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Abstract

Multimodal Large Language Models (MLLMs) have recently achieved remark-
able progress in video understanding. However, their effectiveness in real-time
streaming scenarios remains limited due to storage constraints of historical visual
features and insufficient real-time spatiotemporal reasoning. To address these
challenges, we propose StreamForest, a novel architecture specifically designed
for streaming video understanding. Central to StreamForest is the Persistent Event
Memory Forest, a memory mechanism that adaptively organizes video frames into
multiple event-level tree structures. This process is guided by penalty functions
based on temporal distance, content similarity, and merge frequency, enabling
efficient long-term memory retention under limited computational resources. To
enhance real-time perception, we introduce a Fine-grained Spatiotemporal Window,
which captures detailed short-term visual cues to improve current scene percep-
tion. Additionally, we present OnlineIT, an instruction-tuning dataset tailored for
streaming video tasks. OnlinelT significantly boosts MLLM performance in both
real-time perception and future prediction. To evaluate generalization in practical
applications, we introduce ODV-Bench, a new benchmark focused on real-time
streaming video understanding in autonomous driving scenarios. Experimental
results demonstrate that StreamForest achieves the state-of-the-art performance,
with accuracies of 77.3% on StreamingBench, 60.5% on OVBench, and 55.6% on
OVO-Bench. In particular, even under extreme visual token compression (limited to
1024 tokens), the model retains 96.8% of its average accuracy in eight benchmarks
relative to the default setting. These results underscore the robustness, efficiency,
and generalizability of StreamForest for streaming video understanding.

1 Introduction

In recent years, multimodal large language models have made significant progress in video under-
standing tasks, demonstrating strong semantic comprehension and reasoning capabilities across
videos of varying durations and scenarios [30, 52,31} 135]]. Benefiting from large-scale pretraining
and enhanced cross-modal modeling capabilities, these models have been widely adopted in various
domains [28} 42,155, 159]. However, with the growing demand for real-time intelligent processing
in online applications such as autonomous driving [49], live video streaming [6], and robotics [[79],
researchers have increasingly shifted their focus from conventional offline video understanding to the
more challenging task of streaming video processing [15} 23} 146].
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Figure 1: StreamForest achieves strong performance across various evaluation benchmarks while
using significantly fewer visual tokens. It effectively handles key tasks in streaming video scenarios,
including past memory, real-time perception, and future prediction.

In the field of streaming video understanding, efficiently caching continuously arriving video frame
features remains a long-standing and challenging problem. To mitigate the storage and computational
overhead associated with past frames, prior work has primarily employed two strategies for visual
feature reduction: compression during sampling [5| 46} |64] and compression during storage [52,
72, 23]]. Compression during sampling reduces a large portion of incoming visual features, which
severely limits the model’s capacity for fine-grained spatiotemporal reasoning. As a result, it can only
perform coarse semantic summarization of the current scene. Conversely, compression during storage
typically involves merging or discarding adjacent frames based on inter-frame similarity. While more
memory-efficient, this strategy is susceptible to missing critical foreground actions due to background
noise. It may also result in excessive local merging, introducing spatiotemporal irregularities that
degrade the model’s ability to retain and reason about key events over time.

To address the challenges of streaming video understanding, we propose a novel architecture called
StreamForest. At its core is the Persistent Event Memory Forest, a mechanism designed to
efficiently store and manage long-term visual information. This memory system enables a MLLM
to process ultra-long streaming video at a constant rate of 1 fps by dynamically organizing video
segments into a tree structure based on event boundaries. The merging of segments is guided by three
penalty functions that consider temporal distance, content similarity, and merge frequency, ensuring
an adaptive and meaningful memory hierarchy. To enhance real-time perception, we introduce a
Fine-grained Spatiotemporal Window, which extracts rich local spatiotemporal features from
nearby frames. This module enables the MLLM to better understand the current scene by focusing
on temporally relevant visual context. We also present OnlinelT, a fine-tuning dataset specifically
designed for streaming video understanding. OnlinelT improves the MLLM'’s ability to perceive the
present moment and anticipate future events by leveraging both recent observations and long-term
historical cues. It addresses the problem of hallucinations caused by spatiotemporal distribution
shifts between past and current frames. In addition, we introduce ODV-Bench, a new benchmark for
evaluating streaming video understanding in autonomous driving scenarios. ODV-Bench emphasizes
real-time perception and future prediction, providing a systematic framework for assessing the
generalization and real-world effectiveness of streaming video MLLMs in downstream tasks.

We conducted extensive experiments on both online and offline video understanding benchmarks
to validate the effectiveness of StreamForest. Under the default setting with a visual token limit of
8192, StreamForest significantly outperforms previous state-of-the-art streaming video understanding
MLLMs. It achieves an average accuracy of 77.3% on StreamingBench, 60.5% on OVBench,
and 55.6% on OVO-Bench. StreamForest also matches or surpasses the performance of leading
offline video understanding MLLMs on both long and short video benchmarks, despite operating
in a streaming video input setting. Moreover, StreamForest demonstrates strong resilience under
extreme compression. With a reduced visual token limit of just 1024, it retains 96.8% of its average
performance across eight benchmarks compared to the default setting. These results highlight the
robustness and efficiency of our approach in continuously processing streaming video input.



2 Related work

Multimodal Large Language Model. Extending multimodal capabilities from static images to
dynamic video sequences introduces additional complexity, requiring models to possess stronger
abilities in modeling long-range dependencies and understanding events [30, 40, 81}, 41} [71} 58].
Recent advances in MLLMs for video have introduced a variety of innovative strategies to tackle
the challenges of efficiently processing and reasoning over long video inputs [37, 142, 29, 51} [33].
LongVILA [[7] proposes a Multimodal Sequence Parallelism system for long-context modeling,
enabling efficient parallel training and inference on extended video content. However, most current
research on video understanding remains focused on offline settings [57,169} 162, 34]], where the model
has full access to the complete video sequence before inference. Although this setting facilitates
global semantic modeling, it falls short in streaming scenarios, where real-time understanding of
continuously evolving scenes is required. Therefore, the development of models specifically designed
for online video understanding is of critical importance.

Streaming Video Understanding. In real-world applications, users increasingly expect MLLMs
to support online processing and real-time interaction. This demand has prompted growing interest
in the task of streaming video understanding. Recently, several works have explored this emerging
area [5 [72] 163] 11} 61}, 123]. However, most existing streaming video understanding approaches
are primarily designed for streaming dense video captioning [J5, 160} 132} 147, |12]], focusing solely on
summarizing semantic content from visual frames. As a result, they struggle to handle essential tasks
such as memory recall and real-time perception, which are critical for comprehensive streaming video
understanding. Moreover, in pursuit of computational efficiency, many methods apply aggressive
compression to video frame sequences [46l |74, 164], making them unsuitable for complex and dynamic
tasks that require fine-grained and real-time spatiotemporal understanding, such as autonomous
driving. To address these limitations, our goal is to develop a more generalizable and practical
approach for online video understanding. It emphasizes fine-grained spatiotemporal features at the
moment of query and supports persistent memory storage based on events.

3 Methodology

3.1 Streaming Video Understanding Architecture: StreamForest

In this section, we detail our proposed StreamForest. Specifically, the core design of StreamForest
lies in Fine-grained Spatiotemporal Window and Persistent Memory Forest, which work in tandem to
enable the model to retain long-term memories of past events while supporting real-time perception.

3.1.1 Fine-grained Spatiotemporal Window

To meet the real-time spatiotemporal perception requirements of streaming video understanding, we
introduce the Fine-grained Spatiotemporal Window (FSTW). We observe that in practical applications,
most of the clues requiring fine-grained spatiotemporal reasoning are concentrated near the time of
the question. Therefore, we retain only second-level short-term fine-grained spatiotemporal features.

Specifically, the FSTW consists of two components: real-time perception and short-term spatiotem-
poral memory. Real-time perception directly samples high-resolution visual features from the current
frame, which are encoded with spatiotemporal positional information. As new frames arrive, older
frames are compressed along the spatial dimension and transferred into short-term spatiotemporal
memory. At the same time, the model computes inter-frame similarity between new and old frames
to enable subsequent event-level segmentation. The short-term spatiotemporal memory maintains
a frame sequence with a duration of ¢4 seconds. When its capacity is exceeded, overflowing visual
features are offloaded into the Persistent Event Memory Forest. We segment continuous visual
features into meta-events by identifying the position with the local minimum inter-frame similarity in
the frame sequence. This ensures that each meta-event captures a coherent spatiotemporal transition.
A meta-event is treated as an independent node, which consists of a collection of visual tokens from
similar consecutive frames. These nodes form the foundation of the MLLM’s long-term memory.
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Figure 2: Overview of our proposed StreamForest. The Fine-grained Spatiotemporal Window
captures instance-level spatiotemporal features, while the Persistent Event Memory Forest adaptively
organizes event-level representations into a set of tree structures. Dashed arrows and feature tokens
illustrate potential operations performed during each memory update iteration.

3.1.2 Persistent Event Memory Forest

To efficiently process continuously arriving video frame features in streaming scenarios, we propose
the Persistent Event Memory Forest (PEMF), a memory architecture specifically designed to support
long-term memory in the context of streaming video. Unlike prior methods that rely on direct inter-
frame similarity compression [52] or static memory hierarchies [23], PEMF adaptively compresses
and organizes video information at the event level. It constructs a hierarchical, tree-structured memory
guided by three penalty functions, enabling the model to retain semantically rich and non-redundant
content while managing memory efficiently as it evolves over time. To control memory growth, we
impose an upper limit L, on the number of long-term memory tokens stored in PEMF. When this
limit is exceeded, PEMF performs hierarchical memory consolidation by adaptively merging adjacent
event nodes into single nodes within the tree structure. The selection of nodes for merging is guided
by three penalty functions that account for temporal distance, content similarity, and merge frequency,
ensuring that the memory remains both informative and compact.

Similarity Penalty. In long videos, adjacent video segments often exhibit high visual similarity, result-
ing in substantial feature redundancy. Therefore, we introduce a similarity penalty that encourages
the merging of event nodes with highly similar visual content. Due to differences in event durations,
two candidate event nodes (denoted as z;, x;41) may contain different numbers of visual tokens.
To handle this discrepancy, inspired by ToMe [3], we adopt a bipartite graph matching approach.
Specifically, we treat the visual features of the two event nodes as sets in a bipartite graph and
compute pairwise similarities between tokens across these sets. Let X; € R™*? denote the visual
token features of the event node x;, where n; is the number of tokens in x;. We compute the pairwise
cosine similarity matrix S; = sim(X;, X;+1) € R™*"i+1, and select the top k; highest similarity
scores, corresponding to the most similar token pairs between two event nodes. The similarity penalty
P; is defined as one minus the average of these k; highest similarity scores:

1
Ps(zi,zip1) =1— Z Si(p’Q), Ti = argTOpK(p,q)(Sz(p’q), k). (D
" (p,a)ET

Merge Count Penalty. When event nodes repeatedly participate in tree-structured hierarchical
memory merging, their visual details may gradually degrade due to accumulated information loss.
This degradation can lead to local spatiotemporal inconsistencies, ultimately impairing the accuracy
of long-term video understanding. To mitigate this issue, we introduce a merge count penalty as
a regularization term. It penalizes overly merged nodes and encourages a more balanced memory
integration process, thereby preserving the fidelity of each event representation. Let ¢; denote the
historical merge count of the event node x;, with its maximum value at the query time denoted as
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Temporal Distance Penalty. In real-world streaming video understanding scenarios, frames that are
temporally closer to the current query time often carry more relevant information. This observation
suggests that recent visual features should be preserved with higher fidelity, while historical features
can be compressed more aggressively. To implement this intuition, we introduce a temporal distance
penalty, which encourages the model to retain more detailed representations of temporally proximate
events while promoting the forgetting of details from distant past events. Let ¢, denote the current
query or interaction time, ¢; denote the time of event i. The calculation of ¢; is detailed in the
Appendix [A] We define the time penalty P; as follows:
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Overall penalty. We incorporate the above three penalties to guide the adaptive merging process of
event nodes in the PEMF, where the combination of these three factors determines the merge priority
of event node pairs.

P(xi, xit1) = WsPs(x4, Tiq1) + Wi P (24, Tig1) + we Py (x5, Ti41). 4

The penalty weights w;, w,,, and w; collectively determine the behavior of PEMF. When only the
similarity penalty is applied, the strategy degenerates into similarity-based compression. Using the
merge count penalty alone leads to behavior similar to uniform downsampling. When the temporal
distance penalty is used in isolation, the method approximates FIFO. By adjusting these penalty
weights, our method enables a flexible trade-off among these strategies, allowing it to adapt effectively
to various streaming tasks, enabling a balance between efficient storage saving and the retention of
task-relevant information across diverse real-world scenarios.

The nodes selected for merging are determined by identifying the pair with the lowest overall penalty
score. We employ ToMe [3] for the merging process, compressing the number of visual tokens to
half the total tokens of the selected node pair. Upon receiving a user query, the visual features of all
root nodes in PEMF, along with all visual features stored in FSTW, are fed into the LLM to support
real-time, streaming interaction.

3.2 Instruction-tuning Dataset: OnlinelT

Existing offline long video datasets often exhibit distributional bias, where the key evidence for
answering questions is typically concentrated in the middle of the video. As a result, MLLMs
fine-tuned on such data tend to overemphasize historical content, potentially leading to hallucinations
in accurately interpreting the current moment. Although some datasets for streaming video under-
standing have been released [55} 160, 63 47|, they remain limited in terms of data volume, quality, and
task diversity. To address these limitations, we construct OnlinelT, a training dataset specifically
designed for streaming video understanding. OnlinelT focuses on fine-grained event comprehension
and real-time spatiotemporal understanding in streaming settings, and it significantly enhances the
performance of MLLMs on streaming video understanding tasks.

OnlinelT-general. Based on criteria of diversity, length, and difficulty, we curated and refined
several existing high-quality fine-tuning datasets of streaming video understanding [23| |60, 47].
Building upon these, we further developed two new datasets comprising 32K high-quality streaming
training instances. This dataset features a larger scale, broader distribution, and greater task diversity,
facilitating the learning of more generalizable streaming video representations.

OnlinelT-drive. It includes 89K streaming QA training instances from autonomous driving scenar-
ios. This dataset is designed to enhance MLLMs’ performance on complex, real-time downstream
tasks. Specifically, by integrating scene semantics, traffic regulations, and common driving events,
we extract key elements from driving scenes and video clips to generate a question-answer dataset
grounded in autonomous driving contexts. OnlineIT-Drive primarily covers four areas: (1) real-time
localization and semantic awareness, (2) understanding of static traffic entities, (3) understanding of
dynamic traffic entities, and (4) risk event and accident assessment.



1. Vid Jecti 2

Normal Driving Scenario

Meta-A 7 =
i K Enough 5
e Y Iy, @ @
el Er gt Human annotated oD annotations’ e Q
- Datasets
& 4% suitable annotations precise annotations
o .
: 1f o to

s %, %, 7 Fitervia - 4 N

5 3& i annotations + YOLO or VLLM « Bridge, which target should we pay the most attention to
s 1710 3 rﬂ@ genereton Conversion
Bl ‘ : I 4 B ® @ o
s 3% Humen Human refine
£ 2 Fillered Videos gy Videos with Fine Grained Annotations / ¢ o to
1639 » 3. QA Construction 4. Quality Control o ° et .
1t A . &F eSS a Manual Review : -
% 13 52 cew
i TL & s~z |
: 2973 z Annotations E [ Clear questions
'é:‘ ® ° @) [ Relevant and valid options 4
& f’éf = QA templates by QApals | 2 Sampling Strategy
LN L e Arators & scene diversity i
* e e & e & Task type diversity Risk Prediction & Analysis: e
<o of = " ! p
Preaigg, | PGy E,G optonsots | 7 OPion Handling
4 similar Length
&LLM
Videos with MCQ & shaffled arder
(a) Category Distribution of ODV-Bench (b) Generation pipeline of ODV-Bench (c) Task examples in ODV-Bench

Figure 3: (a) The distribution of task types and the number of QA pairs. (b) The detailed pipeline for
constructing the ODV-Bench. (c¢) Typical task examples in ODV-Bench.

4 ODV-Bench

Many existing benchmarks for streaming scenarios are derived from offline video evaluation datasets
[39, 23] 136, l61]], and may not adequately reflect real-world applications of streaming video under-
standing. Although some of them already incorporate Ego4D videos of daily activities [36} |61],
these evaluation samples primarily evaluate MLLMs’ ability to perceive static scenes and narrate
human-environment interactions in a stepwise manner. In contrast, autonomous driving presents
dynamic, high-stakes environments with rapidly changing scenes, complex multi-agent interactions
(vehicles, pedestrians, and traffic signals), and demanding prediction tasks (such as risk assessment
and motion planning). These scenarios require models to balance long-term event memory with
fine-grained short-term perception to avoid accidents and make timely decisions. To address this
gap, we introduce ODV-Bench, a benchmark specifically designed for online video understanding in
autonomous driving scenarios.

4.1 Task Formulation

As shown in Figure 3] (a), we first explore the key traffic elements in autonomous driving scenarios
and summarize them into three categories of task scenarios: (1) Static-target-oriented tasks, which
involve the recognition and retrieval of stationary traffic elements such as traffic signs, lights, and road
indicators; (2) Dynamic-target-oriented tasks, which focus on behavior and trajectory prediction
of dynamic road participants such as vehicles and pedestrians; and (3) Event-oriented tasks for
multi-agent interaction, which capture complex interactions, risk scenarios, and accidents involving
multiple agents. Next, guided by temporal cues and the practical needs of driving, we further define
fine-grained task types based on these categories to comprehensively assess model understanding
in realistic online driving video scenarios. For more details on task formulation, please refer to

Appendix [C.T]

4.2 Benchmark Construction

The construction process of ODV-Bench is illustrated in Figure[3](b). We adopt a four-stage approach
to ensure the quality of each generated question, and then present some typical task examples across
different driving scenarios in Figure 3] (c).

Data Collection. (1) Video Selection. To align with real-world driving scenarios, we first curated 6
datasets [24, [14} 82,166, (73| 4] from different task scenarios within the autonomous driving domain,
from normal driving to unexpected events. Then, we designed a semi-automatic pipeline that primarily
relies on annotation filtering and YOLO-based detection [25]], supplemented by manual inspection, to
select task-relevant videos from the collected dataset. (2) Meta-Annotation Generation. To obtain
meta-annotations with detailed spatiotemporal and semantic information, we developed tailored
methods based on existing dataset annotations. For well-annotated datasets, we effectively convert
existing labels into task-specific meta-annotations. For others, we design a semi-automatic pipeline
that begins with coarse annotations generated by VLLM and YOLO [25]], followed by structured
human verification to ensure quality.



Table 1: Evaluation results on ODV-Bench. Our model significantly outperforms state-of-the-art of-
fline and online video MLLMs under zero-shot testing conditions, and achieves further improvements
after fine-tuning on driving-domain data.

Method Size #Frames Static Target Dynamic Target Event Oriented Overall
RTP HD KIE TCD DDM PTM|Avg.| AP LP DP [Avg.[RP RA ARA|Avg.

Human

Human Agents - - [958 97.6 982 957 959 94.4[959[837 879 90.4[88.2[91.9 949 93.0[925] 914
Open-source Offline Video MLLMs

MiniCPM-V2.6 [65] 7B 64 [20.0 87.8 151 49.1 264 20.6]273]712 73.4 472]60.0[73.4 333 16.7 [53.6] 498
LongVA [73] 7B 64 (299 73 377 473 38.0 33.6|31.8(66.6 58.6 50.9|56.6|57.5 58.1 46.2|56.7| 50.2
LLaVA-Onevision [28] 7B 64 |36.0 49 226 60.0 31.4 39.0|342(53.6 70.3 47.4|55.1|57.9 722 47.4(622| 51.6
InternVL2.5 [8] 8B 32 |40.1 163 37.7 527 304 409 |37.2|64.1 84.6 49.5|62.5|54.0 60.6 50.6 |56.1| 542
VideoChat-Flash [33] 7B 256 [29.6 155 453 764 26.1 36.1(322|73.5 753 47.2|61.0(67.1 64.8 462 |64.3| 544
Qwen2.5-VL [2] 7B fps |51.8 8.1 79.3 49.1 360 57.3|48.3(50.4 82.6 46.9|57.5|47.6 78.6 52.6 |59.4| 55.6
Open-source Online Video MLLMs

Flash-VStream [72 7B 1fps [254 1.6 113 509 360 22.1[24.8[255 39.8 47.2[40.2]32.4 48.6 30.1 [38.1 357
Dispider [47] 7B lfps [31.1 73 340 63.6 340 354 (325|432 73.1 45.8|52.7|382 554 36.5 |44.3| 452
VideoChat-Online [23 4B 1fps [369 0.8 623 49.1 21.5 47.0|36.1|70.2 86.7 464|629 |51.2 69.4 455 |57.4| 545
StreamForest 7B 1fps |[514 155 547 564 38.6 653 [51.5(72.6 832 46.0 62.3|60.2 73.3 47.4 |63.8| 59.9
StreamForest (FT-drive) 7B 1fps |70.1 17.1 100.0 60.0 32.7 83.6 | 64.6 |64.0 96.6 59.6 70.7 |71.8 93.4 58.3 |78.5| 71.2

QA Construction. (1) MCQ Generation. To enable efficient automatic QA generation, we first
design accurate and diverse templates tailored to each defined task. These templates are then
populated with fine-grained and precise annotations to generate high-quality QA pairs. Next, we
develop a multiple-choice generation pipeline based on an option pool, introducing plausible yet
misleading distractors alongside the correct answer to ensure the realism and effectiveness of choices.
(2) Quality Control. To ensure benchmark quality, we first conduct multiple rounds of manual review
to verify the clarity and accuracy of QA pairs and the plausibility of distractor options. Besides, to
enhance scene diversity and task-type balance, we apply a sampling strategy that allocates questions
proportionally to video length, maximizing coverage across scenarios.

S Experiments

Implementation Details. We adopt SigLiP-so400M[70] as the visual encoder, use an MLP as the
projection head, and we employ Qwen2-7B as the LLM. By default, the number of visual tokens is
capped at 8192. Among these, 729 tokens are allocated to real-time perception, while short-term
spatiotemporal memory consists of 18 frames, each represented by 128 visual tokens. We set the
penalty weights for similarity, merge count, and temporal distance to 0.4, 0.4, and 0.2, respectively.
The model is trained on 32 A100 GPUs using our proposed OnlinelT dataset, supplemented with
offline video data from VideoChat-Flash [33]] and LLaVA-Video [76l], as well as image data from
LLaVA-OneVision [28]. We adopt a five-stage training strategy to train StreamForest from scratch.
The first three stages follow the training paradigm of offline long video MLLMs [33]]. The fourth
stage performs streaming video fine-tuning to yield the base StreamForest. In addition, an optional
fifth stage can be incorporated by training with the OnlinelT-Drive, which yields the StreamForest(FT-
drive). During the evaluation phase, we constrain the model to process streaming frames at 1 FPS.
For more detailed implementation specifics, please refer to the Appendix [D]

5.1 Online Benchmark Results

We evaluate the performance of our model on four benchmarks for online video question answering:
ODV-Bench, StreamingBench [39]], OVBench [23]], and OVO-Bench [36]]. These benchmarks follow
streaming video QA scenarios, where the VideoLLMs must process only the video content available
before the current timestamp.

ODV-Bench. It closely integrates spatiotemporal information to comprehensively evaluate MLLMs’
ability to understand fine-grained details in online videos and to make future predictions based on
both historical and current context in autonomous driving scenarios. The benchmark includes tasks
such as identifying subtle objects or actions, describing object positions and spatial relations, and



Table 2: Comparison of our method with existing approaches on video question answering tasks
across various scenarios. Our approach significantly outperforms previous methods on streaming
video understanding benchmarks, while maintaining strong and competitive performance on both
long and short video understanding.

Online Video Long Video Short Video

Method Size | StreamingBench OVBench OVO-Bench | VidleoMME MLVU | MVBench PerceptionTest

Real-Time All Avg Overall w/o sub. M-Avg Avg Val
Open-source Offline Video MLLMs
InternVL2 [9 8B 63.7 48.7 50.1 54.0 64.0 65.8
LongVA [75] 7B 60.0 43.6 - 52.6 56.3 - -
LLaVA-OneVision [28] 7B 71.1 49.5 529 58.2 64.7 56.7 57.1
Qwen2-VL [55] 7B 69.0 49.7 52.7 63.3 - 67.0 66.9
LongVU [50] 7B - - 485 60.6 65.4 66.9 -
LLaVA-Video [76] 7B - - 53.1 63.3 70.8 58.6 67.9
Open-source Online Video MLLMs
VideoLLM-online [5] 8B 36.0 9.6 12.8 - - -
MovieChat [52] 7B - 30.9 - 38.2 - 55.1
Flash-VStream [72] 7B 232 312 332 - - -
VideoChat-Online [23] 4B - 54.9 - 52.8 - 64.9
Dispider [47] 7B 67.6 - 41.8 57.2 61.7 - -
StreamForest 7B 71.3 60.5 55.6 61.4 70.0 70.2 73.1
StreamForest (FT-drive) 7B 76.8 61.6 55.6 61.9 69.6 68.6 71.6

forecasting object trajectories. These tasks require strong real-time spatiotemporal perception and
contextual understanding. As shown in Table [T} StreamForest achieves an average accuracy of 59.9%
on ODV-Bench without being trained on OnlinelT-drive and further improves to 71.2% after training
on it. This significantly outperforms all existing online and offline MLLMSs, demonstrating the strong
generalization capability of our method to downstream streaming video understanding tasks. These
results highlight its potential for real-world applications.

StreamingBench & OVBench & OVO-Bench.  As shown in Table 2] StreamForest demonstrates
strong performance across existing open-source streaming video understanding benchmarks. It
achieves an accuracy of 77.3% on StreamingBench, 60.5% on OVBench, and 55.6% on OVO-Bench.
These impressive results highlight the robustness of StreamForest in a wide range of online video
understanding scenarios. The superior performance of our model can be attributed to two key
architectural innovations. First, the Fine-grained Spatiotemporal Window enables precise spatial
perception and responsive short-term temporal modeling, which are critical for real-time perception
and forward responding tasks. Second, the Persistent Event Memory Forest adaptively organizes
long-term visual content into a structured and efficient memory forest, significantly enhancing
the MLLM’s ability to retain and reason over past events. Together, these two modules offer
complementary capabilities that allow our model to handle dynamic, long-horizon streaming video
inputs effectively, while maintaining high contextual coherence.

5.2 Offline Benchmark Results

We further evaluate our method on two long video understanding benchmarks (VideoMME][16] and
MLVU[77]) and two short video datasets (MVBench[31]] and PerceptionTest[45]). In the offline
setting, the entire video is provided as input to the MLLM. We sample video frames at 1 FPS, with a
maximum limit of 2048 frames. For videos exceeding this limit, frames are uniformly sampled across
the entire duration. As shown in Table[2] our method demonstrates superior performance on both long
and short video understanding tasks compared to recent state-of-the-art online Video MLLMs. In
addition, it outperforms leading offline models in most benchmarks, achieving 61.4% on VideoMME,
70.0% on MLVU, 70.2% on MVBench, and 73.1% on PerceptionTest. This strong performance in
offline scenarios highlights the robust generalization capability of our proposed method.

5.3 Ablations

Effectiveness of the Persistent Event Memory Forest: We replace the proposed PEMF with
several methods used in previous work. To ensure a fair comparison, we keep the visual token
budgets consistent across all methods and fine-tune each model accordingly. The ablation results



Table 3: Comparison between our proposed PEMF Table 4: Ablation study on the key components

and other commonly used memory strategies. of StreamForest.

Memory Policy OVBench OVO-Bench MLVU Model OVBench OVO-Bench MLVU
Avg Overall  M-Avg Avg Overall  M-Avg

Uniform Sampling 58.2 52.7 69.4 w/o FSTW & PEMF 58.0 52.5 51.8

First In First Out 58.7 52.9 56.7 w/o FSTW 59.1 53.7 69.4

Similarity Merge [52] 60.3 53.4 68.0 w/o PEMF 58.9 53.5 56.6

Pyramid Memory Bank [23] 60.3 53.9 68.2 w/o Event 59.4 52.6 69.1

PEMF (Ours) 60.5 55.6 70.0 Ours 60.5 55.6 70.0

are shown in Table 3] The FIFO strategy shows the worst performance. This is especially evident
on the long-video benchmark MLVU (56.7% vs. 70.0%), where the method fails due to unfiltered
discarding of historical visual features. OVBench primarily emphasizes short-term, fine-grained
spatiotemporal perception. Uniform sampling reduces the resolution of recent visual information,
which is crucial for real-time understanding (58.2% vs. 60.5% on OVBench). Similarity Merge
achieves performance comparable to our PEMF on OVBench (60.3% vs. 60.5%). However, its
limitations become clear in tasks that require persistent memory and long-horizon reasoning. On
OVO-Bench, PEMF outperforms Similarity Merge by +2.2%, and on MLVU by +2.0%. This is
because similarity-based merging may over-merge frames within local video segments, potentially
leading to spatiotemporal irregularities and the loss of local event-level representations. The pyramidal
memory bank maintains memory through frame replacement. However, fixed capacity limits its
ability to capture long-range spatiotemporal features (53.9% vs. 55.6% on OVO-Bench and 68.2% vs.
70.0 on MLVU). In contrast, our method evaluates each visual event based on event-level similarity,
merge count, and temporal distance. Then it performs memory consolidation at the event level. This
strategy supports efficient and persistent maintenance of historical visual features.

Effectiveness of the Overall Architecture: We conduct ablation studies on three key architectural
components. Specifically, we ablate the Fine-grained Spatiotemporal Window and the Persistent
Event Memory Forest, while ensuring that the total number of visual tokens remains consistent
with the original configuration. In addition, we replace event-based node construction with a
frame-based approach. As shown in Table[d] removing both modules leads to the most significant
performance drop. Using either FSTW or PEMF alone improves performance compared to the
baseline, but the best results are achieved when both components are integrated (+2.5% on OVBench,
+3.1% on OVO-Bench, and +18.2% on MLVU). This joint ablation confirms that FSTW and PEMF
provide complementary benefits. FSTW enhances real-time spatiotemporal perception near the
query timestamp, while PEMF supports efficient and persistent long-term memory, together yielding
the strongest overall performance. Moreover, event-level node construction effectively prevents
over-merging within events, enabling the compression of visual features at the level of complete
visual events rather than individual frames.

Benchmarks
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Figure 4: Performance under varying visual to-  Figure 5: Average inference time under varying
ken budgets. visual token budgets (on single A100 GPU).

Robustness to Different Visual Token Budgets: We evaluate the robustness of our method under
varying budget constraints for visual tokens, ranging from 1K to 10K. Figure [ illustrates the
performance variation on the benchmarks MLVU, VideoMME, and OVO-Bench under these settings.
Notably, under the strict constraint of only 1K visual tokens, StreamForest achieves an average



Table 5: Quantitative analysis of runtime Table 6: Runtime comparison of PEMF with other memory

and memory usage of StreamForest. mechanisms for 500 frames.
Input Frames | Memory (GB) | FLOPs (T) | Latency (s) Method Vis. Encode (s) | Mem. Update (s) | LLM infer (s) | Total (s)
64 15.8 93.1 0.776 Similarity Merge [52] 5.198 0.183 1.388 6.769
256 17.1 134.1 1.126 PMB [23] 5.203 0.451 1.381 7.035
1024 17.2 137.3 1.497 PEMF (Ours) 5218 0.172 1.394 6.784

visual compression ratio of up to 99.8% on long video benchmarks. Despite this extreme level of
compression, the model still maintains competitive performance, which strongly demonstrates the
robustness of our approach in persistently preserving long-term, event-level visual memories. We
also conduct a direct comparison between our PEMF and the Similarity Merge. The results clearly
demonstrate two core benefits of our approach. First, PEMF exhibits superior absolute performance,
consistently outperforming Similarity Merge across all token budgets with an average accuracy
improvement of 2-3%. Second, our method shows stronger resilience to extreme compression. Under
the most severe 1K token budget, PEMF retains a higher fraction of its full-budget performance,
achieving a notable +1.8% relative retention advantage on VideoMME. These experimental results
confirm that the performance gains stem from the intrinsic design of PEMF, which adaptively
consolidates event-level memory to preserve semantically salient information, thereby ensuring both
high accuracy and token efficiency under stringent resource constraints. Figure[5|presents the average
inference time of StreamForest under different budgets of visual tokens. The fast and stable inference
speed highlights the practical applicability of StreamForest.

Computational cost: We provide a quantitative analysis of the runtime and memory usage of
StreamForest. To isolate the effect of the memory mechanism, we assume that frame-level visual
features are already extracted by the vision encoder in real time. As shown in Table[5] PEMF enforces
a strict upper bound of visual tokens (8K here), ensuring that memory usage remains stable (17 GB)
regardless of the number of processed frames. Consequently, the FLOPs and inference latency do
not grow significantly even with longer streaming inputs. In addition, we compare PEMF with other
memory mechanisms, including the Pyramid Memory Bank [23] and the Similarity Merge strategy
[52]. As summarized in Table[6] the overall runtime is dominated by vision encoding (5.2s for 500
frames, ~95 FPS). The memory update of PEMF is extremely lightweight (0.172s for 500 frames),
which is negligible compared to the efficiency gains achieved by significantly reducing the total
number of visual tokens.

Impact of Training Data: Table[7] presents the impact Tuple 7: The contribution of our train-
of our training strategy that integrates both online and ing data to performance on the stream-

offline datasets. The results clearly demonstrate that com- ing video understanding benchmark.
bining OnlinelT with existing offline VideoQA datasets general refers to OnlineIT-general,
significantly improves performance on streaming video un-  hile O.drive refers to OnlinelT-drive.

derstanding benchmarks. OnlinelT is specifically designed

. . .. . . Data ODV-Bench OVBench OVO-Bench
for real-time perception and future prediction in streaming Avg Avg  Overall
scenarios, effectively mitigating hallucinations caused by  bas 56.3 539 53.5
. . . b h . 1 . ¢ 1 base + O.general 59.9 60.5 55.6
inconsistencies between historical spatiotemporal cOntext . ;o general + O.drive| 712 oy =6

and the current moment.

6 Conclusions

In this work, we have proposed StreamForest, a novel architecture for streaming video understanding
that addresses the limitations in long-term memory and fine-grained perception. By introducing
the Persistent Event Memory Forest, our method effectively manages historical visual information
through adaptive merging guided by temporal distance, content similarity, and merge count penalties.
Coupled with the Fine-grained Spatiotemporal Window, the model maintains a precise understanding
of the current scene. We also present OnlinelT, a streaming video understanding fine-tuning dataset
that mitigates spatiotemporal shift issues and enhances real-time perception and reasoning. As well
as ODV-Bench, a new benchmark tailored for real-time autonomous driving scenarios. Extensive
experiments demonstrate that StreamForest not only outperforms state-of-the-art streaming video
MLLMs but also rivals top offline video MLLMs under strict streaming input settings, showcasing its
robustness and practical value in real-time streaming video understanding applications.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our approach in the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

» The authors are encouraged to create a separate Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our paper does not include theoretical proof.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the implementation details for our experiments in our paper and
all results can be reproduced.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Our models, data and code have been released.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We list the core experimental details in the main text, and more detailed
experimental details are included in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Our experiments did not conduet statistical significance.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the computing resources needed for the experiments in the Experi-
ments section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our paper follows the NeurIPS Code of Ethics in every respect.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the potential societal impacts in the Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

19


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We follow the license of each asset we have used and cite them properly.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We deseribe the usage of LLMs in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
L.LM) for what should or should not be described.
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A Details of node’s timestamp

Each event node’s timestamp is initialized as the average time of the frames it represents (e.g., if an
event node spans frames from 10s to 14s, its timestamp is initialized as 12s). When two event nodes
are merged, the timestamp of the new node is computed as a token-count-weighted average of the
original nodes:

b = M, (5)

n; +n;

where t;, t; are the timestamps of the original event nodes, and n;, n; are the numbers of visual
tokens contained in each node, respectively. This weighted scheme prevents timestamp drift during
multiple rounds of merging, especially when the merged nodes contain significantly different amounts
of visual tokens.

B Details of Onlinel T

In this section, we provide a comprehensive description of the task categorization and data distribution
of the OnlinelT dataset. It is specifically designed to enhance the streaming video understanding
capabilities of MLLMs in terms of real-time perception, future prediction, and event continuity. As
shown in Table[8] the dataset is divided into two major components: OnlineIT-general, which targets
general streaming video understanding, and Onlinel T-drive, which focuses on autonomous driving
scenarios. Each subset is carefully designed to cover a diverse range of fine-grained perception and
reasoning tasks with high-quality annotations.

Table 8: Task types and data volumes of OnlinelT.

Dataset | Categories Task Sourse Instance Num

. . RefCOCO [67] ~43k

Spatial Grounding Allseeing-V?2 [56] ~45K

Spatial Perception Multi-round Spatial Understanding | Visual Genome [27] ~43k

Spatial Grounded VQA Allseeing-V2 [56] ~43k

Relative Spatial Localization LaSOT [13] ~19k

Charades-STA [17] ~11k

Temporal Grounding HiREST [68] ~0.4k

3 Temporal Perception QuerYD [43] ~13k

% Reasoning Temporal Localization | ActivityNet-RTL [20] ~10k

g Multi-format Temporal Grounding | InternVid-VTime [19] ~20k

E Spatiotemporal Action Localization | AVA [18] ~6k

S . . . . LaSOT [13] ~51k

Spatiotemporal Perception | Object Backward Tracking GOT [22) 58Kk

Spatiotemporal Detection LaSOT [13] ~14k

ActivityNet-Captions [26] ~10k

Dense Video Captioning ViTT [78] ~5k

Event Perception Youcook?2 [21] ~1k

Step Localization and Captioning CQIN >3] . ~9k

HiREST [68] ~0.5k

Past Memory D2-City [4] ~9k

2 Static Target Real-time Perception TTlQOk IS,OJ Aok

5 D2-City [4] ~13k

% . Localization Prediction Road-waymo [24] ~1k
N Dynamic Target - — 7

= Move Distance Prediction Road-waymo [24] ~Tk

© Event Oriented Af:mdent Re.asonmg MM-AU [14J ~6k

Risk Analysis MM-AU [14] ~Tk

B.1 OnlinelT-general

OnlinelT-general encompasses a broad scope of tasks designed to foster a comprehensive under-
standing of spatiotemporal video content in streaming settings. As shown in Table[8] the dataset is
categorized into four primary task types: spatial perception, temporal perception, spatiotemporal
perception, and event perception. To ensure diversity, robustness, and fine-grained task coverage, we
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compiled and refined data from a wide array of sources. In total, OnlinelT-general comprises over
400k instances spanning various difficulty levels and video durations.

Spatial Perception. This task type includes four subtasks. Spatial Grounding requires the model
to output the bounding box indicating the location of a queried object. Multi-round Spatial Under-
standing involves identifying the object’s spatial location through multi-turn dialogue or generating
a caption for the object within a specified spatial region. Spatial Grounded VQA combines visual
question answering with spatial localization, requiring the model to provide the bounding box of the
relevant area while answering the question. Relative Spatial Localization challenges the model to
determine the position of a specified object relative to the overall scene. These tasks emphasize spatial
grounding and reasoning, which are crucial for enhancing a model’s fine-grained spatial perception
in real-time streaming video scenarios.

Temporal Perception. This category consists of three subtasks. Temporal Grounding involves
interpreting a natural language query and identifying the start and end timestamps of the corresponding
video segment. In streaming scenarios, the model must also assess whether the described event is
currently ongoing. Reasoning Temporal Localization requires identifying the relevant time span of an
event while answering a reasoning-based question. Multi-format Temporal Localization incorporates
both single-turn and multi-turn dialogues, covering a diverse range of question formats. These
tasks focus on strengthening the MLLM’s ability to track and reason about temporal dependencies,
improving its understanding of both current and past moments in a video stream.

Spatiotemporal Perception. This task type integrates spatial and temporal reasoning and includes
three subtasks. Spatiotemporal Action Localization requires the model to predict both the spatial
location and the action being performed by a target at a specific query time. Object Backward
Tracking tasks the model with identifying the current location of an object and tracing its position at
previous time points, such as one or two seconds earlier. Spatiotemporal Detection operates over
broader temporal windows, asking whether an object visible in the current frame existed several
seconds ago or requiring the model to locate an object at a specified historical moment and determine
its duration of existence. These tasks combine spatiotemporal cues to capture actions, motion, and
transitions, allowing the model to track object trajectories and anticipate future states based on past
and present context.

Event Perception. This category includes two subtasks. Dense Video Captioning involves detecting
a sequence of events in a video and generating corresponding timestamps along with high-level
descriptions. Step Localization and Captioning differs by focusing on segmenting and narrating
key procedural steps within long-form videos. These tasks are aimed at improving the model’s
understanding of complex, multi-step events, enabling structured interpretation of dynamic sequences
in streaming video understanding.

B.2 OnlinelT-drive

OnlinelT-drive is designed specifically for the domain of streaming video understanding in au-
tonomous driving. The dataset includes 89k instances, which are organized into three major task
categories. Collectively, these tasks aim to strengthen not only real-time perception capabilities but
also the temporal reasoning and decision-making abilities of MLLMs in high-stakes and rapidly
evolving environments.

Static Target Understanding. To improve the model’s capacity for static scene understanding,
two task types are introduced. Real-time Perception requires the model to accurately perceive and
interpret the semantics and spatial attributes of traffic-related targets as they appear in real time.
Past Memory assesses the model’s ability to retain and retrieve the semantics and spatiotemporal
characteristics of traffic targets that were observed at a prior point in time. These tasks collectively
enhance the model’s capability to perceive, understand, and remember static traffic elements and
environmental context, such as road infrastructure and regulatory signage.

Dynamic Target Understanding. It includes two task types that aim to enhance predictive un-
derstanding of dynamic traffic participants. Location Prediction requires the model to estimate
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the future position of a moving target based on its historical motion trajectory. Move Distance
Prediction focuses on predicting the distance traveled between the ego vehicle and other moving
agents, given motion-related observations. These tasks are designed to improve the model’s ability to
track continuously moving objects and to anticipate future trajectories.

Event Oriented Reasoning. It is intended to foster the development of reasoning abilities necessary
for risk assessment and accident interpretation. Risk Analysis requires the model to detect potential
sources of danger in the current traffic scene and to assess the likelihood of accident occurrence.
Accident Reasoning involves post hoc analysis, where the model must infer the causes of an observed
accident and articulate plausible preventive strategies. These tasks are designed to enhance the
model’s ability to reason about causal relationships and to anticipate or reflect on traffic risks with
contextual awareness.

C Details of ODV-Bench

In this section, we detail the task taxonomy and formulation of the ODV-Bench, as well as the
dataset statistics. We categorize task scenarios based on target entities and derive key perception and
reasoning task types for each scenario in Table[9]

Table 9: Overview of task categories, their subcategories, and question templates.
Sub-task

Task Objective Scenario Query Examples

1) What is the meaning of the traffic sign at the [0.61,0.31,0.64,0.38] in the current picture?

2) What are the position coordinates of the traffic sign indicating "Pedestrian Crossing” in the current picture?
3) What is the meaning of the road board at the [0.77,0.08,0.88,0.2] in the current picture?

4) According to the road board at the [0.09,0.46,0.19,0.52] currently, if going in the left direction, where will we go,

Real-time Traffic

Percepti
erception how far is it?
5) What is the color of the traffic light at the [0.42,0.01,0.45,0.13] in the current picture? And what is its indication?
6) According to the road board at the [0.65,0.03,0.76,0.16] currently, how far is it from Fengle?
1) What were the position coordinates of the traffic sign indicating "No Left Turn” in the scene 3 seconds ago?
W e meaning of the traffc sign at the [0.39.0.13,0.41,0.17] in the scene 1 ?
Past Traffic Memory 2) What was the meaning of the traffic sign at the [0.39,0.13,0.41,0.17] in the scene 1 seconds ago

3) The traffic sign is currently located at [0.92,0.02,0.96,0.09]. What were its coordinates 2 seconds ago?

4) What was the color of the traffic light at the [0.35,0.1,0.38,0.22] in the scene 2 seconds ago?

1) According to the road board at the [0.37,0.18,0.47,0.31] in the image taken 2 seconds ago, if we wants to go to Renhe,
in which direction should we go and how far is it?

Static Target Driving Decision-Making 2) According to the road board at the [0.51,0.18,0.61,0.3] currently, if we wants to go to Libai Avenue, in which direction
should we go and how far is it?

3) According to the road board at the [0.38,0.04,0.63,0.23] currently, if we wants to turn left, which lane should we be in?
1) If we wants to go to Suzhou, which target should we pay the most attention to currently?

Provide the type and coordinates.

1) According to the road board at the [0.38,0.31,0.52,0.48], how far is it currently from Qingpu Town?

2) What is the meaning of the traffic sign at the [0.34,0.29,0.38,0.38] in the current picture?

3) What is the color of the traffic light at the [0.9,0.86,0.95,0.92] in the current picture?

1) At the current moment, has the traffic signal light indicating “turn right” ahead turned completely green?

2) At the current moment, has the traffic signal light ahead turned completely red?

1) What will be the subsequent motion state of the car currently in the [0.993, 0.615, 1.0, 0.63] location?

Key Information Extraction

Hallucination Detection

Traffic Change Detection

Action Prediction

Dynamic Target

Location Prediction

1) What will the position box of the pedestrian in the [0.544, 0.561, 0.613, 0.895] location be like in the next second?

Distance Prediction

1) Is the distance between our car and the car in the [0.488, 0.488, 0.501, 0.494] getting farther or closer?

Risk Prediction

1) Is there a high probability of traffic accidents occurring within a certain period in the future?

2) Will there be significant traffic risks within a certain period in the future?
1) There is a high risk of traffic accidents at present. Based on the environment, what types of accidents are likely to occur,
and what is the basis for this prediction?

Multi-agent

Interaction Event Risk Analysis L . . N .
4 2) There are significant traffic risks at present. Based on the environment, what are the sources of these risks

and what types of accidents might they cause?

Accident Reason Answering | 1) What is the cause of the accident in the video? What measures can be taken to avoid it?

C.1 Task Taxonomy and Formulation

We first identify the primary categories of traffic entities relevant to autonomous driving and organize
task scenarios into three groups: (1) Tasks for Static Targets, which involve the recognition and
retrieval of stationary traffic elements such as traffic signs, lights, and road indicators; (2) Tasks for
dynamic targets, which focus on behavior prediction and localization of moving entities such as
vehicles and pedestrians; and (3) Tasks for multitarget interaction events, which capture complex
interactions, risk scenarios, and accidents involving multiple agents. Based on these categories and
guided by temporal cues and the practical needs of driving, we further define fine-grained task types
to comprehensively assess model understanding in realistic online driving video scenarios.
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Q: What are the position coordinates of the traffic

RN (oo aseosh @ barosramsom
T "' o’ V.o /1,U.09,U.. 8 W14,V 10,U.
[RTP] rame () [0.54,0.54,0.73,0.83] (D) [0.87,0.0,0.94,0.11]
Perception Answer: (D)

Q: What was the meaning of the traffic sign at
the [0.0,0.39,0.05,0.5] in the scene 2 seconds ago?

[mel Past Traffic (A) Zone Speed Limit 30 (B) No U-Turn
Memory (C) No Left Turn (D) Height Restriction 3
Answer: (B)
Query time
Q: According to the traffic sign at the I EEEeEmemam 600
[0.77,0.03,0.84,0.11] currently, if we wants to go to B 4T
[DDM] Driving Zhuhai, in which direction should we go?
Decision-Making (A) Left (B) Front left
(C) Straight (D) Right L L L L R R N R R R R ]
Answer: (D) Query time

Q: If we wants to go to Wenjiang, which target should “ - 2° - - ammEE 5
we pay the most attention to currently? P P’ [ 3l L

[KIE] Key Information (A) Car, [0.28,0.13,0.52,0.97]

Extraction (B) Road board, [0.6,0.0,0.74,0.27]
(C) Road board, [0.78,0.1,0.86,0.24] Sessswas
Answer: (B) Query time

9.84 22.46

Q: What is the color of the traffic light at the - “- Ssemme=c=cennn

[0.5,0.64,0.54,0.69] in the current picture?

[HD] Hallucin?tion (A) Yellow (B) Green
Detection (C) Unable to say (D) Red
Answer: (C)

Query time

19.43

Q: At the current moment, has the traffic light
Traffic Change indicating *'turn right™ ahead turned green?

[TcD] Detection Query Time: 0.00
Answer: No (17.43s) > No (18.43s) > Yes (19.43s)
-> Yes (20.43s)
Dynamic target oriented tasks
Q: What vyill be the subsequent motion stat_e of the bus DD ae 5 an “0 -
Acti currently in the [0.35, 0.36, 0.57, 0.68] location? a
[AP] y .mf‘ (A) Crossing road (B) Turning right =
Prediction (C) Moving to the right lane (D) Moving to the left lane & r
Answer: (D) SEESEESEES
Q: What will the position box of the cyclist in the [0.2 0  EEEEEEEmEmEE
i 5, 0.53, 0.36, 0.74] location be like in the next second? ™ — = AENZ ol W
[LP] Location (A) [0.20,0.31, 0.53, 0.49] (B) [0.67, 0.52, 0.80, 0.73] il A, ‘
Prediction (C) [0.88,0.96, 1.00, 0.69] (D) [0.90, 0.04, 0.41, 0.61] .
Answer: (B)
Q: Is the distance between our car and the car in the
. [0.37, 0.60, 0.61, 0.88] getting farther or closer?
[DP] Dnst.an_ce (A) Getting closer
Prediction (B) Getting farther
Answer: (B)
Event oriented tasks for multi-agent interaction
Q: Will there be significant traffic risks within a
Risk certain period in the future?
[RP] Prediction Query Time: 0.00
Answer: No (2.80s) = No (20.00s) > Yes (27.50s)
Q: There are significant traffic risks at present. Based
on the environment, what are the sources of these risks
[RA] Risk and what types of accidents might they cause?
Analysis Answer: A vehicle crosses the road when we go straight,
and our vision is blocked. This may lead that we hit a
crossing car.
Q: What is the cause of the accident in the video?
Accident ‘What measures can be taken to avoid it?
[ARA] Reason Answer: We run red light. We should strictly abide by the
Answering traffic rules during driving. When the red light is on, we

should brake in time.

Figure 6: Examples of each task in ODV-Bench. The 12 tasks are divided into three different
perception modes for online video understanding for autonomous driving.

C.1.1 Tasks for Static Targets

Static traffic elements, such as traffic signs and road indicators, play a crucial role in driving decisions
and hazard avoidance under normal driving conditions. To evaluate the model’s ability to retrieve and
recognize these elements in online video streams, we design a dedicated set of tasks. Specifically, we
distinguish between basic perception tasks and more advanced reasoning tasks, and further refine
them based on temporal cues and practical driving needs: (1) Real-time Traffic Perception: Perceive
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and interpret the semantics and spatial locations of static traffic elements in real time; (2) Past Traffic
Memory: Recall and track the semantics and spatiotemporal states of previously observed static
elements; (3) Driving Decision-Making: make driving decisions based on the perceived information;
(4) Key Information Extraction: Identify and locate key traffic elements critical to driving decisions;
(5) Hallucination Detection: identify questions irrelevant to the existing video input; and (6) Traffic
Change Detection: detect timestamps for changes in traffic elements, such as traffic lights.

C.1.2 Tasks for Dynamic Targets

The position and behavior of other road participants, such as vehicles and pedestrians, are crucial
reference factors influencing autonomous driving decisions and safety. The ability to predict the
position and behavior of dynamic traffic objects is essential to ensure the safety of autonomous driving.
Therefore, we focus on the following three tasks to effectively evaluate this capability: (1) Action
Prediction: predicting the next action of vehicles and pedestrians based on continuous spatiotemporal
cues; (2) Distance Prediction: predicting the relative distance change between the ego-vehicle and
other vehicles based on motion information; and (3) Location Prediction: predicting the future
spatial position of dynamic traffic targets based on their movement trajectories.

C.1.3 Tasks for Multi-Target Interaction Events

To achieve safe and reliable autonomous driving, the system must be able to identify risks and analyze
accidents in complex road interaction scenarios. In the context of online video streams, this ability
involves the dynamic recognition and analysis of multi-agent interactions, as well as the reasonable
prediction of traffic risks. To evaluate this capability, we design the following three task categories:
(1) Risk Prediction: predicting the occurrence of significant traffic risks and responding proactively;
(2) Risk Analysis: detecting the sources of current traffic risks and analyzing the potential causes of
accidents; and (3) Accident Reason Answering: post-accident analysis, providing potential causes
for the incident and summarizing actionable lessons learned.

C.2 Dataset Statistics

ODV-Bench comprises 1,190 unique first-person driving video clips, encompassing a diverse range
of driving scenarios across different countries from routine driving conditions to potential hazards
and accidents. The length of videos ranges from 5 seconds to 90 seconds, effectively capturing
the diversity of real-world streaming driving experiences. The benchmark includes 6,322 question-
answer pairs, with an average query timestamp of 18.9 seconds. Specifically, the static-object-oriented
category comprises 247 videos with a total of 1,639 questions; the dynamic-object-oriented category
includes 162 videos and 2,973 questions; and the event-oriented category consists of 781 videos with
1,710 questions. All questions are in multiple-choice format, with the number of options varying
between 2 and 4 depending on the question type.

D More Implementation Details

Table 10: Parameter settings for three-stage offline pre-training.

‘ Stage-1 ‘ Stage-2 ‘ Stage-3
5 Resolution x Num. frames 384 384x8 Max 384x512
£ #Tokens 64x4 64x8 Max 16x512
§ Dataset Image & Short Video Image & Short Video Image & Short / Long Video
Q #Samples 0.6M & 0.5M 3.8M & 3.4M 0.5M & 2.8M
3 Trainable Projector Full Model Full Model
§ #parameters 16.98MB 8030.35MB 8030.35MB
- Batch Size 512 256 256
£ LR of vision encoder 1x1073 2 x1076 2 x1076
E LR of connector & LLM 1x1073 1 x107° 1 x1075

Epoch 1 1 1
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Table 11: Parameter settings for the fourth stage online fine-tuning and fifth dirve fine-tuning.
‘ Stage 4 ‘ Stage5

s Dataset Image & . Image & .

8 (Short/Long/Online)-Video (Short/Long/Online)-Video
#Samples 0.4M & 1.3M 0.2M & 0.5M

3 Trainable Projector & LLM Projector & LLM

s #parameters 7632.60MB 7632.60MB

< Resolution 384x384 384x384

2 Frames 2~512 2~512

= FPS 1 1
Real-time Perception Qouta 729 729

. Spatiotemporal Memory Quota 128 x 18 128 x 18

5 Total Visual Token Limits 8192 8192

§» Similarity Penalty Weight 0.4 0.4
Merge Count Penalty Weight 0.4 0.4
Temporal Distance Penalty Weight 0.2 0.2
Batch Size 256 256
LR 1 x107° 1 x107°
Epoch 1 1

% Optimizer AdamW AdamW

§ Weight Decay 0 0

= Warmup Ratio 0.03 0.03
LR Schedule cosine cosine
Vision Select Layer -2 -2
GPU Nums 32 32

We adopt a five-stage training strategy to systematically train the proposed StreamForest model,
aiming to fully exploit its potential for streaming video understanding tasks. In the first three stages,
we follow and extend the training paradigm of VideoChat-Flash [33]], employing offline training
to endow the model with strong capabilities in long-form video comprehension and cross-modal
alignment. These stages are designed progressively, covering diverse data scales and task objectives,
enabling the model to gradually acquire core competencies such as basic vision-language alignment,
long-term temporal modeling, and complex scene reasoning. Detailed training procedures and
hyperparameter configurations for these stages are provided in Table[I0}

In the fourth and fifth stages, we perform online fine-tuning to enhance the model’s ability to process
streaming inputs in realistic scenarios. By continuously feeding frame sequences during training,
the model learns to retain a fine-grained perception of the current moment while maintaining long-
term memory of past events, even under high compression constraints. The full configuration and
parameter settings for the online fine-tuning phase are listed in Table[TT] These stages are critical for
transitioning the model from offline understanding to real-time reasoning, significantly improving its
robustness and practical effectiveness in real-world applications.

E Full Performances

In the following parts, we present the full results and compare StreamForest with leading proprietary
and open-source models. To comprehensively evaluate the effectiveness of StreamForest, we conduct
experiments on three online video understanding benchmarks: StreamingBench, OVBench, and
OVO-Bench.

E.1 StreamingBench

Table [12] presents the full evaluation results on StreamingBench, covering 12 real-time video un-
derstanding tasks. StreamForest achieves the highest average score (77.26%) among all evaluated
models, both open-source and proprietary, while operating efficiently at 1 fps. Notably, StreamForest
outperforms leading proprietary MLLMs such as GPT-40 (73.28%) and Gemini 1.5 Pro (75.69%). It
also significantly surpasses top open-source offline models such as LLaVA-OneVision (71.12%) and
Qwen2.5-VL (73.68%), underscoring its robust multimodal representation and reasoning capabili-
ties. In the online video MLLM category, StreamForest sets a new state-of-the-art, outperforming

28



Table 12: Full evaluation results of real-time understanding tasks on StreamingBench.

Method Size #Frames ‘ Op CR CS ATP EU TR PR SU ACP CT ‘ ALL
Human - - | 89.47 9200 93.60 91.47 9565 92.52 88.00 88.75 89.74 91.30|91.46
Proprietary MLLMs

Gemini 1.5 pro [54 - Ifps | 79.02 80.47 83.54 79.67 80.00 84.74 77.78 64.23 71.95 48.70 | 75.69
GPT-40 [44 - 64 77.11 80.47 8391 76.47 70.19 8380 66.67 62.19 69.12 49.22| 73.28
Claude 3.5 Sonnet [1 - 20 7333 80.47 84.09 82.02 7539 79.53 61.11 61.79 69.32 43.09| 72.44
Open-source Offline Video MLLMs

Video-LLaMA?2 [10 7B 32 5586 5547 57.41 58.17 52.80 43.61 39.81 42.68 45.61 3523|4952
VILA-1.5 |38 8B 14 53.68 4922 7098 56.86 5342 53.89 54.63 48.78 50.14 17.62|52.32
Video-CCAM [15 4B 96 5640 57.81 6530 6275 64.60 51.40 4259 47.97 49.58 31.61|53.96
LongVA [75 7B 128 | 70.03 6328 6120 70.92 62.73 59.50 61.11 53.66 54.67 34.72|59.96
InternVL2 [9 8B 16 68.12 60.94 69.40 77.12 67.70 62.93 59.26 5325 5496 56.48|63.72
Kangaroo [40 7B 64 71.12 8438 70.66 7320 67.08 61.68 56.48 55.69 62.04 38.86 | 64.60
LLaVA-NeXT-Video [76] 32B 64 78.20 70.31 73.82 76.80 63.35 69.78 57.41 56.10 64.31 38.86 | 66.96
MiniCPM-V2.6 [65 8B 32 7193 71.09 7792 7582 64.60 6573 70.37 56.10 62.32 53.37 | 67.44
LLaVA-OneVision [28 7B 32 80.38 74.22 76.03 80.72 72.67 71.65 67.59 6545 6572 45.08 | 71.12
Qwen2.5-VL [2] 7B Ifps | 7832 8047 78.86 80.45 76.73 78.50 79.63 6341 66.19 53.19|73.68
Open-source Online Video MLLMs

Flash-VStream [72] 7B - 25.89 43.57 2491 2387 27.33 13.08 18.52 25.20 23.87 48.70|23.23
VideoLLM-online [ 8B 2fps |39.07 40.06 34.49 31.05 45.96 3240 3148 34.16 4249 27.89 3599
Dispider [47 7B Ifps | 7492 7553 74.10 73.08 74.44 59.92 76.14 6291 62.16 45.80 | 67.63
StreamForest(Ours) 7B Ifps | 83.11 82.81 82.65 84.26 77.50 78.19 76.85 69.11 75.64 54.40|77.26

open-source counterparts Dispider (67.63%) by a wide margin. Its consistent accuracy and real-time
efficiency demonstrate a strong potential for practical deployment in streaming applications.

E.2 OVBench

Table 13: Full evaluation results on OVBench.

Task Name ‘ FP THV PM SP STP TP ‘
Subset Name Siz2 | AA GSP MP AP SV OP AR PR TR AL OP AT OT AS SL ops|AYC
Proprietary MLLMs

Gemini-1.5-Flash [54] - ‘ 714 536 219 565 60.8 406 367 479 625 323 375 870 500 833 223 469 ‘ 50.7
Open-source Offline Video MLLMs

InternVL2 [9 7B | 52.6 60.2 27.6 575 520 585 388 67.1 583 381 313 874 370 754 314 59 | 487
InternVL2 [9 4B | 577 57.0 144 592 494 600 303 61.8 463 309 20.1 830 323 707 294 34 | 441
LLaMA-VID [35 7B | 43.6 509 19.6 64.0 475 468 294 489 512 319 112 757 248 59.1 260 400 | 419
LLaVA-Onevision [28] 7B | 68.0 62.7 359 584 503 465 294 60.7 580 43.1 142 865 49.7 707 28.1 302 | 495
LongVA [75 7B | 641 565 295 549 519 348 353 556 577 316 34 674 447 800 267 4.0 | 436
MiniCPM-V2.6 [65 7B | 333 359 150 592 508 55.1 250 374 417 266 11.8 983 363 66.1 264 62 | 39.1
Qwen2-VL [55]) 7B | 603 66.1 22.1 549 515 51.1 378 644 693 353 285 97.0 494 65.1 308 11.7 | 49.7
LITA [20] 7B | 192 245 199 408 489 249 3.1 273 64 69 146 352 239 274 05 34 | 204
TimeChat [48 7B 77 153 187 206 157 117 9.1 147 98 75 195 139 103 93 101 10.8 | 12.8
VTimeLLM [19] 7B | 372 234 150 64.8 438 532 259 388 325 259 204 409 6.8 484 435 8.6 33.1
Open-source Online Video MLLMs

VideoLLM-Online [5 7B 0 1.8 209 52 59 326 0 23 267 06 266 09 199 09 1.7 83 9.6
MovieChat [52] 7B | 23.1 275 23,6 584 439 403 256 31.1 239 269 39.6 244 289 293 255 219 | 309
Flash-Vstream [72] 7B | 269 37.6 239 60.1 419 400 234 353 26.1 247 288 270 214 298 256 268 | 31.2
Videochat-Online [23 4B | 64.1 597 16.6 63.1 583 628 422 544 706 54.1 248 887 485 73.0 259 717 | 549

StreamForest (Ours) 7B | 692 60.0 344 69.1 540 729 509 649 822 56.6 879 952 612 642 30.6 926 | 60.5

Table[T3]shows the comprehensive results on OVBench, encompassing six diverse task categories
(FP, THV, PM, SP, STP, TP). StreamForest achieves the top average score of 60.5%, surpassing all
open-source online and offline Video MLLM:s. It significantly outperforms other open-source online
models, e.g., Videochat-Online (54.9%) and Flash-VStream (31.2%), as well as offline models such
as Qwen2-VL (49.7%) and LLaVA-OneVision (49.5%). Compared to Gemini-1.5-Flash (50.7%),
StreamForest delivers nearly 10 points higher accuracy on average, affirming its capability to balance
real-time efficiency with high performance.

E.3 OVO-Bench

Table [T4] details performance on OVO-Bench, where StreamForest again leads among open-source
online video MLLMs with an overall average of 55.57%, outperforming Dispidier-7B (41.78%) and
Flash-VStream-7B (33.15%). It excels in critical areas such as real-time visual perception (61.20%),
backward tracing (52.02%), and forward active responding (53.49%), showcasing robust temporal
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Table 14: Detailed evaluation results on OVO-Bench.

‘ Real-Time Visual Perception ‘ Backward Tracing ‘ Forward Active Responding ‘
Model \#F“‘me’ |OCR ACR ATR STU FPD OIR | Avg. | EPM ASI HLD | Avg. | REC SSR  CRR | Avg. \O"m” Ave.

Human |- 9396 9257 9483 9270 91.09 94.02 | 93.20 | 9259 93.02 91.37 | 92.33 | 9548 89.67 9356 | 92.90 |  92.81
Proprietary MLLMs

Gemini 1.5 Pro [54] Ifps | 8591 6697 7931 5843 6337 61.96 | 6932 | 58.59 7635 5264 | 62.54 | 3553 7424 61.67 | 57.15 63.00
GPT-40 64 69.80 6422 7155 5112 7030 59.78 | 6446 | 57.91 7568 48.66 | 60.75 | 27.58 7321 59.40 | 53.40 59.54
Open-source Offline Video MLLMs

LLaVA-Video-7B 64 69.80 59.63 6638 50.56 7228 6141 | 6334 | 5118 64.19 9.68 | 41.68 | 3410 67.57 60.83 | 54.17 53.06
LLaVA-OneVision-7B 64 67.11 5872 69.83 4944 7129 60.33 | 6279 | 52.53 5878 23.66 | 44.99 | 2479 6693 60.83 | 50.85 52.88
Qwen2-VL-7B (53] 64 69.13 5321 6379 50.56 6634 60.87 | 60.65 | 44.44 66.89 34.41 | 4858 | 30.09 65.66 50.83 | 48.86 52.70
InternVL2-8B [0 64 6846 5872 68.97 4494 6733 5598 | 60.73 | 4310 6149 27.41 | 4400 | 2579 5755 5292 | 45.42 50.05
LongVU-7B {50] Ifps | 5570 4954 5948 4831 68.32 63.04 | 5740 | 43.10 6622 9.14 | 39.49 | 1662 69.00 60.00 | 48.54 48.48
Open-source Online Video MLLMs

VideoLLM-online-8B 2ps | 805 2385 1207 1404 4554 2120|2079 | 2222 1880 1218 | 1773 | - - - - 12.84
Flash-VStream-7B Ifps | 2550 3211 2931 3371 2970 28.80 | 29.86 | 36.36 3378 591 | 2535 | 544 6725 60.00 | 44.23 33.15
Dispider-7B Ifps | 5772 4954 6207 4494 6139 51.63 | 54.55 | 4848 5541 430 | 36.06 | 1805 37.36 4875 | 34.72 41.78
StreamForest-7B (Ours) | 1fps | 68.46 5321 7155 4775 6535 60.87 | 61.20 | 58.92 64.86 3226 | 52.02 | 32.81 7059 57.08 | 5349 |  55.57

reasoning across both past and future events. These results position StreamForest as a practical and
powerful solution for real-time video-language understanding.

F Qualitative Comparison

¥ -
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00:03 00:15 01:41 Video Stream
N N N N Why can't the people in the video leave their Why did the criminals in the video snatch the name
2
’ User ) Ui bt (0 G ey R e J jseals at this moment? /. tags of the staff members?

‘ j Because the text 'LOCKED' is displayed on the control panel,]

J The criminals hed th teal identities.
indicating a locked system or door. Y e criminals snatched the name tags to steal identif \esJ

%} StreamForest ) The person is using a tablet computer.

. N T o e e The people can't leave their seats because they are operating The criminals in the video snatched name tags from the
@ Dispider & 8 J the controls of a spacecraft or a similar high-tech machine. staff because they were fleeing.

00:50 01:10 01:29 01:30 Video Stream
Point out the location of person wearing When did Mr. Bean start to copy his deskmate's
‘ User the white shirt at this moment. test paper?
) - ) The given query happens in 71.3 - 89.4 seconds. During this |
The given object is located in [0.76, 0.28, 0.91, 0.53]
@' StreamForest )\ 8 ) L ] } ) time, he is seen trying to copy his neighbor's test paper.
R R X The person wearing the white shirt is at a different location, Mr. Bean started to copy his deskmate's test paper after the
@ Dispider possibly a hospital or clinic. exam had ended.
00:01 00:05 00:17 Reaccident 1 00:25 Video Stream

[ Based on the current trafﬁcw

Is there a danger that could What caused the accident and
x User . conditions, can | go straight?

[ m—— A o
g occur in the future? . how can we avoid it?

Str Fi (Ves ‘ ‘ No. Yes, a vehicle turns right across the We are in distracted driving. We should not answer or make phone
ﬁ’ treamForest 4 J [ /,_road and approaches us. / calls, eat or smoke while riding, sleep, and drive in fatigue.

o No, you should stop because Yes. The traffic light is red and there The video shows that accidents can happen due to sudden stops
@ Dispider the traffic light i red. ne are many cars waiting at the light. and collisions with other vehicles. To avoid them, we should drive at

a safe speed, keep a safe distance from other cars.

Figure 7: Qualitative comparison between StreamForest and other method.

Figure[/| presents a qualitative comparison between our model and other method. In the top example,
StreamForest demonstrates a superior ability to capture fine-grained visual details and maintain
persistent memory over time, enabling more coherent and informed inferences. The middle example
highlights StreamForest’s strong spatiotemporal grounding capabilities, accurately localizing objects
and events across space and time. The bottom example illustrates the model’s potential in intelligent
driving scenarios, where it delivers precise real-time perception and supports future predictions based
on both historical and current observations.
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G More Ablations
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Figure 8: Ablation experiments of three penalty weights.

To evaluate the effect of each penalty on the effectiveness of long-term memory, we conducted
ablation studies by varying the weights of the similarity penalty, merge count penalty, and temporal
distance penalty. The results are presented in Figure 8] which reports the accuracy of both VideoMME
and OVBench under different settings. It demonstrates that a balanced combination of penalty weights
is more effective. Specifically, 0.4 for both similarity and merge count penalties, and 0.2 for the
temporal distance penalty yield the most effective memory construction. This configuration achieves
a favorable trade-off between preserving semantic coherence, maintaining diversity in memory
representation, and ensuring reasonable temporal continuity.

H Efficiency of Multi-round Inference

We evaluated StreamForest’s multi-round response efficiency by streaming a 600-second video to the
model at a constant rate of 1 FPS. To isolate processing throughput from text generation latency, the
model was constrained to produce a single-token response for each frame. Under this rigorous setting,
StreamForest achieved an average processing speed of 9.9 FPS, which is competitive with VideoLLM-
Online (12.3 FPS), a model renowned for its real-time capabilities. Crucially, StreamForest delivers
this high efficiency without compromising its substantial superiority in reasoning accuracy over
VideoLLM-Online. In stark contrast, Qwen2-VL, another model that also prioritizes reasoning
accuracy, demonstrated severe performance bottlenecks. Its processing speed dropped below 1 FPS
on a video merely two minutes long, and it encountered out-of-memory (OOM) errors on a single
A100-80G GPU after processing only 79 frames.

Table 15: Comparison of multi-round inference speed.

Method | Resolution  FPS
Qwen2.5-VL 384 OOM
VideoLLM-Online 384 123
StreamForest (1k) 384 9.9

I Discussions

I.1 Limitations

Despite the effectiveness of our proposed method, several limitations remain that warrant further
investigation. Our approach can only rely on computing inter-frame similarity to determine moments
when the model should proactively produce outputs. Specifically, the method identifies local minima
in similarity scores to detect transitions. However, this technique primarily captures coarse scene
changes and often fails to accurately detect true semantic event boundaries. To address this limitation,
one possible solution is to incorporate a lightweight MLLM as an auxiliary reminder module. This
module could provide semantic-level guidance to support more precise and context-aware output
decisions. These limitations suggest promising directions for future work.

31



I.2 Broader Impacts

Our proposed method shows strong potential for real-world streaming video understanding, especially
in critical applications like autonomous driving. With domain-specific fine-tuning, it can be adapted
to various downstream tasks that require continuous visual processing. As shown in the main text, the
model performs well in autonomous driving scenarios, where accurate and timely perception is crucial
for safety and decision-making. It can efficiently process live video streams while preserving fine-
grained perception and long-term contextual memory. This capability is particularly valuable under
limited computational resources, helping improve the reliability and responsiveness of intelligent
systems in dynamic environments.

However, as with many vision-language models, potential negative social impacts must also be
considered. If deployed without proper safeguards, models may inherit or amplify biases present in
training data, leading to unreliable behavior. For instance, performance disparities across different
environments or conditions (e.g., weather, lighting, or geographic location) could affect the robustness
of StreamForest. To mitigate such risks, we should explore techniques for enhancing interpretability
and controllability of streaming video models in safety contexts.
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