrative in the prompt.

3.3 PARAMETRIC KNOWLEDGE CONFLICT

We also find that LLMs tend to rely on parametric knowledge when it is present, and can fail when
narratives run counter to their parametric knowledge. To test this, instead of picking random events,
we have to draw out the LL.M’s pre-existing parametric knowledge. To do so, we prompt the LLM
to pick a series of events such that each event has some relation to the subsequent event—either the
event is Causal to the next event (e.g., disease causes shorter lives) or the event is Anti-Causal (e.g.,
disease causes longer lives). Let’s call this graph of parametric knowledge P. We then take the
odd indexed events (1st, 3rd etc) from P and place them in the first half of the causal ground truth
graph G and the even indexed events (2nd, 4th etc) from P in the second half of G. As we can see
in the example illustration in Figure [3] each node in the first half of the causal graph G now has a
parametric relation to a specific node in the second half of GG. For example we might know that node
1 is Anti-Causal to node 2 from parametric knowledge. Thus when we make the causal ground truth
graph (1 — 3 — 2), create a narrative from it, and then ask the LLM if node 1 causes 2 based on
the narrative, it should say yes even though that disagrees with its parametric knowledge. After the
ground truth graph is created, we generate the narrative in the Forward topological orientation to
avoid confounding failure modes.

We find that, in synthetic experiments, this kind of occurrence is generally rare and the LLM finds
the correct causal relation generally only when that relation agrees with its parametric knowledge.
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Figure 4: Claude 3.5 Sonnet Experiments: Left side plot mirrors the left side plot of Fig.[2|and the
right side mirrors the plot in Fig. [3] Descriptions of prompt strategies match the before-mentioned
figures.

This is exemplified in the plot in Figure 3] where we observe that when certain pairs of events are
Causal in the parametric knowledge, the LLM also generally finds that the pairs of events in question
are Causal given the narrative. However, when the pairs of events are Anti-Causal (like nodes 1 and
2 in our previous example), even though the LLM should find them to be Causal given the narrative
it generally does not. For the Causal parametric knowledge case, prompting with just the extracted
graph G’ is usually slightly better at most chain sizes than solely using the narrative (in simple
prompts, COT or In-Context Learning), and this is only improved in most instances when using the
narrative and extracted graph in the prompt.

We also notice an interesting phenomenon for the Anti-Causal parametric case where although us-
ing the extracted graph and narrative is better than any prompting strategy with just the narrative,
using just the extracted graph provides massive improvements over all of these modalities and is
comparable in performance to when the parametric knowledge is Causal. As an even more stark
finding, the extracted graph for the Claude 3.5 Sonnet experiment in the right side of | has near per-
fect performance for the Anti-Causal case. It seems the narrative may only serve to distract the LLM
when parametric knowledge disagrees with the narrative. When the narrative is provided, the LLM
will often say things (in its COT explanation) like “Although this relationship is displayed in the
chain of events in the narrative, it is not logical and counter-intuitive” and answer incorrectly. This
happens despite explicit instruction to ignore outside information, allow for ill-logical relationships,
and answer solely based on the hypothetical narrative.

3.4 FAILURE OF LONG-TERM CAUSAL REASONING

The performance of LLMs tends to decay as the size of the narrative and the number of events in
the narrative increases. As we can see in Figures [2]and [3] generally all prompts that solely rely on
the narrative without the extracted graph to answer causal questions have a performance that decays
with the number of events in the narrative (chain size). The exception to this occurs in the Reverse
topological orientation in [2] as the accuracy is psuedo-random at all chain sizes. This finding is
supported by the well known phenomenon that LLMs often fail to reason about longer form contexts
especially as they “get lost in the middle.” (Liu et al.,|2023)). What perhaps is a surprising result that
is the extracted graph tends to maintain a consistent level of accuracy for causal answering across
narrative sizes even when only using the narrative in the prompt leads to severe dips in accuracy.
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4 EXPERIMENTS WITH REAL WORLD CAUSAL GRAPHS

In this section, we test our methods on narratives constructed using real-world causal graphs from
CauseNet (Heindorf et al., [2020), a large-scale knowledge graph of (claimed) causal relationships
between real-world concepts. We use GPT-4o (OpenAl et al., |2024) for our experiments.

4.1 GENERATING THE NARRATIVES

The CauseNet dataset can be represented as a collection of D tuples {(C;, E;, S;}2,, where C;
denotes the cause (e.g., smoking), E; denotes the effect (e.g., disability), and S; is a set of sentences
(extracted from Wikipedia and ClueWeb12 (Callan, [2012)) that entail a causal relationship from C;
to F;. We retrieve causal chain graphs V; — Vo — ... — Vi of various lengths, where each causal
relation V; — V;1 is from CauseNet. Below, we describe the strategy for generating narratives for
a given chain graph (see Appendix [B.T|for the prompt templates).

Semi-synthetic narratives. Each chain graph is verbalized into a narrative by prompting the LLM
to generate a sentence one edge at time such that the sentence for V; — V1 logically follows the
sentence for the previously verbalized edge. This ensures that the narrative as a whole is sensible.
We generate the narratives by enumerating the edges in the topological order of the graph and in the
reverse order. We call this semi-synthetic because the nodes in the graph represent real-world causal
relationships but the narratives are synthetic. For example, the following is the generated narrative
in the forward direction for the causal chain fatigue — accidents — injury:

Fatigue can cloud judgment and slow reaction times, leading to an increase in
accidents on the road. As a result, these accidents often lead to serious injury
for those involved, highlighting the dangerous consequences of driving while fa-
tigued.

Real-world narratives. For the real-world narratives, the sentence for each edge is chosen from
the CauseNet dataset. To ensure that constructed narratives remain coherent, we prompt the LLM to
ensure that the sentences for every pair of adjacent edges logically follow each other. For example,
the following is the generated narrative for the causal chain fatigue — accidents — injury:

Workers work long hours in mines and factories where fatigue and a lack of con-
centration can easily cause accidents. These accidents are the leading cause of
injury in this country for people ages 1-34.

Additional examples of semi-synthetic and real-world narratives are presented in Appendix [B.2](the
entire set of narratives used for our experiments is attached in the supplement).

4.2 EFFECT OF NARRATIVE TOPOLOGICAL ORDERING AND CHAIN LENGTH

As described in the previous section, we verbalize each causal chain graph Vi — Vo — ... — Vi
from CauseNet into a narrative in the forward and reverse topological order. We give the narrative
as input to the LLM and evaluate its causal reasoning abilities using the following prompting strate-
gies (see Appendix for the prompt templates): (1) (Direct prompting) For every pair of nodes
(V4,V;), we ask does V; have a direct or indirect causal effect on V;; (2) (CoT prompting) Same as
(1), but we now use CoT and ask the LLM to think step-by-step; and (3) (Graph Extraction) Gen-
erate a causal chain graph for the narrative given the node identities (V;, V5, ..., Vy) in a random
order.

We evaluate the accuracy for each pair of nodes (V;, V;) for the three prompting strategies on the
semi-synthetic and real-world narratives (see Fig.[5). We denote the Direct prompting strategy (1)
using the labels Forward and Reverse; the CoT prompting strategy (2) using the labels Forward_COT
and Reverse_COT; and the accuracy using the extracted graph from strategy (3) using the labels
Forward_Graph and Reverse_Graph.

In both the semi-synthetic (Fig.[5a)) and real-world narratives (Fig.[5b), the Forward_Graph strategy
performs the best, with its accuracy remaining stable even as the chain length increases. By con-
trast, Reverse_Graph has relatively lower accuracy, with the accuracy declining as the chain length
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Figure 5: The accuracy of various prompting strategies (error bars denote 95% ClIs). We observe
that the accuracy is lower in the reverse direction (and tends to decay as the chains get longer).

Forward (w CoT) Reverse (w CoT) Forward Graph Reverse Graph

Semi-synthetic

Without Conflict 97.86 (97.94) 95.85 (96.47) 98.54 87.99

With Conflict 65.47 (80.54) 45.63 (67.83) 97.70 84.32
Real-world

Without Conflict 95.54 (96.06) 92.38 (91.63) 87.74 57.93

With Conflict 48.03 (59.57) 27.40 (49.43) 85.67 53.09

Table 1: The average accuracy across different narratives with the three prompting strategies par-
titioned by whether the cause-effect pairs conflict with the LLM’s parametric knowledge (we omit
the 95% CIs as they are smaller than 0.3). The accuracy (with and without CoT) is substantially
lower when knowledge conflicts exist, suggesting that LLM relies on this knowledge rather than the
narrative. By contrast, the graph extraction is more robust to knowledge conflicts.

increases (this effect is particularly significant in the real-world narratives). We also observe that
Forward(_COT) outperforms Reverse(_COT), with the Reverse(_COT) accuracy declining substan-
tially as the chain size gets large. Additionally, unlike the forward direction, the graph extraction
does not improve accuracy substantially over the Direct and CoT-based prompting strategies. Alto-
gether, these results demonstrate that LLM’s ability to extract the causal graph as well as determine
causality between two nodes declines when the narrative is verbalized in the reverse order, with the
impact of the increasing chain lengths being particularly pronounced in the reverse direction.

4.3 EFFECT OF PARAMETRIC KNOWLEDGE CONFLICTS.

Next, we analyze the extent to which the LLM relies on its parametric knowledge to answer the
causal query as opposed to the specific causal effects expressed in the narrative. For every pair of
nodes (V;, V) in the chain graphs, we extract the parametric knowledge of the LLM by prompting
the LLM to answer “Does V; typically have a causal effect on V;?”. This parametric knowledge
represents some average case notion of causality that is learned by the LLM from the pretraining
corpora.

Successful causal reasoning often requires going beyond the parametric causal knowledge as it can
differ from the causality between events in the context of the narrative at hand. For example, in a
chain graph from the our dataset, there is a causal path from streambank erosion to higher prices,
but this contradicts the LLM’s parametric knowledge since this causal effect may not typically exist
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Figure 6: Results on the subset of cause-and-effect pairs that conflict with the LLM’s parametric
causal knowledge. We observe that while the graph extraction is robust to conflicts, the Direct and
CoT prompting strategies suffer significantly (particularly in the reverse direction), indicating that
the LLM returns its parametric knowledge instead of paying attention to the narrative.

in the real-world. In the chain graphs we evaluate, roughly 39% of cause-and-effect pairs conflict
with the LLM’s parametric knowledge.

We evaluate the three prompting strategies separately on the subsets of cause-and-effect pairs that
are in agreement and in conflict with the parametric knowledge (see Table [I). We observe that
when there is no conflict (i.e., the parametric knowledge agrees with the causality expressed in the
narrative), the accuracies in both the Forward and Reverse directions (with and without CoT) are
greater than 90%. However, when the parametric knowledge conflicts with the narrative’s causality,
the accuracy of Forward and Reverse (even with CoT) is significantly lower: even with CoT, the
LLM has below-random accuracy in the reverse direction. This suggests that when asked to reason
about cause and effect in a narrative, the LLM seems to rely heavily on its parametric knowledge
and is unable to grasp the specific causal chains expressed in the narrative itself (despite the causal
chains as a whole being realistic).

Interestingly, when using extracted graph for performing causal reasoning (Forward Graph and
Reverse Graph), the performance in both cases seems to be comparable. This is likely because
when asked to extract the graph from the narrative with the given set of nodes, the LLM pays
more attention to the entire narrative as opposed to when directly queried on a cause-and-effect
pair (where the LLM defaults to its parametric knowledge). These results show that even when the
LLM constructs a reasonably good causal chain graph in the Forward direction, the LLM does not
leverage this graph when queried directly about the causal effects in the narrative (even with CoT),
further highlighting the advantage of extracting the causal graph directly.

Finally, we also observe that the accuracy of Forward and Reverse prompting strategies in Fig. [3]
were largely driven by the parametric knowledge. To disentangle this effect, we evaluate the three
prompting strategies across different chain lengths only on the subset of cause-and-effect pairs where
a knowledge conflict exists (see Fig.[6). We observe that the accuracy of all prompting strategies,
except Forward_Graph and Reverse_Graph, decline substantially relative to Fig. 5| with Reverse
falling well below the random baseline of 50% as the chain length gets larger. In the real-world
narratives (Fig. [6b), even with CoT, the accuracy does not improve over the random baseline of
50% in the reverse direction, demonstrating that the LLM ignores the causal chain in the narrative.
Qualitatively, we observe that in the case of knowledge conflicts, the CoT explanation justifies the
incorrect (according to the narrative) causal relationship by injecting its parametric knowledge into
the chain-of-thought. Additionally, we also evaluate the three prompting strategies on the subset of
cause-and-effect pairs in agreement with parametric knowledge (see Appendix [B.4), showing high
accuracy of the Direct and CoT-based prompting strategies on this subset.
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5 DISCUSSION

Our work takes some initial strides towards examining the reasons behind the success and failure
of LLMs to reason causally on narratives that express a chain of causal events. We focus on two
questions of key importance in causality: (1) Does one event cause another? and (2) Can the LLM
extract the causal graph from the narrative.

We find three significant failure modes of LLM reasoning by conducting experiments in carefully
controlled synthetic, semi-synthetic and real-world settings:

1. Topological Ordering: LLMs tend to perform well when the ordering of events in the nar-
ratives matches that of the ordering of the underlying graph. For example if B is mentioned
first in the narrative and then A, then the LLM would would expect B — A evenif A — B
is the truly underlying causal graph. As such, performance breaks down when the ordering
of events in the narratives does not match that of the underlying graph.

2. Parametric Knowledge: LLMs rely on their parametric pre-training knowledge as a shortcut
to infer causal relations. When the narrative suggests one causal relation (e.g., A — B) and
the parametric knowledge suggests another (B — A), the LLM will often answer using its
parametric knowledge, ignoring the narrative.

3. Narrative Size: LLM accuracy degrades as the chain length increasing, resulting in poor
reasoning on longer narratives.

We also find that asking the LLM to extract what it predicts to be the underlying graph from the
narrative, and using just that extracted graph or the extracted graph in concert with the narrative to
answer can lead to mitigation of these failure modes.

Our work builds upon past work that examines causal reasoning in LLMs. Various works includ-
ing Jin et al. (2023) suggest that LLMs may have difficulty performing causal reasoning in tasks
involving numerical probabilistic computations. Previous work by Zecevic et al.|(2023)) conjectured
that LLMs simply imitate causal relations from their training data. Our work aims to assess the
more colloquial kind of causal reasoning from textual narratives (not just on individual sentences)
that is required to understand why certain events occurred and how they would impacted by certain
interventions. Like previous works, we find a strong reliance on pre-training knowledge. However,
we also suggest a way to mitigate this by using the LLM to extract the entire causal graph from the
narrative at once. When doing this, the graph remains generally accurate even in the presence of
conflicts with parametric pre-training knowledge.

5.1 LIMITATIONS AND FUTURE WORKS

One limitation of our work is that there are other forms of causal reasoning that we did not test for
in the narratives. This motivates many potential directions for future work. For example, it could be
interesting to ask the LLM to reason about counterfactual cases. Another limitation of our work is
that we only deal with chain graphs. An interesting direction for future work would be to generate
narratives from complex graph structures. This could potentially yield novel failure modes and
insights into how LLMs reason. Another limitation of our work is the amount of insight we provide
behind the phenomenon we observe. When we notice the graphs doing better than the prompts that
only use the narrative itself, one conjecture is that this is because the LLM is looking at the entire
narrative and reasoning about it to make the extracted graph—however we don’t formally prove this.
Future work could theoretically or empirically examine explanations for such LLM behavior and
others noted in the paper.

Our analysis also has implications for algorithmic interventions to improve causal reasoning. The
failure modes we identify in this paper could inform the design of targeted synthetic tasks to use in
finetuning for improved causal reasoning. Additionally, our findings on the benefits of extracting a
causal graph can inform prompt engineering efforts to elicit reliable causal reasoning from language
models. We believe investigating both directions represents an exciting direction for future works.
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6 REPRODUCIBILITY STATEMENT

Our experimental methodology primarily relies on prompting API-based large language models
(in particular OpenAl GPT-4 and Anthropic Claude). We provide select sample prompts for each
experiment in the corresponding Appendix section. Moreover, we will release a complete repository
of our data (including all generated narratives and extracted graphs), processing scripts, and LLM
prompting pipeline in the supplementary materials.
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Appendix

A SYNTHETIC DATA EXPERIMENTS

A.1 SELECTED SYNTHETIC PROMPTS

Full list of prompts, data processing and results in attached code

E is the list of events generated by the LLM

G is the ground truth causal graph used to generate the narrative

G’ is the extracted graph from the narrative by the LLM

N is the narrative generated by the LLM

n is the number of events to generate

A is the first item in the query and B is the second so the question would be does A cause B

A.1.1 ToPOLOGICAL EXPERIMENT - GENERATING RANDOM EVENTS (E)

“generate n random distinct events”

A.1.2 PARAMETRIC EXPERIMENT -GENERATING CAUSAL EVENTS (E)

“generate n events that cause each other (for example the first event causes the second and the second
causes the third)”

A.1.3 PARAMETRIC EXPERIMENT - GENERATING ANTI-CAUSAL EVENTS (E)

“generate n events that are anticausal, for example the first event could be cancer and the second
event could be a longer life because in reality, cancer causes a shorter life. Make it so each of the n
events are anticausal in this way such that the next event is actually the opposite of what it should
be. For 3 events we might have 1.Rain 2.Plants Die 3.Increased Oxygen”

A.1.4 FORWARD TOPOLOGICAL NARRATIVE (N)

“ context is G, generate a hypothetical narrative from this causal chain graph and make causal re-
lations explicit, even when the causal relations do not make sense, keep the causal relations as they
were in the context. The events in the story should occur in the same order as in the chain graph (eg
first item in chain graph should appear in narrative before the second item)”

A.1.5 REVERSE TOPOLOGICAL NARRATIVE (N)

“context is G, generate a hypothetical narrative from this causal chain graph and make causal rela-
tions explicit, even when the causal relations do not make sense, keep the causal relations as they
were in the context. The events in the story should occur in the opposite order as in the chain graph
(eg last item in chain graph should appear first in the narrative etc)”

A.1.6 STANDARD PROMPT

“Use this narrative N as context. Did A cause B? Output your answer with < answer > Yes/No <
/answer >. The cause can be direct or indirect.”

A.1.7 CHAIN OF THOUGHT PROMPT

“Use this narrative N as context. Did A cause B? Do step by step reasoning. Then output your
answer with < answer > Yes/No < /answer >. The cause can be direct or indirect.”

A.1.8 IN-CONTEXT PROMPT

“Use this narrative N as context. Did A cause B? Output your answer with < answer > Yes/No <
Janswer >. The cause can be direct or indirect. An example narrative would be: Rains leads
to plants growing. This then causes increased oxygen in the atmosphere. A potential question
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would be does rain cause increased oxygen in the atmosphere? The answer would be Yes. Another
example narrative would be: Increased oxygen in the atmosphere is because of plants growing.
Plants grow because rain provides them essential nutrients. A potential question would be does rain
cause increased oxygen in the atmosphere? The answer would be Yes. Another example narrative
would be: Rain leads plants to grow. Plants growing causes less oxygen in the atmosphere. A
potential question would be does rain cause less oxygen in the atmosphere? The answer would be
Yes.”

A.1.9 NARRATIVE + GRAPH PROMPT

“Use this narrative N and this causal ordering G’ ((such that each item is a cause of every item after
it, for example the first list item is a cause of the third, fourth, fifth items etc)) as context. Did A
cause B? Output your answer with < answer > Yes/No < /answer >. The cause can be direct
or indirect.”

B REAL-WORLD CAUSAL GRAPHS

B.1 PROMPT TEMPLATES FOR NARRATIVE GENERATION

Recall that we have a ground truth causal chain graph of the form V; — Vo, — ... — Vx from
CauseNet that we need to verbalize into a coherent narrative. For the semi-synthetic narratives,
we use the LLM (GPT-40) to do so one edge at a time, while ensuring that the newly verbalized
edge logically follows the previous one. The following is the prompt template for generating the
narratives in the topological order of the graph:

Output a short narrative (use one or two sentences) that expresses the causal link
[Vi — Vit1] and logically follows this narrative:

{ Narrative for the previous edge V;_1 — V;}.

Ensure that the combined sentences convey the causal chain [V;_; — V; — V1]
and that the words [V}, V;4 1] are present. Only output the newly generated narra-
tive.

Similarly, we generate narratives in the reverse topological order of the graph by verbalizing edges
in the reverse direction with the following prompt template:

Output a short narrative (use one or two sentences) that expresses the causal link
[V — Vit1] and logically follows this narrative:

{ Narrative for the previous edge V;11 — Viy2}.

Ensure that the combined sentences convey the causal chain [V; — V11 — V2]
and that the words [V}, V;.1] are present. Only output the newly generated narra-
tive.

For generating real-world narratives, for each edge V; — Vj, we use the set of sentences from
CauseNet. Note that each edge in CauseNet is linked to multiple sentences from various sources.
Picking a sentence for each edge at random and concatenating them does not always lead to sen-
sible narratives. To improve the quality of narratives, we use the following prompt to concatenate
sentences for adjacent edges:

Consider the following sentences.
{ Sentence for edge V; — V41 }. { Sentence for edge V;11 — Viyo }.

Do the sentences logically follow each other and express the causal chain [V; —
Vit1 — Vit2]? Answer with Yes or No.

For verbalizing narratives in the topological order, for a given graph V; — V5 — ... — Vi, we only
use sentences such that the above prompt returns Yes for every pair of adjacent edges V; — V; 11 —
Vi+o. This ensures that the narrative as a whole remains coherent and conveys the entire causal
chain graph. We use a similar prompting strategy to verbalize narratives in the reverse topological
order.
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B.2 ADDITIONAL EXAMPLES OF THE GENERATED NARRATIVES
B.2.1 SEMI-SYNTHETIC NARRATIVES

Below, we present some examples of semi-synthetic narratives in the forward and reverse directions.

The narrative in the forward direction for the chain higher prices — reduced demand — lower
prices:

As higher prices swept through the market, consumers began to tighten their bud-
gets, leading to a noticeable reduction in demand for many goods. As a result
of the reduced demand, suppliers were forced to lower prices in order to attract
buyers back to the market.

The narrative in the reverse order for the causal chain bankruptcy — bad credit — rejection —
anger:

The sting of rejection ignited a fire within her, transforming her hurt into a seething
anger that demanded to be felt. Her bad credit had led to the rejection she never
saw coming, and now that sting of rejection ignited a fire within her, transforming
her hurt into a seething anger that demanded to be felt. Her bankruptcy had left
her with bad credit, a shadow that loomed over her every application, and now that
sting of rejection ignited a fire within her, transforming her hurt into a seething
anger that demanded to be felt.

The narrative in the reverse order for the causal chain pollution — climate change — extreme
weather events — natural disasters:

As extreme weather events become more frequent and severe, they increasingly
lead to devastating natural disasters that disrupt communities and ecosystems
alike. Climate change is driving the rise in extreme weather events, which in
turn are causing unprecedented natural disasters that threaten the stability of com-
munities and the health of ecosystems. Pollution is a major contributor to climate
change, which is driving the rise in extreme weather events that threaten the sta-
bility of communities and the health of ecosystems.

B.2.2 REAL-WORLD NARRATIVES

Below, we present some examples of real-world narratives in the forward and reverse directions.

The narrative in the forward direction for the chain higher prices — reduced demand — lower
prices:

Higher prices generally lead to reduced demand. Lower prices, caused by reduced
demand and increased competition for soybeans and corn, largely contributed to
the overall bulk export decline.

The narrative in the reverse order for the causal chain bankruptcy — bad credit — rejection —
anger:

Embittered by an abusive upbringing, seething with resentment, irritated by oth-
ers’ failure to fulfill his or her superior sense of entitlement, and fuelled by anger
resulting from rejection, the serial bully displays an obsessive, compulsive and
self-gratifying urge to displace their uncontrolled aggression onto others whilst
exhibiting an apparent lack of insight into their behavior and its effect on people
around them. Bad credit normally leads to rejection but now with bad credit se-
cured loan, you can avail the loan of your choice. For example, if you are applying
for a loan, the lender may reject your application on the basis of bad credit caused
by bankruptcy.

The narrative in the reverse order for the causal chain pollution — climate change — extreme
weather events — natural disasters:
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Figure 7: Results on the subset of cause-and-effect pairs that are in agreement with the LLM’s
parametric causal knowledge. We observe that the Direct and CoT prompting strategies have high
accuracy for both semi-synthetic and real-world narratives.

In addition to forced migrations from rising seas, climate change is also increasing
extreme weather events causing natural disasters such as cyclonic storms (hurri-
canes or typhoons), floods and droughts. This is worsened by extreme weather
events caused by climate change. This landmark bill would jump start the econ-
omy by creating millions of new clean energy jobs, increase national security by
reducing dependence on foreign oil, and preserve the planet by reducing the pol-
lution that causes climate change.

B.3 PROMPT TEMPLATES FOR ASSESSING CAUSAL REASONING
We use the following template for the Direct prompting strategy:

Consider the following hypothetical narrative.
{narrative}

According to the hypothetical narrative, does {cause} have a (direct or indirect)
causal effect on {effect}? Answer in Yes/No.

We use the following template for the Chain-of-Though (CoT) prompting strategy:

Consider the following hypothetical narrative.
{narrative}

According to the hypothetical narrative, does {cause} have a (direct or indirect)
causal effect on {effect}? Think step-by-step and end your answer with <an-
swer>Yes/No</answer>.

We use the following template to extract a chain graph from the narrative:

Consider the following hypothetical narrative.
{narrative}

According to the hypothetical narrative, construct a causal chain graph using
the following nodes: { nodes in random order }. Ensure that the graph con-
tains all the given nodes and only output a single chain graph of the form
<graph>nodel — node2 — node3 </graph>. Only output the graph between
the <graph></graph>tags.
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B.4 ADDITIONAL RESULTS

In Fig. [7] we present the accuracy of the three prompting strategies discussed in Sec. [] on the
subset of cause-and-effect pairs that are in agreement to the LLM’s parametric knowledge (this is
a counterpart to Fig. [6). We observe that when the parametric knowledge agrees, the Direct and
CoT-based prompting leads to high accuracy.
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