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Abstract

Stochastic gradient-based optimization methods, such as L-SVRG and its accelerated vari-
ant L-Katyusha (Kovalev et al., 2020), are widely used to train machine learning models.
The theoretical and empirical performance of L-SVRG and L-Katyusha can be improved
by sampling observations from a non-uniform distribution (Qian et al., 2021). However,
designing a desired sampling distribution requires prior knowledge of smoothness constants,
which can be computationally intractable to obtain in practice when the dimension of the
model parameter is high. To address this issue, we propose an adaptive sampling strategy
for L-SVRG and L-Katyusha that can learn the sampling distribution with little computa-
tional overhead, while allowing it to change with iterates, and at the same time does not
require any prior knowledge of the problem parameters. We prove convergence guarantees
for L-SVRG and L-Katyusha for convex objectives when the sampling distribution changes
with iterates. Our results show that even without prior information, the proposed adap-
tive sampling strategy matches, and in some cases even surpasses, the performance of the
sampling scheme in Qian et al. (2021). Extensive simulations support our theory and the
practical utility of the proposed sampling scheme on real data.

1 Introduction

We aim to minimize the following finite-sum problem:

min
x∈Rd

F (x) := 1
n

n∑
i=1

fi(x), (1)

where each fi is convex, differentiable, and Li-smooth – see Assumptions 1 and 2 in Section 3. The mini-
mization problem in (1) is ubiquitous in machine learning applications, where fi(x) typically represents the
loss function on the i-th data point of a model parameterized by x. We denote the solution to (1) as x⋆.
However, due to computational concerns, it is typically solved via a first-order method (Bottou et al., 2018).
When the sample size n is large, computing the full gradient ∇F (x) can be computationally expensive, and
stochastic first-order methods, such as stochastic gradient descent (SGD) (Robbins & Monro, 1951), are the
modern tools of choice for minimizing (1).

Since SGD iterates cannot converge to the minimizer without decreasing the stepsize due to nonvanishing
variance, a number of variance-reduced methods have been proposed, such as SAG (Schmidt et al., 2017),
SAGA (Defazio et al., 2014), SVRG (Johnson & Zhang, 2013), and Katyusha (Allen-Zhu, 2017). Such
methods can converge to the optimum of (1) even with a constant stepsize. In this paper, we focus on
L-SVRG and L-Katyusha (Kovalev et al., 2020), which improve on SVRG and Katyusha by removing the
outer loop in these algorithms and replacing it with a biased coin-flip. This change simplifies parameter
selection, leads to better practical performance, and allows for clearer theoretical analysis.

Stochastic first-order methods use a computationally inexpensive estimate of the full gradient ∇F (x) when
minimizing (1). For example, at the beginning of round t, SGD randomly selects it ∈ [n] according to
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a sampling distribution pt over [n], and forms an unbiased estimate ∇fit
(x) of ∇F (x). Typically, the

sampling distribution pt is the uniform distribution, pt = (1/n, · · · , 1/n), for all t. However, using a non-
uniform sampling distribution can lead to faster convergence (Zhao & Zhang, 2015; Needell et al., 2016; Qian
et al., 2019; Hanzely & Richtárik, 2019; Qian et al., 2021). For instance, when the sampling distribution is
pIS = (pIS

1 , · · · , pIS
n ), with pIS

i = Li/(
∑n

i=1 Li) = Li/(nL̄), the convergence rate of L-SVRG and L-Katyusha
can be shown to depend on the average smoothness L̄ := (1/n)

∑n
i=1 Li, instead of the maximum smoothness

Lmax := max1≤i≤n Li (Kovalev et al., 2020). Sampling from a non-uniform distribution is commonly referred
to as importance sampling (IS).

While sampling observations from pIS can improve the speed of convergence, pIS depends on the smoothness
constants {Li}i∈[n]. In general, these constants are not known in advance and need to be estimated, for
example, by computing supx∈Rd λmax(∇2fi(x)), i ∈ [n], where λmax(·) denotes the largest eigenvalue of a
matrix. However, when the dimension d is large, it is computationally prohibitive to estimate the smoothness
constants, except in some special cases such as linear and logistic regression. In this paper, we develop a
method to design a sequence of sampling distributions that leads to the convergence rate of L-SVRG and
L-Katyusha that depends on L̄, instead of Lmax, without prior knowledge of {Li}i∈[n].

Instead of designing a fixed sampling distribution, where pt ≡ p for all t, we design a dynamic sampling
distribution that can change with iterations of the optimization algorithm. We follow a recent line of work
that formulates the design of the sampling distribution as an online learning problem (Salehi et al., 2017;
Borsos et al., 2019; Namkoong et al., 2017; Hanchi & Stephens, 2020; Zhao et al., 2021). Using the gradi-
ent information obtained in each round, we update the sampling distribution with minimal computational
overhead. This sampling distribution is subsequently used to adaptively sample the observations used to
compute the stochastic gradient. When the sequence of designed distributions is used for importance sam-
pling, we prove convergence guarantees for L-SVRG, under both strongly convex and weakly convex settings,
and for L-Katyusha under the strongly convex setting. These convergence guarantees show that it is pos-
sible to design a sampling distribution that not only performs as well as pIS but can also improve over
it without using prior information. We focus on comparing with pIS as it is the most widely used fixed
sampling distribution (Qian et al., 2021) and leads to the best-known convergence rates with fixed sampling
distribution (Zhao & Zhang, 2015; Needell et al., 2016).

Contributions. Our paper makes the following contributions. We propose an adaptive sampling algorithm
for L-SVRG and L-Katyusha that does not require prior information, such as smoothness constants. This
is the first practical sampling strategy for these algorithms. We prove convergence guarantees for L-SVRG
under both strong and weak convexity, and for L-Katyusha under strong convexity, using a sequence of
sampling distributions that changes with iterations. These theoretical results show when the sequence of
sampling distributions performs as well as pIS , and even outperforms it in some cases. Our numerical
experiments support these findings. We also show that the control variate technique in SVRG and adaptive
sampling reduce variance from different aspects, as demonstrated in a simulation. We conduct extensive
simulations to provide empirical support for various aspects of our theory and real data experiments to
demonstrate the practical benefits of adaptive sampling. Given its low computational cost and superior
empirical performance, we suggest that our adaptive sampling should be considered as the default alternative
to the uniform sampling used in L-SVRG and L-Katyusha.

Related work. Our paper contributes to the literature on non-uniform sampling in first-order stochastic
optimization methods. Previous work, such as Zhao & Zhang (2015), Needell et al. (2016), and Qian
et al. (2021), studied non-uniform sampling in SGD, stochastic coordinate descent, and L-SVRG and L-
Katyusha, respectively, but focused on sampling from a fixed distribution. In contrast, we allow the sampling
distribution to change with iterates, which is important as the best sampling distribution changes with
iterations. Shen et al. (2016) studied adaptive sampling methods for variance-reducing stochastic methods,
such as SVRG and SAGA, but their approach requires computing all gradients {∇fi(xt)}n

i=1 at each step,
which is impractical. Our method only requires computing the stochastic gradient ∇fit(xt). The sampling
distribution can be designed adaptively using an online learning framework (Namkoong et al., 2017; Salehi
et al., 2017; Borsos et al., 2018; 2019; Hanchi & Stephens, 2020; Zhao et al., 2021). We call this process
adaptive sampling, and its goal is to minimize the cumulative sampling variance, which appears in the
convergence rates of L-SVRG and L-Katyusha (see Section 3). More specifically, Namkoong et al. (2017)
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and Salehi et al. (2017) designed the sampling distribution by solving a multi-armed bandit problem with
the EXP3 algorithm. Borsos et al. (2018) took an online convex optimization approach and made updates to
the sampling distribution using the follow-the-regularized-leader algorithm. Borsos et al. (2019) considered
the class of distributions that is a linear combination of a set of given distributions and used an online
Newton method to update the weights. Hanchi & Stephens (2020) and Zhao et al. (2021) investigated non-
stationary approaches to learning sampling distributions. Among these works, Zhao et al. (2021) is the only
one that compared their sampling distribution to a dynamic comparator that can change with iterations
without requiring stepsize decay. While our theory quantifies the effect of any sampling distribution on the
convergence rate of L-SVRG and L-Katyusha, we use the OSMD sampler and AdaOSMD sampler from Zhao
et al. (2021), as they lead to the best upper bound and yield the best empirical performance.

Notation. For a positive integer n, let [n] := {1, · · · , n}. We use ∥ · ∥ to denote the l2-norm in the
Euclidean space. Let Pn−1 = {x ∈ Rn :

∑n
i=1 xi = 1, xj ≥ 0, j ∈ [n]} be the (n − 1)-dimensional simplex.

For a symmetric matrix A ∈ Rd×d, we use λmax(A) to denote its largest eigenvalue. For a vector x ∈ Rd, we
use xj or x[j] to denote its j-th entry. For two sequences {an} and {bn}, an = O(bn) if there exists C > 0
such that |an/bn| ≤ C for all n large enough; an = Θ(bn) if an = O(bn) and bn = O(an) simultaneously.

Organization of the paper. In Section 2, we introduce the algorithm for designing the sampling distribu-
tion. In Section 3, we give the convergence analysis. Extensive simulations that demonstrate various aspects
of our theory are given in Section 4. Section 5 illustrates an application to real world data. Finally, we
conclude the paper with Section 6.

2 AS-LSVRG and AS-LKatyusha

To solve (1) using SGD, one iteratively samples it uniformly at random from [n] and updates the model
parameter by xt+1 ← xt − ηt∇fit

(xt). However, due to the non-vanishing variance V[∇fit
(xt)], xt cannot

converge to x⋆ unless one adopts a diminishing step size by letting ηt → 0. To address this issue, L-
SVRG (Kovalev et al., 2020) constructs an adjusted estimated of the gradient gt = ∇fit(xt) − ∇fit(wt) +
∇F (wt), where wt is a control variate that is updated to xt with probability ρ in each iteration. Note that
gt is still an unbiased estimate of ∇F (xt). Since both xt and wt converge to x⋆, we have V[gt]→ 0, and thus
xt can converge to x⋆ even with a constant step size. L-Katyusha incorporates a Nesterov-type acceleration
to improve the dependency of the computational complexity on the condition number under the strongly
convex setting (Kovalev et al., 2020).

Qian et al. (2021) investigated sampling it from [n] using a non-uniform sampling distribution to achieve
faster convergence. Given the model parameter xt at iteration t, suppose that it is sampled from the
distribution pt = (pt

1, . . . , pt
n). Then

gt = 1
npt

it

(
∇fit

(xt)−∇fit
(wt)

)
+∇F (wt)

is an unbiased estimate of ∇F (xt). The variance of gt is

V
[
gt

]
= V t

e

(
pt

)
−

∥∥∇F (xt)−∇F (wt)
∥∥2

,

where

V t
e

(
pt

)
:= 1

n2

n∑
i=1

1
pt

i

∥∥∇fi(xt)−∇fi(wt)
∥∥2

. (2)

We let V t (pt) := V [gt] be the sampling variance of the sampling distribution pt, and V t
e (pt) be the

effective variance. Therefore, in order to minimize the variance of gt, we can choose pt to minimize V t
e (pt).

Let pt
⋆ = arg minp∈Pn−1 V t

e (pt) be the oracle optimal dynamic sampling distribution at the t-th iteration,
which has the closed form

pt⋆, i = ∥∇fi(xt)−∇fi(wt)∥∑n
j=1 ∥∇fj(xt)−∇fj(wt)∥

, i ∈ [n]. (3)

However, we cannot compute pt
⋆ in each iteration, since computing it requires knowledge of all {∇fi(xt)}n

i=1
and {∇fi(wt)}n

i=1. If that were the case, we could simply use full-gradient descent, and there would be no
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Algorithm 1 AS-LSVRG
1: Input: stepsizes {η}t≥1, ρ ∈ (0, 1].
2: Initialize: x0 = w0; p0 = (1/n, · · · , 1/n).
3: for t = 0, 1, · · · , T − 1 do
4: Sample it from [n] with pt = (pt

1, · · · , pt
n).

5: gt = 1
npt

it

(∇fit
(xt)−∇fit

(wt)) +∇F (wt).
6: xt+1 = xt − ηtg

t.

7: wt+1 =
{

xt with probability ρ,

wt with probability 1− ρ.

8: Update pt to pt+1 by OSMD sampler (Algorithm 3) or AdaOSMD sampler (Algorithm 4).
9: end for

Algorithm 2 AS-LKatyusha
1: Input: stepsizes {η}t≥1, ρ ∈ (0, 1], θ1, θ2 ∈ [0, 1], 0 < κ < 1, L > 0.
2: Initialize: v0 = w0 = z0.
3: for t = 0, 1, · · · , T − 1 do
4: xt = θ1zt + θ2wt + (1− θ1 − θ2)vt.
5: Sample it from [n] with pt = (pt

1, · · · , pt
n).

6: gt = 1
npt

it

(∇fit
(xt)− fit

(wt)) + F (wt).
7: zt+1 = 1

1+ηtκ

(
ηtκxt + zt − ηt

L gt
)

8: vt+1 = xt + θ1(zt+1 − zt).

9: wt+1 =
{

vt with probability ρ,

wt with probability 1− ρ.

10: Update pt to pt+1 by OSMD sampler (Algorithm 3) or AdaOSMD sampler (Algorithm 4).
11: end for

need for either sampling or control variate. Therefore, some kind of approximation of pt
⋆ is unavoidable for

practical purposes.

Qian et al. (2021) proposed substituting each ∥∇fi(xt) − ∇fi(wt)∥ with its upper bound. Based on the
smoothness assumption (Assumption 2 in Section 3), we have ∥∇fi(xt)−∇fi(wt)∥ ≤ Li∥xt−wt∥. Thus, by
substituting ∥∇fi(xt)−∇fi(wt)∥ with Li∥xt − wt∥ in (2), we obtain an approximate sampling distribution
pIS = (pIS

1 , · · · , pIS
n ), with pIS

i = Li/(
∑n

i=1 Li) = Li/(nL̄). L-SVRG and L-Katyusha that use pIS can
achieve faster convergence compared to using uniform sampling (Qian et al., 2021). However, one difficulty
of applying pIS in practice is that we need to know Li for all i = 1, . . . , n. While such information can
be easy to access in some cases, such as in linear and logistic regression problems, it is generally hard
to estimate, especially when the dimension of the model parameter is high. To circumvent this problem,
recent work has formulated the design of the sampling distribution as an online learning problem (Salehi
et al., 2017; Borsos et al., 2019; Namkoong et al., 2017; Hanchi & Stephens, 2020; Zhao et al., 2021). More
specifically, at each iteration t, after sampling it with sampling distribution pt, we can receive information
about ∥∇fit(xt)−∇fit(wt)∥. Although we cannot have ∥∇fi(xt)−∇fi(wt)∥ for all i = 1, . . . , n, the partial
information obtained from {∥∇fis(xs)−∇fis(ws)∥}t

s=0 and {ps}t
s=0 is helpful in constructing the sampling

distribution pt+1 to minimize V t
e (pt). In this paper, we adapt the methods proposed in Zhao et al. (2021)

for L-SVRG and L-Katyusha and apply them in our experiments; however, our analysis is not restrictive to
this choice and can fit other methods as well.

We introduce our modifications of L-SVRG and L-Katyusha that use adaptive sampling, namely Adaptive
Sampling L-SVRG (AS-LSVRG, Algorithm 1) and Adaptive Sampling L-Katyusha (AS-LKatyusha, Algo-
rithm 2). The key change here is that instead of using a fixed sampling distribution pt ≡ p, t ≥ 0, we
allow the sampling distribution to change with iterations and adaptively learn it. More specifically, Step 8
of Algorithm 1 and Step 10 of Algorithm 2 use OSMD sampler or AdaOSMD sampler (Zhao et al., 2021) to
update the sampling distribution, which are described in Algorithm 3 and Algorithm 4, respectively. While
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Algorithm 3 OSMD sampler
1: Input: Learning rate η; parameter α ∈ (0, 1], A = PM−1 ∩ [α/M,∞)M ; number of iterations T .
2: Output: pt for t = 1, . . . , T .
3: Initialize: p1 = (1/n, . . . , 1/n).
4: for t = 1, 2, . . . , T − 1 do
5: Sample it from [n] by pt. Let at

it
= ∥∇fit

(xt)−∇fit
(wt)∥2.

6: Compute the sampling loss gradient estimate ∇V̂ t
e (pt) ∈ Rn: all entries are zero except for the it-th

entry, which is [
∇V̂ t

e (pt)
]

it

= − 1
n2 ·

at
it

(pt
it

)3 . (4)

7: Solve pt+1 = arg min
p∈A

η⟨p,∇V̂ t
e (pt)⟩+ DΦ

(
p ∥pt

)
using Algorithm 5 with the learning rate η.

8: end for

Algorithm 4 AdaOSMD sampler
1: Input: Meta-algorithm learning rate γ; expert learning rates E = {η1 ≤ η2 ≤ · · · ≤ ηH}; α ∈ (0, 1];
A = Pn−1 ∩ [α/n,∞)n. Number of iterations T .

2: Output: pt for t = 1, . . . , T .
3: Set θ1

h = (1 + 1/H)/(h(h + 1)), h ∈ [H].
4: Initialize: p1

h = (1/n, . . . , 1/n) for h ∈ [H].
5: for t = 1, 2, . . . , T − 1 do
6: Compute pt =

∑H
h=1 θt

hpt
h.

7: Sample it from [n] by pt. Let at
it

= ∥∇fit
(xt)−∇fit

(wt)∥2.
8: for h = 1, 2, . . . , H do
9: Compute the sampling loss estimate

V̂ t
e (pt

h; pt) = 1
n2 ·

at
it

pt
it

pt
h,it

. (5)

10: Compute the sampling loss gradient estimate ∇V̂ t
e (pt

h; pt) ∈ Rn: all entries are zero except for the
it-th entry, which is [

∇V̂ t
e (pt

h; pt)
]

it

= − 1
n2 ·

at
it

pt
it

(pt
h,it

)2 . (6)

11: Solve pt+1
h = arg minp∈A ηh⟨p,∇V̂ t

e (pt
h; pt)⟩ + DΦ (p ∥pt

h) using Algorithm 5 with the learning
rate ηh.

12: end for
13: Update the weights of each expert

θt+1
h =

θt
h exp

{
−γV̂ t

e (pt
h; pt)

}
∑H

h=1 θt
h exp

{
−γV̂ t

e (pt
h; pt)

} , h ∈ [H].

14: end for

the OSMD sampler and AdaOSMD sampler allow for choosing a mini-batch of samples in each iteration,
here we focus on choosing only one sample in each iteration. We choose Φ to be the unnormalized negative
entropy, that is, Φ(x) =

∑n
i=1 xi log xi −

∑n
i=1 xi, x = (x1, . . . , xn)⊤ ∈ [0,∞)n, with 0 log 0 defined as 0.

Additionally, DΦ (x ∥ y) = Φ(x)−Φ(y)−⟨∇Φ(y), x−y⟩ is the Bregman divergence between any x, y ∈ (0,∞)n

with respect to the function Φ.
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Algorithm 5 OSMD Solver: Solve pt+1 = arg minq∈A η⟨q, ût⟩+ DΦ(q ∥pt)
1: Input: pt, ût, A = Pn−1 ∩ [α/n,∞)n. Learning rate η.
2: Output: pt+1.
3: Let p̃t+1

i = pt
i exp (−ηût

i) for i ∈ [n].
4: Sort {p̃t+1

i }n
i=1 in a non-decreasing order: p̃t+1

π(1) ≤ . . . ≤ p̃t+1
π(n).

5: Let vi = p̃t+1
π(i)

(
1− i−1

n α
)

for i ∈ [n].
6: Let zi = α

n

∑n
j=i p̃t+1

π(j) for i ∈ [n].
7: Find the smallest i such that vi > zi, denoted as i⋆.

8: Let pt+1
i =

{
α/n if π(i) < i⋆(
(1− ((i⋆ − 1)/n)α)p̃t+1

i

)
/

(∑n
j=i⋆

p̃t+1
π(j)

)
otherwise.

The key insight of the OSMD Sampler is to use Online Stochastic Mirror Descent (Lattimore & Szepesvári,
2020) to minimize the cumulative sampling loss

∑T
t=1 V t

e (pt), where V t
e (pt) is defined in(2). To apply OSMD,

we first construct an unbiased estimate of the gradient of V t
e (pt), which is shown in (4). Then, in Step 7,

we update the sampling distribution by taking a mirror descent. Intuitively, the optimization objective in
Step 7 involves two terms. The first term encourages the sampling distribution to fit the most recent history,
while the second term ensures that it does not deviate too far from the previous decision. By choosing a
learning rate η, we keep a trade-off between these two concerns. A larger learning rate implies a stronger
fit towards the most recent history. To automatically choose the best learning rate, AdaOSMD uses a set
of expert learning rates and combines them using exponentially weighted averaging. Note that the total
number of iterations T is assumed to be known and used as an input to AdaOSMD. When the number of
iterations T is not known in advance, Zhao et al. (2021) proposed a doubling trick, which could also be used
here. The set of expert learning rates is given by

E :=
{

2h−1 · α3

n3ā1

√
log n

2T

∣∣∣∣∣ h = 1, 2, . . . , H

}
, (7)

where

H = ⌊12 log2

(
1 + 4 log(n/α)

log n
(T − 1)

)
⌋+ 1. (8)

The learning rate in AdaOSMD is set to γ = α
n

√
8

T ā1 , where ā1 = maxi∈[n] ∥∇fi(x0)∥. For all experiments
in this paper, we set α = 0.4.

The main computational bottleneck of both the OSMD sampler and the AdaOSMD sampler is the mirror
descent step. Fortunately, Step 7 of Algorithm 3 and Step 11 of Algorithm 4 can be efficiently solved by
Algorithm 5. The main cost of Algorithm 5 comes from sorting the sequence {p̃t+1

i }n
i=1, which can be done

with the computational complexity of O(n log n). However, note that we only update one entry of pt to get
p̃t+1 and pt is sorted in the previous iteration. Therefore, most entries of p̃t+1 are also sorted. Using this
observation, we can usually achieve a much faster running time, for example, by using an adaptive sorting
algorithm (Estivill-Castro & Wood, 1992).

3 Convergence analysis

We provide convergence rates for AS-LSVRG (Algorithm 1) and AS-LKatyusha (Algorithm 2), for any
sampling distribution sequence {pt}t≥0. We begin by imposing assumptions on the optimization problem in
(1).
Assumption 1 (Convexity). For each i ∈ [n], the function fi(·) is convex and first-order continuously
differentiable:

fi(x) ≥ fi(y) + ⟨∇fi(y), x− y⟩ for all x, y ∈ Rd.
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Assumption 2 (Smoothness). For each i ∈ [n], the function fi is Li-smooth:

∥∇fi(x)−∇fi(y)∥ ≤ Li∥x− y∥ for all x, y ∈ Rd.

Furthermore, the function F is LF -smooth:

∥∇F (x)−∇F (y)∥ ≤ LF ∥x− y∥ for all x, y ∈ Rd.

Recall that L̄ = (1/n)
∑n

i=1 Li and Lmax = max1≤i≤n Li. By the convexity of ∥ · ∥ and Jensen’s inequality,
we have that LF ≤ L̄. For some results, we will assume that F is strongly convex.
Assumption 3 (Strong Convexity). The function F (·) is µ-strongly convex:

F (x) ≥ F (y) + ⟨∇F (y), x− y⟩+ µ

2 ∥x− y∥2

for all x, y ∈ Rd, where µ > 0.

Additionally, the optimization heterogeneity is defined as

σ2
⋆ := 1

n

n∑
i=1
∥∇fi(x⋆)∥2, (9)

and the smoothness heterogeneity is defined as Lmax/L̄.

3.1 Convergence analysis of AS-LSVRG

We begin by providing a convergence rate for AS-LSVRG (Algorithm 1) under strong convexity. Let

Dt := 1
n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

. (10)

Roughly speaking, Dt measures the weighted distance between control-variates wt and the minimizer x⋆,
where the weights are the inverse of Lipschitz constants.
Theorem 1. Suppose Assumptions 1-3 hold. Let ηt ≡ η for all t, where η ≤ 1/(6L̄ + LF ), and let

α1 := max
{

1− ηµ, 1− ρ

2

}
.

Then

E
[∥∥xT − x⋆

∥∥2 + 4η2L̄

ρ
DT

]
≤ αT

1 E
[∥∥x0 − x⋆

∥∥2 + 4η2L̄

ρ
D0

]
+ η2

T∑
t=0

αT −t
1 E

[
V t

e

(
pt

)
− V t

e

(
pIS

)]
.

See proof in Appendix A.1. From the convergence rate in Theorem 1, we observe that a good sampling
distribution sequence should minimize the cumulative sampling variance

∑T
t=0 αT −t

1 E [V t
e (pt)]. This justifies

the usage of AdaOSMD to design a sequence of sampling distributions, as its purpose is to minimize the
cumulative sampling variance (Zhao et al., 2021). When

T∑
t=0

αT −t
1 E

[
V t

e

(
pt

)
− V t

e

(
pIS

)]
= O

(
αT

)
, (11)

the iteration complexity to achieve ϵ-accuracy is O(1/(log(1/α1)) log(1/ϵ)). When ρ = 1/n, η = 1/(6L̄+LF ),
and both L̄/µ and n are large, this bound is O((n+L̄/µ) log(1/ϵ)), which recovers the complexity of L-SVRG
when sampling from pIS (Qian et al., 2021).
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When (11) holds, we can further compare the iteration complexity of AS-LSVRG with the iteration complex-
ity of SGD with importance sampling from pIS , which is O((σ2

⋆/(µ2ϵ) + L̄/µ) log(1/ϵ)), where σ2
⋆ is defined

in (9) (Needell et al., 2016), and the iteration complexity of L-SVRG, which is O((n + Lmax/µ) log(1/ϵ))
(Kovalev et al., 2020). First, we observe that the iteration complexities of AS-LSVRG and L-SVRG do not
depend on σ2

⋆, while the iteration complexity of SGD does. This shows that the control-variate improves
upon optimization heterogeneity. Second, we observe that both iteration complexities of AS-LSVRG and
SGD depend on L̄, while the iteration complexity of L-SVRG depends on Lmax. This shows that adaptive
sampling improves upon smoothness heterogeneity. Based on these two observations, we have the following
important takeaway:

While both the control-variate and adaptive sampling are reducing the variance of stochastic gradient, the
control-variate is improving upon optimization heterogeneity, and adaptive sampling is improving upon
smoothness heterogeneity.

Another important observation is that when pt = pt
⋆, we have V t

e (pt
⋆) ≤ V t

e

(
pIS

)
. Therefore, the perfor-

mance of the oracle optimal dynamic sampling distribution is at least as good as the fixed sampling distribu-
tion pIS . The gains from using a dynamic sampling distribution can be significant, as we show in experiments
in Section 4 and Section 5. While the closed form of pt

⋆ in (3) requires knowledge of ∇fi(xt) − ∇fi(wt),
which is not available in practice, we can minimize the cumulative sampling variance

∑T
t=1 V t

e (pt) sequen-
tially using AdaOSMD, which results in the approximation pt, without the need for prior information. We
discuss in Section 3.3 below when this adaptive sampling strategy can perform better than pIS .

The following result provides the convergence rate when F (x) is weakly convex.
Theorem 2. Suppose Assumptions 1 and 2 hold. Let ηt ≡ η for all t, where η ≤ 1/(6LF ), and let x̂T =
(1/T )

∑T
t=1 xt. Then

E
[
F (x̂T )− F (x⋆)

]
≤ 4

T

(
F (x0)− F (x⋆)

)
+ 5

T

{
1
2η

∥∥x0 − x⋆
∥∥2 + 12ηL̄(1− ρ)

5ρ

(
F (w0)− F (x⋆)

)}
+ 3η

T

T∑
t=0

E
[
V t

e

(
pt

)
− V t

e

(
pIS

)]
.

See proof in Appendix A.2. In the weakly convex case, the cumulative sampling variance is defined as∑T
t=0 E [V t

e (pt)], and a good sampling distribution sequence should minimize it. When η = 1/(6LF ),
ρ = 1/n, and

∑T
t=0 E

[
V t

e (pt)− V t
e

(
pIS

)]
= O(T (LF + n)), the iteration complexity to reach ϵ-accuracy is

O((LF + n)(1/ϵ)), which recovers the rate of L-SVRG when sampling from pIS Qian et al. (2021).

3.2 Convergence analysis of AS-LKatyusha

We prove a convergence rate for AS-LKatyusha (Algorithm 2) under strong convexity. Let

Zt := L(1 + ηtκ)
2ηt

∥∥zt − x⋆
∥∥2

,

Vt := 1
θ1

(
F (vt)− F (x⋆)

)
,

Wt := θ2(1 + θ1)
ρθ1

(
F (wt)− F (x⋆)

)
,

(12)

and Ψt := Zt + Vt +Wt. We then have the following theorem. See proof in Appendix A.3.
Theorem 3. Suppose Assumptions 1-3 hold. Let ηt ≡ η for all t, where η = ((1 + θ2)θ1)−1θ2, and κ = µ/L
with L = L̄. Let θ2 = 1/2, θ1 ≤ 1/2, and

α2 := max
{

1
1 + ηκ

, 1− θ1

2 , 1− ρθ1

1 + θ1

}
.
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Then

E
[
ΨT

]
≤ αT

2 Ψ0 + 1
4L̄θ1

T −1∑
t=0

αT −t−1
2 E

[
V t

e

(
pt

)
− V t

e

(
pIS

)]
.

The cumulative sampling variance is defined as
∑T −1

t=0 αT −t−1
2 E [V t

e (pt)], and can be used as the minimization
objective to design a sequence of sampling distributions. When ρ = 1/n, θ1 = min{

√
2κn/3, 1/2}, and∑T −1

t=0 αT −t−1
2 E

[
V t

e (pt)− V t
e

(
pIS

)]
= O(αT

2 ), then the iteration complexity to reach ϵ-accuracy is O((n +√
nL̄/µ) log(1/ϵ)), which recovers the rate of L-Katyusha when sampling from pIS Qian et al. (2021).

Additionally, when compared with the rate of L-Katyusha Kovalev et al. (2020), we see that the dependency
on Lmax is improved to L̄, which is consistent with our conclusion in Section 3.1 that adaptive sampling is
responsible for improving smoothness heterogeneity.

3.3 Benefits of adaptive sampling

We analyze when adaptive sampling will improve over sampling from pIS . We first emphasize that sampling
from pIS requires knowledge of Lipschitz constants {Li}i∈[n], which, in general, are expensive to compute.
On the other hand, the additional computational cost of adaptive sampling is usually comparable to the cost
of computing a stochastic gradient.

In addition to computational benefits, there are certain settings where adaptive sampling may result in
improved convergence, despite not using prior information. A key quantity to understand is

∆V
(
p1:T )

:=
T∑

t=0
αTE

[
V t

e

(
pIS

)
− V t

e

(
pt

)]
,

where α ∈ {α1, α2, 1}, depending on the algorithm used and the assumptions made. The larger ∆V
(
p1:T )

is, the more beneficial adaptive sampling is. In the following, we discuss when ∆V (p1:T
⋆ ) is large. Although

p1:T
⋆ is not available in practice, ∆V (p1:T

⋆ ) can be used to understand when adaptive sampling methods that
approximate pt

⋆ will be superior to using pIS for importance sampling.

In many machine learning applications, fi(x) has the form fi(x) = l(x, ξi), where ξi is the i-th data point.
Let x⋆

i ∈ Rd be such that ∇l(x⋆
i , ξi) = 0. Then ∥∇fi(x)∥ = ∥∇l(x, ξi) −∇l(x⋆

i , ξi)∥. This way, we see that
the variability of norms of gradients of different data points has two sources: the first source is the difference
between ξi’s, the second source is the difference between x⋆

i ’s. We name the first source as the context-shift
and the second source as the concept-shift.

When fi(x) is twice continuously differentiable, we have

Li = sup
x∈Rd

λmax
(
∇2fi(x)

)
= sup

x∈Rd

λmax
(
∇2li(x, ξi)

)
.

Thus, when we use pIS to sample, we ignore the concept-shift and only leverage the context-shift with the
sampling distribution. As a result, pIS is most useful when the context-shift dominates. On the other hand,
adaptive sampling takes both the concept-shift and context-shift into consideration. When the major source
of gradient norm differences is the concept-shift, adaptive sampling can perform better than sampling from
pIS . This is illustrated in Section 4.3.

4 Synthetic data experiment

We use synthetic data to illustrate our theory and compare several different stochastic optimization al-
gorithms. We denote L-SVRG + uniform sampling as L-SVRG, L-SVRG + oracle optimal sampling as
Optimal-LSVRG, and L-SVRG + sampling from pIS as IS-LSVRG. Similarly, we define SGD, Optimal-SGD,
IS-SGD, L-Katyusha, Optimal-LKatyusha, and IS-LKatyusha. Additionally, AS-LSVRG and AS-LKatyusha
refer to Algorithm 1 and Algorithm 2 with the AdaOSMD sampler (Algorithm 4), respectively, except in
Section 4.4, where we use the OSMD Sampler (Algorithm 3).
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We set ρ = 1/n for all algorithms. The algorithm parameters for L-Katyusha with all sampling strategies
are set according to Theorem 3, where L = L̄ for Optimal-LKatyusha and IS-LKatyusha, and L = Lmax
for L-SVRG. For AS-LKatyusha, we set L = 0.4Lmax + 0.6L̄. As for the parameters of AdaOSMD, they
are configured as stated in Section 2; when choosing a mini-batch of samples in each iteration, we set them
according to Zhao et al. (2021).

Data generation: We generate data from a linear regression model: bi = ⟨θ⋆, ai⟩ + ζi, where ai
i.i.d.∼

N(0, si · Σ) with Σ = diag(25
0

d−1 −1, · · · , 25
d−1
d−1 −1) and si

i.i.d.∼ eN(0,ν2), ζi
i.i.d.∼ N(0, σ2), and the entries of θ⋆

are generated i.i.d. from N(10.0, 3.02). We let fi(x) := l(x; ai, bi), where l(x; ai, bi) := (1/2)(bi − ⟨x, ai⟩)2 is
the square error loss. In this setting, the variance σ2 controls the optimization heterogeneity in (9), with
larger σ2 corresponding to larger optimization heterogeneity, while ν controls the smoothness heterogeneity,
with larger ν corresponding to larger smoothness heterogeneity. Under this model, the variability of the
gradient norms is primarily caused by the differences between bi’s, which corresponds to the context-shift.
As a result, we expect that sampling according to pIS would perform similarly to oracle optimal sampling.
Note that in this setting, we have Li = ∥ai∥2, so we set pIS

i = ∥ai∥2/(
∑n

j=1 ∥aj∥2) for all i = 1, . . . , n. We
set n = 100, d = 10, and report results averaged across 10 independent runs.

4.1 SGD v.s. L-SVRG

We compare SGD and Optimal-SGD with L-SVRG and Optimal-LSVRG. From the results in Figure 1, we
have three main observations. First, with large optimization heterogeneity (rightmost column), Optimal-
LSVRG converges faster and can achieve a smaller optimal value compared to Optimal-SGD. This observation
is consistent with our conclusion in Section 3.1 that the control variate is responsible for improving opti-
mization heterogeneity. Second, Optimal-LSVRG always improves the performance over L-SVRG, with the
largest improvement observed when the smoothness heterogeneity is large (bottom row). This observation
illustrates our conclusion that importance sampling can improve smoothness heterogeneity. Finally, we ob-
serve that L-SVRG is more vulnerable to the smoothness heterogeneity compared to SGD, which can also be
seen from the condition on the step size: we need η ≤ 1/(6Lmax) for L-SVRG (Theorem 5 of Kovalev et al.
(2020)) and we only need η ≤ 1/Lmax for SGD (Theorem 2.1 of Needell et al. (2016)) to ensure convergence.

4.2 Non-uniform sampling for L-SVRG and L-Katyusha

We compare L-SVRG and L-Katyusha with different sampling strategies. Figure 2 shows results for L-SVRG.
We observe that the performances of Optimal-LSVRG and IS-LSVRG are similar, since the context-shift
dominates the variability of the gradient norms. Furthermore, we see that adaptive sampling improves the
performance of L-SVRG compared to uniform sampling. The improvement is most significant when the
smoothness heterogeneity is large (bottom row).

Figure 3 shows results for L-Katyusha. We set the step size according to Theorem 3. The oracle optimal
sampling distribution results in considerable improvement over sampling from pIS after adding acceleration.
In addition, we note that adaptive sampling efficiently improves over uniform sampling.

4.3 Importance sampling v.s. adaptive sampling

We provide an example where adaptive sampling can perform better than sampling from pIS . We generate
data from a linear regression model bi = ⟨θ⋆, ai⟩ + ζi, where ζi

i.i.d.∼ N(0, 0.52) and, for each ai ∈ Rd, we
choose uniformly at random one dimension, denoted as supp(i) ∈ [d], and set it to a nonzero value, while
the remaining dimensions are set to zero. The nonzero value ai[supp(i)] is generated from N(1.0, 0.12). The
entries of θ⋆ are generated i.i.d. from eN(0,ν2). Therefore, ν controls the variance of entries of θ⋆. We let
n = 300 and d = 30.

In this setting, we have Li = ∥ai∥2 = |ai[supp(i)]|2 ≈ 1.0, and thus sampling from pIS will perform similarly
to uniform sampling. On the other hand, we have

∥∇fi(x)∥ = |(x− θ⋆) [supp(i)] · ai[supp(i)] + ζi| .
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Figure 1: Comparison of four methods: SGD, Optimal-SGD, L-SVRG, and Optimal-LSVRG. Columns
correspond to different σ values, while rows correspond to different ν values. The stepsize the same for all
algorithms, and is 0.1 when ν = 0, is 0.05 when ν = 0.5, and is 0.005 when ν = 1.0.

Thus, the variability of the gradient norms is mainly determined by the variance of entries of θ⋆. For each
i ∈ [n], we can understand fi as a separate univariate quadratic function with the minimizer θ⋆[supp(i)], and
the variance of entries of θ⋆ can be understood as the concept-shift. In this case, we expect that sampling
from pIS will not perform as well as oracle optimal sampling or adaptive sampling.

We implement Optimal-LSVRG, IS-LSVRG, and AS-LSVRG with the stochastic gradient obtained from a
mini-batch of size 5, rather than choosing only one random sample, to allow adaptive sampling to explore
more efficiently.1 The step size is set to 0.3. Figure 4 presents the results. We see that as ν increases, the
gap between oracle optimal sampling and sampling from pIS increases as well, due to the concept-shift. In
addition, we see that adaptive sampling also performs better than sampling from pIS , despite the fact that
it does not use prior knowledge, since adaptive sampling can asymptotically approximate oracle optimal
sampling.

1AdaOSMD relies on the feedback obtained by exploration to update the sampling distribution. A larger batch size will
allow adaptive sampling to explore more efficiently (in other words, to ’see’ more samples in each iteration). Compared with
the fixed sampling distribution, where a larger batch size is only reducing the variance of a stochastic gradient, a larger batch
size will also help adaptive sampling to make faster updates of the sampling distribution. Therefore, the adaptive sampling
strategy is generally more sensitive to batch size than sampling with a fixed distribution.
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Figure 2: Comparison of four methods: L-SVRG, Optimal-LSVRG, IS-LSVRG, AS-LSVRG. Columns cor-
respond to different σ values, and rows correspond to different ν values. The stepsize is the same for all
algorithms, and is 0.1 when ν = 0, is 0.05 when ν = 0.5, and is 0.005 when ν = 1.0.

4.4 Nonconvex Objective

In this section, we compare L-SVRG, IS-LSVRG, and AS-LSVRG with nonconvex objectives under a similar
setting as in Section 4.2. We increase d to 100 and n to 1000. Instead of fitting the data with linear
regression, we use a two-layer neural network with 10 neurons in the hidden layer. While we still minimize
the mean squared error loss, the objective function is now nonconvex due to the nonconvexity of the neural
network model. To estimate pIS , we still set pIS

i = ∥ai∥2/(
∑n

j=1 ∥aj∥2) as in Section 4.2. For AS-LSVRG,
we use the OSMD Sampler (Algorithm 3). Both the optimization step size and the learning rate of the
OSMD Sampler are tuned such that AS-LSVRG converges at the fastest speed.

The result is shown in Figure 5. We see that adaptive sampling still obtains an advantage over uniform
sampling and importance sampling, especially when the smoothness heterogeneity is large. It is worth noting
that pIS does not perform well in this case. We suspect that this is because ∥ai∥2 is a poor estimate of Li in
this case; however, it is unclear if there exists an easy way to accurately estimate Li with nonconvex models.
This result justifies the motivation of adaptive sampling since it can achieve advantageous performance over
uniform sampling without the need to estimate the smoothness constants.
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Figure 3: Comparison of four methods: L-Katyusha, Optimal-LKatyusha, IS-LKatyusha, AS-LKatyusha.
Columns correspond to different σ values, and rows correspond to different ν values. The stepsizes are set
based on Theorem 3.

Figure 4: Optimal-LSVRG v.s. IS-LSVRG v.s. AS-LSVRG. Columns correspond to different ν values.
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Figure 5: Comparison of L-SVRG, IS-LSVRG and AS-LSVRG with nonconvex objective. Columns corre-
spond to different σ values, and rows correspond to different ν values. The stepsize of each method is tuned
such that the method converges in the fastest speed.

5 Real data experiment

We use the w8a dataset from LibSVM classification tasks Zeng et al. (2008); Chang & Lin (2011). On a
real dataset, obtaining the theoretically optimal sampling distribution is infeasible, while constructing pIS

requires access to Lipschitz constants of each loss function. Therefore, here we only show the performance
of L-SVRG and AS-LSVRG on the following logistic regression problem:

min
x∈Rd

− 1
n

n∑
i=1

(yi log pi + (1− yi) log(1− pi)),

where pi(x) = pi = (1 + exp−xT zi)−1, yi ∈ {0, 1} is the response variable, and zi is the d-
dimensional feature vector. The stepsizes for both L-SVRG and AS-SVRG are initially tuned over the
grid {10−2, 10−1.5, . . . , 102}. The initial search showed us that the optimal stepsize should be in the interval
(0, 1). Therefore, we tune the stepsizes over a grid of 20 evenly spaced points on [0.05, 1]. The two algorithms
are then used to train the model for 1000 iterations, repeated 10 times, and the best stepsize is chosen by
picking the one that corresponds to the lowest loss at the 1000-th iteration.
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Figure 6: LSVRG v.s. AS-LSVRG. Columns correspond to different batch sizes.
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Figure 7: L-Katyusha v.s. AS-LKatyusha. Columns correspond to different batch sizes. The stepsizes are
set according to Theorem 3.2 from (Qian et al., 2021) and Theorem 3 in this paper.

Figure 6 corresponds to the average log cross entropy loss over 10 runs against the number of iterations. The
shaded region corresponds to the standard deviation of the loss. When the batch size is 1, AS-LSVRG and
L-SVRG have similar convergence behaviour, but the standard deviation is reduced for AS-LSVRG. When
the batch size is 5, AS-LSVRG significantly outperforms L-SVRG.

We illustrate the performance of L-Katyusha and AS-LKatyusha by solving the following ℓ2-regularized
optimization problem:

min
x∈Rd

− 1
n

n∑
i=1

(yi log pi + (1− yi) log(1− pi)) + µ

2 ∥x∥
2,

where pi = pi(x) has the form as before and µ = 10−7 to ensure that the problem is strongly convex. Figure 7
shows results over 10 runs. AS-LKatyusha significantly outperforms its uniform sampling counterpart. While
some of the improvement in performance could be attributed to our superior dependence on the Lipschitz
constant, the losses we obtain enjoy slightly reduced variances.
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6 Conclusion and future directions

We studied the convergence behavior of L-SVRG and L-Katyusha when non-uniform sampling with a dy-
namic sampling distribution is used. Compared to previous research, we do not restrict ourselves to a fixed
sampling distribution but allow it to change with iterations. This flexibility enables us to design the sampling
distribution adaptively using the feedback from sampled observations. We do not need prior information,
which can be computationally expensive to obtain in practice, to design a well-performing sampling distribu-
tion. Therefore, our algorithm is practically useful. We derive upper bounds on the convergence rate for any
sampling distribution sequence for both L-SVRG and L-Katyusha under commonly used assumptions. Our
theoretical results justify the usage of online learning to design the sequence of sampling distributions. More
interestingly, our theory also explains when adaptive sampling with no prior knowledge can perform better
than a fixed sampling distribution designed using prior knowledge. Extensive experiments on both synthetic
and real data demonstrate our theoretical findings and illustrate the practical value of the methodology.

We plan to extend the adaptive sampling strategy to a broader class of stochastic optimization algorithms.
For example, stochastic coordinate descent (Zhu et al., 2016) and stochastic non-convex optimization algo-
rithms (Fang et al., 2018). In addition, exploring adaptive sampling with second-order methods, such as the
stochastic Quasi-Newton method (Byrd et al., 2016), could be a fruitful future direction.
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A Proof of Main Theorems

A.1 Proof of Theorem 1

We use the proof technique from Theorem 5 of Kovalev et al. (2020). The key step is to decompose the
variance of the stochastic gradient. Let Ft = σ(x0, w0, x1, w1, · · · , xt, wt) be the σ-algebra generated by
x0, w0, x1, w1, · · · , xt, wt, and let Et[·] := E[ · | Ft] be the conditional expectation given Ft.

Note that Et[gt] = ∇F (xt). By Assumption 3, we have

Et

[∥∥xt+1 − x⋆
∥∥2

]
= Et

[∥∥xt − ηgt − x⋆
∥∥2

]
=

∥∥xt − x⋆
∥∥2 − 2η

〈
∇F (xt), xt − x⋆

〉
+ η2Et

[∥∥gt
∥∥2

]
≤

∥∥xt − x⋆
∥∥2 − 2η

(
F (xt)− F (x⋆)− µ

2 ∥x
t − x⋆∥2

)
+ η2Et

[∥∥gt
∥∥2

]
= (1− ηµ)

∥∥xt − x⋆
∥∥2 − 2η

(
F (xt)− F (x⋆)

)
+ η2Et

[∥∥gt
∥∥2

]
. (13)

Furthermore, we have

Et

[∥∥gt
∥∥2

]
= Et

[∥∥gt − Et

[
gt

]∥∥2
]

+
∥∥Et

[
gt

]∥∥2

= V t
e

(
pt

)
−

∥∥∇F (xt)−∇F (wt)
∥∥2 +

∥∥∇F (xt)
∥∥2

= V t
e

(
pIS

)
−

∥∥∇F (xt)−∇F (wt)
∥∥2 +

∥∥∇F (xt)
∥∥2 + V t

e

(
pt

)
− V t

e

(
pIS

)
= L̄

n

n∑
i=1

1
Li

∥∥∇fi(xt)−∇fi(wt)
∥∥2 −

∥∥∇F (xt)−∇F (wt)
∥∥2

+
∥∥∇F (xt)

∥∥2 + V t
e

(
pt

)
− V t

e

(
pIS

)
≤ L̄

n

n∑
i=1

1
Li

∥∥∇fi(xt)−∇fi(wt)
∥∥2 +

∥∥∇F (xt)
∥∥2 + V t

e

(
pt

)
− V t

e

(
pIS

)
. (14)

By Assumption 1 and Assumption 2 that F (·) is convex and LF -smooth, we have∥∥∇F (xt)
∥∥2 =

∥∥∇F (xt)−∇F (x⋆)
∥∥2 ≤ 2LF

(
F (xt)− F (x⋆)

)
. (15)

With Dt in (10), we have

L̄

n

n∑
i=1

1
Li

∥∥∇fi(xt)−∇fi(wt)
∥∥2

≤ 2L̄

n

n∑
i=1

1
Li

∥∥∇fi(xt)−∇fi(x⋆)
∥∥2 + 2L̄

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

≤ 2L̄

n

n∑
i=1

1
Li

(2Li)
(
fi(xt)− fi(x⋆)− ⟨∇fi(x⋆), xt − x⋆⟩

)
+ 2L̄Dt

= 4L̄
(
F (xt)− F (x⋆)

)
+ 2L̄Dt. (16)

Combining (14)-(16), we have

Et

[∥∥gt
∥∥2

]
≤ 4L̄

(
F (xt)− F (x⋆)

)
+ 2LF

(
F (xt)− F (x⋆)

)
+ 2L̄Dt + V t

e

(
pt

)
− V t

e

(
pIS

)
. (17)

Combining (17) and (13), we have

Et

[∥∥xt+1 − x⋆
∥∥2

]
≤ (1− ηµ)

∥∥xt − x⋆
∥∥2 − 2η(1− 2ηL̄− ηLF )

(
F (xt)− F (x⋆)

)
+ 2η2L̄Dt + η2 {

V t
e

(
pt

)
− V t

e

(
pIS

)}
.
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Using Lemma 4, for any β > 0, we have

Et

[∥∥xt+1 − x⋆
∥∥2

]
+ βEt

[
Dt+1]

≤ (1− ηµ)
∥∥xt − x⋆

∥∥2 −
(
2η(1− 2ηL̄− ηLF )− 2βρ

) (
F (xt)− F (x⋆)

)
+

(
2η2L̄ + β(1− ρ)

)
Dt + η2 {

V t
e

(
pt

)
− V t

e

(
pIS

)}
.

With β = 4η2L̄/ρ, we have

Et

[∥∥xt+1 − x⋆
∥∥2

]
+ 4η2L̄

ρ
Et

[
Dt+1]

≤ (1− ηµ)
∥∥xt − x⋆

∥∥2 − 2η(1− 6ηL̄− ηLF )
(
F (xt)− F (x⋆)

)
+ 4η2L̄

ρ

(
1− ρ

2

)
Dt + η2 {

V t
e

(
pt

)
− V t

e

(
pIS

)}
.

Since η ≤ 1/(6L̄ + LF ), we further have

Et

[∥∥xt+1 − x⋆
∥∥2

]
+ 4η2L̄

ρ
Et

[
Dt+1]

≤ (1− ηµ)
∥∥xt − x⋆

∥∥2 + 4η2L̄

ρ

(
1− ρ

2

)
Dt + η2 {

V t
e

(
pt

)
− V t

e

(
pIS

)}
.

Recalling that
α1 := max

{
1− ηµ, 1− ρ

2

}
,

we have

Et

[∥∥xt+1 − x⋆
∥∥2 + 4η2L̄

ρ
Dt+1

]
≤ α1

(∥∥xt − x⋆
∥∥2 + 4η2L̄

ρ
Dt

)
+ η2 {

V t
e

(
pt

)
− V t

e

(
pIS

)}
.

Taking the full expectation on both sides and recursively repeating the above relationship from t = T − 1 to
t = 0, we have

E
[∥∥xT − x⋆

∥∥2 + 4η2L̄

ρ
DT

]
≤ α1E

[∥∥xT −1 − x⋆
∥∥2 + 4η2L̄

ρ
DT −1

]
+ η2E

[
V T −1

e

(
pT −1)

− V T −1
e

(
pIS

)]
≤ αT

1 E
[∥∥x0 − x⋆

∥∥2 + 4η2L̄

ρ
D0

]
+ η2

T∑
t=0

αT −t
1 E

[
V t

e

(
pt

)
− V t

e

(
pIS

)]
.

A.2 Proof of Theorem 2

We use the technique from Theorem 17 of Qian et al. (2021). The key difference here is the decomposition
of the variance of the stochastic gradient. Let

Ξt := 1
2ηt

∥∥xt − x⋆
∥∥2 + 6ηtL̄(1− ρ)

5ρ
Dt. (18)

Let Ft = σ(x0, w0, x1, w1, · · · , xt, wt) be the σ-algebra generated by x0, w0, x1, w1, · · · , xt, wt, and let Et[·] :=
E[ · | Ft] be the conditional expectation given Ft.

Note that Et[gt] = ∇F (xt). We have

F (x⋆) ≥ F (xt) + ⟨∇F (xt), x⋆ − xt⟩
= F (xt) + Et

[
⟨gt, x⋆ − xt⟩

]
= F (xt) + Et

[
⟨gt, x⋆ − xt+1⟩

]
+ Et

[
⟨gt, xt+1 − xt⟩

]
= F (xt) + Et

[
⟨gt, x⋆ − xt+1⟩

]
+ Et

[
⟨gt −∇F (xt), xt+1 − xt⟩

]
+ Et

[
⟨∇F (xt), xt+1 − xt⟩

]
. (19)
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By Assumption 1 and 2, we have

F (xt+1)− F (xt)− ⟨∇F (xt), xt+1 − xt⟩ ≤ LF

2
∥∥xt+1 − xt

∥∥2
.

Thus,
F (xt) + ⟨∇F (xt), xt+1 − xt⟩ ≥ F (xt+1)− LF

2
∥∥xt+1 − xt

∥∥2
.

Combined with (19), we have

F (x⋆) ≥ Et

[
F (xt+1)

]
− LF

2 Et

[∥∥xt+1 − xt
∥∥2

]
+ Et

[〈
gt −∇F (xt), xt+1 − xt

〉]
+ Et

[〈
gt, x⋆ − xt+1〉]

. (20)

Since ⟨a, b⟩ ≤ 1
2β ∥a∥

2 + β
2 ∥b∥

2 for all a, b ∈ Rd and β > 0 by Young’s inequality, we have

Et

[
⟨gt −∇F (xt), xt − xt+1⟩

]
≤ β

2Et

[∥∥gt −∇F (xt)
∥∥2

]
+ 1

2β
Et

[∥∥xt − xt+1∥∥2
]

, β > 0.

Equivalently,

Et

[
⟨gt −∇F (xt), xt+1 − xt⟩

]
≥ −β

2Et

[∥∥gt −∇F (xt)
∥∥2

]
− 1

2β
Et

[∥∥xt+1 − xt
∥∥2

]
, β > 0.

By Lemma 3, we then have

Et

[
⟨gt −∇F (xt), xt+1 − xt⟩

]
≥ −2βL̄

(
F (xt)− F (x⋆)

)
− βL̄

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

− β

2
{

V t
e

(
pt

)
− V t

e

(
pIS

)}
− 1

2β
Et

[∥∥xt+1 − xt
∥∥2

]
. (21)

Combine (20)-(21) and noting that〈
gt, x⋆ − xt+1〉

= 1
η

〈
xt+1 − xt, x⋆ − xt+1〉

= 1
2η

∥∥xt − xt+1∥∥2 + 1
2η

∥∥xt+1 − x⋆
∥∥2 − 1

2η

∥∥xt − x⋆
∥∥2

,

we have

F (x⋆) ≥ Et

[
F (xt+1)

]
− LF

2 Et

[∥∥xt+1 − xt
∥∥2

]
− βL̄

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

− β

2
{

V t
e

(
pt

)
− V t

e

(
pIS

)}
− 1

2β
Et

[∥∥xt+1 − xt
∥∥2

]
+ 1

2η
Et

[∥∥xt − xt+1∥∥2
]

+ 1
2η

Et

[∥∥xt+1 − x⋆
∥∥2

]
− 1

2η

∥∥xt − x⋆
∥∥2

= Et

[
F (xt+1)

]
+

(
1
2η
− LF

2 −
1

2β

)
Et

[∥∥xt − xt+1∥∥2
]

+ 1
2η

Et

[∥∥xt+1 − x⋆
∥∥2

]
− 1

2η

∥∥xt − x⋆
∥∥2

− 2βL̄
(
F (xt)− F (x⋆)

)
− βL̄

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2 − β

2
{

V t
e

(
pt

)
− V t

e

(
pIS

)}
.

Therefore,

2βL̄
(
F (xt)− F (x⋆)

)
+ β

2
{

V t
e

(
pt

)
− V t

e

(
pIS

)}
+ 1

2η

∥∥xt − x⋆
∥∥2

≥ Et

[
F (xt+1)

]
− F (x⋆) +

(
1
2η
− LF

2 −
1

2β

)
Et

[∥∥xt − xt+1∥∥2
]

+ 1
2η

Et

[∥∥xt+1 − x⋆
∥∥2

]
− βL̄

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

.
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Then by definition of Dt in (10) and Lemma 4, for any α > 0, we have

2(βL̄ + αρ)
(
F (xt)− F (x⋆)

)
+ β

2
{

V t
e

(
pt

)
− V t

e

(
pIS

)}
+ 1

2η

∥∥xt − x⋆
∥∥2 + α(1− ρ)Dt

≥ Et

[
F (xt+1)

]
− F (x⋆) + 1

2

(
1
η
− LF −

1
β

)
Et

[∥∥xt − xt+1∥∥2
]

+ 1
2η

Et

[∥∥xt+1 − x⋆
∥∥2

]
+

(
α− βL̄

)
Et

[
Dt+1]

.

Let β = 6
5 η and α = βL̄

ρ = 6ηL̄
5ρ . Since η ≤ 1

6LF
, we have 1

η − LF − 1
β = 1

6η − LF ≤ 0. Then

4
5

(
F (xt)− F (x⋆)

)
+ 3

5η
{

V t
e

(
pt

)
− V t

e

(
pIS

)}
+ 1

2η

∥∥xt − x⋆
∥∥2 + 6ηL̄(1− ρ)

5ρ
Dt

≥ 24
5 ηL̄

(
F (xt)− F (x⋆)

)
+ 3

5η
{

V t
e

(
pt

)
− V t

e

(
pIS

)}
+ 1

2η

∥∥xt − x⋆
∥∥2 + 6ηL̄(1− ρ)

5ρ
Dt

≥ Et

[
F (xt+1)− F (x⋆)

]
+ 1

2η
Et

[∥∥xt+1 − x⋆
∥∥2

]
+ 6ηL̄(1− ρ)

5ρ
Et

[
Dt+1]

.

From the definition of Ξt in (18), we have

Et

[
F (xt+1)− F (x⋆)

]
+ Et

[
Ξt+1]

− Ξt ≤ 4
5

(
F (xt)− F (x⋆)

)
+ 3

5η
{

V t
e

(
pt

)
− V t

e

(
pIS

)}
Taking the full expectation on both sides and recursively repeating the above relationship from t = T to
t = 0, we have

T∑
t=0

E
[
F (xt+1)− F (x⋆) + Ξt+1 − Ξ0]

≤ 4
5

T∑
t=0

E
[
F (xt)− F (x⋆)

]
+ 3

5η

T∑
t=0

E
[
V t

e

(
pt

)
− V t

e

(
pIS

)]
,

which implies that

1
5

T∑
t=1

E
[
F (xt)− F (x⋆)

]
≤ E

[
F (xT +1)− F (x⋆) + ΞT +1]

+ 1
5

T∑
t=1

E
[
F (xt)− F (x⋆)

]
≤ 4

5
(
F (x0)− F (x⋆)

)
+ Ξ0 + 3

5η

T∑
t=0

E
[
V t

e

(
pt

)
− V t

e

(
pIS

)]
.

By convexity of F (·) and since x̂T = (1/T )
∑T

t=1 xt, we have

E
[
F (x̂T )− F (x⋆)

]
≤ 4

T

(
F (x0)− F (x⋆)

)
+ 5Ξ0

T
+ 3η

T

T∑
t=0

E
[
V t

e

(
pt

)
− V t

e

(
pIS

)]
.

Finally, by Lemma 1, we have

Ξ0 = 1
2η

∥∥x0 − x⋆
∥∥2 + 6ηL̄(1− ρ)

5ρ
D0

≤ 1
2η

∥∥x0 − x⋆
∥∥2 + 6ηL̄(1− ρ)

5ρ

1
n

n∑
i=1

1
Li

(2Li)
(
fi(w0)− fi(x⋆)−

〈
∇fi(x⋆), xt − x⋆

〉)
≤ 1

2η

∥∥x0 − x⋆
∥∥2 + 12ηL̄(1− ρ)

5ρ

(
F (w0)− F (x⋆)

)
.
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Thus, we have

E
[
F (x̂T )− F (x⋆)

]
≤ 4

T

(
F (x0)− F (x⋆)

)
+ 5

T

{
1
2η

∥∥x0 − x⋆
∥∥2 + 12ηL̄(1− ρ)

5ρ

(
F (w0)− F (x⋆)

)}
+ 3η

T

T∑
t=0

E
[
V t

e

(
pt

)
− V t

e

(
pIS

)]
.

A.3 Proof of Theorem 3

We use the proof technique of Theorem 11 ion Kovalev et al. (2020). The key step is to decompose the
variance of the stochastic gradient. We let Ft = σ(x0, w0, v0, z0, · · · , xt, wt, vt, zt) be the σ-algebra generated
by x0, w0, v0, z0, · · · , xt, wt, vt, zt, and let Et[·] := E[ · | Ft] be the conditional expectation given Ft.

By Assumption 3, we have

F (x⋆) ≥ F (xt) +
〈
∇F (xt), x⋆ − xt

〉
+ µ

2
∥∥xt − x⋆

∥∥2

= F (xt) + µ

2
∥∥xt − x⋆

∥∥2 +
〈
∇F (xt), x⋆ − zt

〉
+

〈
∇F (xt), zt − xt

〉
. (22)

Note that
xt = θ1zt + θ2wt + (1− θ1 − θ2)vt.

Thus
zt = 1

θ1
xt − θ2

θ1
wt − 1− θ1 − θ2

θ1
vt

and
zt − xt = 1− θ1

θ1
xt − θ2

θ1
wt − 1− θ1 − θ2

θ1
vt = θ2

θ1

(
xt − wt

)
+ 1− θ1 − θ2

θ1

(
xt − vt

)
.

Since Et[gt] = ∇F (xt), combining the above relationships with (22), we have

F (x⋆) ≥ F (xt) + µ

2
∥∥xt − x⋆

∥∥2 +
〈
∇F (xt), x⋆ − zt

〉
+ θ2

θ1

〈
∇F (xt), xt − wt

〉
+ 1− θ1 − θ2

θ1

〈
∇F (xt), xt − vt

〉
= F (xt) + θ2

θ1

〈
∇F (xt), xt − wt

〉
+ 1− θ1 − θ2

θ1

〈
∇F (xt), xt − vt

〉
+ Et

[µ

2
∥∥xt − x⋆

∥∥2 +
〈
gt, x⋆ − zt

〉]
= F (xt) + θ2

θ1

〈
∇F (xt), xt − wt

〉
+ 1− θ1 − θ2

θ1

〈
∇F (xt), xt − vt

〉
+ Et

[µ

2
∥∥xt − x⋆

∥∥2 +
〈
gt, x⋆ − zt+1〉

+
〈
gt, zt+1 − zt

〉]
.

By Lemma 5, we have

〈
gt, x⋆ − zt+1〉

+ µ

2
∥∥xt − x⋆

∥∥2 ≥ L̄

2η

∥∥zt − zt+1∥∥2 + Zt+1 − 1
1 + ηκ

Zt.

Thus

F (x⋆) ≥ F (xt) + θ2

θ1

〈
∇F (xt), xt − wt

〉
+ 1− θ1 − θ2

θ1

〈
∇F (xt), xt − vt

〉
+ Et

[
Zt+1 − 1

1 + ηκ
Zt

]
+ Et

[〈
gt, zt+1 − zt

〉
+ L̄

2η

∥∥zt − zt+1∥∥2
]

. (23)
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By Lemma 6, we have

L̄

2η

∥∥zt+1 − zt
∥∥2 +

〈
gt, zt+1 − zt

〉
≥ 1

θ1

(
F (vt+1)− F (xt)

)
− η

2L̄(1− ηθ1)
∥∥gt −∇F (xt)

∥∥2
.

Note that η = θ2
(1+θ2)θ1

. Thus η
2L̄(1−ηθ1) = θ2

2L̄θ1
. Then, by (23), we have

F (x⋆) ≥ F (xt) + θ2

θ1

〈
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〉
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θ1
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〉
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[
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1 + ηκ
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]
+ Et
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1
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(
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)
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∥∥gt −∇F (xt)
∥∥2

]
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θ1

〈
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θ1
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〉
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]
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1
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e
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〉
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θ1

〈
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〉
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[
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1 + ηκ
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]
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1
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(
F (vt+1)− F (xt)
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e
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= F (xt) + θ2

θ1
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∇F (xt), xt − vt

〉
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1 + ηκ
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(
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− θ2

2L̄θ1
V t

e

(
pIS

)
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{
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e

(
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− V t
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(
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= F (xt) + θ2

θ1
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〉
+ Et
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1 + ηκ
Zt

]
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1
θ1

(
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(
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By Assumption 1 and 2, and Lemma 2, we have

1
n

n∑
i=1

1
Li

∥∥∇fi(xt)− fi(wt)
∥∥2 ≤ 1

n
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〈
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.

On the other hand, note that ⟨∇F (xt), xt − vt⟩ ≥ F (xt)− F (vt). Thus, we further have
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Zt

]
+ Et

[
1
θ1

(
F (vt+1)− F (xt)

)]
− θ2

θ1

(
F (wt)− F (xt)−

〈
∇F (xt), wt − xt

〉)
− θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
= F (xt) + 1− θ1 − θ2

θ1

(
F (xt)− F (vt)

)
− 1

1 + ηκ
Zt − θ2

θ1

(
F (wt)− F (xt)

)
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+ Et

[
Zt+1 + 1

θ1

(
F (vt+1)− F (xt)

)]
− θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
= −1− θ1 − θ2

θ1
F (vt)− 1

1 + ηκ
Zt − θ2

θ1
F (wt)

+ Et

[
Zt+1 + 1

θ1
F (vt+1)

]
− θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
= F (x⋆)− 1− θ1 − θ2

θ1

(
F (vt)− F (x⋆)

)
− 1

1 + ηκ
Zt − θ2

θ1

(
F (wt)− F (x⋆)

)
+ Et

[
Zt+1 + 1

θ1

(
F (vt+1)− F (x⋆)

)]
− θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
.

Recalling the definition of Vt in (12), we have

Et

[
Zt+1 + Vt+1]

≤ (1− θ1 − θ2)Vt + 1
1 + ηκ

Zt + θ2

θ1

(
F (wt)− F (x⋆)

)
+ θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
.

Since

Et

[
F (wt+1)− F (x⋆)

]
= (1− ρ)

(
F (wt)− F (x⋆)

)
+ ρ

(
F (vt)− F (x⋆)

)
= (1− ρ)

(
F (wt)− F (x⋆)

)
+ θ1ρVt,

recalling the definition of Wt in (12), we have

Et

[
Zt+1 + Vt+1 +Wt+1]
≤ (1− θ1 − θ2)Vt + 1

1 + ηκ
Zt + θ2

θ1

(
F (wt)− F (x⋆)

)
+ θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
+ θ2(1 + θ1)

ρθ1

(
(1− ρ)

(
F (wt)− F (x⋆)

)
+ θ1ρVt

)
+ θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
= 1

1 + ηκ
Zt + (1− θ1(1− θ2))Vt +

(
1− ρθ1

1 + θ1

)
Wt + θ2

2L̄θ1

{
V t

e

(
pt

)
− V t

e

(
pIS

)}
.

By the definition of α2 in Theorem 3 and since θ2 = 1/2, taking the full expectation on both sides, we have

E
[
Zt+1 + Vt+1 +Wt+1]

≤ α2E
[
Zt + Vt +Wt

]
+ 1

4L̄θ1
E

[
V t

e

(
pt

)
− V t

e

(
pIS

)]
.

Recursively repeating the above relationship from t = T − 1 to t = 0, we have

E
[
ΨT

]
≤ α2E

[
ΨT −1]

+ 1
4L̄θ1

E
[
V T −1

e

(
pT −1)

− V T −1
e

(
pIS

)]
≤ αT

2 Ψ0 + 1
4L̄θ1

T −1∑
t=0

αT −t−1
2 E

[
V t

e

(
pt

)
− V t

e

(
pIS

)]
B Useful Lemmas

We state and prove technical lemmas that are used to prove the main theorems.
Lemma 1. Let F (·) be defined in (1). Suppose Assumption 1 and Assumption 2 hold. Then F (·) is convex
and L̄-smooth, where L̄ = (1/n)

∑n
i=1 Li.

Proof. Under Assumption 1, F (·) is a linear combination of convex functions and, thus, is convex. To prove
that it is L̄-smooth, we only need to note that

∥∇F (x)−∇F (y)∥ ≤ 1
n

n∑
i=1
∥∇fi(x)−∇fi(y)∥ ≤ 1

n

n∑
i=1

Li∥x− y∥ = L̄∥x− y∥, x, y ∈ Rd,

where the first inequality follows from the Jensen’s inequality and the second inequality follows from As-
sumption 2.
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Lemma 2. Assume that f(·) is a differentiable convex function on Rd and is L-smooth. Then, for all
x, y ∈ Rd, we have

0 ≤ f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L

2 ∥x− y∥2, (24)

f(y)− f(x)− ⟨∇f(x), y − x⟩ ≥ 1
2L
∥∇f(x)−∇f(y)∥2. (25)

Proof. See Theorem 2.1.5 of Nesterov (2018).

Lemma 3. Suppose Assumption 1 and Assumption 2 hold. Let xt, wt, gt and pt be defined as in Algorithm 1.
We have

Et

[∥∥gt −∇F (xt)
∥∥2

]
≤ 4L̄

(
F (xt)− F (x⋆)

)
+ 4L̄

(
F (wt)− F (x⋆)

)
+ V t

e

(
pt

)
− V t

e

(
pIS

)
.

Proof. Note that E
[
∥x− E[x]∥2]

= E
[
∥x∥2]

− ∥E[x]∥2 for any random vector x ∈ Rd. Thus we have

Et

[∥∥gt −∇F (xt)
∥∥2

]
= Et

[∥∥∥∥ 1
npt

it

(
∇fi(xt)− fi(wt)

)
−

(
∇F (xt)−∇F (wt)

)∥∥∥∥2
]

= Et

[∥∥∥∥ 1
npt

it

(
∇fi(xt)− fi(wt)

)∥∥∥∥2
]
−

∥∥∇F (xt)−∇F (wt)
∥∥2

= V t
e

(
pt

)
−

∥∥∇F (xt)−∇F (wt)
∥∥2

≤ V t
e

(
pt

)
= V t

e

(
pIS

)
+ V t

e

(
pt

)
− V t

e

(
pIS

)
, (26)

where V t
e (pt) is defined in (2). On the other hand, note that

V t
e

(
pIS

)
= L̄

n

n∑
i=1

1
Li

∥∥∇fi(xt)−∇fi(wt)
∥∥2

≤ 2L̄

n

{
n∑

i=1

1
Li

∥∥∇fi(xt)−∇fi(x⋆)
∥∥2 +

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

}

≤ 2L̄

n

{
n∑

i=1

1
Li

(2Li)
(
fi(xt)− fi(x⋆)−

〈
∇fi(x⋆), xt − x⋆

〉)
+

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

}

≤ 4L̄
(
F (xt)− F (x⋆)

)
+ 2L̄

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

, (27)

where the second inequality follows Assumption 1, Assumption 2 and Lemma 2, and the last inequality
follows from that ∇F (x⋆) = 0. Combining (26) and (27), we have

Et

[∥∥gt −∇F (xt)
∥∥2

]
≤ 4L̄

(
F (xt)− F (x⋆)

)
+ 2L̄

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2 + V t

e

(
pt

)
− V t

e

(
pIS

)
.

Lemma 4. Suppose Assumption 1 and Assumption 2 hold. Let Dt be defined as in (10). We have

Et

[
Dt+1]

≤ 2ρ
(
F (xt)− F (x⋆)

)
+ (1− ρ)Dt.
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Proof. By the update rule of wt, we have

Et

[
1
n

n∑
i=1

1
Li

∥∥∇fi(wt+1)−∇fi(x⋆)
∥∥2

]

= 1− ρ

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2 + ρ

n

n∑
i=1

1
Li

∥∥∇fi(xt)−∇fi(x⋆)
∥∥2

≤ ρ

n

n∑
i=1

1
Li

(2Li)
(
fi(xt)− fi(x⋆)−

〈
∇fi(x⋆), xt − x⋆

〉)
+ 1− ρ

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

= 2ρ
(
F (xt)− F (x⋆)

)
+ 1− ρ

n

n∑
i=1

1
Li

∥∥∇fi(wt)−∇fi(x⋆)
∥∥2

,

where the second inequality follows Assumption 1, Assumption 2, and (24) of Lemma 2, and the last in-
equality follows from ∇F (x⋆) = 0.

Lemma 5. Suppose the conditions of Theorem 3 hold. Then

〈
gt, x⋆ − zt+1〉

+ µ

2
∥∥xt − x⋆

∥∥2 ≥ L̄

2η

∥∥zt − zt+1∥∥2 + Zt+1 − 1
1 + ηκ

Zt,

where Zt is defined in (12).

Proof. Note that

zt+1 = 1
1 + ηκ

(
ηκxt + zt − η

L̄
gt

)
,

where κ = µ/L̄. Thus,

gt = µ
(
xt − zt

)
+ L̄

η

(
zt − zt+1)

,

which implies that

〈
gt, zt+1 − x⋆

〉
= µ

〈
xt − zt+1, zt+1 − x⋆

〉
+ L̄

η

〈
zt − zt+1, zt+1 − x⋆

〉
= µ

2

(∥∥xt − x⋆
∥∥2 −

∥∥xt − zt+1∥∥2 −
∥∥zt+1 − x⋆

∥∥2
)

+ L̄

2η

(∥∥zt − x⋆
∥∥2 −

∥∥zt − zt+1∥∥2 −
∥∥zt+1 − x⋆

∥∥2
)

= µ

2
∥∥xt − x⋆

∥∥2 + L̄

2η

(∥∥zt − x⋆
∥∥2 − (1 + ηκ)

∥∥zt+1 − x⋆
∥∥2

)
− L̄

2η

∥∥zt − zt+1∥∥2
.

Combining with the definition of Zt, we then have the final result.

Lemma 6. Suppose that the conditions of Theorem 3 hold. Then

L̄

2η

∥∥zt+1 − zt
∥∥2 +

〈
gt, zt+1 − zt

〉
≥ 1

θ1

(
F (vt+1)− F (xt)

)
− η

2L̄(1− ηθ1)
∥∥gt −∇F (xt)

∥∥2
.
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Proof. By the definition of vt+1, we have

L̄

2η

∥∥zt+1 − zt
∥∥2 +

〈
gt, zt+1 − zt

〉
= 1

θ1

(
L̄

2ηθ1

∥∥θ1
(
zt+1 − zt

)∥∥2 +
〈
gt, θ1

(
zt+1 − zt

)〉)
= 1

θ1

(
L̄

2ηθ1

∥∥vt+1 − xt
∥∥2 +

〈
gt, vt+1 − xt

〉)
= 1

θ1

(
L̄

2ηθ1

∥∥vt+1 − xt
∥∥2 +

〈
∇F (xt), vt+1 − xt

〉
+

〈
gt −∇F (xt), vt+1 − xt

〉)
= 1

θ1

(
L̄

2
∥∥vt+1 − xt

∥∥2 +
〈
∇F (xt), vt+1 − xt

〉
+ L̄

2

(
1

ηθ1
− 1

) ∥∥vt+1 − xt
∥∥2 +

〈
gt −∇F (xt), vt+1 − xt

〉)
≥ 1

θ1

(
F (vt+1)− F (xt) + L̄

2

(
1

ηθ1
− 1

) ∥∥vt+1 − xt
∥∥2 +

〈
gt −∇F (xt), vt+1 − xt

〉)
,

where the last inequality follows Lemma 1 and Lemma 2. By Young’s inequality, ⟨a, b⟩ ≥ −∥a∥2

2β −
β∥b∥2

2 with
β = ηθ1

L̄(1−ηθ1) , we have

L̄

2η

∥∥zt+1 − zt
∥∥2 +

〈
gt, zt+1 − zt

〉
≥ 1

θ1

(
F (vt+1)− F (xt) + L̄

2

(
1

ηθ1
− 1

) ∥∥vt+1 − xt
∥∥2 − ηθ1

2L̄(1− ηθ1)
∥∥gt −∇F (xt)

∥∥2

− L̄

2

(
1

ηθ1
− 1

) ∥∥vt+1 − xt
∥∥2

)
= 1

θ1

(
F (vt+1)− F (xt)

)
− η

2L̄(1− ηθ1)
∥∥gt −∇F (xt)

∥∥2
.
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