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ABSTRACT

Mechanistic interpretability (MI) is an emerging framework for interpreting
neural networks. Given a task and model, MI aims to discover a succinct algo-
rithmic process, an interpretation, that explains the model’s decision process on
that task. However, MI is difficult to scale and generalize. This stems in part from
two key challenges: the lack of a well-defined notion of a valid interpretation;
and, the ad hoc nature of generating and searching for such explanations. In this
paper, we address these challenges by formally defining and studying the problem
of interpretive equivalence: determining whether two different models share a
common interpretation, without requiring an explicit description of what that inter-
pretation is. At the core of our approach, we propose and formalize the principle
that two interpretations of a model are (approximately) equivalent if and only if
all of their possible implementations are also (approximately) equivalent. We
develop tractable algorithms to estimate interpretive equivalence and case study
their use on Transformer-based models. To analyze our algorithms, we introduce
necessary and sufficient conditions for interpretive equivalence grounded in the
similarity of their neural representations. As a result, we provide the first theoretical
guarantees that simultaneously relate a model’s algorithmic interpretations, circuits,
and representations. Our framework lays a foundation for the development of more
rigorous evaluation methods of MI and automated, generalizable interpretation
discovery methods.

1 INTRODUCTION

Ensuring the interpretability of deep neural networks has become central to concerns around AI safety
and trustworthiness. Among the many proposed interpretation methods, mechanistic interpretability
(MI) has recently emerged as a promising post-hoc interpretability framework1 (Olah et al., 2020a;
Elhage et al., 2021; Wang et al., 2022, inter alia). MI generally operates in two stages: (a) identifying
a minimal subset of the model’s computational graph that drives functional behavior; and (b) attaching
algorithmic interpretations to each of the recovered mechanisms. In contrast to other attribution-
based interpretability methods, MI yields a concrete, human-interpretable algorithmic process that
faithfully describes model behavior (Bereska and Gavves, 2024). The resulting processes can
be used to demystify training dynamics (Nanda et al., 2022) and better understand the model’s
inductive biases (Geva et al., 2021; Cabannes et al., 2024, inter alia) which further guide model
improvements (Meng et al., 2022; McLeish et al., 2024).

For a fixed task and network, MI approaches can be broadly categorized as either top-down or
bottom-up (Vilas et al., 2024). Top-down methods (b → a) propose a set of high-level candidate
algorithms for the task, and then attempt to align these algorithms to the network. While the alignment
step can be automated and made statistically rigorous, proposing candidate algorithms is highly ad
hoc. For complex tasks, it is often unclear how to even formulate plausible candidates. Additionally,
alignment with a proposed algorithm is only a necessary condition for interpretability, and does not
guarantee that the model truly implements the intended algorithm (Geiger et al., 2025; Wu et al., 2023;
Geiger et al., 2024; Sun et al., 2025). In contrast, bottom-up methods (a → b) first isolate mechanisms-
of-interest within the model (called circuits) then assign interpretations to these circuits (Olah et al.,

1An interpretability method that does not require any retraining. These methods can be applied in parallel
with inference and does not compromise the model’s original performance.
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Figure 1: A high-level overview of our algorithmic approach to interpretive equivalence. Consider
models hθ1 ,hθ2 that correspond to possibly unknown interpretations A1,A2 (Left). To determine
whether models hθ1 and hθ2 are interpretive equivalent, we propose a two-step procedure. First,
we sample another model h?

θ
that also has interpretation A1 (Center). Second, we compare the

representation similarity (drepr) between hθ1 ,h
?
θ

and h?
θ
,hθ2 (Right). Intuitively, if models hθ1 and hθ2

are interpretive equivalent (i.e., A1 = A2), then averaged over all implementations h?
θ

, we should not
be able to differentiate drepr(hθ1 ,h

?
θ
) and drepr(h?θ ,hθ2).

2020a). Although circuit discovery can be rigorously formulated as an optimization problem, creating
and assigning meaningful interpretations to circuits typically demands significant manual effort.
Moreover, Méloux et al. (2025) has recently shown that neither top-down nor bottom-up approaches
are identifiable: there exists a many-to-many relationship between high-level algorithms and circuits.
This ambiguity makes it hard to verify whether a given interpretation is complete and faithful to the
model (Jacovi and Goldberg, 2020; Chan et al., 2022). We present a detailed discussion of the related
literature in Appendix C.

In this paper, we define and study a relaxed, subproblem of MI: interpretive equivalence. Concretely,
we seek to determine whether two models implement the same high-level algorithm, without requiring
an explicit description of what that algorithm is. Understanding interpretive equivalence can bridge
the gap between bottom-up and top-down approaches by reconciling their respective limitations. We
illustrate this through two examples:
Example 1.1 (Reduction to Simpler Models). MI’s scalability to large models is limited by its
prohibitive computational costs (Goldowsky-Dill et al., 2023; Adolfi et al., 2025). If a small model
can be shown to be interpretively equivalent to a large one, then MI analyses on the small model can
reveal the mechanisms underlying the larger model.
Example 1.2 (Reduction to Simpler Tasks). MI’s scope is limited by the significant human ingenuity
required for both top-down and bottom-up approaches (Nanda et al., 2022; Zhong et al., 2023). For
this reason, interpreting complex tasks is at least as hard as manually designing an algorithm to
solve them. Interpretive equivalence offers a way to address this by decomposing complex tasks into
simpler, approximate interpretive equivalent ones.
At the core of our approach (Figure 1), we propose the principle that two high-level algorithms
(henceforth termed interpretations2) are equivalent if and only if all of their implementations are
also equivalent. Based on this principle, we design tractable algorithms to detect equivalence by
measuring representation similarity. We ground these contributions theoretically by proving that
representation similarity is both sufficient and necessary to characterize interpretive equivalence.
Overall, our contributions span both practice and theory:

2We distinguish between an algorithm and an interpretation. Colloquially, an algorithm is a description
independent of any particular level of computational abstraction. However, we show in the coming sections that
such algorithms are not well-defined. Thus, we opt for the terminology interpretation to signify a dependence on
the level of computational abstraction.
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Practice

(P.i) We propose an algorithm to compute interpretive equivalence of two models through
their representation similarity without interpreting them (Section 2 and Algorithm 1).

(P.ii) We show that Algorithm 1 is well-calibrated on a simple task where the ground truth is
known (Section 3.1).

(P.iii) We demonstrate the potential of Algorithm 1 to find reductions from complex models
and tasks to simpler ones as described in Examples 1.1 and 1.2 (Sections 3.2 and 3.3).

Theory

(T.i) We specialize the theory of causal abstraction to define interpretations, circuits, repre-
sentations, and interpretive equivalence (Sections 4 and 5).

(T.ii) We prove that representation similarity is a necessary and sufficient approximation to
interpretive equivalence, grounding our algorithmic contributions (Section 6).

(T.iii) Other byproducts of our framework: a metric to quantify interpretation quality (Sec-
tion 5), insight into interventions as a covering over implementation sets (Appendix G).

2 INTERPRETIVE EQUIVALENCE THROUGH AMBIGUOUS REPRESENTATIONS

We define two mechanistic interpretations A1,A2 as equivalent if their implementations are equivalent.
In other words, any model that can be interpreted by A1 must also by interpreted by A2 and vice
versa. While we formally define and justify this principle later, we first argue its practicality and
offer an algorithm to approximate this equivalence (Algorithm 1). To do so, we need to clarify two
processes:

1. How do we enumerate the implementations of A1,A2? (Section 2.1)
2. How do we measure the distance between these sets of implementations? (Section 2.2)

2.1 ENUMERATING IMPLEMENTATIONS THROUGH INTERVENTIONS

We call any model h that has a mechanistic interpretation A an implementation of A (Definition A.7).
We take a circuits approach to generating implementations. Bottom-up approaches isolate circuits
through targeted causal interventions. These interventions identify unimportant computational compo-
nents like attention heads or even individual neurons that are unrelated to the model’s behavior (Conmy
et al., 2023; Goldowsky-Dill et al., 2023; Bhaskar et al., 2024). Crucially, a model’s mechanistic
interpretations are invariant under perturbation or ablation of these unimportant components. Dually,
each time we find and ablate such a component, we yield a “new” model that is causally equivalent to
the original one (and as a corollary, shares the same interpretation). We take this inverse perspective to
generating implementations—adding, removing, or modifying these unimportant components (Geiger
et al., 2024; Gupta et al., 2024). This procedure is described in GETIMPL (Algorithm 1).

2.2 REPRESENTATION SIMILARITY

We identify each implementation with their hidden representation spaces (GETREPRS in Algorithm 1).
Given any two implementations, we use the linear representation similarity between them to measure
their distance (drepr defined in Definition F.1). Specifically, we measure the extent to which one
representation can be reconstructed through a linear transformation of the other. Suppose that the
implementation sets of A1,A2 were equal. Let h1,h?1 be implementations sampled3 from A1 and h2 be
an implementation sampled from A2. By symmetry, P[drepr(h1,h?1)< drepr(h2,h?1)] =P[drepr(h1,h?1)>
drepr(h2,h?1)]. In this way, the implementations of A1,A2 are “ambiguous” under drepr. We present
this metric as REPRDIST (Algorithm 1). And, combining these concepts, we yield our approximation
of interpretive equivalence: AMBIGUITY.

3For the sake of argument, suppose i.i.d. sampling.
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Algorithm 1 Ambiguity between two models approximates the probability that two models are
interpretive equivalent. Ambiguity between models is high when representation similarity cannot tell
the difference between them, and low otherwise. drepr(hθ1 ,hθ2) measures the linear representation
similarity between the representations of hθ1 ,hθ2 (Definition F.1 and Sucholutsky et al. 2023).
GETREPRS retrieves the hidden representations of a given model.

1 procedure AMBIGUITY(hθ1 ,hθ2 ,n)
2 s← 0
3 for i← 1 . . .n do
4 hθ?

1
← GETIMPL(hθ1)

5 hθ?
2
← GETIMPL(hθ2)

6 s← s+REPRDIST(hθ1 ,h
?
θ1
,hθ2)

7 s← s+REPRDIST(hθ2 ,h
?
θ2
,hθ1)

return 1−|s/n−1|
8
9 procedure REPRDIST(hθ1 ,hθ2 ,hθ3 )

10 for i← 1,2,3 do
11 Ri← GETREPRS(hθi)

12 if drepr(R1,R2)≤ drepr(R1,R3) then
13 return 1
14 return 0

1 procedure GETIMPL(hθ )
2 N ← components of hθ whose abla-

tion preserves performance
3 P← components of hθ whose abla-

tion degrades performance
4 Apply orthonormal transformations

to a subset of P uniformly
5 Perturb a subset of N uniformly with

Gaussian noise
6 Delete a subset of N uniformly
7 Check that hθ maintains performance
8 return hθ

3 EXPERIMENTS

Herein, we demonstrate three different applications of Algorithm 1. First, on a toy task where
ground-truth interpretations are known, we show that AMBIGUITY is well-calibrated (Section 3.1).
Next, we apply our framework to pre-trained language models of various sizes (GPT2 (Radford
et al., 2019) and Pythia (Biderman et al., 2023)), and demonstrate that AMBIGUITY can distinguish
between models that exhibit fine-grained algorithmic differences (Section 3.2). Lastly, we show how
AMBIGUITY can be used to relate a complex task like next-token prediction to a simpler one such as
parts-of-speech identification (Section 3.3).

3.1 CALIBRATING AMBIGUITY

We consider the task of n-Permutation Detection: determining whether a given sequence of n
numbers is a permutation of the elements 1, . . . ,n. For example, [3, 1, 2] → True and [1, 2,
2] → False. The task is sufficiently rich to support different interpretations, yet simple enough
that solutions can be hard-coded as Transformers. We manually devise six different interpretations
to solve this task whose procedures we detail in Appendix D. Roughly, their approaches can be
organized into two buckets:

1. Sorting-Based (Interpretations 1-4). First sort the list of numbers by ascending (or descending)
order, then directly check whether the resulting sequence is equal to 1,2, . . . ,n (or n,n−1, . . . ,1).

2. Counting-Based (Interpretations 5-6). Exploit the fact that the vocabulary contains exactly n
numbers and use the pigeonhole principle to detect duplicates in the given sequence.

We fix n = 10. Using the Restricted Access Sequence Processing Language (RASP), we hard-code
six bidirectional Transformers (of various architectures) to respectively implement each interpreta-
tion (Weiss et al., 2021). Then, for each hard-coded RASP Transformer, we leverage a technique
of Gupta et al.’s (2024) to generate 100 model variants (with different architectures and weight
configurations). These variants are constrained to maintain the same underlying interpretation as
their hard-coded counterpart. Thus, we yield 6× 100 models that all achieve 96%+ accuracy on
10-permutation detection. We now directly compute AMBIGUITY (Algorithm 1) between pairs of
models from our generated implementation sets. We perform hypothesis testing by bootstrapping a
95% confidence interval over the final output4. The results are shown in Figure 2(Left).

4Here, H0 : the two models do not the same interpretation; and our alternate, H1 : the two models share the
same interpretations. We compute a Wald confidence interval with 20 straps.
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Figure 2: (Left) Average ambiguity between models associated with different interpretations. �
indicates models have significantly different interpretations; whereas � indicates that models have
statistically indistinguishable interpretations. (Center) Ambiguity between GPT2 and Pythia family
of models on the IOI task. groups models based on their actual interpretive differences observed
by Tigges et al. (2024); Merullo et al. (2024). (Right) Ambiguity between GPT2 on next-token
prediction (for different token types: all tokens, articles, prepositions, punctuation, parentheses, and
terminal punctuation) vs. GPT2 on in-context parts-of-speech identification.

Along the diagonals of Figure 2(Left), we see significantly high ambiguity. So when models share
the same interpretation, representations across their implementation sets are “ambiguous” (i.e. ap-
proximately equivalent under linear transformation). On the other hand, off-diagonal entries admit
low ambiguity. Thus, representation similarity across implementation sets as a whole can identify
individual interpretations. These empirical findings complement our bounds in Main Results 1 and
2 in that they show AMBIGUITY is both necessary and sufficient to detect interpretive equivalence.
Perhaps even more interesting, we observe a breaking row/column in Figure 2, where Interpretations
1-4 (the 4×4 square on the top-left) have an average within-group ambiguity of 0.43. This is larger
compared to the average across-group ambiguity (rows/columns 5-6) with Interpretations 5-6: 0.01.
These groupings corresponds to our algorithmic buckets above and suggests that AMBIGUITY could
also be adopted as a graded notion to characterize interpretive differences.

3.2 REDUCTION OF COMPLEX MODELS

We now consider the task of indirect-object identification (IOI) (Wang et al., 2022): given
a sentence like “When John and Mary went to the store, John gave a drink to ” the
model should complete the sentence with “Mary.” IOI can be solved algorithmically, as such it
has been studied across many models: GPT2-small/medium and the Pythia class of models. While
Merullo et al. (2024) find that GPT2-small and medium use the same circuit, Tigges et al. (2024) find
that Pythia models across all scales use a consistent but different circuit from GPT2 models (Merullo
et al. 2024, Appendix C; Tigges et al. 2024: Appendix D). We use these differences as a practical
testbed for AMBIGUITY and explore how AMBIGUITY generalizes across both model families and
scales (85M to 2.9B parameters).

For each model, we generate 10 parallel implementations by intervening on the components found
not to be in the IOI circuit (identified by both Tigges et al. 2024 and Merullo et al. 2024). Then,
we apply AMBIGUITY, each time computing representation similarity with 200 IOI sentences. The
results are shown in Figure 2(Center). We find that the Pythia models show high within-group
ambiguity across different scales. GPT2 models exhibit similar behavior. This supports our intuition
that interpretive equivalence could be leveraged to reduce the interpretations of complex models into
interpretations from smaller ones (Example 1.1). For example, our results affirm that Pythia-2.8b is
interpretive equivalent to Pythia-160M with respect to the IOI task; thus, a priori, it suffices to only
interpret the latter. Indeed, Tigges et al. (2024) finds both models to share the same interpretation.
On average, across-group ambiguity between Pythia and GPT2 is significantly lower (0.13 versus
0.73 and 0.92) which supports our previous insight that representation similarity provides increased
identifiability over interpretations. However, it is unclear why Pythia-160M and 410M show increased
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ambiguity with GPT2-medium and small, respectively; perhaps, subtle similarities in name-mover
heads representations could explain this (Tigges et al. 2024, Section 3.2).

3.3 REDUCTION OF COMPLEX TASKS

Interpreting next-token prediction poses a challenge for both bottom-up and top-down MI approaches.
For top-down approaches writing down a symbolic, end-to-end algorithm for next-token prediction
is difficult. Bottom-up approaches face the opposite problem: circuit discovery may identify the
entire model as important, failing to reduce the search space of interpretations. We show here that
interpretive equivalence may offer some first-steps towards mechanistically understanding next-token
prediction. Concretely, we identify sets of next-tokens for which GPT2’s prediction process is
interpretive similar to parts-of-speech identification5 (POS).

POS is a largely syntactic task since it focuses solely on the grammatical role of words rather than
their meaning in-context. Thus, we expect POS to be interpretive equivalent to the prediction of
“syntactic tokens.” For computational ease, we conduct all experiments on GPT2. To discover the
POS circuit in GPT2, we apply a method of Todd et al.’s (2024). We detail this process, along with
the circuit we discover in Appendix D. We construct a dataset for next-token prediction by uniformly
sampling 100 sentences from the C4 dataset (Raffel et al., 2020).

We collate tokens from our next-token prediction sentences into disjoint groups of interest. For each
group, we apply AMBIGUITY and compute representation similarity between our extracted POS
circuit and the last-token hidden representation of the model. The results across different token
groups are shown in Figure 2(Right).

As a control, we first consider the group of all tokens. We observe a nonzero ambiguity of 0.48
with POS. Next, we consider token groups articles and prepositions. Prediction of these tokens
typically appear mid-sentence and depend heavily on semantics6. Thus, we expect that predicting
these tokens should yield no more interpretive equivalence to POS than the control. Indeed, we find
POS ambiguity for articles and prepositions to be statistically indistinguishable from the all-token
average.

We now heuristically identify two sets of “syntactic tokens:”

1. Terminal Punctuation like “.”, “?”, or “!” mark the end of a sentence. Accurate prediction of
these tokens intuitively requires syntactic identification of subject-verb-object relationships and
(in)dependent clauses.

2. Closing Brackets/Quotations like “)” can be implemented as skip-trigrams in one-layer attention
Transformers (Elhage et al., 2021). So, we suspect that understanding sentence pragmatics is not
needed for their prediction.

We find that both groups yield significantly higher ambiguity compared our all-token control with
medium effect size (measured through Cohen’s d). This stands in contrast to punctuation generally
and opening brackets/quotations. Although these groups admit significantly higher ambiguity with
POS, we observe a small effect size (d < 0.3). We hypothesize that the placement of these tokens rely
on more semantic processes. For example, commas may be placed for emphasis or to add dependent
clauses rather than strictly maintain grammatical consistency.

4 REPRESENTATIONS, CIRCUITS, INTERPRETATIONS AS CAUSAL MODELS

We now present our framework of interpretive equivalence. This theoretically grounds our algorithmic
contributions in Section 2. Whenever possible, we present an informal treatment and defer the precise,
mathematical definitions to Appendix A where we also have a full glossary. Please also refer to
Appendix B for a summary of our notations.

5Given tree:noun; run:verb; quick:adverb; fluffy: the model needs to output adjective.
6Consider the fragment: “The students are looking [mask]” the next prepositions—“at”, “into”, or “for”—

are all syntactically sound, but they are semantically ambiguous without further context. Articles are similar:
consider, “I need to buy [mask] car.” [mask] could be either the indefinite (“a”) or definite (“the”), both
syntactically valid but the choice depends on semantic factors.

6
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Roadmap

1. In Section 4, we formally define circuits (Definition 4.2), representations (Definition 4.3),
and interpretations (Definition 4.4).

2. In Section 5, we define a criterion for when two interpretations can be considered equivalent:
interpretive equivalence. We also introdue interpretive compression, a metric quantifying
the quality of an interpretation.

3. In Section 6, we prove our main results that representation similarity is both sufficient and
necessary to describe interpretive equivalence (Main Results 1 and 2) and further show that
AMBIGUITY is closely related to these quantities (Main Result 3).

Throughout the following sections, let Σ? be all finite strings formed from alphabet Σ7. We define a
language model to be a function hθ : Σ?→ Rd , parameterized by θ ∈ Rk, for d,k ∈ Z+ Generally,
we are interested in hθ ’s behavior on a subset of inputs S⊂ Σ?. Thus, we term S a task.

Definition 4.1 (Deterministic Causal Model, Geiger et al. 2025). A causal model with m components
is a quadruple (V,U,F,�) where V = (v1, . . . ,vm) is the set of hidden variables, U is an input
variable, and � a partial order of V. F= { f1, . . . , fm} is a set of functions where each fk maps the
values of vk’s parents (as determined by �) to the value of vk.

A causal model describes a computational graph where hidden variables V (nodes) store latent
computation results computed by the functions in F (edges). For an input U ← u, we denote VF(u)
as the unique solution: the values of all hidden variables as determined by F (Peters et al., 2017). And,
let vF

i (u) be the solution of vi ∈ V. Next, we define circuits. For some task S, a circuit describes the
computational pathways used by the model to produce hθ (S).

Definition 4.2 (Circuit). An m-circuit of hθ on S is a causal graph (V,U,F,�) with m components
that satisfies: (1) U is S-valued; (2) Hidden variables are real-valued; (3) There exists a hidden
variable vout such that vF

out(S) = hθ (S).

There is a natural tradeoff between the complexity of V and the complexity of operators in F. On
one extreme, any blackbox model hθ can be expressed as a trivial causal model with one hidden
variable: v1 , hθ (U). On the other, each v ∈ V could be a single neuron (thus |V| ∼ 109), F
consist of dot-products. Thus, intuitively, V determines the granularity of abstraction of the circuit.
Representations of a neural network are sequence of activation spaces. Increasingly, representations
have been understood to encode concepts which deep networks then iteratively refine (Jastrzebski et al.,
2018). We view representations as abstrations of circuits and formally define them through causal
abstraction (Beckers and Halpern, 2019; Geiger et al., 2025). Informally, causal model K? abstracts
K when there exists a surjective map between their variables that preserves K’s causal relationships.
We call any map that admits this abstraction an alignment from K to K? (Definition A.4).

Definition 4.3 (Representations). For a circuit K, an (L,δ )-representation of K abstracts K into
a single chain of length L, where each hidden variable has exactly one parent. δ lower bounds
approximation error in both directions: each hidden variable is rich enough to predict the output, yet
simple enough that outputs can recover them (Equation A.3).

In MI, this latter constraint is often used as an empirical search criterion for “good representations”
which in turn localizes a network’s circuit (Belrose et al., 2025).

Interpretations are symbolic, human-understandable descriptions of hθ that faithfully captures its
functional behavior on a task. Formally, we view them as abstractions and do not attempt to define
what makes them understandable, as this is inherently subjective.

Definition 4.4 (Interpretation). Given a circuit K on S, an η-faithful interpretation is a causal model
A that abstracts K such that A’s output approximates K’s with error at most η across all inputs in S.

We do not assume there exists a distance metric over A’s variables nor do we specify the values of
these variables take on. This generality aligns our framework with most MI literature.

7Our paper invokes practical examples based on language modeling. However, as we do not rely on properties
of the input space, the theory we develop is domain agnostic and can be easily adapted to other modalities.
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5 INTERPRETIVE EQUIVALENCE THROUGH IMPLEMENTATION EQUIVALENCE

Méloux et al.’s (2025) results demonstrate that pointwise comparison of circuits or interpretations is
ill-defined, since many interpretations can correspond to a single circuit and vice versa. Thus, we
propose that two interpretations are equivalent if and only if their implementations are equivalent. By
examining families of circuits, we effectively quotient out the many-to-one mapping from circuits to
interpretations. To start, let us define implementations. Let K , (V,U,F,�) be an m-circuit of hθ

and A, (V?,U,F?,�) be an η-faithful interpretation of K through an alignment π . For fixed π , by
carefully varying F we could yield many different circuits over (V,U) that all abstract to A. In our
framework, V,U is the neural architecture and F are different weight configurations that yield
the same interpretation A. The set of all admissible F under A,π , we define as A’s implementations
under π . For a set of alignments, Π, we denote Π−1(A) as the union of all implementations under
π ∈ Π. This construction closely mirrors the intuition of existing empirical results (Lubana et al.,
2023; Zhong et al., 2023; Gupta et al., 2024).

Figure 3

We assume that any circuit comes with a metric attached
to its variables, i.e. d : V×V→ [0,∞). This is reasonable,
as a circuit’s hidden variables are real-valued. d then
naturally induces a pseudometric over Π−1(A), where for
F, F̃ ∈Π−1(A) :

d(F, F̃), d(VF ,VF̃) = d(VF(S),VF ′(S)). (5.1)

Given two sets of implementations over (V,U, ·, ·) we can
leverage d to measure (1) the Hausdorff distance between
them; and, (2) their diameters. We call the former ap-
proximate interpretive equivalence which we denote
as dinterp(A,A?) for interpretations A,A?, and the latter in-
terpretive compression which we denote as κ(A,K,Π)
(Figure 3). The intersection between Π−1,Π−2 then ex-
plains Méloux et al.’s (2025) non-identifiability of circuits
and interpretations. In this way, interpretive equivalence
and compression are tightly coupled. On one extreme, suppose A = K and |Π|= 1. Then, there exists
exactly one implementation of A under Π: K. This implies no interpretive compression. Equivalently,
any interpretation equivalent to A must admit the same exact same weight configuration as K: F.
This effectively creates a bijective mapping between model weights and interpretations. On the other,
suppose that A is the trivial causal model of hθ , and let Π be all alignments. Since A conveys no
information about the computational process of K and Π places no constraint on alignment, any
circuit must be an implementation of A. In fact, Sutter et al. (2025) show under mild assumptions that
this phenomenon persists as long as Π is the set of all alignments. In this case, interpretive compres-
sion is maximal. These examples illustrate a duality between equivalence and compression: while
more compression shrinks and simplifies interpretation, it simultaneously enlarges and complicates
implementation and equivalence. We further prove critical properties of interpretive equivalence and
compression in Appendix E.

6 REPRESENTATIONAL SIMILARITY AND INTERPRETIVE EQUIVALENCE

Using interpretive compression and representation simiarlity, we now prove both upper and lower
bounds on interpretive equivalence (Main Result 1 and Main Result 2, respectively). The proofs
and formalisms are deferred to Appendix F. Throughout this section, we consider the most general
setup: suppose two circuits over a shared task S for models h1,h2 defined over different neural
architectures. Their circuits we notate as K1,K2, respectively. Let us also assume each circuit admits
an (Li,δi)-representation Ri through an alignment map ρi. First, we define a notion of distance
between these two representations.

Definition 6.1 (Representation Similarity). Let Hi be the concatenation of all hidden variables in Ri.
Then, the representation similarity of R1,R2, drepr(R1,R2), is the bidirectional linear approximation
error between H1,H2 (formally, Definition F.1).

8
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Strict linearity in this approximation is not necessary to develop our theory, but offers attractive com-
putational tradeoffs. This is because we can formulate representation similarity as multi-target linear
regression for which there are sharp approximations with small sample complexity. Additionally, we
make the following structural assumptions

1. ρi is Lipschitz continuous with Lipschitz constant Lip(ρi)
2. There exists ∆ > 0 such that ‖h1−h2‖< ∆ over S

Assumption 1 stabilizes representations such that small changes in circuitry lead to proportionally
bounded representation perturbations. In practice, this is reasonable since representations are usually
distilled from neural networks via linear projections or by averaging the activations of several neural
components (Sucholutsky et al., 2023). Assumption 2 guarantees that functional differences between
our target models are bounded, otherwise their interpretive inequivalence is trivial.

Suppose that A1,A2 are η1,η2-faithful interpretations of K1,K2, respectively. We first show that
representation similarity between A1,A2 upperbounds interpretive equivalence.
Main Result 1. Let Π and Π? be alignment classes that map K1’s variables into A1,A2’s variables,
respectively. Then, the approximate interpretive equivalence of A1,A2 under alignments Π−1,Π−1

? is
dinterp(A1,A2). κ(A1,K1,Π)+κ(A2,K1,Π?)︸ ︷︷ ︸

(a)

+max(L1δ1,L2δ2)+drepr(R1,R2)︸ ︷︷ ︸
(b)

. (6.1)

Equation 6.1 explicits two dependencies: (a) measures interpretive compression of A1,A2 on K1.
When compression is low, circuits retain more information about interpretive differences. And since
representations distill circuits, it is intuitive that representation similarity dominates the upperbound in
this regime. In contrast, when compression is high, our examples in Section 5 illustrate that when cir-
cuits become uninformative, so should representations and their similarities; (b) jointly measures the
quality of representations R1,R2 and their differences. If δ1,δ2� 1, representations lose meaningful
linear structure even though they sufficiently abstract implementations of A1,A2. This bound exposes
a tension between the geometric richness of representations and our computational approach to their
similarities. For example, representations lying on complex manifolds may not be well-described by
our linear formulation of representation similarity (Ansuini et al., 2019; Pimentel et al., 2020). Thus,
we hypothesize representations and their similarity criterion need to be simultaneously broadened to
achieve more generality. We leave the implications of this for future work. Now, the lowerbound:
Main Result 2. Let Π and Π? be an alignment that map K1’s variables onto A1,A2’s variables.
Suppose A1,A2 are ε-approximately interpretive equivalent under the alignment classes Π?,Π. Then,

drepr(R1,R2). Lip(ρ1)(min{κ(A1,K1,Π),κ(A2,K1,Π?)}+ ε)︸ ︷︷ ︸
(a)

+L1δ1 +L2δ2︸ ︷︷ ︸
(b)

+∆. (6.2)

The terms in Equation 6.2 mirror the dynamics of Equation 6.1. Beyond interpretive equivalence, Main
Result 2 has implications for steering (Rimsky et al., 2024; Singh et al., 2024). When identifiability of
representations is low, steering interventions is less likely to induce interpretive change, i.e. significant
alterations to the representation space may see little change in model interpretation. In Main Result 3,
we show how this directly relates to AMBIGUITY.

Main Result 3. Let p be the expected value of REPRDIST in Algorithm 1, F1,F2
iid∼Π

−1
1 (A1), and

F3 ∼Π
−1
2 (A2) then

p≥ 1− inf
ε>0

P[drepr(F1,F2)> κ(A1,K1,Π1)+ ε]−P[drepr(F1,F3)< dinterp(A1,A2)− ε]. (6.3)

This variational lowerbound demonstrates that REPRDIST (and as a corollary, AMBIGUITY) accounts
for interpretive compression and equivalence. We further discuss this bound in Appendix G.

7 CONCLUSION

In this paper, we define and study the problem of interpretive equivalence: detecting whether two
models share the same mechanistic interpretation without interpreting them. We contribute an
algorithm to estimate equivalence and demonstrate its use on toy and pre-trained language models.
Then, we provide a theoretical foundation to ground and explain our algorithm. Our framework
and results lay a foundation for the development of more rigorous evaluation methods in MI and
automated, generalizable interpretation discovery methods.

9
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A GLOSSARY

Herein, we provide a glossary for our technical terms in the main text along with their precise, formal
definitions.

Term Intuitive Explanation Formal Definition
Causal/Computation Graph A graph that describes a model’s computa-

tional dependencies
Definition A.1

Variables Nodes in a model’s computation graph that
store latent computation results

Definition A.1

Circuit A subset of the model’s computational graph
that on its own can fully recreate the model’s
input-output behavior

Definition A.2

Mechanistic Explanation A symbolic algorithm that we can understand
that explains the model’s computation

N/A

Causal Abstraction Mapping from low-level variables to higher-
level ones that preserve low-level causal rela-
tionships

Definition A.4

Interpretation A causal graph much smaller than the model’s
computation graph that explains the model’s
computation graph

Definition A.6

Representations A causal graph that is a chain that abstracts a
model’s circuit

Definition A.5

Alignment A mapping between two causal graphs that
preserves meaningful causal relations be-
tween variables

Definition A.4

Intervention A modification to the model’s computation
graph

Definition A.3

Alignment Class A set of alignments that map to the same in-
terpretation

Definition A.7

Implementation Sets of circuits that share the same interpreta-
tion

Definition A.7

Interpretive Equivalence Measure of distance between sets of imple-
mentations

Definition A.9

Interpretive Compression Measure of diameter of a set of implementa-
tions

Definition A.8

Ambiguity Approximation for interpretive equivalence Definition G.1
Representation Similarity Extent to which one set of representations can

be transformed into the other and vice versa
Definition F.1

Definition A.1 (Deterministic Causal Model, Geiger et al. 2025). A (deterministic) causal model
with m components is a quadruple (V,U,F,�) where V= (v1, . . . ,vm) is a set of hidden variables
such that |V|= |F|= m, U is an input variable, and � defines a partial ordering over V. For each
vk ∈ V,

vk , fk(Pa(vk),U)

where fk ∈ F and Pa(vk)⊂ {v ∈ V : v � vk} are the parents of vk.

Definition A.2 (Circuit). An m-circuit of hθ on S is a causal graph with m components that satisfies
four properties:

1. Input variable is S-valued: U ∈ S
2. Hidden variables are real-valued: for each vk ∈ V, v ∈ Rnk

3. Existence of a terminal output variable: vout ∈ V such that vout ∈ Rd , and there does not
exist v′ ∈ V where vout � v′

4. Sufficient description of hθ on S: for each s ∈ S, vF
out(s) = hθ (s)

For any hθ and m, an m-circuit of hθ must exist by the trivial causal model. m-circuits are also not
unique. For instance, a joint change of bases to any vk ∈V\vout and fk results in a new causal model
that preserves functional faithfulness to hθ (Park et al., 2024; Geiger et al., 2024).
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Definition A.3 (Intervention). Let (V,U,F,�) be a causal model. An intervention of vk ∈ V,
do(vk ← f̃ ), redefines vk , f̃ (P̃a(vk),U), for P̃a(vk) ⊂ {v ∈ V : v � vk}. We denote the set of
interventions on vk as I (vk).

In other words, we place the process using to derive vk’s value, f , with a new function f̃ . In this
paper, we exclusively focus on hard interventions, where f̃ is a constant function. This essentially
ablates vk, as its values no longer depend on the input (Massidda et al., 2023).

Given any circuit, we can intervene on its hidden variables through activation patching (Vig et al.,
2020; Wang et al., 2022; Heimersheim and Nanda, 2024): ablating a variable or modifying the process
used to derive its value. Interventions serve as a check of consistency and equivalence between
circuits and their interpretations (Beckers and Halpern, 2019; Geiger et al., 2021).
Definition A.4 (Abstraction). Let K1 , (V,U,F,�1),K2 , (Ṽ,Ũ , F̃,�2) be causal models. K2
abstracts K1 if there exists surjective mappings π : SubsetsOf(V)→ Ṽ,ω : I (V)→ I (Ṽ) that
satisfies for all vk ∈ V, ṽk ∈ Ṽ,do(vk← f ) ∈I (vk):

ṽk = π

 ⋃
vk∈π−1(ṽk)

fk(Pa(vk),U)

 , (A.1)

π(do(vk← f )) = do(π(vk)← ω( f )). (A.2)
We call π an alignment.
Equation A.1 describes an observational consistency constraint: if K2 abstracts K1, then by only
observing the hidden variables of K1 we can infer all hidden values of K2. Viewed under this lens, the
alignment π projects the fine-grained variables V to the coarse-grained ones Ṽ. On the other hand,
Equation A.2 is an intervention consistency constraint—stating that π and ω must commute. This
implies that all of the causal relationships between variables in K2 can be constructed by relationships
between variables in K1.
Definition A.5 (Representations). Let K be an m-circuit of hθ on a task S. An (L,δ )-representation
of K, denoted by R, is an L-circuit that abstracts K such that for each vk ∈ V

• Pa(vk+1) = {vk} and Pa(v1) = /0
• There exists linear maps Ak : Rnk → Rd ,Bk : Rd → Rnk where

‖Akv
F
k −h‖< δ︸ ︷︷ ︸
signal

and ‖Bkh−vF
k ‖< δ︸ ︷︷ ︸

noise

(A.3)

for some function norm (to be specified)
Definition A.6 (Interpretation). For a model hθ with m-circuit K , (V,U,F,�) on a task S, an
η-faithful interpretation of K is a causal model A, (V?,U,F?,�) that satisfies two properties: (1) A
abstracts K; (2) There exists a terminal output variable v?

out ∈ V? such that ‖v?,F
out −vF

out‖< η for the
terminal output variable vout ∈ V.

For any circuit, K is an interpretation of itself (under the identity abstraction), albeit not very useful.
Definition A.7 (Implementation). Let Π be a class of alignments. Then, denote Π−1(A) the set of
implementations of A where F ∈Π−1(A) if A is an η-faithful interpretation of (V,U,F,≺F) under
some alignment (π : SubsetsOf(V)→ V?) ∈Π.
Definition A.8 (Compression). Let A be an η-faithful interpretation of K and Π be a class of
alignments. Then, the interpretive compression of A on K is

κ(A,K,Π), sup
F,F ′∈Π−1(A)

d(F,F ′) = diameter(Π−1(A)). (A.4)

Definition A.9 (Equivalence). Let A1,A2 be η1,η2-faithful interpretations of K and Π1,Π2 be classes
of alignments. Then, A1,A2 are ε-approximately interpretive equivalent if

dinterp(A1,A2), dH
(
Π
−1
1 (A1),Π

−1
2 (A2)

)
< ε, (A.5)

where dH is the Hausdorff distance8 defined by d (see Equation 5.1).
8The Hausdorff distance between two sets A,B is the greatest distance a point from A,B needs to travel to

reach B,A, respectively: d̃(a,B), infb∈B d(a,b), dH(A,B),max(supa∈A d̃(a,B),supb∈B (̃b,A)).
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Definition A.9 requires that both interpretations, A1,A2, come from the same circuit K. This constraint
can be relaxed by augmenting the alignment classes Πi such that (π : SubsetsOf(V1)→ V?

i ) ∈Πi:
essentially mapping the different interpretations onto the same neural architecture V1. Although this
creates asymmetry in choosing which circuit to use for comparison (V1 or V2), we should select the
circuit of least compression that admits at least one implementation for both interpretations.
Our bounds in Section 6 justify this principle.

B NOTATIONS

Symbol Meaning
Σ An alphabet
Σ? Set of all finite strings constructed from Σ

S A subset of Σ?

A An interpretation
K A circuit
R A representation
V Set of variables in a causal model
U Input variable to causal model
F Functions in causal model that determine variable values
� Partial ordering over variables of causal model induced by F
VF(u) Solution of all variables to input u
vF

k (u) Solution of vk to input u
π An alignment between variables of two causal models
Π A class of alignments
Π−1(A) The set of implementations of A induced by alignments Π

dinterp Interpretive equivalence
dH Hausdorff distance
κ(A,K,Π) Interpretive compression
drepr Representation similarity
Lip( f ) Lipschitz constant of f
iid∼ Sample i.i.d from some distribution

C RELATED LITERATURE

There have been extensive studies in interpreting the decision criterion of neural networks (specifically,
language models). With respect to our paper, they can be organized into the following categories.

Mechanistic Interpretability. Mechanistic Interpretability (MI) can be broadly broken into two
distinct phases: first, identifying a minimal subset of the model’s computational graph that is
responsible for a specific behavior—this process is also referred to as circuit discovery Olah et al.
(2020b;a); Conmy et al. (2023); Bhaskar et al. (2024); Hanna et al. (2024); second, assigning human-
interpretable explanations to each of the extracted components—this process is generally referred to
as mechanistic interpretability Chan et al. (2022); Wang et al. (2022); Zhong et al. (2023); Hanna
et al. (2023); Merullo et al. (2024). This paper focuses on the latter process; thus, when we invoke the
term mechanistic interpretability, we are referring specifically to this second phase. For completeness,
we briefly review circuit discovery as well.

A model can be seen as a computational graph Elhage et al. (2021); Olsson et al. (2022): G = (V,E)
with vertices V and edges E ⊂ V ×V . A circuit is then any binary function f : E → {0,1}. The
optimal circuit f satisfies two properties: (1) it minimizes ∑e∈E f (e); and (2) when edges not in the
circuit e ∈ E, f (e) = 0 are ablated, the model’s functional behavior remains unchanged. Although
circuit discovery can be concretely formulated as an optimization problem, it is computationally
intractable in its naive form Bhaskar et al. (2024); Adolfi et al. (2025). As a result, many relaxations
and heuristics have been developed Conmy et al. (2023); Syed et al. (2023); Nanda (2023); Hanna
et al. (2024); Bhaskar et al. (2024). Nevertheless, there exists a solution set that can be statistically
verified Shi et al. (2024).
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The process of mechanistic interpretability, which we focus on in this paper, presents different
challenges. MI involves iteratively generating hypotheses about the interpretations for the interactions
between different components, then testing those hypotheses through carefully crafted interven-
tions (Chan et al., 2022; Geiger et al., 2024; Méloux et al., 2025; Sun et al., 2025, inter alia).
MI methods can be further clustered into two approaches: top-down and bottom-up. Top-down
approaches start by enumerating hypotheses about the possible algorithms the model could be im-
plementing. Then, they iterate through these hypotheses and isolate those with the closest causal
alignment Wu et al. (2023); Geiger et al. (2024); Bereska and Gavves (2024); Vilas et al. (2024); Sun
et al. (2025). On the other hand, bottom-up approaches are data-driven. They seek to directly find
algorithmic explanations of the model’s mechanistic behaviors by analyzing activations or attention
patterns Nanda et al. (2022); Zhong et al. (2023); Lee et al. (2024); Arditi et al. (2024); Nikankin
et al. (2025).

Casual Abstraction. Causality, and more specifically causal abstraction, seeks to formally character-
ize when a symbolic explanation faithfully explains a data-generating process (in our application,
this data-generating process would be a model) Pearl (2009); Peters et al. (2017); Beckers and
Halpern (2019); Beckers et al. (2020); Otsuka and Saigo (2022). Causal abstraction as defined in
Definition A.4 seeks to align “low-level” models (neural networks) with “high-level” models (sym-
bolic explanations). These theoretical constructions have driven the development of many top-down
mechanistic interpretability methods such as Wu et al. (2023); Geiger et al. (2024); Sun et al. (2025)
which directly verify this condition. While causal abstraction provides a necessary condition for a
valid interpretation, recent works such as Méloux et al. (2025) argue that it alone is insufficient to
fully characterize what constitutes a valid interpretation. Practical procedures that stem from this
theory also fail to address this. This highlights the need for additional theoretical frameworks to
complement causal abstraction.

On the other hand, causal abstraction represents a hard equivalence: two models either are or are not
causal abstractions of each other. The binary nature of this definition fails to capture our intuition that
explanations can vary in quality or completeness. Some interpretations may better capture the model’s
behavior than others, or may only explain a subset of the model’s functionality. The hard equivalence
of causal abstraction makes it difficult to reason about these partial or imperfect explanations. As
a result, framemworks such as Beckers et al. (2020); Massidda et al. (2023) soften this criterion
by introducing distance metrics on the total settings of the “high-level” model. In practice, these
approaches face two main drawbacks:

1. It is challenging to define meaningful distance metrics when high-level interpretations
involve discrete symbols and symbolic reasoning Sun et al. (2024).

2. Comparing interpretations between models requires fully interpreting each model first,
which forces a computationally expensive top-down analysis approach.

Our framework addresses these limitations by focusing on implementations rather than interpretations
directly. Since neural network computations are fundamentally real-valued, we can leverage natural
distance metrics in their computational space. Additionally, by analyzing families of implementations
rather than requiring complete interpretations, we can compare models’ interpretive similarity without
the overhead of fully interpreting each model first.

Representation Similarity. Representation similarity in neural networks has emerged as a fundamen-
tal research area whcih addresses how internal representations correspond across different models,
domains, and biological systems Kornblith et al. (2019).

Representations of deep neural networks have shown to exhibit an array of powerful properties. They
have given insights into training dynamics and the generalization capabilities of models Tishby et al.
(2000); Xu and Raginsky (2017); Shwartz Ziv and LeCun (2024) and also provide a tractable method
to compare the inductive biases between different models Wang and Isola (2020); Imani et al.; Skean
et al. (2025). These representations have also shown to admit rich geometric properties Tulchinskii
et al. (2023). In this paper, we measure representation through a learned linear regression. These
techniques have been used extensively to compare different neural architecture and even human-
language model similarity Toneva and Wehbe (2019); Muttenthaler et al. (2023).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D EXPERIMENTAL DETAILS

In this section, we detail our experimental methods. We first review constructs of RASP Weiss et al.
(2021). Then, we demonstrate that RASP provides an interface to craft interpretations, and through
methods like Geiger et al. (2024); Gupta et al. (2024) we can enumerate implementations of these
interpretations. Lastly, we describe our experimental hyperparameters.

D.1 RASP INTERPRETATIONS

Background on RASP Programs. The Restricted Access Sequence Programming (RASP) language
is a functional programming model designed to capture the computational behavior of Transformer
architdectures (Weiss et al., 2021). RASP programs have shown use in mechanistic interpretability
both as an effective benchmarking tool for faithfulness (Conmy et al., 2023; Hanna et al., 2024) and
as a method to develop “inherently” interpretable language models (Friedman et al., 2023). Another
line of work uses it (and other similar methods) as a proof technique to reason about the Transformer
architecture’s generalizability on a host of tasks (Weiss et al., 2021; Merrill et al., 2022; Giannou
et al., 2023). In this paper, we focus on RASP’s applications in interpretability.

RASP programs operate on two primary types of variables: s-ops, representing the input sequence,
and selectors, corresponding to attention matrices. These variables are manipulated through two
fundamental instructions: elementwise operations and select-aggregate. Elementwise operations
simulate computations performed by a multilayer perceptron (MLP), while select-aggregate combines
token-level operations, modeling the functionality of attention heads.

Every RASP program is equipped with two global variables tokens and indices, essentially
primitive s-ops. tokens maps strings into their token representations:

token("code") = ["c", "o", "d", "e"]
indices("code") = [0, 1, 2, 3]

On the other hand, indices map n-length strings into their indices. That is, a list of [0,1, . . . ,n−1].
Elementwise operations can be computed through composition. That is,

(3 * indices)("code") = [0, 3, 6, 9]
(sin(indices)) = [sin(0), sin(1), sin(2), sin(3)]

Tokens and their indices can also be mixed through selection matrices which are represented through
the s-op select. This operations captures the mechanism of the QK-matrix. It takes as input two
sequences K,Q, representing keys and queries respectively, and a Boolean predicate p and returns a
matrix S of size |K|× |Q| such that Si j = p(K j,Qi). Then, the OV-circuit can be computed through
the select-aggregate operation, which performs an averaging over an arbitrary sequence with respect
to the aforementioned selection matrix. For example,

aggregate

([1 0 0
0 0 0
1 1 0

]
, [10 20 30]

)
= [10015] .

The previous example is directly lifted from Lindner et al. (2023).

Compiling RASP Programs. The power of RASP programming lies in its ability to translate any
RASP program into a Transformer, a process known as compilation. As described in Lindner et al.
(2023), this involves a two-stage approach. First, a computational graph is constructed by tracing the
s-ops in the program, identifying how these operations interact with and modify the residual stream.
Elementwise operations are converted into MLP weights, and individual components are heuristically
assigned to Transformer layers. For further details, we refer the reader to Lindner et al. (2023).

As observed by Lindner et al. (2023), this compilation through “translation” introduces inefficiencies.
Specifically, the heuristic layer-assignment of RASP components results in Transformers that often
contain more layers than they need to have. Moreover, since RASP enforces the use of categorical
sequences and hard attention (we only allow Boolean predicates) it requires various s-ops to lie
orthogonal to each other after embedding as Transformer weights. As a result, this leads to a much
larger embedding dimension that is usually observed in actual Transformers (Elhage et al., 2022).
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Figure 4: Pipeline for generating implementations for our interpretations (i.e. RASP language
models). We first construct RASP programs, then using the procedure introduced in Lindner et al.
(2023), we compile these programs into Transformer models. These Transformers exclusively have
hard attention. Moreover, their architecture is minimal (containing only the necessary components
to fully implement the given RASP program). We then apply the procedure introduced in Gupta
et al. (2024) to translate these Tracr-Compiled Transformers into “real” Transformers: ones whose
weight distribution matches those trained with stochastic gradient descent; these translated models
also contain more

Thus, Lindner et al. (2023) proposes to compress this dimension through a learned projection matrix.
The caveat is that this transformation largely not faithful to the original program (measured through
cosine similarity of the outputs at individual layers).

Friedman et al. (2023) takes a different approach, addressing the inherent difficulty of writing RASP
programs. To overcome this challenge, the authors propose a method for directly learning RASP
programs. This is achieved by constraining the space of learnable weights to those that compile into
valid RASP programs, ensuring outputs with categorical variables and hard attention mechanisms.
Optimizing over this constrained hypothesis class is performed through a continuous relaxation using
the Gumbel distribution (Jang et al., 2017).

RASP Benchmarks. Thurnherr and Scheurer (2024) is a dataset of RASP programs that have been
generated by GPT-4. It contains 121 RASP programs. Gupta et al. (2024) provides 86 RASP programs
and compiled Transformers. The compiled Transformers are claimed to be more realistic than Tracr
compiled ones as instead of performing compression using a linear projection, they leverage strict
interchange intervention training essentially aligning the intervention effects of the compressed and
uncompressed model. This is similar in vein to many existing techniques on causal abstraction Otsuka
and Saigo (2022); Zennaro (2022); Massidda et al. (2023). In our paper, we leverage the curated
dataset Gupta et al. (2024) to craft and compose our interpretations.

D.2 STRICT INTERCHANGE INTERVENTION TRAINING

To evaluate our methods, we need a way to verifiably ellicit different mechanisms on the same task.
Let us first fix some task. Then, we proceed with the following steps:

1. Using Friedman et al. (2023), we learn several different explicit Transformer programs (source
of randomness). We can check that they are different by looking explicitly at the Transformer
programs.

2. Using Gupta et al. (2024) and Geiger et al. (2024) to get different mechanistic realizations of this
abstract Transformer program.

To generate different mechanistic instantiations of the same interpretation across architectures, we
use the following procedure: First, we take a Tracr-Compiled Transformer model and initialize
a new random model with at least as many layers and attention heads. Two models share the
same interpretation if the Tracr-Compiled transformer is a causal abstraction of our mechanistic
instantiation. We leverage this insight by softening Definition A.4 and incorporating it directly into

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

our objective function. For a detailed treatment of this approach, we refer readers to Geiger et al.
(2024); Gupta et al. (2024); Sun et al. (2025).

To ensure diversity in our implementations, we vary the architecture hyperparameters significantly:
models contain between 2-6 layers, 2-8 attention heads, and embedding dimensions ranging from 32
to 2048. This creates a rich set of instantiations with widely varying model capacities. As a result,
many mechanisms in these larger models may not contribute to the core interpretations, leading to
substantial interpretive compression.

D.3 ALGORITHMS FOR PERMUTATION DETECTION

To implement this task, we proceed with the following six algorithms. As discussed in Section 3.1,
they can be roughly divided into two groups: sort- and counting-based.

Interpretation 1. (1) Sort the sequence; (2) Compute the difference between each element and the
next one; (3) Check if all elements of the sequence are equal.

Interpretation 2. (1) Sort the sequence in descending order; (2) Increment each element by its index;
(3) Check if all elements of the sequence are equal.

Interpretation 3. (1) Sort the sequence; (2) Interleave the list with the same list in reverse order; (3)
Sum each number with the number next to it; (4) Check if all elements of the list are equal.

Interpretation 4. (1) Sort the sequence; (2) Check if the list contains alternating even and odd
elements.

Interpretation 5. (1) Check if at least two elements in the list are equal; (2) Sum each element with
the next one in the list; (3) Check if all elements of the list are equal.

Interpretation 6. (1) Replace each element with the number of elements less than it in the sequence;
(2) Check if at least two numbers are the same.

For each of the subroutines of these interpretations, Gupta et al. (2024) implements RASP programs
for them. Thus, we simply compose them together to create the resulting models.

D.4 FUNCTION VECTORS AND PARTS-OF-SPEECH IDENTIFICATION

Function vectors have been found to drive in-context learning behavior (Todd et al., 2024). We
leverage this concept to find the circuit that is responsible for in-context parts-of-speech identification.
We use the Penn TreeBank dataset and consider the POS subtask. We sample n = 1000 points.

We create counterfactual inputs by shuffling the in-context labels. For example,

Clean Input: tree:noun, run:verb, quickly:adverb, ire:
Corrupted Input: tree:adverb, run:noun, quickly:verb, ire:

Then, we first run the model on the clean input and store all attention head output activations on the
token “ire.” We then run the model on the corrupted input and patch in the stored attention head
activations from the “ire” token. Finally, we compute the difference in logit difference loss of the
generated next tokens before/after this patching operation. The results for each attention head are
shown in Figure 5. It seems that attention heads in the early/middle layers are most important for
POS (0.1, 0.4, 0.6, 4.11, 5.1, 5.5, 6.8, 6.9, 6.10, 7.11).

Then, we compute the function vector by
1
|A| ∑a∈A

n

∑
k=1

a(xk), (D.1)

where A is the set of attention heads that we have deemed important and xk is our dataset. Essentially,
we are averaging the activations across all important attention heads.

E PROPERTIES OF INTERPRETIVE EQUIVALENCE AND COMPRESSION

As discussed in Section 5, an interpretation of a model need not be a lossless description of that
model. In fact, in many applications a human-interpretable explanation is necessarily lossy with
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Figure 5: Activation patching results for each attention head. The coloring indicates the % of
performance this individual attention head contributes to POS performance.

respect to the learned model. In this sense, a constructive abstraction is too restrictive as it requires
any interpretation to preserve the exact functional behavior of the model.

Definition (Exact Transformation). Let M , (V,U,F,�),M? , (V?,U,F?,�) be two causal models.
An exact transformation from M to M? is a pair of partial surjective maps (τ,ω) where τ : V→ V?

and ω : I (M)→I (M?), an order-preserving map that satisfies Equation A.1 and Equation A.2.

The key property of an exact transformation is this commutativity.

E.1 TECHNICAL LEMMATA

Lemma E.1 (Lemma 5 Rubenstein et al. 2017). The composition of exact transformations is also an
exact transformation.
Lemma E.2. The composition of alignments is also an alignment.

It directly follows from Lemma E.1 and Lemma E.2 that the composition of abstractions is also an
abstraction. We shall use this fact next.

E.2 PROOF OF BASIC CAUSAL IMPLEMENTATION PROPERTIES

Lemma E.3. Let K be a circuit and A be an η-faithful interpretation of K. Suppose that A? is an
η?-faithful interpretation of A. Then, A? is an (η +η?)-interpretation of K.

Proof. By Lemma E.2 and Lemma E.1, we know that there must exist an alignment from K to A?. It
remains to show that this is a faithful one. Suppose that vm,vout,v

?
out are the terminal output variables

of K,A,A?, respectively. By faithfulness, it must be that

‖vm−v?
out‖ ≤ ‖vm−vout +vout−v?

out‖ ,
≤ ‖vm−vout‖+‖vout−v?

out‖ ,
≤ η1 +η2.

Corollary E.4. If M? is an implementation of M and M is an implementation of A, then M? must be
an implementation of A.

F PROOFS FOR REPRESENTATION SIMILARITY AND INTERPRETIVE
EQUIVALENCE

Suppose we have two circuits over a shared task S for models hθ1 ,hθ2 defined over different neural
architectures. These circuits we notate as K1 , (V1,U,F1,�) and K2 , (V2,U,F2,�), respectively.
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Let us also assume each circuit admits an (Li,δi) representation Ri , (Hi,U,Fi,�) through an
alignment map ρi. First, we define a notion of distance between these two representations.

Definition F.1 (Representation Similarity). Denote by Hi , concat(HFi
i ) to be the direct sum (con-

catenation) of all hidden variables in Hi. Then, the representation similarity9 between R1 and R2 is

drepr(R1,R2),max(inf
A
‖AH1−H2‖ , inf

B
‖H1−BH2‖), (F.1)

where A,B are linear projections and ‖·‖ is some norm (to be specified, see Definition A.5).

F.1 PROOF FOR MAIN RESULT 1

Definition F.2. Let (Z,d) be a metric space. Let S ⊂ Z. The diameter of S denoted diameter(S) is
defined as

diameter(S) := sup
a,b∈S

d(a,b). (F.2)

Lemma F.1. Let (Z,d) be a metric space and dH be its Hausdorff distance. Then, for A,B⊂ Z and
a ∈ A,b ∈ B,

dH(A,B)≤ diameter(A)+diameter(B)+d(a,b).

Proof. Fix any a′ ∈ A. Then,

inf
b′∈B

d(a′,b′)≤ d(a′,b),

≤ d(a′,a)+d(a,b),
≤ diameter(A)+d(a,b).

By symmetry, for any b′ ∈ A, it follows that infa′∈A d(a′,b′)≤ diameter(B)+d(a,b). Therefore, by
the definition of the Hausdorff distance, we yield the desired bound.

Proof. By Lemma F.1, it suffices to bound the distance between any two implementations of K1,K2 in
Π−1(A1),Π

−1
? (A2). To do this, we directly construct valid circuits of I1, I2 using their representations

and then bound their distance in d. Without the loss of generality, we manipulate the direct sum of
the representations R1,R2: H1,H2. By construction, Ri takes on values in Rdim(Hi).

If the representation similarity between R1,R2 is not finite, then the result holds trivially. Otherwise,
consider the case where representation similarity between R1,R2 is bounded (equal to ε). Then, by
assumption and Definition F.1, for some η > 0, there must exists a linear map A : dim(H1)→ dim(H2)
such that ‖AH1−H2‖< ε +L2δ2 +η . Notice that R1 must be a δ -faithful interpretation of A1. Let B
be the linear map such that ‖BH2−H1‖< ε+L1δ1+η . By our derivations in the proof of Theorem 2,
AR1 is also a (L1δ1 + ‖B‖op ε)-faithful interpretation of A1. It follows by triangle inequality and
symmetry that

d(AR1,R2)≤max(L1δ1,L2δ2)+ ε(‖B‖op +‖A‖op),

this yields the desired bound.

F.2 PROOF FOR MAIN RESULT 2

Proof. Consider first an arbitrary F ∈ Π−1
? (A2). Then, since Definition F.1 satisfies the triangle

inequality,
drepr(R1,R2)≤ drepr(R1,R?

2)︸ ︷︷ ︸
(a)

+drepr(R?
2,R2)︸ ︷︷ ︸

(b)

,

where R?
2 is the abstraction of (V1,U,F,�) as a result of the alignment ρ1. We now proceed to

upperbound (a) and (b) separately.

9Our formulation is inspired by Chan et al.’s (2024) notion of representation alignment between language
encoders. Although Definition F.1 is not a true similarity, this nomenclature stays consisten with the litera-
ture (Kornblith et al., 2019).
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(a) Since A1,A2 are ε-approximately interpretive equivalent, it must be that
d(K?

2 ,K1)≤ ε +min(κ(A1,K1,Π),κ(A2,K1,Π?)).

Then, since ρ1 is Lipschitz continuous, it follows directly that
drepr(R1,R?

2)≤ Lip(ρ1)(ε +min(κ(A1,K1,Π),κ(A2,K1,Π?))) .

(b) Let H?
2 ,H2 be the direct sum of the hidden variables in R?

2 and R2, respectively. Then, by
the definition of drepr,

drepr(R?
2,R2) = max(inf

A
‖AH?

2 −H2‖ , inf
B
‖H2−BH?

2‖),

for linear operators A,B. Again, we choose to bound both operands in the maxima separately.
By assumption since R1,R2 are (L1,δ1),(L2,δ2)-representations, there must exist linear
operators A1,B1,A2,B2 such that∥∥A1H1−hθ1

∥∥< δ1
∥∥H1−B1hθ1

∥∥< δ1
∥∥A2H2−hθ2

∥∥< δ2
∥∥H2−B2hθ2

∥∥< δ2.

Then,
inf
A
‖AH2−H?

2‖ ≤
∥∥B2A1H2−B2hθ2

∥∥ ,
≤
∥∥B2A1H2−B2hθ2

∥∥+∥∥B2hθ2 −H2
∥∥ ,

≤ ‖B2‖op

∥∥A1H2−hθ2

∥∥+δ2

Further, now we expand
∥∥A1H2−hθ2

∥∥, it follows that∥∥A1(H2 +H1−H1)−hθ2

∥∥≤ ∥∥A1H1−hθ2 +A1(R2−R1)
∥∥ ,

≤ δ1 +∆+‖A1‖op drepr(R1,R?
2).

By the same derivation for the other side, we yield that

drepr(R?
2,R2)≤max

(
‖B2‖op (δ1 +∆+‖A2‖op drepr(R1,R?

2))+δ2,δ1 +drepr(R1,R?
2)+‖B2‖op (∆+δ2)

)
.

Summing both of these upperbounds, we yield the theorem.

Where is faithfulness in all of this? Unintuitively, neither Main Result 1 nor 2 contain the faithfulness
of A1,A2 (η1,η2, respectively). Our insight is that faithfulness is implicitly encoded into the alignment
classes Π,Π?. This is because any valid alignment must be consistent with the faithfulness of A1,A2
(see Definition A.7). In this way, η1,η2 determine which alignment classes are non-empty. This is
why alignment classes form the crux of our constructions, because they describe both structural and
behavioral constraints over abstractions.

G COMPUTING INTERPRETIVE EQUIVALENCE

Definition G.1 (Ambiguity). Let F1,F2 ∼Π
−1
1 (A1) and F3,F4 ∼Π

−1
2 (A2) then define

p1 , P[drepr(F1,F2)< drepr(F1,F3)] p2 , P[drepr(F3,F4)< drepr(F3,F1)]. (G.1)

Then, the ambiguity between Π
−1
1 (A1),Π

−1
2 (A2) is then 1−|p1 + p2−1|.

In words, we sample two implementations from Π
−1
1 (A1) and one from Π

−1
2 (A2). Then, ambiguity is

the probability that the two A1 representations are more similar to each other than either does to the
A2 implementation. If Π

−1
1 (A1) = Π

−1
2 (A2), by symmetry, p1 = p2 = 1/2 and ambiguity is 1: from

their representations alone the implementations of A1,A2 are maximally ambiguous.

G.1 PROOF FOR MAIN RESULT 3

Proof. Let F1,F2 ∼Π
−1
1 (A1) and F3 ∼Π

−1
2 (A2), then consider the event drepr(F1,F2)> drepr(F1,F3).

For arbitrary ε > 0, this event occurs with probability 1 when drepr(F1,F2)> κ(A1,K1,Π1)+ ε and
drepr(F1,F3)< dinterp(A1,A2)− ε . Therefore,

p≥ 1−P[drepr(F1,F2)> κ(A1,K1,Π1)+ ε]−P[drepr(F1,F3)< dinterp(A1,A2)− ε],

since ε > 0 was arbitrary, we yield the result.
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G.2 INTERVENTION-IMPLEMENTATION DUALITY

Our results in the previous section demonstrate that estimating both the representation similarity and
interpretive compression is crucial to understanding interpretive equivalence. If ‖·‖= ‖·‖2 which is
what we will use in the following sections, existing theory provide strong guarantees on how quickly
and accurately we can estimate drepr(R1,R2), a multi-target linear regression. However, it is unclear
how interpretive compression, essentially a worst case condition can be estimated tractably. We
now show that by viewing each intervention as instantiating a new implementation in the space of
implementations we only need log(n) number of interventions where n is the covering number of the
implementation space.
Proposition G.1. Suppose that C =N(Π−1(A),d,ε/2) be the covering number of the implementation
space Π−1(A). Let B1, . . . ,BC be the balls of radius ε/2 that cover Π−1(A). Define

pmin , min
1,...,C

P[Bi],

Then, for

m≥ log(C)− ln(δ )
pmin

,

we have that P[κ(A,K,Π)− κ̂(A,K,Π)≤ ε]> 1−δ where κ̂ is the empirical diameter of Π−1(A).

Proof. Consider the bad event κ(A,K,Π)− κ̂(A,K,Π)> ε . This occurs when we draw m samples
such that there exists one ball Bi where we did not draw a sample from. Notice that this occurs with
probability at most (1− pmin)

m. By the Poisson approximation, we have that (1− pmin)
m ≤ e−mpmin .

Setting this less than δ and rearranging, we yield our desired bound.
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