
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROVABLY TRACKING EQUIVALENT MECHANISTIC
INTERPRETATIONS ACROSS NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Mechanistic interpretability (MI) is an emerging framework for interpreting
neural networks. Given a task and model, MI aims to discover a succinct algo-
rithmic process, an interpretation, that explains the model’s decision process on
that task. However, MI is difficult to scale and generalize. This stems in part from
two key challenges: the lack of a well-defined notion of a valid interpretation;
and, the ad hoc nature of generating and searching for such explanations. In this
paper, we address these challenges by formally defining and studying the problem
of interpretive equivalence: determining whether two different models share a
common interpretation, without requiring an explicit description of what that inter-
pretation is. At the core of our approach, we propose and formalize the principle
that two interpretations of a model are (approximately) equivalent if and only if
all of their possible implementations are also (approximately) equivalent. We
develop tractable algorithms to estimate interpretive equivalence and case study
their use on Transformer-based models. To analyze our algorithms, we introduce
necessary and sufficient conditions for interpretive equivalence grounded in the
similarity of their neural representations. As a result, we provide the first theoretical
guarantees that simultaneously relate a model’s algorithmic interpretations, circuits,
and representations. Our framework lays a foundation for the development of more
rigorous evaluation methods of MI and automated, generalizable interpretation
discovery methods.

1 INTRODUCTION

Ensuring the interpretability of deep neural networks has become central to concerns around AI safety
and trustworthiness. Among the many proposed interpretation methods, mechanistic interpretability
(MI) has recently emerged as a promising post-hoc interpretability framework1 (Olah et al., 2020a;
Elhage et al., 2021; Wang et al., 2022, inter alia). MI generally operates in two stages: (a) identifying
a minimal subset of the model’s computational graph that drives functional behavior; and (b) attaching
algorithmic interpretations to each of the recovered mechanisms. In contrast to other attribution-
based interpretability methods, MI yields a concrete, human-interpretable algorithmic process that
faithfully describes model behavior (Bereska and Gavves, 2024). The resulting processes can
be used to demystify training dynamics (Nanda et al., 2022) and better understand the model’s
inductive biases (Geva et al., 2021; Cabannes et al., 2024, inter alia) which further guide model
improvements (Meng et al., 2022; McLeish et al., 2024).

For a fixed task and network, MI approaches can be broadly categorized as either top-down or
bottom-up (Vilas et al., 2024). Top-down methods (b → a) propose a set of high-level candidate
algorithms for the task, and then attempt to align these algorithms to the network. While the alignment
step can be automated and made statistically rigorous, proposing candidate algorithms is highly ad
hoc. For complex tasks, it is often unclear how to even formulate plausible candidates. Additionally,
alignment with a proposed algorithm is only a necessary condition for interpretability, and does not
guarantee that the model truly implements the intended algorithm (Geiger et al., 2025; Wu et al., 2023;
Geiger et al., 2024; Sun et al., 2025). In contrast, bottom-up methods (a → b) first isolate mechanisms-
of-interest within the model (called circuits) then assign interpretations to these circuits (Olah et al.,

1An interpretability method that does not require any retraining. These methods can be applied in parallel
with inference and does not compromise the model’s original performance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: A high-level overview of our algorithmic approach to interpretive equivalence. Consider
models hθ1 ,hθ2 that correspond to possibly unknown interpretations A1,A2 (Left). To determine
whether models hθ1 and hθ2 are interpretive equivalent, we propose a two-step procedure. First,
we sample another model h?

θ
that also has interpretation A1 (Center). Second, we compare the

representation similarity (drepr) between hθ1 ,h
?
θ

and h?
θ
,hθ2 (Right). Intuitively, if models hθ1 and hθ2

are interpretive equivalent (i.e., A1 = A2), then averaged over all implementations h?
θ

, we should not
be able to differentiate drepr(hθ1 ,h

?
θ
) and drepr(h?θ ,hθ2).

2020a). Although circuit discovery can be rigorously formulated as an optimization problem, creating
and assigning meaningful interpretations to circuits typically demands significant manual effort.
Moreover, Méloux et al. (2025) has recently shown that neither top-down nor bottom-up approaches
are identifiable: there exists a many-to-many relationship between high-level algorithms and circuits.
This ambiguity makes it hard to verify whether a given interpretation is complete and faithful to the
model (Jacovi and Goldberg, 2020; Chan et al., 2022). We present a detailed discussion of the related
literature in Appendix C.

In this paper, we define and study a relaxed, subproblem of MI: interpretive equivalence. Concretely,
we seek to determine whether two models implement the same high-level algorithm, without requiring
an explicit description of what that algorithm is. Understanding interpretive equivalence can bridge
the gap between bottom-up and top-down approaches by reconciling their respective limitations. We
illustrate this through two examples:
Example 1.1 (Reduction to Simpler Models). MI’s scalability to large models is limited by its
prohibitive computational costs (Goldowsky-Dill et al., 2023; Adolfi et al., 2025). If a small model
can be shown to be interpretively equivalent to a large one, then MI analyses on the small model can
reveal the mechanisms underlying the larger model.
Example 1.2 (Reduction to Simpler Tasks). MI’s scope is limited by the significant human ingenuity
required for both top-down and bottom-up approaches (Nanda et al., 2022; Zhong et al., 2023). For
this reason, interpreting complex tasks is at least as hard as manually designing an algorithm to
solve them. Interpretive equivalence offers a way to address this by decomposing complex tasks into
simpler, approximate interpretive equivalent ones.
At the core of our approach (Figure 1), we propose the principle that two high-level algorithms
(henceforth termed interpretations2) are equivalent if and only if all of their implementations are
also equivalent. Based on this principle, we design tractable algorithms to detect equivalence by
measuring representation similarity. We ground these contributions theoretically by proving that
representation similarity is both sufficient and necessary to characterize interpretive equivalence.
Overall, our contributions span both practice and theory:

2We distinguish between an algorithm and an interpretation. Colloquially, an algorithm is a description
independent of any particular level of computational abstraction. However, we show in the coming sections that
such algorithms are not well-defined. Thus, we opt for the terminology interpretation to signify a dependence on
the level of computational abstraction.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Practice

(P.i) We propose an algorithm to compute interpretive equivalence of two models through
their representation similarity without interpreting them (Section 2 and Algorithm 1).

(P.ii) We show that Algorithm 1 is well-calibrated on a simple task where the ground truth is
known (Section 3.1).

(P.iii) We demonstrate the potential of Algorithm 1 to find reductions from complex models
and tasks to simpler ones as described in Examples 1.1 and 1.2 (Sections 3.2 and 3.3).

Theory

(T.i) We specialize the theory of causal abstraction to define interpretations, circuits, repre-
sentations, and interpretive equivalence (Sections 4 and 5).

(T.ii) We prove that representation similarity is a necessary and sufficient approximation to
interpretive equivalence, grounding our algorithmic contributions (Section 6).

(T.iii) Other byproducts of our framework: a metric to quantify interpretation quality (Sec-
tion 5), insight into interventions as a covering over implementation sets (Appendix G).

2 INTERPRETIVE EQUIVALENCE THROUGH AMBIGUOUS REPRESENTATIONS

We define two mechanistic interpretations A1,A2 as equivalent if their implementations are equivalent.
In other words, any model that can be interpreted by A1 must also by interpreted by A2 and vice
versa. While we formally define and justify this principle later, we first argue its practicality and
offer an algorithm to approximate this equivalence (Algorithm 1). To do so, we need to clarify two
processes:

1. How do we enumerate the implementations of A1,A2? (Section 2.1)
2. How do we measure the distance between these sets of implementations? (Section 2.2)

2.1 ENUMERATING IMPLEMENTATIONS THROUGH INTERVENTIONS

We call any model h that has a mechanistic interpretation A an implementation of A (Definition A.7).
We take a circuits approach to generating implementations. Bottom-up approaches isolate circuits
through targeted causal interventions. These interventions identify unimportant computational compo-
nents like attention heads or even individual neurons that are unrelated to the model’s behavior (Conmy
et al., 2023; Goldowsky-Dill et al., 2023; Bhaskar et al., 2024). Crucially, a model’s mechanistic
interpretations are invariant under perturbation or ablation of these unimportant components. Dually,
each time we find and ablate such a component, we yield a “new” model that is causally equivalent to
the original one (and as a corollary, shares the same interpretation). We take this inverse perspective to
generating implementations—adding, removing, or modifying these unimportant components (Geiger
et al., 2024; Gupta et al., 2024). This procedure is described in GETIMPL (Algorithm 1).

2.2 REPRESENTATION SIMILARITY

We identify each implementation with their hidden representation spaces (GETREPRS in Algorithm 1).
Given any two implementations, we use the linear representation similarity between them to measure
their distance (drepr defined in Definition F.1). Specifically, we measure the extent to which one
representation can be reconstructed through a linear transformation of the other. Suppose that the
implementation sets of A1,A2 were equal. Let h1,h?1 be implementations sampled3 from A1 and h2 be
an implementation sampled from A2. By symmetry, P[drepr(h1,h?1)< drepr(h2,h?1)] =P[drepr(h1,h?1)>
drepr(h2,h?1)]. In this way, the implementations of A1,A2 are “ambiguous” under drepr. We present
this metric as REPRDIST (Algorithm 1). And, combining these concepts, we yield our approximation
of interpretive equivalence: AMBIGUITY.

3For the sake of argument, suppose i.i.d. sampling.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Ambiguity between two models approximates the probability that two models are
interpretive equivalent. Ambiguity between models is high when representation similarity cannot tell
the difference between them, and low otherwise. drepr(hθ1 ,hθ2) measures the linear representation
similarity between the representations of hθ1 ,hθ2 (Definition F.1 and Sucholutsky et al. 2023).
GETREPRS retrieves the hidden representations of a given model.

1 procedure AMBIGUITY(hθ1 ,hθ2 ,n)
2 s← 0
3 for i← 1 . . .n do
4 hθ?

1
← GETIMPL(hθ1)

5 hθ?
2
← GETIMPL(hθ2)

6 s← s+REPRDIST(hθ1 ,h
?
θ1
,hθ2)

7 s← s+REPRDIST(hθ2 ,h
?
θ2
,hθ1)

return 1−|s/n−1|
8
9 procedure REPRDIST(hθ1 ,hθ2 ,hθ3)

10 for i← 1,2,3 do
11 Ri← GETREPRS(hθi)

12 if drepr(R1,R2)≤ drepr(R1,R3) then
13 return 1
14 return 0

1 procedure GETIMPL(hθ)
2 N ← components of hθ whose abla-

tion preserves performance
3 P← components of hθ whose abla-

tion degrades performance
4 Apply orthonormal transformations

to a subset of P uniformly
5 Perturb a subset of N uniformly with

Gaussian noise
6 Delete a subset of N uniformly
7 Check that hθ maintains performance
8 return hθ

3 EXPERIMENTS

Herein, we demonstrate three different applications of Algorithm 1. First, on a toy task where
ground-truth interpretations are known, we show that AMBIGUITY is well-calibrated (Section 3.1).
Next, we apply our framework to pre-trained language models of various sizes (GPT2 (Radford
et al., 2019) and Pythia (Biderman et al., 2023)), and demonstrate that AMBIGUITY can distinguish
between models that exhibit fine-grained algorithmic differences (Section 3.2). Lastly, we show how
AMBIGUITY can be used to relate a complex task like next-token prediction to a simpler one such as
parts-of-speech identification (Section 3.3).

3.1 CALIBRATING AMBIGUITY

We consider the task of n-Permutation Detection: determining whether a given sequence of n
numbers is a permutation of the elements 1, . . . ,n. For example, [3, 1, 2] → True and [1, 2,
2] → False. The task is sufficiently rich to support different interpretations, yet simple enough
that solutions can be hard-coded as Transformers. We manually devise six different interpretations
to solve this task whose procedures we detail in Appendix D. Roughly, their approaches can be
organized into two buckets:

1. Sorting-Based (Interpretations 1-4). First sort the list of numbers by ascending (or descending)
order, then directly check whether the resulting sequence is equal to 1,2, . . . ,n (or n,n−1, . . . ,1).

2. Counting-Based (Interpretations 5-6). Exploit the fact that the vocabulary contains exactly n
numbers and use the pigeonhole principle to detect duplicates in the given sequence.

We fix n = 10. Using the Restricted Access Sequence Processing Language (RASP), we hard-code
six bidirectional Transformers (of various architectures) to respectively implement each interpreta-
tion (Weiss et al., 2021). Then, for each hard-coded RASP Transformer, we leverage a technique
of Gupta et al.’s (2024) to generate 100 model variants (with different architectures and weight
configurations). These variants are constrained to maintain the same underlying interpretation as
their hard-coded counterpart. Thus, we yield 6× 100 models that all achieve 96%+ accuracy on
10-permutation detection. We now directly compute AMBIGUITY (Algorithm 1) between pairs of
models from our generated implementation sets. We perform hypothesis testing by bootstrapping a
95% confidence interval over the final output4. The results are shown in Figure 2(Left).

4Here, H0 : the two models do not the same interpretation; and our alternate, H1 : the two models share the
same interpretations. We compute a Wald confidence interval with 20 straps.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: (Left) Average ambiguity between models associated with different interpretations. �
indicates models have significantly different interpretations; whereas � indicates that models have
statistically indistinguishable interpretations. (Center) Ambiguity between GPT2 and Pythia family
of models on the IOI task. groups models based on their actual interpretive differences observed
by Tigges et al. (2024); Merullo et al. (2024). (Right) Ambiguity between GPT2 on next-token
prediction (for different token types: all tokens, articles, prepositions, punctuation, parentheses, and
terminal punctuation) vs. GPT2 on in-context parts-of-speech identification.

Along the diagonals of Figure 2(Left), we see significantly high ambiguity. So when models share
the same interpretation, representations across their implementation sets are “ambiguous” (i.e. ap-
proximately equivalent under linear transformation). On the other hand, off-diagonal entries admit
low ambiguity. Thus, representation similarity across implementation sets as a whole can identify
individual interpretations. These empirical findings complement our bounds in Main Results 1 and
2 in that they show AMBIGUITY is both necessary and sufficient to detect interpretive equivalence.
Perhaps even more interesting, we observe a breaking row/column in Figure 2, where Interpretations
1-4 (the 4×4 square on the top-left) have an average within-group ambiguity of 0.43. This is larger
compared to the average across-group ambiguity (rows/columns 5-6) with Interpretations 5-6: 0.01.
These groupings corresponds to our algorithmic buckets above and suggests that AMBIGUITY could
also be adopted as a graded notion to characterize interpretive differences.

3.2 REDUCTION OF COMPLEX MODELS

We now consider the task of indirect-object identification (IOI) (Wang et al., 2022): given
a sentence like “When John and Mary went to the store, John gave a drink to ” the
model should complete the sentence with “Mary.” IOI can be solved algorithmically, as such it
has been studied across many models: GPT2-small/medium and the Pythia class of models. While
Merullo et al. (2024) find that GPT2-small and medium use the same circuit, Tigges et al. (2024) find
that Pythia models across all scales use a consistent but different circuit from GPT2 models (Merullo
et al. 2024, Appendix C; Tigges et al. 2024: Appendix D). We use these differences as a practical
testbed for AMBIGUITY and explore how AMBIGUITY generalizes across both model families and
scales (85M to 2.9B parameters).

For each model, we generate 10 parallel implementations by intervening on the components found
not to be in the IOI circuit (identified by both Tigges et al. 2024 and Merullo et al. 2024). Then,
we apply AMBIGUITY, each time computing representation similarity with 200 IOI sentences. The
results are shown in Figure 2(Center). We find that the Pythia models show high within-group
ambiguity across different scales. GPT2 models exhibit similar behavior. This supports our intuition
that interpretive equivalence could be leveraged to reduce the interpretations of complex models into
interpretations from smaller ones (Example 1.1). For example, our results affirm that Pythia-2.8b is
interpretive equivalent to Pythia-160M with respect to the IOI task; thus, a priori, it suffices to only
interpret the latter. Indeed, Tigges et al. (2024) finds both models to share the same interpretation.
On average, across-group ambiguity between Pythia and GPT2 is significantly lower (0.13 versus
0.73 and 0.92) which supports our previous insight that representation similarity provides increased
identifiability over interpretations. However, it is unclear why Pythia-160M and 410M show increased

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ambiguity with GPT2-medium and small, respectively; perhaps, subtle similarities in name-mover
heads representations could explain this (Tigges et al. 2024, Section 3.2).

3.3 REDUCTION OF COMPLEX TASKS

Interpreting next-token prediction poses a challenge for both bottom-up and top-down MI approaches.
For top-down approaches writing down a symbolic, end-to-end algorithm for next-token prediction
is difficult. Bottom-up approaches face the opposite problem: circuit discovery may identify the
entire model as important, failing to reduce the search space of interpretations. We show here that
interpretive equivalence may offer some first-steps towards mechanistically understanding next-token
prediction. Concretely, we identify sets of next-tokens for which GPT2’s prediction process is
interpretive similar to parts-of-speech identification5 (POS).

POS is a largely syntactic task since it focuses solely on the grammatical role of words rather than
their meaning in-context. Thus, we expect POS to be interpretive equivalent to the prediction of
“syntactic tokens.” For computational ease, we conduct all experiments on GPT2. To discover the
POS circuit in GPT2, we apply a method of Todd et al.’s (2024). We detail this process, along with
the circuit we discover in Appendix D. We construct a dataset for next-token prediction by uniformly
sampling 100 sentences from the C4 dataset (Raffel et al., 2020).

We collate tokens from our next-token prediction sentences into disjoint groups of interest. For each
group, we apply AMBIGUITY and compute representation similarity between our extracted POS
circuit and the last-token hidden representation of the model. The results across different token
groups are shown in Figure 2(Right).

As a control, we first consider the group of all tokens. We observe a nonzero ambiguity of 0.48
with POS. Next, we consider token groups articles and prepositions. Prediction of these tokens
typically appear mid-sentence and depend heavily on semantics6. Thus, we expect that predicting
these tokens should yield no more interpretive equivalence to POS than the control. Indeed, we find
POS ambiguity for articles and prepositions to be statistically indistinguishable from the all-token
average.

We now heuristically identify two sets of “syntactic tokens:”

1. Terminal Punctuation like “.”, “?”, or “!” mark the end of a sentence. Accurate prediction of
these tokens intuitively requires syntactic identification of subject-verb-object relationships and
(in)dependent clauses.

2. Closing Brackets/Quotations like “)” can be implemented as skip-trigrams in one-layer attention
Transformers (Elhage et al., 2021). So, we suspect that understanding sentence pragmatics is not
needed for their prediction.

We find that both groups yield significantly higher ambiguity compared our all-token control with
medium effect size (measured through Cohen’s d). This stands in contrast to punctuation generally
and opening brackets/quotations. Although these groups admit significantly higher ambiguity with
POS, we observe a small effect size (d < 0.3). We hypothesize that the placement of these tokens rely
on more semantic processes. For example, commas may be placed for emphasis or to add dependent
clauses rather than strictly maintain grammatical consistency.

4 REPRESENTATIONS, CIRCUITS, INTERPRETATIONS AS CAUSAL MODELS

We now present our framework of interpretive equivalence. This theoretically grounds our algorithmic
contributions in Section 2. Whenever possible, we present an informal treatment and defer the precise,
mathematical definitions to Appendix A where we also have a full glossary. Please also refer to
Appendix B for a summary of our notations.

5Given tree:noun; run:verb; quick:adverb; fluffy: the model needs to output adjective.
6Consider the fragment: “The students are looking [mask]” the next prepositions—“at”, “into”, or “for”—

are all syntactically sound, but they are semantically ambiguous without further context. Articles are similar:
consider, “I need to buy [mask] car.” [mask] could be either the indefinite (“a”) or definite (“the”), both
syntactically valid but the choice depends on semantic factors.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Roadmap

1. In Section 4, we formally define circuits (Definition 4.2), representations (Definition 4.3),
and interpretations (Definition 4.4).

2. In Section 5, we define a criterion for when two interpretations can be considered equivalent:
interpretive equivalence. We also introdue interpretive compression, a metric quantifying
the quality of an interpretation.

3. In Section 6, we prove our main results that representation similarity is both sufficient and
necessary to describe interpretive equivalence (Main Results 1 and 2) and further show that
AMBIGUITY is closely related to these quantities (Main Result 3).

Throughout the following sections, let Σ? be all finite strings formed from alphabet Σ7. We define a
language model to be a function hθ : Σ?→ Rd , parameterized by θ ∈ Rk, for d,k ∈ Z+ Generally,
we are interested in hθ ’s behavior on a subset of inputs S⊂ Σ?. Thus, we term S a task.

Definition 4.1 (Deterministic Causal Model, Geiger et al. 2025). A causal model with m components
is a quadruple (V,U,F,�) where V = (v1, . . . ,vm) is the set of hidden variables, U is an input
variable, and � a partial order of V. F= { f1, . . . , fm} is a set of functions where each fk maps the
values of vk’s parents (as determined by �) to the value of vk.

A causal model describes a computational graph where hidden variables V (nodes) store latent
computation results computed by the functions in F (edges). For an input U ← u, we denote VF(u)
as the unique solution: the values of all hidden variables as determined by F (Peters et al., 2017). And,
let vF

i (u) be the solution of vi ∈ V. Next, we define circuits. For some task S, a circuit describes the
computational pathways used by the model to produce hθ (S).

Definition 4.2 (Circuit). An m-circuit of hθ on S is a causal graph (V,U,F,�) with m components
that satisfies: (1) U is S-valued; (2) Hidden variables are real-valued; (3) There exists a hidden
variable vout such that vF

out(S) = hθ (S).

There is a natural tradeoff between the complexity of V and the complexity of operators in F. On
one extreme, any blackbox model hθ can be expressed as a trivial causal model with one hidden
variable: v1 , hθ (U). On the other, each v ∈ V could be a single neuron (thus |V| ∼ 109), F
consist of dot-products. Thus, intuitively, V determines the granularity of abstraction of the circuit.
Representations of a neural network are sequence of activation spaces. Increasingly, representations
have been understood to encode concepts which deep networks then iteratively refine (Jastrzebski et al.,
2018). We view representations as abstrations of circuits and formally define them through causal
abstraction (Beckers and Halpern, 2019; Geiger et al., 2025). Informally, causal model K? abstracts
K when there exists a surjective map between their variables that preserves K’s causal relationships.
We call any map that admits this abstraction an alignment from K to K? (Definition A.4).

Definition 4.3 (Representations). For a circuit K, an (L,δ)-representation of K abstracts K into
a single chain of length L, where each hidden variable has exactly one parent. δ lower bounds
approximation error in both directions: each hidden variable is rich enough to predict the output, yet
simple enough that outputs can recover them (Equation A.3).

In MI, this latter constraint is often used as an empirical search criterion for “good representations”
which in turn localizes a network’s circuit (Belrose et al., 2025).

Interpretations are symbolic, human-understandable descriptions of hθ that faithfully captures its
functional behavior on a task. Formally, we view them as abstractions and do not attempt to define
what makes them understandable, as this is inherently subjective.

Definition 4.4 (Interpretation). Given a circuit K on S, an η-faithful interpretation is a causal model
A that abstracts K such that A’s output approximates K’s with error at most η across all inputs in S.

We do not assume there exists a distance metric over A’s variables nor do we specify the values of
these variables take on. This generality aligns our framework with most MI literature.

7Our paper invokes practical examples based on language modeling. However, as we do not rely on properties
of the input space, the theory we develop is domain agnostic and can be easily adapted to other modalities.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 INTERPRETIVE EQUIVALENCE THROUGH IMPLEMENTATION EQUIVALENCE

Méloux et al.’s (2025) results demonstrate that pointwise comparison of circuits or interpretations is
ill-defined, since many interpretations can correspond to a single circuit and vice versa. Thus, we
propose that two interpretations are equivalent if and only if their implementations are equivalent. By
examining families of circuits, we effectively quotient out the many-to-one mapping from circuits to
interpretations. To start, let us define implementations. Let K , (V,U,F,�) be an m-circuit of hθ

and A, (V?,U,F?,�) be an η-faithful interpretation of K through an alignment π . For fixed π , by
carefully varying F we could yield many different circuits over (V,U) that all abstract to A. In our
framework, V,U is the neural architecture and F are different weight configurations that yield
the same interpretation A. The set of all admissible F under A,π , we define as A’s implementations
under π . For a set of alignments, Π, we denote Π−1(A) as the union of all implementations under
π ∈ Π. This construction closely mirrors the intuition of existing empirical results (Lubana et al.,
2023; Zhong et al., 2023; Gupta et al., 2024).

Figure 3

We assume that any circuit comes with a metric attached
to its variables, i.e. d : V×V→ [0,∞). This is reasonable,
as a circuit’s hidden variables are real-valued. d then
naturally induces a pseudometric over Π−1(A), where for
F, F̃ ∈Π−1(A) :

d(F, F̃), d(VF ,VF̃) = d(VF(S),VF ′(S)). (5.1)

Given two sets of implementations over (V,U, ·, ·) we can
leverage d to measure (1) the Hausdorff distance between
them; and, (2) their diameters. We call the former ap-
proximate interpretive equivalence which we denote
as dinterp(A,A?) for interpretations A,A?, and the latter in-
terpretive compression which we denote as κ(A,K,Π)
(Figure 3). The intersection between Π−1,Π−2 then ex-
plains Méloux et al.’s (2025) non-identifiability of circuits
and interpretations. In this way, interpretive equivalence
and compression are tightly coupled. On one extreme, suppose A = K and |Π|= 1. Then, there exists
exactly one implementation of A under Π: K. This implies no interpretive compression. Equivalently,
any interpretation equivalent to A must admit the same exact same weight configuration as K: F.
This effectively creates a bijective mapping between model weights and interpretations. On the other,
suppose that A is the trivial causal model of hθ , and let Π be all alignments. Since A conveys no
information about the computational process of K and Π places no constraint on alignment, any
circuit must be an implementation of A. In fact, Sutter et al. (2025) show under mild assumptions that
this phenomenon persists as long as Π is the set of all alignments. In this case, interpretive compres-
sion is maximal. These examples illustrate a duality between equivalence and compression: while
more compression shrinks and simplifies interpretation, it simultaneously enlarges and complicates
implementation and equivalence. We further prove critical properties of interpretive equivalence and
compression in Appendix E.

6 REPRESENTATIONAL SIMILARITY AND INTERPRETIVE EQUIVALENCE

Using interpretive compression and representation simiarlity, we now prove both upper and lower
bounds on interpretive equivalence (Main Result 1 and Main Result 2, respectively). The proofs
and formalisms are deferred to Appendix F. Throughout this section, we consider the most general
setup: suppose two circuits over a shared task S for models h1,h2 defined over different neural
architectures. Their circuits we notate as K1,K2, respectively. Let us also assume each circuit admits
an (Li,δi)-representation Ri through an alignment map ρi. First, we define a notion of distance
between these two representations.

Definition 6.1 (Representation Similarity). Let Hi be the concatenation of all hidden variables in Ri.
Then, the representation similarity of R1,R2, drepr(R1,R2), is the bidirectional linear approximation
error between H1,H2 (formally, Definition F.1).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Strict linearity in this approximation is not necessary to develop our theory, but offers attractive com-
putational tradeoffs. This is because we can formulate representation similarity as multi-target linear
regression for which there are sharp approximations with small sample complexity. Additionally, we
make the following structural assumptions

1. ρi is Lipschitz continuous with Lipschitz constant Lip(ρi)
2. There exists ∆ > 0 such that ‖h1−h2‖< ∆ over S

Assumption 1 stabilizes representations such that small changes in circuitry lead to proportionally
bounded representation perturbations. In practice, this is reasonable since representations are usually
distilled from neural networks via linear projections or by averaging the activations of several neural
components (Sucholutsky et al., 2023). Assumption 2 guarantees that functional differences between
our target models are bounded, otherwise their interpretive inequivalence is trivial.

Suppose that A1,A2 are η1,η2-faithful interpretations of K1,K2, respectively. We first show that
representation similarity between A1,A2 upperbounds interpretive equivalence.
Main Result 1. Let Π and Π? be alignment classes that map K1’s variables into A1,A2’s variables,
respectively. Then, the approximate interpretive equivalence of A1,A2 under alignments Π−1,Π−1

? is
dinterp(A1,A2). κ(A1,K1,Π)+κ(A2,K1,Π?)︸ ︷︷ ︸

(a)

+max(L1δ1,L2δ2)+drepr(R1,R2)︸ ︷︷ ︸
(b)

. (6.1)

Equation 6.1 explicits two dependencies: (a) measures interpretive compression of A1,A2 on K1.
When compression is low, circuits retain more information about interpretive differences. And since
representations distill circuits, it is intuitive that representation similarity dominates the upperbound in
this regime. In contrast, when compression is high, our examples in Section 5 illustrate that when cir-
cuits become uninformative, so should representations and their similarities; (b) jointly measures the
quality of representations R1,R2 and their differences. If δ1,δ2� 1, representations lose meaningful
linear structure even though they sufficiently abstract implementations of A1,A2. This bound exposes
a tension between the geometric richness of representations and our computational approach to their
similarities. For example, representations lying on complex manifolds may not be well-described by
our linear formulation of representation similarity (Ansuini et al., 2019; Pimentel et al., 2020). Thus,
we hypothesize representations and their similarity criterion need to be simultaneously broadened to
achieve more generality. We leave the implications of this for future work. Now, the lowerbound:
Main Result 2. Let Π and Π? be an alignment that map K1’s variables onto A1,A2’s variables.
Suppose A1,A2 are ε-approximately interpretive equivalent under the alignment classes Π?,Π. Then,

drepr(R1,R2). Lip(ρ1)(min{κ(A1,K1,Π),κ(A2,K1,Π?)}+ ε)︸ ︷︷ ︸
(a)

+L1δ1 +L2δ2︸ ︷︷ ︸
(b)

+∆. (6.2)

The terms in Equation 6.2 mirror the dynamics of Equation 6.1. Beyond interpretive equivalence, Main
Result 2 has implications for steering (Rimsky et al., 2024; Singh et al., 2024). When identifiability of
representations is low, steering interventions is less likely to induce interpretive change, i.e. significant
alterations to the representation space may see little change in model interpretation. In Main Result 3,
we show how this directly relates to AMBIGUITY.

Main Result 3. Let p be the expected value of REPRDIST in Algorithm 1, F1,F2
iid∼Π

−1
1 (A1), and

F3 ∼Π
−1
2 (A2) then

p≥ 1− inf
ε>0

P[drepr(F1,F2)> κ(A1,K1,Π1)+ ε]−P[drepr(F1,F3)< dinterp(A1,A2)− ε]. (6.3)

This variational lowerbound demonstrates that REPRDIST (and as a corollary, AMBIGUITY) accounts
for interpretive compression and equivalence. We further discuss this bound in Appendix G.

7 CONCLUSION

In this paper, we define and study the problem of interpretive equivalence: detecting whether two
models share the same mechanistic interpretation without interpreting them. We contribute an
algorithm to estimate equivalence and demonstrate its use on toy and pre-trained language models.
Then, we provide a theoretical foundation to ground and explain our algorithm. Our framework
and results lay a foundation for the development of more rigorous evaluation methods in MI and
automated, generalizable interpretation discovery methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

We attach our complete codebase in the supplementary materials.

REFERENCES

Federico Adolfi, Martina G. Vilas, and Todd Wareham. 2025. The computational complexity of circuit discovery
for inner interpretability. In The Thirteenth International Conference on Learning Representations. 2, 17

Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. 2019. Intrinsic dimension of data
representations in deep neural networks. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc. 9

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and Neel Nanda. 2024.
Refusal in Language Models Is Mediated by a Single Direction. _eprint: 2406.11717. 18

Sander Beckers, Frederick Eberhardt, and Joseph Y. Halpern. 2020. Approximate causal abstractions. In
Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, volume 115 of Proceedings of
Machine Learning Research, pages 606–615. PMLR. 18

Sander Beckers and Joseph Y Halpern. 2019. Abstracting causal models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 2678–2685. Issue: 01. 7, 16, 18

Nora Belrose, Igor Ostrovsky, Lev McKinney, Zach Furman, Logan Smith, Danny Halawi, Stella Biderman,
and Jacob Steinhardt. 2025. Eliciting latent predictions from transformers with the tuned lens. Preprint,
arXiv:2303.08112. 7

Leonard Bereska and Stratis Gavves. 2024. Mechanistic interpretability for AI safety - a review. Transactions
on Machine Learning Research. Survey Certification, Expert Certification. 1, 18

Adithya Bhaskar, Alexander Wettig, Dan Friedman, and Danqi Chen. 2024. Finding Transformer Circuits with
Edge Pruning. arXiv preprint arXiv:2406.16778. 3, 17

Stella Biderman, Usvsn Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin Anthony, Shivanshu Purohit,
and Edward Raff. 2023. Emergent and predictable memorization in large language models. Advances in
Neural Information Processing Systems, 36. 4

Vivien Cabannes, Charles Arnal, Wassim Bouaziz, Alice Yang, Francois Charton, and Julia Kempe. 2024.
Iteration Head: A Mechanistic Study of Chain-of-Thought. In Advances in Neural Information Processing
Systems, volume 37, pages 109101–109122. Curran Associates, Inc. 1

Lawrence Chan, Adrià Garriga-Alonso, Nicholas Goldwosky-Dill, Ryan Greenblatt, Jenny Nitishinskaya, Ansh
Radhakrishnan, Buck Shlegeris, and Nate Thomas. 2022. Causal scrubbing, a method for rigorously testing
interpretability hypotheses. AI Alignment Forum. 2, 17, 18

Robin Chan, Reda Boumasmoud, Anej Svete, Yuxin Ren, Qipeng Guo, Zhijing Jin, Shauli Ravfogel, Mrinmaya
Sachan, Bernhard Schölkopf, Mennatallah El-Assady, and Ryan Cotterell. 2024. On affine homotopy between
language encoders. In The Thirty-eighth Annual Conference on Neural Information Processing Systems. 23

Arthur Conmy, Augustine Parker-Mavor N., Aengus Lynch, Stefan Heimersheim, and Adria Alonso-Garriga.
2023. Towards Automated Circuit Discovery for Mechanistic Interpretability. In Thirty-Seventh Conference
on Neural Information Processing Systems. 3, 17, 19

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec, Zac
Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, and others. 2022. Toy models of superposition.
arXiv preprint arXiv:2209.10652. 19

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda Askell,
Yuntao Bai, Anna Chen, Tom Conerly, DasSarma, Nova, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom
Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. 2021. A Mathematical Framework for
Transformer Circuits. 1, 6, 17

Dan Friedman, Alexander Wettig, and Danqi Chen. 2023. Learning Transformer Programs. In Thirty-seventh
Conference on Neural Information Processing Systems. 19, 20

10

https://openreview.net/forum?id=QogcGNXJVw
https://openreview.net/forum?id=QogcGNXJVw
https://proceedings.neurips.cc/paper_files/paper/2019/file/cfcce0621b49c983991ead4c3d4d3b6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/cfcce0621b49c983991ead4c3d4d3b6b-Paper.pdf
https://arxiv.org/abs/2406.11717
https://proceedings.mlr.press/v115/beckers20a.html
https://arxiv.org/abs/2303.08112
https://openreview.net/forum?id=ePUVetPKu6
https://proceedings.neurips.cc/paper_files/paper/2024/file/c50f8180ef34060ec59b75d6e1220f7a-Paper-Conference.pdf
https://openreview.net/forum?id=FTpOwIaWUz
https://openreview.net/forum?id=FTpOwIaWUz
https://arxiv.org/abs/2304.14997
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://openreview.net/forum?id=Pe9WxkN8Ff

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Atticus Geiger, Duligur Ibeling, Amir Zur, Maheep Chaudhary, Sonakshi Chauhan, Jing Huang, Aryaman
Arora, Zhengxuan Wu, Noah Goodman, Christopher Potts, and Thomas Icard. 2025. Causal abstraction: A
theoretical foundation for mechanistic interpretability. Journal of Machine Learning Research, 26(83):1–64.
1, 7, 15

Atticus Geiger, Hanson Lu, Thomas F Icard, and Christopher Potts. 2021. Causal abstractions of neural networks.
In Advances in Neural Information Processing Systems. 16

Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah Goodman. 2024. Finding alignments
between interpretable causal variables and distributed neural representations. In Proceedings of the Third
Conference on Causal Learning and Reasoning, volume 236 of Proceedings of Machine Learning Research,
pages 160–187. PMLR. 1, 3, 15, 18, 19, 20, 21

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. 2021. Transformer Feed-Forward Layers Are
Key-Value Memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 5484–5495, Online and Punta Cana, Dominican Republic. Association for Computational
Linguistics. 1

Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris Papailiopoulos.
2023. Looped Transformers as Programmable Computers. In Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages 11398–11442.
PMLR. 19

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. 2023. Localizing model behavior
with path patching. Preprint, arXiv:2304.05969. 2, 3

Rohan Gupta, Iván Arcuschin, Thomas Kwa, and Adrià Garriga-Alonso. 2024. Interpbench: Semi-synthetic
transformers for evaluating mechanistic interpretability techniques. In The Thirty-eight Conference on Neural
Information Processing Systems Datasets and Benchmarks Track. 3, 4, 8, 19, 20, 21

Michael Hanna, Ollie Liu, and Alexandre Variengien. 2023. How does GPT-2 compute greater-than?: Interpreting
mathematical abilities in a pre-trained language model. In Thirty-seventh Conference on Neural Information
Processing Systems. 17

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov. 2024. Have Faith in Faithfulness: Going Beyond
Circuit Overlap When Finding Model Mechanisms. In First Conference on Language Modeling. 17, 19

Stefan Heimersheim and Neel Nanda. 2024. How to use and interpret activation patching. arXiv preprint
arXiv:2404.15255. 16

Ehsan Imani, Wei Hu, and Martha White. Representation alignment in neural networks. Transactions on
Machine Learning Research. 18

Alon Jacovi and Yoav Goldberg. 2020. Towards faithfully interpretable NLP systems: How should we define
and evaluate faithfulness? In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 4198–4205, Online. Association for Computational Linguistics. 2

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparameterization with Gumbel-Softmax. In
International Conference on Learning Representations. 20

Stanisław Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua Bengio. 2018.
Residual connections encourage iterative inference. In International Conference on Learning Representations.
7

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. 2019. Similarity of Neural Network
Representations Revisited. In Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 3519–3529. PMLR. 18, 23

Andrew Lee, Xiaoyan Bai, Itamar Pres, Martin Wattenberg, Jonathan K. Kummerfeld, and Rada Mihalcea. 2024.
A Mechanistic Understanding of Alignment Algorithms: A Case Study on DPO and Toxicity. In Forty-first
International Conference on Machine Learning. 18

David Lindner, Janos Kramar, Sebastian Farquhar, Matthew Rahtz, Thomas McGrath, and Vladimir Mikulik.
2023. Tracr: Compiled Transformers as a Laboratory for Interpretability. In Thirty-seventh Conference on
Neural Information Processing Systems. 19, 20

Ekdeep Singh Lubana, Eric J Bigelow, Robert P. Dick, David Krueger, and Hidenori Tanaka. 2023. Mechanistic
Mode Connectivity. In Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pages 22965–23004. PMLR. 8

11

http://jmlr.org/papers/v26/23-0058.html
http://jmlr.org/papers/v26/23-0058.html
https://openreview.net/forum?id=RmuXDtjDhG
https://proceedings.mlr.press/v236/geiger24a.html
https://proceedings.mlr.press/v236/geiger24a.html
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://proceedings.mlr.press/v202/giannou23a.html
https://arxiv.org/abs/2304.05969
https://arxiv.org/abs/2304.05969
https://openreview.net/forum?id=R9gR9MPuD5
https://openreview.net/forum?id=R9gR9MPuD5
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=TZ0CCGDcuT
https://openreview.net/forum?id=TZ0CCGDcuT
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=SJa9iHgAZ
https://proceedings.mlr.press/v97/kornblith19a.html
https://proceedings.mlr.press/v97/kornblith19a.html
https://openreview.net/forum?id=dBqHGZPGZI
https://openreview.net/forum?id=tbbId8u7nP
https://proceedings.mlr.press/v202/lubana23a.html
https://proceedings.mlr.press/v202/lubana23a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Riccardo Massidda, Atticus Geiger, Thomas Icard, and Davide Bacciu. 2023. Causal Abstraction with Soft
Interventions. In Proceedings of the Second Conference on Causal Learning and Reasoning, volume 213 of
Proceedings of Machine Learning Research, pages 68–87. PMLR. 16, 18, 20

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R Bartoldson, Bhavya Kailkhura,
Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and others. 2024. Transformers Can Do Arithmetic with
the Right Embeddings. arXiv preprint arXiv:2405.17399. 1

Maxime Méloux, Silviu Maniu, François Portet, and Maxime Peyrard. 2025. Everything, everywhere, all at
once: Is mechanistic interpretability identifiable? In The Thirteenth International Conference on Learning
Representations. 2, 8, 18

Kevin Meng, David Bau, Alex J. Andonian, and Yonatan Belinkov. 2022. Locating and Editing Factual
Associations in GPT. In Advances in Neural Information Processing Systems. 1

William Merrill, Ashish Sabharwal, and Noah A. Smith. 2022. Saturated Transformers are Constant-Depth
Threshold Circuits. Transactions of the Association for Computational Linguistics, 10:843–856. _eprint:
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00493/2038506/tacl_a_00493.pdf. 19

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. 2024. Circuit component reuse across tasks in transformer
language models. In The Twelfth International Conference on Learning Representations. 5, 17

Lukas Muttenthaler, Lorenz Linhardt, Jonas Dippel, Robert A Vandermeulen, Katherine Hermann, Andrew
Lampinen, and Simon Kornblith. 2023. Improving neural network representations using human similarity
judgments. In Advances in Neural Information Processing Systems, volume 36, pages 50978–51007. Curran
Associates, Inc. 18

Neel Nanda. 2023. Attribution patching: Activation patching at industrial scale. URL: https://www. neelnanda.
io/mechanistic-interpretability/attribution-patching. 17

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. 2022. Progress measures for
grokking via mechanistic interpretability. In The Eleventh International Conference on Learning Representa-
tions. 1, 2, 18

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and Yonatan Belinkov. 2025. Arithmetic without algorithms:
Language models solve math with a bag of heuristics. In The Thirteenth International Conference on Learning
Representations. 18

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter. 2020a. An
overview of early vision in inceptionv1. Distill. Https://distill.pub/2020/circuits/early-vision. 1, 17

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter. 2020b. Zoom
in: An introduction to circuits. Distill. Https://distill.pub/2020/circuits/zoom-in. 17

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. 2022. In-context learning
and induction heads. Transformer Circuits Thread. Https://transformer-circuits.pub/2022/in-context-learning-
and-induction-heads/index.html. 17

Jun Otsuka and Hayato Saigo. 2022. On the Equivalence of Causal Models: A Category-Theoretic Approach.
In Proceedings of the First Conference on Causal Learning and Reasoning, volume 177 of Proceedings of
Machine Learning Research, pages 634–646. PMLR. 18, 20

Kiho Park, Yo Joong Choe, and Victor Veitch. 2024. The Linear Representation Hypothesis and the Geometry
of Large Language Models. In Forty-first International Conference on Machine Learning. 15

Judea Pearl. 2009. Causality. Cambridge university press. 18

Jonas Peters, Dominik Janzing, and Bernhard Scholkopf. 2017. Elements of Causal Inference: Foundations and
Learning Algorithms. MIT Press. 7, 18

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay, Ran Zmigrod, Adina Williams, and Ryan Cotterell.
2020. Information-theoretic probing for linguistic structure. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 4609–4622, Online. Association for Computational
Linguistics. 9

12

https://proceedings.mlr.press/v213/massidda23a.html
https://proceedings.mlr.press/v213/massidda23a.html
https://openreview.net/forum?id=5IWJBStfU7
https://openreview.net/forum?id=5IWJBStfU7
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=-h6WAS6eE4
https://doi.org/10.1162/tacl_a_00493
https://doi.org/10.1162/tacl_a_00493
https://openreview.net/forum?id=fpoAYV6Wsk
https://openreview.net/forum?id=fpoAYV6Wsk
https://proceedings.neurips.cc/paper_files/paper/2023/file/9febda1c8344cc5f2d51713964864e93-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9febda1c8344cc5f2d51713964864e93-Paper-Conference.pdf
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=O9YTt26r2P
https://openreview.net/forum?id=O9YTt26r2P
https://doi.org/10.23915/distill.00024.002
https://doi.org/10.23915/distill.00024.002
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.23915/distill.00024.001
https://proceedings.mlr.press/v177/otsuka22a.html
https://openreview.net/forum?id=UGpGkLzwpP
https://openreview.net/forum?id=UGpGkLzwpP
https://doi.org/10.18653/v1/2020.acl-main.420

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9. 4

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research, 21(140):1–67. 6

Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Turner. 2024. Steering
llama 2 via contrastive activation addition. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 15504–15522, Bangkok, Thailand. Association
for Computational Linguistics. 9

Paul K. Rubenstein, Sebastian Weichwald, Stephan Bongers, Joris M. Mooij, Dominik Janzing, Moritz Grosse-
Wentrup, and Bernhard Schölkopf. 2017. Causal consistency of structural equation models. Preprint,
arXiv:1707.00819. 22

Claudia Shi, Nicolas Beltran-Velez, Achille Nazaret, Carolina Zheng, Adrià Garriga-Alonso, Andrew Jesson,
Maggie Makar, and David Blei. 2024. Hypothesis testing the circuit hypothesis in LLMs. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems. 17

Ravid Shwartz Ziv and Yann LeCun. 2024. To Compress or Not to Compress—Self-Supervised Learning and
Information Theory: A Review. Entropy, 26(3). 18

Shashwat Singh, Shauli Ravfogel, Jonathan Herzig, Roee Aharoni, Ryan Cotterell, and Ponnurangam Ku-
maraguru. 2024. Representation surgery: Theory and practice of affine steering. In Forty-first International
Conference on Machine Learning. 9

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and Ravid Shwartz-Ziv. 2025.
Layer by layer: Uncovering hidden representations in language models. arXiv preprint arXiv:2502.02013. 18

Ilia Sucholutsky, Lukas Muttenthaler, Adrian Weller, Andi Peng, Andreea Bobu, Been Kim, Bradley C Love,
Erin Grant, Iris Groen, Jascha Achterberg, et al. 2023. Getting aligned on representational alignment. arXiv
preprint arXiv:2310.13018. 4, 9

Alan Sun, Chiyu Ma, Kenneth Ge, and Soroush Vosoughi. 2024. Achieving domain-independent certified
robustness via knowledge continuity. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems. 18

Jiuding Sun, Jing Huang, Sidharth Baskaran, Karel D’Oosterlinck, Christopher Potts, Michael Sklar, and Atticus
Geiger. 2025. HyperDAS: Towards Automating Mechanistic Interpretability with Hypernetworks. In The
Thirteenth International Conference on Learning Representations. 1, 18, 21

Denis Sutter, Julian Minder, Thomas Hofmann, and Tiago Pimentel. 2025. The non-linear representation
dilemma: Is causal abstraction enough for mechanistic interpretability? Preprint, arXiv:2507.08802. 8

Aaquib Syed, Can Rager, and Arthur Conmy. 2023. Attribution patching outperforms automated circuit discovery.
arXiv preprint arXiv:2310.10348. 17

Hannes Thurnherr and Jérémy Scheurer. 2024. Tracrbench: Generating interpretability testbeds with large
language models. arXiv preprint arXiv:2409.13714. 20

Curt Tigges, Michael Hanna, Qinan Yu, and Stella Biderman. 2024. LLM Circuit Analyses Are Consistent
Across Training and Scale. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems. 5, 6

Naftali Tishby, Fernando C. Pereira, and William Bialek. 2000. The information bottleneck method. _eprint:
physics/0004057. 18

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau. 2024. Function
vectors in large language models. In The Twelfth International Conference on Learning Representations. 6,
21

Mariya Toneva and Leila Wehbe. 2019. Interpreting and improving natural-language processing (in machines)
with natural language-processing (in the brain). In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc. 18

Eduard Tulchinskii, Kristian Kuznetsov, Laida Kushnareva, Daniil Cherniavskii, Sergey Nikolenko, Evgeny
Burnaev, Serguei Barannikov, and Irina Piontkovskaya. 2023. Intrinsic Dimension Estimation for Robust
Detection of AI-Generated Texts. In Advances in Neural Information Processing Systems, volume 36, pages
39257–39276. Curran Associates, Inc. 18

13

http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2024.acl-long.828
https://doi.org/10.18653/v1/2024.acl-long.828
https://arxiv.org/abs/1707.00819
https://openreview.net/forum?id=5ai2YFAXV7
https://doi.org/10.3390/e26030252
https://doi.org/10.3390/e26030252
https://openreview.net/forum?id=GwA4go0Mw4
https://openreview.net/forum?id=v07KRLYxDX
https://openreview.net/forum?id=v07KRLYxDX
https://openreview.net/forum?id=6fDjUoEQvm
https://arxiv.org/abs/2507.08802
https://arxiv.org/abs/2507.08802
https://openreview.net/forum?id=3Ds5vNudIE
https://openreview.net/forum?id=3Ds5vNudIE
https://openreview.net/forum?id=AwyxtyMwaG
https://openreview.net/forum?id=AwyxtyMwaG
https://proceedings.neurips.cc/paper_files/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7baa48bc166aa2013d78cbdc15010530-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7baa48bc166aa2013d78cbdc15010530-Paper-Conference.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart Shieber.
2020. Investigating gender bias in language models using causal mediation analysis. In Advances in neural
information processing systems, volume 33, pages 12388–12401. 16

Martina G. Vilas, Federico Adolfi, David Poeppel, and Gemma Roig. 2024. Position: An inner interpretability
framework for AI inspired by lessons from cognitive neuroscience. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pages 49506–
49522. PMLR. 1, 18

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. 2022. Interpretabil-
ity in the Wild: a Circuit for Indirect Object Identification in GPT-2 Small. In The Eleventh International
Conference on Learning Representations. 1, 5, 16, 17

Tongzhou Wang and Phillip Isola. 2020. Understanding contrastive representation learning through alignment
and uniformity on the hypersphere. In Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pages 9929–9939. PMLR. 18

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2021. Thinking Like Transformers. In Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 11080–11090. PMLR. 4, 19

Zhengxuan Wu, Atticus Geiger, Thomas Icard, Christopher Potts, and Noah Goodman. 2023. Interpretability at
Scale: Identifying Causal Mechanisms in Alpaca. In Advances in Neural Information Processing Systems,
volume 36, pages 78205–78226. Curran Associates, Inc. 1, 18

Aolin Xu and Maxim Raginsky. 2017. Information-theoretic analysis of generalization capability of learning
algorithms. In Advances in neural information processing systems, volume 30. 18

Fabio Massimo Zennaro. 2022. Abstraction between structural causal models: A review of definitions and
properties. arXiv preprint arXiv:2207.08603. 20

Zhiqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. 2023. The Clock and the Pizza: Two Stories in
Mechanistic Explanation of Neural Networks. In Advances in Neural Information Processing Systems. 2, 8,
17, 18

14

https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.mlr.press/v235/vilas24a.html
https://proceedings.mlr.press/v235/vilas24a.html
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://proceedings.mlr.press/v119/wang20k.html
https://proceedings.mlr.press/v119/wang20k.html
https://proceedings.mlr.press/v139/weiss21a.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/f6a8b109d4d4fd64c75e94aaf85d9697-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/f6a8b109d4d4fd64c75e94aaf85d9697-Paper-Conference.pdf
https://arxiv.org/pdf/2306.17844
https://arxiv.org/pdf/2306.17844

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A GLOSSARY

Herein, we provide a glossary for our technical terms in the main text along with their precise, formal
definitions.

Term Intuitive Explanation Formal Definition
Causal/Computation Graph A graph that describes a model’s computa-

tional dependencies
Definition A.1

Variables Nodes in a model’s computation graph that
store latent computation results

Definition A.1

Circuit A subset of the model’s computational graph
that on its own can fully recreate the model’s
input-output behavior

Definition A.2

Mechanistic Explanation A symbolic algorithm that we can understand
that explains the model’s computation

N/A

Causal Abstraction Mapping from low-level variables to higher-
level ones that preserve low-level causal rela-
tionships

Definition A.4

Interpretation A causal graph much smaller than the model’s
computation graph that explains the model’s
computation graph

Definition A.6

Representations A causal graph that is a chain that abstracts a
model’s circuit

Definition A.5

Alignment A mapping between two causal graphs that
preserves meaningful causal relations be-
tween variables

Definition A.4

Intervention A modification to the model’s computation
graph

Definition A.3

Alignment Class A set of alignments that map to the same in-
terpretation

Definition A.7

Implementation Sets of circuits that share the same interpreta-
tion

Definition A.7

Interpretive Equivalence Measure of distance between sets of imple-
mentations

Definition A.9

Interpretive Compression Measure of diameter of a set of implementa-
tions

Definition A.8

Ambiguity Approximation for interpretive equivalence Definition G.1
Representation Similarity Extent to which one set of representations can

be transformed into the other and vice versa
Definition F.1

Definition A.1 (Deterministic Causal Model, Geiger et al. 2025). A (deterministic) causal model
with m components is a quadruple (V,U,F,�) where V= (v1, . . . ,vm) is a set of hidden variables
such that |V|= |F|= m, U is an input variable, and � defines a partial ordering over V. For each
vk ∈ V,

vk , fk(Pa(vk),U)

where fk ∈ F and Pa(vk)⊂ {v ∈ V : v � vk} are the parents of vk.

Definition A.2 (Circuit). An m-circuit of hθ on S is a causal graph with m components that satisfies
four properties:

1. Input variable is S-valued: U ∈ S
2. Hidden variables are real-valued: for each vk ∈ V, v ∈ Rnk

3. Existence of a terminal output variable: vout ∈ V such that vout ∈ Rd , and there does not
exist v′ ∈ V where vout � v′

4. Sufficient description of hθ on S: for each s ∈ S, vF
out(s) = hθ (s)

For any hθ and m, an m-circuit of hθ must exist by the trivial causal model. m-circuits are also not
unique. For instance, a joint change of bases to any vk ∈V\vout and fk results in a new causal model
that preserves functional faithfulness to hθ (Park et al., 2024; Geiger et al., 2024).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Definition A.3 (Intervention). Let (V,U,F,�) be a causal model. An intervention of vk ∈ V,
do(vk ← f̃), redefines vk , f̃ (P̃a(vk),U), for P̃a(vk) ⊂ {v ∈ V : v � vk}. We denote the set of
interventions on vk as I (vk).

In other words, we place the process using to derive vk’s value, f , with a new function f̃ . In this
paper, we exclusively focus on hard interventions, where f̃ is a constant function. This essentially
ablates vk, as its values no longer depend on the input (Massidda et al., 2023).

Given any circuit, we can intervene on its hidden variables through activation patching (Vig et al.,
2020; Wang et al., 2022; Heimersheim and Nanda, 2024): ablating a variable or modifying the process
used to derive its value. Interventions serve as a check of consistency and equivalence between
circuits and their interpretations (Beckers and Halpern, 2019; Geiger et al., 2021).
Definition A.4 (Abstraction). Let K1 , (V,U,F,�1),K2 , (Ṽ,Ũ , F̃,�2) be causal models. K2
abstracts K1 if there exists surjective mappings π : SubsetsOf(V)→ Ṽ,ω : I (V)→ I (Ṽ) that
satisfies for all vk ∈ V, ṽk ∈ Ṽ,do(vk← f) ∈I (vk):

ṽk = π

 ⋃
vk∈π−1(ṽk)

fk(Pa(vk),U)

 , (A.1)

π(do(vk← f)) = do(π(vk)← ω(f)). (A.2)
We call π an alignment.
Equation A.1 describes an observational consistency constraint: if K2 abstracts K1, then by only
observing the hidden variables of K1 we can infer all hidden values of K2. Viewed under this lens, the
alignment π projects the fine-grained variables V to the coarse-grained ones Ṽ. On the other hand,
Equation A.2 is an intervention consistency constraint—stating that π and ω must commute. This
implies that all of the causal relationships between variables in K2 can be constructed by relationships
between variables in K1.
Definition A.5 (Representations). Let K be an m-circuit of hθ on a task S. An (L,δ)-representation
of K, denoted by R, is an L-circuit that abstracts K such that for each vk ∈ V

• Pa(vk+1) = {vk} and Pa(v1) = /0
• There exists linear maps Ak : Rnk → Rd ,Bk : Rd → Rnk where

‖Akv
F
k −h‖< δ︸ ︷︷ ︸
signal

and ‖Bkh−vF
k ‖< δ︸ ︷︷ ︸

noise

(A.3)

for some function norm (to be specified)
Definition A.6 (Interpretation). For a model hθ with m-circuit K , (V,U,F,�) on a task S, an
η-faithful interpretation of K is a causal model A, (V?,U,F?,�) that satisfies two properties: (1) A
abstracts K; (2) There exists a terminal output variable v?

out ∈ V? such that ‖v?,F
out −vF

out‖< η for the
terminal output variable vout ∈ V.

For any circuit, K is an interpretation of itself (under the identity abstraction), albeit not very useful.
Definition A.7 (Implementation). Let Π be a class of alignments. Then, denote Π−1(A) the set of
implementations of A where F ∈Π−1(A) if A is an η-faithful interpretation of (V,U,F,≺F) under
some alignment (π : SubsetsOf(V)→ V?) ∈Π.
Definition A.8 (Compression). Let A be an η-faithful interpretation of K and Π be a class of
alignments. Then, the interpretive compression of A on K is

κ(A,K,Π), sup
F,F ′∈Π−1(A)

d(F,F ′) = diameter(Π−1(A)). (A.4)

Definition A.9 (Equivalence). Let A1,A2 be η1,η2-faithful interpretations of K and Π1,Π2 be classes
of alignments. Then, A1,A2 are ε-approximately interpretive equivalent if

dinterp(A1,A2), dH
(
Π
−1
1 (A1),Π

−1
2 (A2)

)
< ε, (A.5)

where dH is the Hausdorff distance8 defined by d (see Equation 5.1).
8The Hausdorff distance between two sets A,B is the greatest distance a point from A,B needs to travel to

reach B,A, respectively: d̃(a,B), infb∈B d(a,b), dH(A,B),max(supa∈A d̃(a,B),supb∈B (̃b,A)).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Definition A.9 requires that both interpretations, A1,A2, come from the same circuit K. This constraint
can be relaxed by augmenting the alignment classes Πi such that (π : SubsetsOf(V1)→ V?

i) ∈Πi:
essentially mapping the different interpretations onto the same neural architecture V1. Although this
creates asymmetry in choosing which circuit to use for comparison (V1 or V2), we should select the
circuit of least compression that admits at least one implementation for both interpretations.
Our bounds in Section 6 justify this principle.

B NOTATIONS

Symbol Meaning
Σ An alphabet
Σ? Set of all finite strings constructed from Σ

S A subset of Σ?

A An interpretation
K A circuit
R A representation
V Set of variables in a causal model
U Input variable to causal model
F Functions in causal model that determine variable values
� Partial ordering over variables of causal model induced by F
VF(u) Solution of all variables to input u
vF

k (u) Solution of vk to input u
π An alignment between variables of two causal models
Π A class of alignments
Π−1(A) The set of implementations of A induced by alignments Π

dinterp Interpretive equivalence
dH Hausdorff distance
κ(A,K,Π) Interpretive compression
drepr Representation similarity
Lip(f) Lipschitz constant of f
iid∼ Sample i.i.d from some distribution

C RELATED LITERATURE

There have been extensive studies in interpreting the decision criterion of neural networks (specifically,
language models). With respect to our paper, they can be organized into the following categories.

Mechanistic Interpretability. Mechanistic Interpretability (MI) can be broadly broken into two
distinct phases: first, identifying a minimal subset of the model’s computational graph that is
responsible for a specific behavior—this process is also referred to as circuit discovery Olah et al.
(2020b;a); Conmy et al. (2023); Bhaskar et al. (2024); Hanna et al. (2024); second, assigning human-
interpretable explanations to each of the extracted components—this process is generally referred to
as mechanistic interpretability Chan et al. (2022); Wang et al. (2022); Zhong et al. (2023); Hanna
et al. (2023); Merullo et al. (2024). This paper focuses on the latter process; thus, when we invoke the
term mechanistic interpretability, we are referring specifically to this second phase. For completeness,
we briefly review circuit discovery as well.

A model can be seen as a computational graph Elhage et al. (2021); Olsson et al. (2022): G = (V,E)
with vertices V and edges E ⊂ V ×V . A circuit is then any binary function f : E → {0,1}. The
optimal circuit f satisfies two properties: (1) it minimizes ∑e∈E f (e); and (2) when edges not in the
circuit e ∈ E, f (e) = 0 are ablated, the model’s functional behavior remains unchanged. Although
circuit discovery can be concretely formulated as an optimization problem, it is computationally
intractable in its naive form Bhaskar et al. (2024); Adolfi et al. (2025). As a result, many relaxations
and heuristics have been developed Conmy et al. (2023); Syed et al. (2023); Nanda (2023); Hanna
et al. (2024); Bhaskar et al. (2024). Nevertheless, there exists a solution set that can be statistically
verified Shi et al. (2024).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The process of mechanistic interpretability, which we focus on in this paper, presents different
challenges. MI involves iteratively generating hypotheses about the interpretations for the interactions
between different components, then testing those hypotheses through carefully crafted interven-
tions (Chan et al., 2022; Geiger et al., 2024; Méloux et al., 2025; Sun et al., 2025, inter alia).
MI methods can be further clustered into two approaches: top-down and bottom-up. Top-down
approaches start by enumerating hypotheses about the possible algorithms the model could be im-
plementing. Then, they iterate through these hypotheses and isolate those with the closest causal
alignment Wu et al. (2023); Geiger et al. (2024); Bereska and Gavves (2024); Vilas et al. (2024); Sun
et al. (2025). On the other hand, bottom-up approaches are data-driven. They seek to directly find
algorithmic explanations of the model’s mechanistic behaviors by analyzing activations or attention
patterns Nanda et al. (2022); Zhong et al. (2023); Lee et al. (2024); Arditi et al. (2024); Nikankin
et al. (2025).

Casual Abstraction. Causality, and more specifically causal abstraction, seeks to formally character-
ize when a symbolic explanation faithfully explains a data-generating process (in our application,
this data-generating process would be a model) Pearl (2009); Peters et al. (2017); Beckers and
Halpern (2019); Beckers et al. (2020); Otsuka and Saigo (2022). Causal abstraction as defined in
Definition A.4 seeks to align “low-level” models (neural networks) with “high-level” models (sym-
bolic explanations). These theoretical constructions have driven the development of many top-down
mechanistic interpretability methods such as Wu et al. (2023); Geiger et al. (2024); Sun et al. (2025)
which directly verify this condition. While causal abstraction provides a necessary condition for a
valid interpretation, recent works such as Méloux et al. (2025) argue that it alone is insufficient to
fully characterize what constitutes a valid interpretation. Practical procedures that stem from this
theory also fail to address this. This highlights the need for additional theoretical frameworks to
complement causal abstraction.

On the other hand, causal abstraction represents a hard equivalence: two models either are or are not
causal abstractions of each other. The binary nature of this definition fails to capture our intuition that
explanations can vary in quality or completeness. Some interpretations may better capture the model’s
behavior than others, or may only explain a subset of the model’s functionality. The hard equivalence
of causal abstraction makes it difficult to reason about these partial or imperfect explanations. As
a result, framemworks such as Beckers et al. (2020); Massidda et al. (2023) soften this criterion
by introducing distance metrics on the total settings of the “high-level” model. In practice, these
approaches face two main drawbacks:

1. It is challenging to define meaningful distance metrics when high-level interpretations
involve discrete symbols and symbolic reasoning Sun et al. (2024).

2. Comparing interpretations between models requires fully interpreting each model first,
which forces a computationally expensive top-down analysis approach.

Our framework addresses these limitations by focusing on implementations rather than interpretations
directly. Since neural network computations are fundamentally real-valued, we can leverage natural
distance metrics in their computational space. Additionally, by analyzing families of implementations
rather than requiring complete interpretations, we can compare models’ interpretive similarity without
the overhead of fully interpreting each model first.

Representation Similarity. Representation similarity in neural networks has emerged as a fundamen-
tal research area whcih addresses how internal representations correspond across different models,
domains, and biological systems Kornblith et al. (2019).

Representations of deep neural networks have shown to exhibit an array of powerful properties. They
have given insights into training dynamics and the generalization capabilities of models Tishby et al.
(2000); Xu and Raginsky (2017); Shwartz Ziv and LeCun (2024) and also provide a tractable method
to compare the inductive biases between different models Wang and Isola (2020); Imani et al.; Skean
et al. (2025). These representations have also shown to admit rich geometric properties Tulchinskii
et al. (2023). In this paper, we measure representation through a learned linear regression. These
techniques have been used extensively to compare different neural architecture and even human-
language model similarity Toneva and Wehbe (2019); Muttenthaler et al. (2023).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D EXPERIMENTAL DETAILS

In this section, we detail our experimental methods. We first review constructs of RASP Weiss et al.
(2021). Then, we demonstrate that RASP provides an interface to craft interpretations, and through
methods like Geiger et al. (2024); Gupta et al. (2024) we can enumerate implementations of these
interpretations. Lastly, we describe our experimental hyperparameters.

D.1 RASP INTERPRETATIONS

Background on RASP Programs. The Restricted Access Sequence Programming (RASP) language
is a functional programming model designed to capture the computational behavior of Transformer
architdectures (Weiss et al., 2021). RASP programs have shown use in mechanistic interpretability
both as an effective benchmarking tool for faithfulness (Conmy et al., 2023; Hanna et al., 2024) and
as a method to develop “inherently” interpretable language models (Friedman et al., 2023). Another
line of work uses it (and other similar methods) as a proof technique to reason about the Transformer
architecture’s generalizability on a host of tasks (Weiss et al., 2021; Merrill et al., 2022; Giannou
et al., 2023). In this paper, we focus on RASP’s applications in interpretability.

RASP programs operate on two primary types of variables: s-ops, representing the input sequence,
and selectors, corresponding to attention matrices. These variables are manipulated through two
fundamental instructions: elementwise operations and select-aggregate. Elementwise operations
simulate computations performed by a multilayer perceptron (MLP), while select-aggregate combines
token-level operations, modeling the functionality of attention heads.

Every RASP program is equipped with two global variables tokens and indices, essentially
primitive s-ops. tokens maps strings into their token representations:

token("code") = ["c", "o", "d", "e"]
indices("code") = [0, 1, 2, 3]

On the other hand, indices map n-length strings into their indices. That is, a list of [0,1, . . . ,n−1].
Elementwise operations can be computed through composition. That is,

(3 * indices)("code") = [0, 3, 6, 9]
(sin(indices)) = [sin(0), sin(1), sin(2), sin(3)]

Tokens and their indices can also be mixed through selection matrices which are represented through
the s-op select. This operations captures the mechanism of the QK-matrix. It takes as input two
sequences K,Q, representing keys and queries respectively, and a Boolean predicate p and returns a
matrix S of size |K|× |Q| such that Si j = p(K j,Qi). Then, the OV-circuit can be computed through
the select-aggregate operation, which performs an averaging over an arbitrary sequence with respect
to the aforementioned selection matrix. For example,

aggregate

([1 0 0
0 0 0
1 1 0

]
, [10 20 30]

)
= [10015] .

The previous example is directly lifted from Lindner et al. (2023).

Compiling RASP Programs. The power of RASP programming lies in its ability to translate any
RASP program into a Transformer, a process known as compilation. As described in Lindner et al.
(2023), this involves a two-stage approach. First, a computational graph is constructed by tracing the
s-ops in the program, identifying how these operations interact with and modify the residual stream.
Elementwise operations are converted into MLP weights, and individual components are heuristically
assigned to Transformer layers. For further details, we refer the reader to Lindner et al. (2023).

As observed by Lindner et al. (2023), this compilation through “translation” introduces inefficiencies.
Specifically, the heuristic layer-assignment of RASP components results in Transformers that often
contain more layers than they need to have. Moreover, since RASP enforces the use of categorical
sequences and hard attention (we only allow Boolean predicates) it requires various s-ops to lie
orthogonal to each other after embedding as Transformer weights. As a result, this leads to a much
larger embedding dimension that is usually observed in actual Transformers (Elhage et al., 2022).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

MLP

MLP

...

...

...

MLP

MLP

...

...

MLP

MLP

...

...

MLP

MLP

...

...

MLP

MLP

...

......

...

...

MLP

MLP

...

...

...

...

MLP

MLP

...

...

...

MLP

MLP

...

...

...

RASP Program 1

RASP Program 2

Tracr-Compiled Transformer 1

Tracr-Compiled Transformer 2

Group 1 Implementations

Group 2 Implementations

Strict Interchange
Intervention Training

Strict Interchange
Intervention Training

Figure 4: Pipeline for generating implementations for our interpretations (i.e. RASP language
models). We first construct RASP programs, then using the procedure introduced in Lindner et al.
(2023), we compile these programs into Transformer models. These Transformers exclusively have
hard attention. Moreover, their architecture is minimal (containing only the necessary components
to fully implement the given RASP program). We then apply the procedure introduced in Gupta
et al. (2024) to translate these Tracr-Compiled Transformers into “real” Transformers: ones whose
weight distribution matches those trained with stochastic gradient descent; these translated models
also contain more

Thus, Lindner et al. (2023) proposes to compress this dimension through a learned projection matrix.
The caveat is that this transformation largely not faithful to the original program (measured through
cosine similarity of the outputs at individual layers).

Friedman et al. (2023) takes a different approach, addressing the inherent difficulty of writing RASP
programs. To overcome this challenge, the authors propose a method for directly learning RASP
programs. This is achieved by constraining the space of learnable weights to those that compile into
valid RASP programs, ensuring outputs with categorical variables and hard attention mechanisms.
Optimizing over this constrained hypothesis class is performed through a continuous relaxation using
the Gumbel distribution (Jang et al., 2017).

RASP Benchmarks. Thurnherr and Scheurer (2024) is a dataset of RASP programs that have been
generated by GPT-4. It contains 121 RASP programs. Gupta et al. (2024) provides 86 RASP programs
and compiled Transformers. The compiled Transformers are claimed to be more realistic than Tracr
compiled ones as instead of performing compression using a linear projection, they leverage strict
interchange intervention training essentially aligning the intervention effects of the compressed and
uncompressed model. This is similar in vein to many existing techniques on causal abstraction Otsuka
and Saigo (2022); Zennaro (2022); Massidda et al. (2023). In our paper, we leverage the curated
dataset Gupta et al. (2024) to craft and compose our interpretations.

D.2 STRICT INTERCHANGE INTERVENTION TRAINING

To evaluate our methods, we need a way to verifiably ellicit different mechanisms on the same task.
Let us first fix some task. Then, we proceed with the following steps:

1. Using Friedman et al. (2023), we learn several different explicit Transformer programs (source
of randomness). We can check that they are different by looking explicitly at the Transformer
programs.

2. Using Gupta et al. (2024) and Geiger et al. (2024) to get different mechanistic realizations of this
abstract Transformer program.

To generate different mechanistic instantiations of the same interpretation across architectures, we
use the following procedure: First, we take a Tracr-Compiled Transformer model and initialize
a new random model with at least as many layers and attention heads. Two models share the
same interpretation if the Tracr-Compiled transformer is a causal abstraction of our mechanistic
instantiation. We leverage this insight by softening Definition A.4 and incorporating it directly into

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

our objective function. For a detailed treatment of this approach, we refer readers to Geiger et al.
(2024); Gupta et al. (2024); Sun et al. (2025).

To ensure diversity in our implementations, we vary the architecture hyperparameters significantly:
models contain between 2-6 layers, 2-8 attention heads, and embedding dimensions ranging from 32
to 2048. This creates a rich set of instantiations with widely varying model capacities. As a result,
many mechanisms in these larger models may not contribute to the core interpretations, leading to
substantial interpretive compression.

D.3 ALGORITHMS FOR PERMUTATION DETECTION

To implement this task, we proceed with the following six algorithms. As discussed in Section 3.1,
they can be roughly divided into two groups: sort- and counting-based.

Interpretation 1. (1) Sort the sequence; (2) Compute the difference between each element and the
next one; (3) Check if all elements of the sequence are equal.

Interpretation 2. (1) Sort the sequence in descending order; (2) Increment each element by its index;
(3) Check if all elements of the sequence are equal.

Interpretation 3. (1) Sort the sequence; (2) Interleave the list with the same list in reverse order; (3)
Sum each number with the number next to it; (4) Check if all elements of the list are equal.

Interpretation 4. (1) Sort the sequence; (2) Check if the list contains alternating even and odd
elements.

Interpretation 5. (1) Check if at least two elements in the list are equal; (2) Sum each element with
the next one in the list; (3) Check if all elements of the list are equal.

Interpretation 6. (1) Replace each element with the number of elements less than it in the sequence;
(2) Check if at least two numbers are the same.

For each of the subroutines of these interpretations, Gupta et al. (2024) implements RASP programs
for them. Thus, we simply compose them together to create the resulting models.

D.4 FUNCTION VECTORS AND PARTS-OF-SPEECH IDENTIFICATION

Function vectors have been found to drive in-context learning behavior (Todd et al., 2024). We
leverage this concept to find the circuit that is responsible for in-context parts-of-speech identification.
We use the Penn TreeBank dataset and consider the POS subtask. We sample n = 1000 points.

We create counterfactual inputs by shuffling the in-context labels. For example,

Clean Input: tree:noun, run:verb, quickly:adverb, ire:
Corrupted Input: tree:adverb, run:noun, quickly:verb, ire:

Then, we first run the model on the clean input and store all attention head output activations on the
token “ire.” We then run the model on the corrupted input and patch in the stored attention head
activations from the “ire” token. Finally, we compute the difference in logit difference loss of the
generated next tokens before/after this patching operation. The results for each attention head are
shown in Figure 5. It seems that attention heads in the early/middle layers are most important for
POS (0.1, 0.4, 0.6, 4.11, 5.1, 5.5, 6.8, 6.9, 6.10, 7.11).

Then, we compute the function vector by
1
|A| ∑a∈A

n

∑
k=1

a(xk), (D.1)

where A is the set of attention heads that we have deemed important and xk is our dataset. Essentially,
we are averaging the activations across all important attention heads.

E PROPERTIES OF INTERPRETIVE EQUIVALENCE AND COMPRESSION

As discussed in Section 5, an interpretation of a model need not be a lossless description of that
model. In fact, in many applications a human-interpretable explanation is necessarily lossy with

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 5: Activation patching results for each attention head. The coloring indicates the % of
performance this individual attention head contributes to POS performance.

respect to the learned model. In this sense, a constructive abstraction is too restrictive as it requires
any interpretation to preserve the exact functional behavior of the model.

Definition (Exact Transformation). Let M , (V,U,F,�),M? , (V?,U,F?,�) be two causal models.
An exact transformation from M to M? is a pair of partial surjective maps (τ,ω) where τ : V→ V?

and ω : I (M)→I (M?), an order-preserving map that satisfies Equation A.1 and Equation A.2.

The key property of an exact transformation is this commutativity.

E.1 TECHNICAL LEMMATA

Lemma E.1 (Lemma 5 Rubenstein et al. 2017). The composition of exact transformations is also an
exact transformation.
Lemma E.2. The composition of alignments is also an alignment.

It directly follows from Lemma E.1 and Lemma E.2 that the composition of abstractions is also an
abstraction. We shall use this fact next.

E.2 PROOF OF BASIC CAUSAL IMPLEMENTATION PROPERTIES

Lemma E.3. Let K be a circuit and A be an η-faithful interpretation of K. Suppose that A? is an
η?-faithful interpretation of A. Then, A? is an (η +η?)-interpretation of K.

Proof. By Lemma E.2 and Lemma E.1, we know that there must exist an alignment from K to A?. It
remains to show that this is a faithful one. Suppose that vm,vout,v

?
out are the terminal output variables

of K,A,A?, respectively. By faithfulness, it must be that

‖vm−v?
out‖ ≤ ‖vm−vout +vout−v?

out‖ ,
≤ ‖vm−vout‖+‖vout−v?

out‖ ,
≤ η1 +η2.

Corollary E.4. If M? is an implementation of M and M is an implementation of A, then M? must be
an implementation of A.

F PROOFS FOR REPRESENTATION SIMILARITY AND INTERPRETIVE
EQUIVALENCE

Suppose we have two circuits over a shared task S for models hθ1 ,hθ2 defined over different neural
architectures. These circuits we notate as K1 , (V1,U,F1,�) and K2 , (V2,U,F2,�), respectively.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Let us also assume each circuit admits an (Li,δi) representation Ri , (Hi,U,Fi,�) through an
alignment map ρi. First, we define a notion of distance between these two representations.

Definition F.1 (Representation Similarity). Denote by Hi , concat(HFi
i) to be the direct sum (con-

catenation) of all hidden variables in Hi. Then, the representation similarity9 between R1 and R2 is

drepr(R1,R2),max(inf
A
‖AH1−H2‖ , inf

B
‖H1−BH2‖), (F.1)

where A,B are linear projections and ‖·‖ is some norm (to be specified, see Definition A.5).

F.1 PROOF FOR MAIN RESULT 1

Definition F.2. Let (Z,d) be a metric space. Let S ⊂ Z. The diameter of S denoted diameter(S) is
defined as

diameter(S) := sup
a,b∈S

d(a,b). (F.2)

Lemma F.1. Let (Z,d) be a metric space and dH be its Hausdorff distance. Then, for A,B⊂ Z and
a ∈ A,b ∈ B,

dH(A,B)≤ diameter(A)+diameter(B)+d(a,b).

Proof. Fix any a′ ∈ A. Then,

inf
b′∈B

d(a′,b′)≤ d(a′,b),

≤ d(a′,a)+d(a,b),
≤ diameter(A)+d(a,b).

By symmetry, for any b′ ∈ A, it follows that infa′∈A d(a′,b′)≤ diameter(B)+d(a,b). Therefore, by
the definition of the Hausdorff distance, we yield the desired bound.

Proof. By Lemma F.1, it suffices to bound the distance between any two implementations of K1,K2 in
Π−1(A1),Π

−1
? (A2). To do this, we directly construct valid circuits of I1, I2 using their representations

and then bound their distance in d. Without the loss of generality, we manipulate the direct sum of
the representations R1,R2: H1,H2. By construction, Ri takes on values in Rdim(Hi).

If the representation similarity between R1,R2 is not finite, then the result holds trivially. Otherwise,
consider the case where representation similarity between R1,R2 is bounded (equal to ε). Then, by
assumption and Definition F.1, for some η > 0, there must exists a linear map A : dim(H1)→ dim(H2)
such that ‖AH1−H2‖< ε +L2δ2 +η . Notice that R1 must be a δ -faithful interpretation of A1. Let B
be the linear map such that ‖BH2−H1‖< ε+L1δ1+η . By our derivations in the proof of Theorem 2,
AR1 is also a (L1δ1 + ‖B‖op ε)-faithful interpretation of A1. It follows by triangle inequality and
symmetry that

d(AR1,R2)≤max(L1δ1,L2δ2)+ ε(‖B‖op +‖A‖op),

this yields the desired bound.

F.2 PROOF FOR MAIN RESULT 2

Proof. Consider first an arbitrary F ∈ Π−1
? (A2). Then, since Definition F.1 satisfies the triangle

inequality,
drepr(R1,R2)≤ drepr(R1,R?

2)︸ ︷︷ ︸
(a)

+drepr(R?
2,R2)︸ ︷︷ ︸

(b)

,

where R?
2 is the abstraction of (V1,U,F,�) as a result of the alignment ρ1. We now proceed to

upperbound (a) and (b) separately.

9Our formulation is inspired by Chan et al.’s (2024) notion of representation alignment between language
encoders. Although Definition F.1 is not a true similarity, this nomenclature stays consisten with the litera-
ture (Kornblith et al., 2019).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a) Since A1,A2 are ε-approximately interpretive equivalent, it must be that
d(K?

2 ,K1)≤ ε +min(κ(A1,K1,Π),κ(A2,K1,Π?)).

Then, since ρ1 is Lipschitz continuous, it follows directly that
drepr(R1,R?

2)≤ Lip(ρ1)(ε +min(κ(A1,K1,Π),κ(A2,K1,Π?))) .

(b) Let H?
2 ,H2 be the direct sum of the hidden variables in R?

2 and R2, respectively. Then, by
the definition of drepr,

drepr(R?
2,R2) = max(inf

A
‖AH?

2 −H2‖ , inf
B
‖H2−BH?

2‖),

for linear operators A,B. Again, we choose to bound both operands in the maxima separately.
By assumption since R1,R2 are (L1,δ1),(L2,δ2)-representations, there must exist linear
operators A1,B1,A2,B2 such that∥∥A1H1−hθ1

∥∥< δ1
∥∥H1−B1hθ1

∥∥< δ1
∥∥A2H2−hθ2

∥∥< δ2
∥∥H2−B2hθ2

∥∥< δ2.

Then,
inf
A
‖AH2−H?

2‖ ≤
∥∥B2A1H2−B2hθ2

∥∥ ,
≤
∥∥B2A1H2−B2hθ2

∥∥+∥∥B2hθ2 −H2
∥∥ ,

≤ ‖B2‖op

∥∥A1H2−hθ2

∥∥+δ2

Further, now we expand
∥∥A1H2−hθ2

∥∥, it follows that∥∥A1(H2 +H1−H1)−hθ2

∥∥≤ ∥∥A1H1−hθ2 +A1(R2−R1)
∥∥ ,

≤ δ1 +∆+‖A1‖op drepr(R1,R?
2).

By the same derivation for the other side, we yield that

drepr(R?
2,R2)≤max

(
‖B2‖op (δ1 +∆+‖A2‖op drepr(R1,R?

2))+δ2,δ1 +drepr(R1,R?
2)+‖B2‖op (∆+δ2)

)
.

Summing both of these upperbounds, we yield the theorem.

Where is faithfulness in all of this? Unintuitively, neither Main Result 1 nor 2 contain the faithfulness
of A1,A2 (η1,η2, respectively). Our insight is that faithfulness is implicitly encoded into the alignment
classes Π,Π?. This is because any valid alignment must be consistent with the faithfulness of A1,A2
(see Definition A.7). In this way, η1,η2 determine which alignment classes are non-empty. This is
why alignment classes form the crux of our constructions, because they describe both structural and
behavioral constraints over abstractions.

G COMPUTING INTERPRETIVE EQUIVALENCE

Definition G.1 (Ambiguity). Let F1,F2 ∼Π
−1
1 (A1) and F3,F4 ∼Π

−1
2 (A2) then define

p1 , P[drepr(F1,F2)< drepr(F1,F3)] p2 , P[drepr(F3,F4)< drepr(F3,F1)]. (G.1)

Then, the ambiguity between Π
−1
1 (A1),Π

−1
2 (A2) is then 1−|p1 + p2−1|.

In words, we sample two implementations from Π
−1
1 (A1) and one from Π

−1
2 (A2). Then, ambiguity is

the probability that the two A1 representations are more similar to each other than either does to the
A2 implementation. If Π

−1
1 (A1) = Π

−1
2 (A2), by symmetry, p1 = p2 = 1/2 and ambiguity is 1: from

their representations alone the implementations of A1,A2 are maximally ambiguous.

G.1 PROOF FOR MAIN RESULT 3

Proof. Let F1,F2 ∼Π
−1
1 (A1) and F3 ∼Π

−1
2 (A2), then consider the event drepr(F1,F2)> drepr(F1,F3).

For arbitrary ε > 0, this event occurs with probability 1 when drepr(F1,F2)> κ(A1,K1,Π1)+ ε and
drepr(F1,F3)< dinterp(A1,A2)− ε . Therefore,

p≥ 1−P[drepr(F1,F2)> κ(A1,K1,Π1)+ ε]−P[drepr(F1,F3)< dinterp(A1,A2)− ε],

since ε > 0 was arbitrary, we yield the result.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G.2 INTERVENTION-IMPLEMENTATION DUALITY

Our results in the previous section demonstrate that estimating both the representation similarity and
interpretive compression is crucial to understanding interpretive equivalence. If ‖·‖= ‖·‖2 which is
what we will use in the following sections, existing theory provide strong guarantees on how quickly
and accurately we can estimate drepr(R1,R2), a multi-target linear regression. However, it is unclear
how interpretive compression, essentially a worst case condition can be estimated tractably. We
now show that by viewing each intervention as instantiating a new implementation in the space of
implementations we only need log(n) number of interventions where n is the covering number of the
implementation space.
Proposition G.1. Suppose that C =N(Π−1(A),d,ε/2) be the covering number of the implementation
space Π−1(A). Let B1, . . . ,BC be the balls of radius ε/2 that cover Π−1(A). Define

pmin , min
1,...,C

P[Bi],

Then, for

m≥ log(C)− ln(δ)
pmin

,

we have that P[κ(A,K,Π)− κ̂(A,K,Π)≤ ε]> 1−δ where κ̂ is the empirical diameter of Π−1(A).

Proof. Consider the bad event κ(A,K,Π)− κ̂(A,K,Π)> ε . This occurs when we draw m samples
such that there exists one ball Bi where we did not draw a sample from. Notice that this occurs with
probability at most (1− pmin)

m. By the Poisson approximation, we have that (1− pmin)
m ≤ e−mpmin .

Setting this less than δ and rearranging, we yield our desired bound.

25

	Introduction
	Interpretive Equivalence Through Ambiguous Representations
	Enumerating Implementations through Interventions
	Representation Similarity

	Experiments
	Calibrating Ambiguity
	Reduction of Complex Models
	Reduction of Complex Tasks

	Representations, Circuits, Interpretations as Causal Models
	Interpretive Equivalence through Implementation Equivalence
	Representational Similarity and Interpretive Equivalence
	Conclusion
	Reproducibility Statement
	Glossary
	Notations
	Related Literature
	Experimental Details
	RASP Interpretations
	Strict Interchange Intervention Training
	Algorithms for Permutation Detection
	Function Vectors and Parts-of-Speech Identification

	Properties of Interpretive Equivalence and Compression
	Technical Lemmata
	Proof of Basic Causal Implementation Properties

	Proofs for Representation Similarity and Interpretive Equivalence
	Proof for Main Result 1
	Proof for Main Result 2

	Computing Interpretive Equivalence
	Proof for Main Result 3
	Intervention-Implementation Duality

