
OPT2023: 15th Annual Workshop on Optimization for Machine Learning

Feature Selection in Generalized Linear models via the Lasso: To
Scale or Not to Scale?

Anant Mathur ANANT.MATHUR@UNSW.EDU.AU

Sarat Moka S.MOKA@UNSW.EDU.AU

Zdravko Botev BOTEV@UNSW.EDU.AU

University of New South Wales, Kensington, Sydney, NSW 2052, Australia

Abstract
The Lasso regression is a popular regularization method for feature selection in statistics. Prior
to computing the Lasso estimator in both linear and generalized linear models, it is common to
conduct a preliminary rescaling of the feature matrix to ensure that all the features are standardized.
Without this standardization, it is argued, the Lasso estimate will unfortunately depend on the units
used to measure the features. We propose a new type of iterative rescaling of the features in the
context of generalized linear models. Whilst existing Lasso algorithms perform a single scaling as a
preprocessing step, the proposed rescaling is applied iteratively throughout the Lasso computation
until convergence. We provide numerical examples, with both real and simulated data, illustrating
that the proposed iterative rescaling can significantly improve the statistical performance of the
Lasso estimator without incurring any significant additional computational cost.

1. Introduction and Background

We begin with providing the background notation and facts for the linear regression model and its
extensions to generalized linear models. With this requisite notation and background material, we
will then be able to explain the main contribution of our paper without unnecessary verbosity.

We denote the n × p regression matrix (or feature matrix) containing the p features v1, . . . ,vp

as

X = [v1, . . . ,vp] =

x
⊤
1
...

x⊤
n

 ,

and the corresponding regression response vector as Y ∈ Rn (with y being the realization of the
random vector Y). We make the standard assumptions (see, for example, [6]) that the regression
function, or the mean of Y conditional on X, satisfies Y = EX[Y] + ϵ for some noise vector ϵ
with conditional expectation EX[ϵ] = 0 and conditional variance VarX(ϵ) = σ2In, where σ is an
unknown parameter. Recall that in a linear model, we assume that

EX[Y] = 1β0 +Xβ

is a linear function of some model coefficients β ∈ Rp and β0 ∈ R, the last one being called the
intercept and corresponding to the constant feature 1 ∈ Rn. Thus, the model for Y is

Y = 1β0 +Xβ + ϵ.

© A. Mathur, S. Moka & Z. Botev.

LASSO IN GLMS: TO SCALE OR NOT?

Define the projection (idempotent) matrix C := In − 11⊤/n and let

η2i :=
∥Cvi∥2

n
=

v⊤
i Cvi

n
, i = 1, . . . , p

be the empirical variance of the components of the i-th feature vector. We define the Lasso estimate
[7] of β as the solution to the penalized least squares:

(β̂0,λ, β̂λ) = argmin
b0,b

∥y − 1b0 −Xb∥2

2n
+ λ

p∑
i=1

ηi × |bi|, (1)

where λ > 0 is a suitably chosen regularization parameter and the intercept b0 is not penalized.
It will shortly become clear why the definition (1) of the lasso estimator appears prima facie to be
different from the one used in textbooks [4] and statistical packages [2]. We remind the reader that
the main advantage of the Lasso regularization is that many of the components of β̂λ are estimated as
zeros, making it very easy to tell which features are important and which are not. This phenomenon
is behind the well-known ability of the Lasso estimator to perform simultaneous shrinkage and
model selection [4, 7].

Feature Standardization. As mentioned in the abstract, it is common practice to standardize the
features v1, . . . ,vp so that the variance of each vi is unity [4, 7]. In other words, the columns
v1, . . . ,vp of X are all rescaled in such a way that ∥Cvi∥2 = n for all i. This standardization
ensures that the Lasso estimate β̂λ is not affected by the units in which the features are mea-
sured, and in general improves the performance of the estimator [3]. The standardization can be
accomplished by working with the matrix XΥ, rather than X, where Υ is the rescaling matrix
Υ := diag(η−1

1 , . . . , η−1
p).

The solution to (1) (without preliminary standardization of the features) is equivalent to the
solution

(β̂0,λ,Υ
−1β̂λ) = argmin

b0,b

∥y − 1b0 − [XΥ]b∥2

2n
+ λ

p∑
i=1

|bi|, (2)

so that β̂λ is now in agreement with the definition of the Lasso estimator given in textbooks and
statistical packages [2].

Extensions to GLMs. Suppose that the joint density of the response vector Y given β0,β,X is
g(y |β0,β,X), where the dependence on β0,β,X is through the linear map (β0,β) 7→ 1β0+Xβ.
Here, the cross-entropy training loss [6] (negative average log-likelihood) is − 1

n ln g(y |β0,β,X)
and the extension of the Lasso estimator (2) to the setting of generalized linear models is then given
by :

(β̂0,λ,Υ
−1β̂λ) = argmin

b0,b

− ln g(y | b0, b,XΥ)

n
+ λ

p∑
i=1

|bi|. (3)

Observe that, just like in the linear Lasso estimator (2), we scale the features so that their variance
is unity [4]. This scaling need only be applied once on X, possibly as a preprocessing step prior
to the main optimization, and then reversed at the end of the optimization (in order to obtain the
regression coefficients in the original units of measurement). The Lasso solution (3) can be also be

2

LASSO IN GLMS: TO SCALE OR NOT?

rewritten in an equivalent form to (1), namely,

(β̂0,λ, β̂λ) = argmin
b0,b

− ln g(y | b0, b,X)

n
+ λ

p∑
i=1

ηi × |bi|. (4)

We are now ready to describe our proposed methodology of rescaling.

New Rescaling Method for GLMs. Let r(b0, b) :=
− ln g(y | b0,b,X)

n be our shorthand notation for
the cross-entropy loss. We define η2i (β) to be the i-th diagonal element of the p× p Hessian matrix
of second derivatives:

∂2

∂β∂β⊤ min
b0

r(b0,β).

This is the Hessian matrix of the cross-entropy loss, evaluated at the true parameter β, and after
the nuisance parameter β0 is eliminated from the optimization. Then, instead of the usual rescaled
Lasso estimator (4), in this article we propose the following alternative iteratively rescaled Lasso
(IRL):

argmin
b,b0

− ln g(y | b0, b,X)

n
+ λ

p∑
i=1

ηi(β)× |bi|. (5)

We now make three observations.
First, since each ηi(β) depends on the unknown β, the approximate computation of (5) will be

iterative — this will be explained carefully in the next section — and is the main reason for naming
the method IRL.

Second, the linear Lasso estimator (1) is a special case of (5) when Y is a multivariate Gaussian
with mean EX[Y] = 1β0 +Xβ and variance VarX(Y) = I, because then η2i (β) = ∥Cvi∥2/n.

Third, one may ask what is the motivation for the proposed IRL estimator. The answer is that
the IRL estimator coincides with the traditional linear regression estimator (1), provided that the
cross-entropy loss r(b0, b) is replaced by its quadratic approximation in the neighborhood of the
true coefficients β0,β. In other words, our proposed IRL estimator uses exactly the same scaling as
the linear Lasso estimator (1) when the generalized linear model is linearized at the true solution.
Note that there is no such agreement in the scaling between the currently accepted linear estimator
(1) and its GLM counterpart (4), that is, the current widely-used scaling is not consistent across
linear and nonlinear models. Our proposal is thus motivated by the desire for consistency in the
scaling applied to linear and nonlinear models.

The rest of the paper is organized as follows. In Section 2 we explain how to approximately
compute the Lasso estimator in (5), given that we do not actually have apriori knowledge of the
Hessian matrix H at the true parameter β. Then, in Section 3 we provide a numerical example with
real data illustrating the scope of improvement in the statistical performance of the Lasso estimator.

2. Computation via Iterative Reweighted Least Squares

Since the true β is not known apriori, in this section we explain how to approximately compute (5)
using an iterative reweighted least squares (IRLS) method. We begin by reviewing the well-known
IRLS for computing the estimator (4) and then explain how it is easily modified to approximately
compute our proposed estimator (5). To this end, we introduce the notation b̆ := [b0, b

⊤]⊤ and
X̆ := [1,X], so that X̆b̆ = 1b0 + Xb. Then, computing (4) is equivalent to minimizing r(b̆) +

3

LASSO IN GLMS: TO SCALE OR NOT?

λ
∑p

i=1 ηi× |bi| with respect to b̆. This problem is nonlinear, but it can be solved by successive and
repeated linearizations of r(b̆). Suppose that at iteration t, we have a current best guess b̆t for the
minimizer of (4). Given this b̆t, we consider the quadratic multivariate Taylor approximation to the
cross-entropy loss at the point b̆t:

r(b̆t) + (b̆− b̆t)
⊤∇r(b̆t) +

1

2
(b̆− b̆t)

⊤H(b̆t)(b̆− b̆t).

Then, we update b̆t to b̆t+1 by computing the linear Lasso estimator:

b̆t+1 := argmin
b̆

(b̆− b̆t)
⊤∇r(b̆t) +

1

2
(b̆− b̆t)

⊤H(b̆t)(b̆− b̆t) + λ

p∑
i=1

ηi × |bi|. (6)

This computation is then iterated until convergence [2].
To keep the mathematical detail simple, we henceforth use the Logit model to illustrate the

computations that are typically required for all GLMs. In the Logit model the binary response
Y1, . . . , Yn are assumed to be independent Bernoulli random variables with conditional mean

EX[Yi] =
1

1 + exp(−β0 − x⊤
i β)

, i = 1, . . . , n,

yielding the cross-entropy loss:

r(b̆) =
1

n

n∑
i=1

(1− yi)x̆
⊤
i b̆+ ln(1 + exp(−x̆⊤

i b̆)). (7)

Then, the gradient∇r(b̆t) and Hessian H(b̆t) are given by the formulas:

µt,i := (1 + exp(−x̆⊤
i b̆t))

−1,

µt := [µt,1, . . . , µt,n]
⊤,

∇r(b̆t) =
1

n
X̆

⊤
(µt − y),

wt :=
√
µt ⊙ (1− µt), (wt,i =

√
µt,i(1− µt,i), ∀i),

Dt := diag(wt),

H(b̆t) =
1

n
X̆

⊤
D2

t X̆ =
1

n

n∑
i=1

w2
t,ix̆ix̆

⊤
i .

If we define the quantities:

Xt := DtX,

yt := wtbt,0 +Xtbt +D−1
t (y − µt),

then straightforward algebra shows that the estimator in (6) can also be written in terms of the
following (weighed) regularized least-squares:

(bt+1,0, bt+1) := argmin
b0,b

∥yt −wtb0 −Xtb∥2 + λ

p∑
i=1

ηi × |bi|.

4

LASSO IN GLMS: TO SCALE OR NOT?

We can eliminate the intercept term b0 from the optimization by applying the centering (projection)
matrix Ct := In −wtw

⊤
t /∥wt∥2 to both Xt and yt. Once the bt+1 is computed, then we recover

b0,t+1 = w⊤
t (yt − Xtbt+1)/∥wt∥2. This gives the following formulas for updating (b0,t, bt) to

(b0,t+1, bt+1):

bt+1 := argmin
b
∥Ctyt −CtXtb∥2 + λ

p∑
i=1

ηi × |bi|

b0,t+1 :=
w⊤

t (yt −Xtbt+1)

∥wt∥2
.

We iterate for t = 1, 2, . . . until a convergence criterion is met. This iterative reweighed penalized
least squares is summarized in the following pseudo-algorithm [2], which assumes that we compute
the Lasso estimate (β̂0,λ, β̂λ) on a grid of m values (with m = 200 being typical values):

λ1 < λ2 < · · · < λm,

where λm is large enough so that β̂λm
= 0; see [2].

Algorithm 2.1: IRLS for Lasso-Logistic model [2].
input: y,X, error tolerance ϵ > 0 and grid λ1 < λ2 < · · · < λm.
output: Regularized solution (b0,j , bj) for each λj j = 1, . . . ,m

1 b← 0, b0 ← − ln(1/ȳ − 1) // initializing values

2 for j = m,m− 1,m− 2, . . . , 2, 1 do // outer loop over {λj}
3 t← 0
4 repeat // middle loop is over the quadratic approximation

5 bold ← b
6 µ← (1+ exp(−1b0 −Xb))−1 // mean response

7 w ←
√

µ⊙ (1− µ) // weights

8 Xt ← diag(w)X
9 yt ← b0w +Xtb+ (y − µ)÷w // adjusted & weighted response

10 cy ← y⊤
t w/∥w∥2, cx ← X⊤

t w/∥w∥2 // adjustments for intercept

11 ηi ←
√
∥Cvi∥2/n for i = 1, . . . , p // square root of feature variance

12 b← lassoCD(b,yt −wcy,Xt −wc⊤x , ϵ, λj ,η) // inner loop

13 b0 ← cy − c⊤x b // intercept update given b

14 t← t+ 1

15 until ∥bold − b∥ < ϵ
16 (b0j , bj)← (b0, b) // store values for each grid point

17 return b0j , bj , j = 1, . . . ,m

Line 12 in Algorithm 2.1 calls the subroutine lassoCD(b,y,X, ϵ, λ,η) to compute the Lasso
estimate:

argmin
b

∥y −Xb∥2

2n
+ λ

p∑
i=1

ηi × |bi| (8)

5

LASSO IN GLMS: TO SCALE OR NOT?

to within an error tolerance of ϵ via the method of coordinate descent. For completeness, we include
the pseudocode of this subroutine in the Appendix and refer the reader to [2] for more details of this
well-known algorithm.

We now describe our proposed method for approximately computing the Lasso estimate (5). The
basic idea is to modify the standard linearization (6) by replacing the penalty term

∑p
i=1 ηi × |bi|

with
∑p

i=1 ηt,i × |bi|, where ηt is determined from the columns of the Hessian of the cross-entropy
loss evaluated at the current estimate b̆t. This gives an iterative reweighed least squares in which
the scaling in the lasso penalty term is modified from one iteration to the next:

b̆t+1 := argmin
b̆

(b̆− b̆t)
⊤∇r(b̆t) +

(b̆− b̆t)
⊤H(b̆t)(b̆− b̆t)

2
+ λ

p∑
i=1

ηt,i × |bi|.

We implement this iterative rescaling with only one minor modification of Algorithm 2.1. In par-
ticular, we replace line 11 in Algorithm 2.1 with the variances of the features in Xt weighted by√
µt,i(1− µt,i), ∀i:

ηt ←
√

diag((Xt −wc⊤x)
⊤(Xt −wc⊤x))/n.

In other words, rather than computing the square root of the diagonal elements of the matrix
X⊤CX/n (as currently done in Algorithm 2.1), we instead compute the square root of the diagonal
elements of the matrix X⊤

t CtXt/n. This is the only significant difference between the implementa-
tions of the current widely-used constant scaling and our proposed iteratively rescaled Lasso (IRL)
algorithm.

3. Numerical Results

We study the performance of Glmnet and IRL on the UCI ML Breast Cancer Wisconsin (Diagnostic)
dataset [8]. Further numerical simulations can be found in the appendix. The ordering of the 569
observations in this dataset is randomized and we use 399 and 170 observations for training and
testing respectively. On this dataset, we fit Glmnet and IRL over a range of 100 λ values and plot the
test loss (10) in Figure 1. The results indicate that IRL achieves the lowest test loss and this occurs
when ∥β̂λ∥1 = 223.58, whereas for Glmnet the minimum test loss occurs when ∥β̂λ∥1 = 346.44.
Moreover, at their corresponding minimizers, IRL selects 13 non-zero features whereas Glmnet
selects 14. In other words, the IRL can achieve a smaller test loss using a sparser model.

Figure 1: Test loss on the Breast Cancer Wisconsin (Diagnostic) dataset (n = 569, p = 30).

6

LASSO IN GLMS: TO SCALE OR NOT?

References

[1] Dimitris Bertsimas, Angela King, and Rahul Mazumder. Best subset selection via a modern
optimization lens. 2016.

[2] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

[3] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements
of statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

[4] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity:
the lasso and generalizations. CRC press, 2015.

[5] Trevor Hastie, Robert Tibshirani, and Ryan Tibshirani. Best subset, forward stepwise or lasso?
analysis and recommendations based on extensive comparisons. 2020.

[6] Dirk P Kroese, Zdravko Botev, Thomas Taimre, and Radislav Vaisman. Data science and
machine learning: mathematical and statistical methods. CRC Press, 2019.

[7] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[8] William Wolberg, Olvi Mangasarian, Nick Street, and W. Street. Breast Cancer Wisconsin (Di-
agnostic). UCI Machine Learning Repository, 1995. DOI: https://doi.org/10.24432/C5DW2B.

7

LASSO IN GLMS: TO SCALE OR NOT?

Appendix A. Coordinate Descent for Linear Lasso Computations

The following code provides a simple coordinate descent algorithm [2] for computing (8). Note
the absence here of the intercept term β0, which is assumed to have been eliminated from the
optimization. In the pseudocode below we use the Lasso shrinkage operator, defined as:

SLasso
λ (x) := x[1− λ/|x|]+,

where x+ = max{0, x}.

Algorithm A.1: Coordinate Descent for 1
2n∥y −Xb∥2 + λ

∑
i ηi × |bi|

input: initial b, scaling parameter η, and X, ϵ, λ
output: (global) minimizer b

1 r ← y −Xb // initial residual

2 repeat // iterate over CD cycles

3 bold ← b
4 for k = 1, . . . , p do // coordinate-descent cycle

5 bnew ← SLasso
λ/ηk

(bk + v⊤
k r/∥vk∥2) // this step costs O(n)

6 if bnew ̸= bk then // update only if necessary

7 r ← r + (bk − bnew)vk // this update costs O(n)

8 bk ← bnew

9 until ∥b− bold∥ < ϵ
10 return b

Appendix B. Further Numerical Simulations

In our simulations, we generate synthetic data from the model:

h = τ (1β0 +Xβ) , (9)

where the parameter τ > 0 is a scaling parameter that determines the strength of the signal. When
implementing Logistic regression, we sample a random vector Y by drawing components yi from
Bernoulli(µi), where µi = 1/(1 + exp(−hi)) for all i. Each row of the predictor matrix X is
generated from a multivariate normal distribution with zero mean and covariance Σ with diagonal
elements Σj,j = 1 and off-diagonal elements Σi,j = ργ|i−j|, for parameters ρ ∈ (−1, 1) and γ > 0;
see, e.g., [1, 5]. To induce sparsity in X we introduce the parameter ξ > 0 and set Xi,j = 0 for all
Xi,j < ξ. We let the intercept β0 = 0 and set the first 10 components of β as

β[1:10] =
[
25, 4, −4, 50, 4, −4, 75, 4, −4, 100

]⊤
,

and the remaining components to 0.
We run IRL and compare its statistical performance against the state-of-the-art implementation

for generalized linear Lasso regression, Glmnet [2]. To tune the parameter λ we generate an inde-
pendent validation set from the generating process (9) with identical parameter values for τ , ξ, ρ
and γ. We then minimize the expected cross-entropy error on the validation set over a grid with 100
values.

8

LASSO IN GLMS: TO SCALE OR NOT?

Since the vector µ = EX[Y] is known, when implementing Logistic regression, we can use the
conditional expected cross-entropy error,

EX

[
r(b̆)

]
=

1

n

n∑
i=1

(1− µi)x̆
⊤
i b̆+ ln(1 + exp(−x̆⊤

i b̆)). (10)

The expected loss conditioned on X allows one to estimate the true expected generalization risk.
In each simulation, after generating a training and validation set (n = 1000, p = 100) we run

IRL and Glmnet to evaluate the λ that minimizes either (10) or (11) on the validation set. We denote
this minimizer as λ∗ and the corresponding model coefficient estimate as β̂λ∗ . We measure the
following:

1. Bias: This is defined as ∥β − β̂λ∗∥2.

2. True Positives (TP): The number of correctly identified non-zero features in β̂λ∗ .

3. False Positives (FP): The number of falsely identified non-zero features in β̂λ∗ .

4. Test Loss: The error (10) (Logistic) or (11) (Poisson) evaluated on an independently gener-
ated test set from model (9) of size n.

For each value of the pair (γ, ρ) we replicate the simulation 100 times and report the mean value
of each performance measure in Table 1. Standard errors of the mean are provided in parentheses.

Table 1: Logistic - X is sparse (ξ = 0.1, τ = 1).

Average Variance = 0.047

Method (ρ, γ) Bias TP FP Test Loss

IRL (0.1,0.1) 73.72 8.58 (0.13) 19.37 (0.43) 0.12
Glmnet 125.31 7.28 (0.11) 48.87 (0.74) 0.17

IRL (0.1,1.0) 89.73 9.97 (0.02) 24.71 (0.53) 0.04
Glmnet 126.59 9.86 (0.04) 47.45 (0.71) 0.08

IRL (0.9,0.1) 61.09 6.65 (0.13) 8.12 (0.29) 0.29
Glmnet 111.46 4.84 (0.08) 36.36 (0.68) 0.32

IRL (0.9,1.0) 67.47 7.49 (0.13) 14.04 (0.38) 0.18
Glmnet 121.52 6.33 (0.12) 50.73 (0.73) 0.22

When conducting experiments with generalized linear models it is useful to estimate the noise
inherent in the model. In Logistic regression, the variance of yi is given by

Var[yi] = µi(1− µi).

9

LASSO IN GLMS: TO SCALE OR NOT?

To quantify the signal strength we report the value

n∑
i=1

µi(1− µi)/n

averaged over all the simulated responses in each table. The average variance has a maximum value
of 0.25 which indicates high noise and a weak signal whereas an average variance closer to the
minimum value of 0 indicates low noise and a strong signal.

In Table 1 we observe simulations with a strong signal. It is in this scenario that the IRL
method significantly outperforms Glmnet. With IRL, we are able to obtain a sparser estimate β̂λ∗

that contains significantly fewer false positives and achieves improved test loss. IRL outperforms
Glmnet the most when the correlation is highest among the predictors (ρ = 0.9, γ = 0.1).

In Figure 2 we compare the bias and test loss of β̂λ computed with IRL and Glmnet over a grid
of λ values. Since the parameter λ does not coincide between IRL and Glmnet, we plot the bias
and test loss as a function of the dependent variable ∥β̂λ∥1. Figure 2 shows that in the simulation
setting where X is sparse, IRL attains lower test loss over a range of λ values and the lowest bias.

(a) (b)

Figure 2: Bias and test loss of β̂λ in a Logistic regression simulation. The estimate β̂λ is computed
over a grid of 100 λ values where the simulation parameters are τ = 0.01, ξ = 0.1,
ρ = 0.1 and γ = 1.

We now present simulation results for Poisson regression. We generate data from the model (9)
and sample Y by drawing yi from Poisson(µi), where µi = exp(hi). We generate X as described
in B and use the following conditional expected cross-entropy error,

EX

[
r(b̆)

]
=

1

n

n∑
i=1

exp(x̆⊤
i b̆)− µix̆

⊤
i b̆. (11)

In Poisson regression the variance of yi is equal to its mean, that is, Var[yi] = µi. To quantify
the noise we report the value

∑n
i=1 µi/n averaged over all the simulated responses in each table.

In Table 2 we observe simulations with low noise. Similar to Logistic regression, it is in this
scenario that the IRL method significantly outperforms Glmnet. The IRL method is able to pick up
significantly fewer false positives, thus exhibiting improved variable selection. The improvement is
most significant when the correlation parameters are (ρ = 0.9, γ = 1.0). In Table 3, the simulated

10

LASSO IN GLMS: TO SCALE OR NOT?

Table 2: Poisson - X is sparse (ξ = 0.1, τ = 0.1).

Average Variance = 0.289

Method (ρ, γ) Bias TP FP Test Loss

IRL (0.1,1.0) 35.98 9.14 (0.09) 20.76 (0.51) 0.16
Glmnet 73.62 9.62 (0.06) 47.56 (0.63) 0.19

IRL (0.1,0.1) 36.13 5.69 (0.11) 11.03 (0.33) 0.28
Glmnet 71.19 6.30 (0.12) 43.78 (0.58) 0.31

IRL (0.9,1.0) 35.65 5.80 (0.11) 8.66 (0.27) 0.36
Glmnet 69.55 6.09 (0.12) 41.54 (0.54) 0.39

IRL (0.9,0.1) 41.86 6.09 (0.13) 4.80 (0.23) 0.49
Glmnet 61.78 5.36 (0.10) 23.26 (0.42) 0.51

Table 3: Poisson - X is not sparse (ξ =∞, τ = 0.01).

Average Variance = 8.808

Method (ρ, γ) Bias TP FP Test Loss

IRL (0.1,1.0) 11.6 8.22 (0.13) 19.02 (0.66) -2.24
Glmnet 11.62 8.21 (0.13) 19.37 (0.66) -2.24

IRL (0.1,0.1) 11.64 6.44 (0.09) 8.14 (0.47) -14.77
Glmnet 11.73 6.43 (0.10) 8.95 (0.49) -14.77

IRL (0.9,1.0) 11.98 6.58 (0.10) 6.72 (0.39) -36.17
Glmnet 12.18 6.54 (0.10) 8.30 (0.45) -36.17

IRL (0.9,0.1) 19.91 6.32 (0.13) 2.81 (0.18) -102.07
Glmnet 20.13 6.45 (0.13) 4.49 (0.30) -102.07

X is non-sparse, and τ is decreased to 0.01, thereby increasing the average noise to 8.08. In this
scenario, IRL outperforms Glmnet only in the high correlation settings. Figure 3 shows that in the
sparse setting, IRL outperforms Glmnet over a range of λ values.

We now provide further numerical tables for Logistic regression which contain results from
simulations with more values of τ . In Table 4, the simulated X is non-sparse, and τ is decreased
thereby creating a weaker signal in the generated responses. In this high-noise setting, IRL achieves
only marginally fewer false positives. In Table 5, X is simulated to be sparse and τ = 0.01 which

11

LASSO IN GLMS: TO SCALE OR NOT?

(a) (b)

Figure 3: Bias and test loss of β̂λ in a Poisson regression simulation. The estimate β̂λ is computed
over a grid of 100 λ values where the simulation parameters are τ = 0.1, ξ = 0.1, ρ = 0.1
and γ = 1.

Table 4: Logistic - X is not sparse (ξ =∞, τ = 0.01).

Average Variance = 0.156

Method (ρ, γ) Bias TP FP Test Loss

IRL (0.1,0.1) 40.89 6.09 (0.12) 8.30 (0.26) 0.48
Glmnet 42.52 6.16 (0.12) 9.65 (0.26) 0.48

IRL (0.1,1.0) 36.46 5.40 (0.10) 14.96 (0.42) 0.56
Glmnet 37.31 5.45 (0.11) 15.8 (0.43) 0.56

IRL (0.9,0.1) 123.43 4.39 (0.11) 3.09 (0.18) 0.41
Glmnet 122.15 4.42 (0.11) 3.85 (0.20) 0.41

IRL (0.9,1.0) 57.78 6.16 (0.13) 5.62 (0.22) 0.45
Glmnet 59.30 6.29 (0.12) 7.13 (0.24) 0.45

results in a weaker signal than that of in Table 1. In Table 6, X is simulated to be non-sparse and
τ = 0.1 which results in a stronger signal than that of in Table 4. In comparison to the weak signal
setting in Table 4, there is a greater difference in the mean number of false positives in favor of the
IRL method in Table 6.

12

LASSO IN GLMS: TO SCALE OR NOT?

Table 5: Logistic - X is sparse (ξ = 0.1, τ = 0.01).

Average Variance = 0.191

Method (ρ, γ) Bias TP FP Test Loss

IRL (0.9,0.1) 146.29 3.55 (0.13) 3.61 (0.18) 0.55
Glmnet 143.38 3.66 (0.12) 4.56 (0.20) 0.55

IRL (0.1,1.0) 55.2 4.49 (0.11) 12.27 (0.39) 0.57
Glmnet 58.07 4.64 (0.12) 13.85 (0.39) 0.57

IRL (0.1,0.1) 63.74 5.79 (0.13) 7.37 (0.29) 0.56
Glmnet 66.26 5.87 (0.12) 9.29 (0.30) 0.56

IRL (0.9,1.0) 80.68 5.62 (0.12) 5.94 (0.25) 0.56
Glmnet 81.78 5.72 (0.12) 7.90 (0.28) 0.56

Table 6: Logistic - X is not sparse (ξ =∞, τ = 0.1).

Average Variance = 0.021

Method (ρ, γ) Bias TP FP Test Loss

IRL (0.1,0.1) 49.29 6.97 (0.11) 23.59 (0.46) 0.08
Glmnet 53.75 6.85 (0.10) 30.79 (0.48) 0.09

IRL (0.1,1.0) 48.54 9.34 (0.07) 43.09 (0.54) 0.12
Glmnet 50.32 9.40 (0.07) 47.15 (0.54) 0.12

IRL (0.9,0.1) 58.08 6.34 (0.12) 4.65 (0.24) 0.06
Glmnet 66.95 6.42 (0.13) 10.96 (0.28) 0.06

IRL (0.9,1.0) 45.34 6.77 (0.11) 15.47 (0.37) 0.07
Glmnet 53.09 6.53 (0.11) 23.93 (0.42) 0.07

13

	Introduction and Background
	Computation via Iterative Reweighted Least Squares
	Numerical Results
	Coordinate Descent for Linear Lasso Computations
	Further Numerical Simulations

