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Abstract

Stochastic gradient-based optimization methods, such as L-SVRG and its accelerated vari-
ant L-Katyusha (Kovalev et al., 2020), are widely used to train machine learning models.
The theoretical and empirical performance of L-SVRG and L-Katyusha can be improved
by sampling observations from a non-uniform distribution (Qian et al., 2021). However,
designing a desired sampling distribution requires prior knowledge of smoothness constants,
which can be computationally intractable to obtain in practice when the dimension of the
model parameter is high. To address this issue, we propose an adaptive sampling strategy
for L-SVRG and L-Katyusha that can learn the sampling distribution with little computa-
tional overhead, while allowing it to change with iterates, and at the same time does not
require any prior knowledge of the problem parameters. We prove convergence guarantees
for L-SVRG and L-Katyusha for convex objectives when the sampling distribution changes
with iterates. Our results show that even without prior information, the proposed adap-
tive sampling strategy matches, and in some cases even surpasses, the performance of the
sampling scheme in Qian et al. (2021). Extensive simulations support our theory and the
practical utility of the proposed sampling scheme on real data.

1 Introduction

We aim to minimize the following finite-sum problem:

min
x∈Rd

F (x) := 1
n

n∑
i=1

fi(x), (1)

where each fi is convex, differentiable, and Li-smooth – see Assumptions 1 and 2 in Section 3. The mini-
mization problem in (1) is ubiquitous in machine learning applications, where fi(x) typically represents the
loss function on the i-th data point of a model parameterized by x. We denote the solution to (1) as x⋆.
However, due to computational concerns, it is typically solved via a first-order method (Bottou et al., 2018).
When the sample size n is large, computing the full gradient ∇F (x) can be computationally expensive, and
stochastic first-order methods, such as stochastic gradient descent (SGD) (Robbins & Monro, 1951), are the
modern tools of choice for minimizing (1).

Since SGD iterates cannot converge to the minimizer without decreasing the stepsize due to nonvanishing
variance, a number of variance-reduced methods have been proposed, such as SAG (Schmidt et al., 2017),
SAGA (Defazio et al., 2014), SVRG (Johnson & Zhang, 2013), and Katyusha (Allen-Zhu, 2017). Such
methods can converge to the optimum of (1) even with a constant stepsize. In this paper, we focus on
L-SVRG and L-Katyusha (Kovalev et al., 2020), which improve on SVRG and Katyusha by removing the
outer loop in these algorithms and replacing it with a biased coin-flip. This change simplifies parameter
selection, leads to better practical performance, and allows for clearer theoretical analysis.

Stochastic first-order methods use a computationally inexpensive estimate of the full gradient ∇F (x) when
minimizing (1). For example, at the beginning of round t, SGD randomly selects it ∈ [n] according to

1

https://openreview.net/forum?id=9lyqt3rbDc


Published in Transactions on Machine Learning Research (03/2023)

a sampling distribution p t over [n], and forms an unbiased estimater f i t (x) of r F (x). Typically, the
sampling distribution p t is the uniform distribution, p t = (1 =n; � � � ; 1=n), for all t. However, using a non-
uniform sampling distribution can lead to faster convergence (Zhao & Zhang, 2015; Needell et al., 2016; Qian
et al., 2019; Hanzely & Richtárik, 2019; Qian et al., 2021). For instance, when the sampling distribution is
p IS = ( pIS

1 ; � � � ; pIS
n ), with pIS

i = L i =(
P n

i =1 L i ) = L i =(n �L ), the convergence rate of L-SVRG and L-Katyusha
can be shown to depend on theaverage smoothness�L := (1 =n)

P n
i =1 L i , instead of the maximum smoothness

L max := max 1� i � n L i (Kovalev et al., 2020). Sampling from a non-uniform distribution is commonly referred
to as importance sampling (IS).

While sampling observations fromp IS can improve the speed of convergence,p IS depends on the smoothness
constants f L i gi 2 [n ]. In general, these constants are not known in advance and need to be estimated, for
example, by computing supx 2 Rd � max (r 2f i (x)) , i 2 [n], where � max (�) denotes the largest eigenvalue of a
matrix. However, when the dimensiond is large, it is computationally prohibitive to estimate the smoothness
constants, except in some special cases such as linear and logistic regression. In this paper, we develop a
method to design a sequence of sampling distributions that leads to the convergence rate of L-SVRG and
L-Katyusha that depends on �L , instead of L max , without prior knowledge of f L i gi 2 [n ].

Instead of designing a�xed sampling distribution , where p t � p for all t, we design adynamic sampling
distribution that can change with iterations of the optimization algorithm. We follow a recent line of work
that formulates the design of the sampling distribution as an online learning problem (Salehi et al., 2017;
Borsos et al., 2019; Namkoong et al., 2017; Hanchi & Stephens, 2020; Zhao et al., 2021). Using the gradi-
ent information obtained in each round, we update the sampling distribution with minimal computational
overhead. This sampling distribution is subsequently used to adaptively sample the observations used to
compute the stochastic gradient. When the sequence of designed distributions is used for importance sam-
pling, we prove convergence guarantees for L-SVRG, under both strongly convex and weakly convex settings,
and for L-Katyusha under the strongly convex setting. These convergence guarantees show that it is pos-
sible to design a sampling distribution that not only performs as well asp IS but can also improve over
it without using prior information. We focus on comparing with p IS as it is the most widely used �xed
sampling distribution (Qian et al., 2021) and leads to the best-known convergence rates with �xed sampling
distribution (Zhao & Zhang, 2015; Needell et al., 2016).

Contributions. Our paper makes the following contributions. We propose an adaptive sampling algorithm
for L-SVRG and L-Katyusha that does not require prior information, such as smoothness constants. This
is the �rst practical sampling strategy for these algorithms. We prove convergence guarantees for L-SVRG
under both strong and weak convexity, and for L-Katyusha under strong convexity, using a sequence of
sampling distributions that changes with iterations. These theoretical results show when the sequence of
sampling distributions performs as well asp IS , and even outperforms it in some cases. Our numerical
experiments support these �ndings. We also show that the control variate technique in SVRG and adaptive
sampling reduce variance from di�erent aspects, as demonstrated in a simulation. We conduct extensive
simulations to provide empirical support for various aspects of our theory and real data experiments to
demonstrate the practical bene�ts of adaptive sampling. Given its low computational cost and superior
empirical performance, we suggest that our adaptive sampling should be considered as the default alternative
to the uniform sampling used in L-SVRG and L-Katyusha.

Related work. Our paper contributes to the literature on non-uniform sampling in �rst-order stochastic
optimization methods. Previous work, such as Zhao & Zhang (2015), Needell et al. (2016), and Qian
et al. (2021), studied non-uniform sampling in SGD, stochastic coordinate descent, and L-SVRG and L-
Katyusha, respectively, but focused on sampling from a �xed distribution. In contrast, we allow the sampling
distribution to change with iterates, which is important as the best sampling distribution changes with
iterations. Shen et al. (2016) studied adaptive sampling methods for variance-reducing stochastic methods,
such as SVRG and SAGA, but their approach requires computing all gradientsfr f i (x t )gn

i =1 at each step,
which is impractical. Our method only requires computing the stochastic gradientr f i t (x

t ). The sampling
distribution can be designed adaptively using an online learning framework (Namkoong et al., 2017; Salehi
et al., 2017; Borsos et al., 2018; 2019; Hanchi & Stephens, 2020; Zhao et al., 2021). We call this process
adaptive sampling, and its goal is to minimize the cumulative sampling variance, which appears in the
convergence rates of L-SVRG and L-Katyusha (see Section 3). More speci�cally, Namkoong et al. (2017)
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and Salehi et al. (2017) designed the sampling distribution by solving a multi-armed bandit problem with
the EXP3 algorithm. Borsos et al. (2018) took an online convex optimization approach and made updates to
the sampling distribution using the follow-the-regularized-leader algorithm. Borsos et al. (2019) considered
the class of distributions that is a linear combination of a set of given distributions and used an online
Newton method to update the weights. Hanchi & Stephens (2020) and Zhao et al. (2021) investigated non-
stationary approaches to learning sampling distributions. Among these works, Zhao et al. (2021) is the only
one that compared their sampling distribution to a dynamic comparator that can change with iterations
without requiring stepsize decay. While our theory quanti�es the e�ect of any sampling distribution on the
convergence rate of L-SVRG and L-Katyusha, we use the OSMD sampler and AdaOSMD sampler from Zhao
et al. (2021), as they lead to the best upper bound and yield the best empirical performance.

Notation. For a positive integer n, let [n] := f 1; � � � ; ng. We use k � k to denote the l2-norm in the
Euclidean space. LetPn � 1 = f x 2 Rn :

P n
i =1 x i = 1 ; x j � 0; j 2 [n]g be the (n � 1)-dimensional simplex.

For a symmetric matrix A 2 Rd� d, we use� max (A) to denote its largest eigenvalue. For a vectorx 2 Rd, we
usex j or x[j ] to denote its j -th entry. For two sequencesf an g and f bn g, an = O(bn ) if there exists C > 0
such that jan =bn j � C for all n large enough;an = �( bn ) if an = O(bn ) and bn = O(an ) simultaneously.

Organization of the paper. In Section 2, we introduce the algorithm for designing the sampling distribu-
tion. In Section 3, we give the convergence analysis. Extensive simulations that demonstrate various aspects
of our theory are given in Section 4. Section 5 illustrates an application to real world data. Finally, we
conclude the paper with Section 6.

2 AS-LSVRG and AS-LKatyusha

To solve (1) using SGD, one iteratively samplesi t uniformly at random from [n] and updates the model
parameter by x t +1  x t � � t r f i t (x

t ). However, due to the non-vanishing varianceV[r f i t (x
t )], x t cannot

converge to x? unless one adopts a diminishing step size by letting� t ! 0. To address this issue, L-
SVRG (Kovalev et al., 2020) constructs an adjusted estimated of the gradientgt = r f i t (x

t ) � r f i t (w
t ) +

r F (wt ), where wt is a control variate that is updated to x t with probability � in each iteration. Note that
gt is still an unbiased estimate ofr F (x t ). Since bothx t and wt converge tox?, we haveV[gt ] ! 0, and thus
x t can converge tox? even with a constant step size. L-Katyusha incorporates a Nesterov-type acceleration
to improve the dependency of the computational complexity on the condition number under the strongly
convex setting (Kovalev et al., 2020).

Qian et al. (2021) investigated samplingi t from [n] using a non-uniform sampling distribution to achieve
faster convergence. Given the model parameterx t at iteration t, suppose that i t is sampled from the
distribution p t = ( pt

1; : : : ; pt
n ). Then

gt =
1

npt
i t

�
r f i t (x

t ) � r f i t (w
t )

�
+ r F (wt )

is an unbiased estimate ofr F (x t ). The variance of gt is

V
�
gt � = V t

e

�
p t � �


 r F (x t ) � r F (wt )


 2

;

where

V t
e

�
p t � :=

1
n2

nX

i =1

1
pt

i


 r f i (x t ) � r f i (wt )


 2

: (2)

We let V t (p t ) := V [gt ] be the sampling variance of the sampling distribution p t , and V t
e (p t ) be the

e�ective variance. Therefore, in order to minimize the variance ofgt , we can choosep t to minimize V t
e (p t ).

Let p t
? = arg min p 2P n � 1

V t
e (p t ) be the oracle optimal dynamic sampling distribution at the t-th iteration,

which has the closed form

pt ?; i =
kr f i (x t ) � r f i (wt )k

P n
j =1 kr f j (x t ) � r f j (wt )k

; i 2 [n]: (3)

However, we cannot computep t
? in each iteration, since computing it requires knowledge of allfr f i (x t )gn

i =1
and fr f i (wt )gn

i =1 . If that were the case, we could simply use full-gradient descent, and there would be no
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Algorithm 1 AS-LSVRG
1: Input: stepsizesf � gt � 1, � 2 (0; 1].
2: Initialize: x0 = w0; p0 = (1 =n; � � � ; 1=n).
3: for t = 0 ; 1; � � � ; T � 1 do
4: Sample i t from [n] with p t = ( pt

1; � � � ; pt
n ).

5: gt = 1
np t

i t

(r f i t (x
t ) � r f i t (w

t )) + r F (wt ).

6: x t +1 = x t � � t gt .

7: wt +1 =

(
x t with probability �;
wt with probability 1 � �:

8: Update p t to p t +1 by OSMD sampler (Algorithm 3) or AdaOSMD sampler (Algorithm 4).
9: end for

Algorithm 2 AS-LKatyusha
1: Input: stepsizesf � gt � 1, � 2 (0; 1], � 1; � 2 2 [0; 1], 0 < � < 1, L > 0.
2: Initialize: v0 = w0 = z0.
3: for t = 0 ; 1; � � � ; T � 1 do
4: x t = � 1zt + � 2wt + (1 � � 1 � � 2)vt .
5: Sample i t from [n] with p t = ( pt

1; � � � ; pt
n ).

6: gt = 1
np t

i t

(r f i t (x
t ) � f i t (w

t )) + F (wt ).

7: zt +1 = 1
1+ � t �

�
� t �x t + zt � � t

L gt
�

8: vt +1 = x t + � 1(zt +1 � zt ).

9: wt +1 =

(
vt with probability �;
wt with probability 1 � �:

10: Update p t to p t +1 by OSMD sampler (Algorithm 3) or AdaOSMD sampler (Algorithm 4).
11: end for

need for either sampling or control variate. Therefore, some kind of approximation ofp t
? is unavoidable for

practical purposes.

Qian et al. (2021) proposed substituting eachkr f i (x t ) � r f i (wt )k with its upper bound. Based on the
smoothness assumption (Assumption 2 in Section 3), we havekr f i (x t ) � r f i (wt )k � L i kx t � wt k. Thus, by
substituting kr f i (x t ) � r f i (wt )k with L i kx t � wt k in (2), we obtain an approximate sampling distribution
p IS = ( pIS

1 ; � � � ; pIS
n ), with pIS

i = L i =(
P n

i =1 L i ) = L i =(n �L ). L-SVRG and L-Katyusha that use p IS can
achieve faster convergence compared to using uniform sampling (Qian et al., 2021). However, one di�culty
of applying p IS in practice is that we need to know L i for all i = 1 ; : : : ; n. While such information can
be easy to access in some cases, such as in linear and logistic regression problems, it is generally hard
to estimate, especially when the dimension of the model parameter is high. To circumvent this problem,
recent work has formulated the design of the sampling distribution as an online learning problem (Salehi
et al., 2017; Borsos et al., 2019; Namkoong et al., 2017; Hanchi & Stephens, 2020; Zhao et al., 2021). More
speci�cally, at each iteration t, after sampling i t with sampling distribution p t , we can receive information
about kr f i t (x

t ) � r f i t (w
t )k. Although we cannot havekr f i (x t ) � r f i (wt )k for all i = 1 ; : : : ; n, the partial

information obtained from fkr f i s (xs) � r f i s (ws)kgt
s=0 and f psgt

s=0 is helpful in constructing the sampling
distribution p t +1 to minimize V t

e (p t ). In this paper, we adapt the methods proposed in Zhao et al. (2021)
for L-SVRG and L-Katyusha and apply them in our experiments; however, our analysis is not restrictive to
this choice and can �t other methods as well.

We introduce our modi�cations of L-SVRG and L-Katyusha that use adaptive sampling, namely Adaptive
Sampling L-SVRG (AS-LSVRG, Algorithm 1) and Adaptive Sampling L-Katyusha (AS-LKatyusha, Algo-
rithm 2). The key change here is that instead of using a �xed sampling distribution p t � p, t � 0, we
allow the sampling distribution to change with iterations and adaptively learn it. More speci�cally, Step 8
of Algorithm 1 and Step 10 of Algorithm 2 use OSMD sampler or AdaOSMD sampler (Zhao et al., 2021) to
update the sampling distribution, which are described in Algorithm 3 and Algorithm 4, respectively. While
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Algorithm 3 OSMD sampler

1: Input: Learning rate � ; parameter � 2 (0; 1], A = PM � 1 \ [�=M; 1 )M ; number of iterations T.
2: Output: p t for t = 1 ; : : : ; T .
3: Initialize: p1 = (1 =n; : : : ;1=n).
4: for t = 1 ; 2; : : : ; T � 1 do
5: Sample i t from [n] by p t . Let at

i t
= kr f i t (x

t ) � r f i t (w
t )k2.

6: Compute the sampling loss gradient estimater V̂ t
e (p t ) 2 Rn : all entries are zero except for thei t -th

entry, which is
h
r V̂ t

e (p t )
i

i t

= �
1
n2 �

at
i t

(pt
i t

)3 : (4)

7: Solvep t +1 = arg min
p 2A

� hp; r V̂ t
e (p t )i + D �

�
p k p t � using Algorithm 5 with the learning rate � .

8: end for

Algorithm 4 AdaOSMD sampler
1: Input: Meta-algorithm learning rate  ; expert learning rates E = f � 1 � � 2 � � � � � � H g; � 2 (0; 1];

A = Pn � 1 \ [�=n; 1 )n . Number of iterations T.
2: Output: p t for t = 1 ; : : : ; T .
3: Set � 1

h = (1 + 1 =H)=(h(h + 1)) , h 2 [H ].
4: Initialize: p1

h = (1 =n; : : : ;1=n) for h 2 [H ].
5: for t = 1 ; 2; : : : ; T � 1 do
6: Compute p t =

P H
h=1 � t

h p t
h .

7: Sample i t from [n] by p t . Let at
i t

= kr f i t (x
t ) � r f i t (w

t )k2.
8: for h = 1 ; 2; : : : ; H do
9: Compute the sampling loss estimate

V̂ t
e (p t

h ; p t ) =
1
n2 �

at
i t

pt
i t

pt
h;i t

: (5)

10: Compute the sampling loss gradient estimater V̂ t
e (p t

h ; p t ) 2 Rn : all entries are zero except for the
i t -th entry, which is

h
r V̂ t

e (p t
h ; p t )

i

i t

= �
1
n2 �

at
i t

pt
i t

(pt
h;i t

)2 : (6)

11: Solve p t +1
h = arg min p 2A � h hp; r V̂ t

e (p t
h ; p t )i + D � (p k p t

h ) using Algorithm 5 with the learning
rate � h .

12: end for
13: Update the weights of each expert

� t +1
h =

� t
h exp

n
�  V̂ t

e (p t
h ; p t )

o

P H
h=1 � t

h exp
n

�  V̂ t
e (p t

h ; p t )
o ; h 2 [H ]:

14: end for

the OSMD sampler and AdaOSMD sampler allow for choosing a mini-batch of samples in each iteration,
here we focus on choosing only one sample in each iteration. We choose� to be the unnormalized negative
entropy, that is, �( x) =

P n
i =1 x i logx i �

P n
i =1 x i , x = ( x1; : : : ; xn )> 2 [0; 1 )n , with 0 log 0 de�ned as 0.

Additionally, D � (x k y) = �( x) � �( y) �hr �( y); x � yi is the Bregman divergence between anyx; y 2 (0; 1 )n

with respect to the function � .
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Algorithm 5 OSMD Solver: Solvep t +1 = arg min q2A � hq; û t i + D � (q k p t )

1: Input: p t , û t , A = Pn � 1 \ [�=n; 1 )n . Learning rate � .
2: Output: p t + 1 .
3: Let ~pt +1

i = pt
i exp (� � ût

i ) for i 2 [n].
4: Sort f ~pt +1

i gn
i =1 in a non-decreasing order:~pt +1

� (1) � : : : � ~pt +1
� (n ) .

5: Let vi = ~pt +1
� ( i )

�
1 � i � 1

n �
�

for i 2 [n].

6: Let zi = �
n

P n
j = i ~pt +1

� ( j ) for i 2 [n].
7: Find the smallest i such that vi > z i , denoted asi ?.

8: Let pt +1
i =

(
�=n if � (i ) < i ?
�
(1 � (( i ? � 1)=n)� )~pt +1

i

�
=

� P n
j = i ?

~pt +1
� ( j )

�
otherwise:

The key insight of the OSMD Sampler is to use Online Stochastic Mirror Descent (Lattimore & Szepesvári,
2020) to minimize the cumulative sampling loss

P T
t =1 V t

e (p t ), whereV t
e (p t ) is de�ned in(2). To apply OSMD,

we �rst construct an unbiased estimate of the gradient of V t
e (p t ), which is shown in (4). Then, in Step 7,

we update the sampling distribution by taking a mirror descent. Intuitively, the optimization objective in
Step 7 involves two terms. The �rst term encourages the sampling distribution to �t the most recent history,
while the second term ensures that it does not deviate too far from the previous decision. By choosing a
learning rate � , we keep a trade-o� between these two concerns. A larger learning rate implies a stronger
�t towards the most recent history. To automatically choose the best learning rate, AdaOSMD uses a set
of expert learning rates and combines them using exponentially weighted averaging. Note that the total
number of iterations T is assumed to be known and used as an input to AdaOSMD. When the number of
iterations T is not known in advance, Zhao et al. (2021) proposed a doubling trick, which could also be used
here. The set of expert learning rates is given by

E :=

(

2h� 1 �
� 3

n3�a1

r
logn
2T

�
�
�
�
�

h = 1 ; 2; : : : ; H

)

; (7)

where

H = b
1
2

log2

�
1 +

4 log(n=� )
logn

(T � 1)
�

c + 1 : (8)

The learning rate in AdaOSMD is set to  = �
n

q
8

T �a1 , where �a1 = max i 2 [n ] kr f i (x0)k. For all experiments
in this paper, we set � = 0 :4.

The main computational bottleneck of both the OSMD sampler and the AdaOSMD sampler is the mirror
descent step. Fortunately, Step 7 of Algorithm 3 and Step 11 of Algorithm 4 can be e�ciently solved by
Algorithm 5. The main cost of Algorithm 5 comes from sorting the sequencef ~pt +1

i gn
i =1 , which can be done

with the computational complexity of O(n logn). However, note that we only update one entry ofp t to get
~p t +1 and p t is sorted in the previous iteration. Therefore, most entries of~p t +1 are also sorted. Using this
observation, we can usually achieve a much faster running time, for example, by using an adaptive sorting
algorithm (Estivill-Castro & Wood, 1992).

3 Convergence analysis

We provide convergence rates for AS-LSVRG (Algorithm 1) and AS-LKatyusha (Algorithm 2), for any
sampling distribution sequencef p t gt � 0. We begin by imposing assumptions on the optimization problem in
(1).

Assumption 1 (Convexity) . For each i 2 [n], the function f i (�) is convex and �rst-order continuously
di�erentiable:

f i (x) � f i (y) + hr f i (y); x � yi for all x; y 2 Rd:
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Assumption 2 (Smoothness). For each i 2 [n], the function f i is L i -smooth:

kr f i (x) � r f i (y)k � L i kx � yk for all x; y 2 Rd:

Furthermore, the function F is L F -smooth:

kr F (x) � r F (y)k � L F kx � yk for all x; y 2 Rd:

Recall that �L = (1 =n)
P n

i =1 L i and L max = max 1� i � n L i . By the convexity of k � k and Jensen's inequality,
we have that L F � �L . For some results, we will assume thatF is strongly convex.

Assumption 3 (Strong Convexity) . The function F (�) is � -strongly convex:

F (x) � F (y) + hr F (y); x � yi +
�
2

kx � yk2

for all x; y 2 Rd, where � > 0.

Additionally, the optimization heterogeneity is de�ned as

� 2
? :=

1
n

nX

i =1

kr f i (x?)k2; (9)

and the smoothness heterogeneityis de�ned as L max =�L .

3.1 Convergence analysis of AS-LSVRG

We begin by providing a convergence rate for AS-LSVRG (Algorithm 1) under strong convexity. Let

D t :=
1
n

nX

i =1

1
L i


 r f i (wt ) � r f i (x?)


 2

: (10)

Roughly speaking, D t measures the weighted distance between control-variateswt and the minimizer x?,
where the weights are the inverse of Lipschitz constants.

Theorem 1. Suppose Assumptions 1-3 hold. Let� t � � for all t, where � � 1=(6 �L + L F ), and let

� 1 := max
n

1 � ��; 1 �
�
2

o
:

Then

E
� 
 xT � x?


 2

+
4� 2 �L

�
DT

�
� � T

1 E
� 
 x0 � x?


 2

+
4� 2 �L

�
D0

�
+ � 2

TX

t =0

� T � t
1 E

�
V t

e

�
p t � � V t

e

�
p IS ��

:

See proof in Appendix A.1. From the convergence rate in Theorem 1, we observe that a good sampling
distribution sequence should minimize the cumulative sampling variance

P T
t =0 � T � t

1 E [V t
e (p t )]. This justi�es

the usage of AdaOSMD to design a sequence of sampling distributions, as its purpose is to minimize the
cumulative sampling variance (Zhao et al., 2021). When

TX

t =0

� T � t
1 E

�
V t

e

�
p t � � V t

e

�
p IS ��

= O
�
� T �

; (11)

the iteration complexity to achieve � -accuracy isO(1=(log(1=� 1)) log(1=�)) . When � = 1=n, � = 1=(6 �L + L F ),
and both �L=� and n are large, this bound isO((n+ �L=� ) log(1=�)) , which recovers the complexity of L-SVRG
when sampling from p IS (Qian et al., 2021).
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When (11) holds, we can further compare the iteration complexity of AS-LSVRG with the iteration complex-
ity of SGD with importance sampling from p IS , which is O(( � 2

?=(� 2� ) + �L=� ) log(1=�)) , where � 2
? is de�ned

in (9) (Needell et al., 2016), and the iteration complexity of L-SVRG, which is O((n + L max =� ) log(1=�))
(Kovalev et al., 2020). First, we observe that the iteration complexities of AS-LSVRG and L-SVRG do not
depend on� 2

? , while the iteration complexity of SGD does. This shows that the control-variate improves
upon optimization heterogeneity. Second, we observe that both iteration complexities of AS-LSVRG and
SGD depend on �L , while the iteration complexity of L-SVRG depends on L max . This shows that adaptive
sampling improves upon smoothness heterogeneity. Based on these two observations, we have the following
important takeaway:

While both the control-variate and adaptive sampling are reducing the variance of stochastic gradient, the
control-variate is improving upon optimization heterogeneity, and adaptive sampling is improving upon
smoothness heterogeneity.

Another important observation is that when p t = p t
?, we haveV t

e (p t
?) � V t

e

�
p IS

�
. Therefore, the perfor-

mance of the oracle optimal dynamic sampling distribution is at least as good as the �xed sampling distribu-
tion p IS . The gains from using a dynamic sampling distribution can be signi�cant, as we show in experiments
in Section 4 and Section 5. While the closed form ofp t

? in (3) requires knowledge ofr f i (x t ) � r f i (wt ),
which is not available in practice, we can minimize the cumulative sampling variance

P T
t =1 V t

e (p t ) sequen-
tially using AdaOSMD, which results in the approximation p t , without the need for prior information. We
discuss in Section 3.3 below when this adaptive sampling strategy can perform better thanp IS .

The following result provides the convergence rate whenF (x) is weakly convex.

Theorem 2. Suppose Assumptions 1 and 2 hold. Let� t � � for all t, where � � 1=(6L F ), and let x̂T =
(1=T)

P T
t =1 x t . Then

E
�
F (x̂T ) � F (x?)

�
�

4
T

�
F (x0) � F (x?)

�

+
5
T

�
1
2�


 x0 � x?


 2

+
12� �L (1 � � )

5�

�
F (w0) � F (x?)

�
�

+
3�
T

TX

t =0

E
�
V t

e

�
p t � � V t

e

�
p IS ��

:

See proof in Appendix A.2. In the weakly convex case, the cumulative sampling variance is de�ned asP T
t =0 E [V t

e (p t )], and a good sampling distribution sequence should minimize it. When� = 1=(6L F ),
� = 1=n, and

P T
t =0 E

�
V t

e (p t ) � V t
e

�
p IS

��
= O(T(L F + n)) , the iteration complexity to reach � -accuracy is

O((L F + n)(1=�)) , which recovers the rate of L-SVRG when sampling fromp IS Qian et al. (2021).

3.2 Convergence analysis of AS-LKatyusha

We prove a convergence rate for AS-LKatyusha (Algorithm 2) under strong convexity. Let

Z t :=
L (1 + � t � )

2� t


 zt � x?


 2

;

Vt :=
1
� 1

�
F (vt ) � F (x?)

�
;

W t :=
� 2(1 + � 1)

�� 1

�
F (wt ) � F (x?)

�
;

(12)

and 	 t := Z t + Vt + W t . We then have the following theorem. See proof in Appendix A.3.

Theorem 3. Suppose Assumptions 1-3 hold. Let� t � � for all t, where � = ((1 + � 2)� 1) � 1� 2, and � = �=L
with L = �L . Let � 2 = 1=2, � 1 � 1=2, and

� 2 := max
�

1
1 + ��

; 1 �
� 1

2
; 1 �

�� 1

1 + � 1

�
:
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Then

E
�
	 T �

� � T
2 	 0 +

1

4�L� 1

T � 1X

t =0

� T � t � 1
2 E

�
V t

e

�
p t � � V t

e

�
p IS ��

:

The cumulative sampling variance is de�ned as
P T � 1

t =0 � T � t � 1
2 E [V t

e (p t )], and can be used as the minimization
objective to design a sequence of sampling distributions. When� = 1=n, � 1 = min f

p
2�n= 3; 1=2g, and

P T � 1
t =0 � T � t � 1

2 E
�
V t

e (p t ) � V t
e

�
p IS

��
= O(� T

2 ), then the iteration complexity to reach � -accuracy isO((n +q
n �L=� ) log(1=�)) , which recovers the rate of L-Katyusha when sampling fromp IS Qian et al. (2021).

Additionally, when compared with the rate of L-Katyusha Kovalev et al. (2020), we see that the dependency
on L max is improved to �L , which is consistent with our conclusion in Section 3.1 that adaptive sampling is
responsible for improving smoothness heterogeneity.

3.3 Bene�ts of adaptive sampling

We analyze when adaptive sampling will improve over sampling fromp IS . We �rst emphasize that sampling
from p IS requires knowledge of Lipschitz constantsf L i gi 2 [n ], which, in general, are expensive to compute.
On the other hand, the additional computational cost of adaptive sampling is usually comparable to the cost
of computing a stochastic gradient.

In addition to computational bene�ts, there are certain settings where adaptive sampling may result in
improved convergence, despite not using prior information. A key quantity to understand is

� V
�
p1:T �

:=
TX

t =0

� T E
�
V t

e

�
p IS �

� V t
e

�
p t �� ;

where � 2 f � 1; � 2; 1g, depending on the algorithm used and the assumptions made. The larger� V
�
p1:T

�

is, the more bene�cial adaptive sampling is. In the following, we discuss when� V (p1:T
? ) is large. Although

p1:T
? is not available in practice, � V (p1:T

? ) can be used to understand when adaptive sampling methods that
approximate p t

? will be superior to using p IS for importance sampling.

In many machine learning applications, f i (x) has the form f i (x) = l(x; � i ), where � i is the i -th data point.
Let x?

i 2 Rd be such that r l (x?
i ; � i ) = 0 . Then kr f i (x)k = kr l(x; � i ) � r l (x?

i ; � i )k. This way, we see that
the variability of norms of gradients of di�erent data points has two sources: the �rst source is the di�erence
between� i 's, the second source is the di�erence betweenx?

i 's. We name the �rst source as thecontext-shift
and the second source as theconcept-shift.

When f i (x) is twice continuously di�erentiable, we have

L i = sup
x 2 Rd

� max
�
r 2f i (x)

�
= sup

x 2 Rd
� max

�
r 2l i (x; � i )

�
:

Thus, when we usep IS to sample, we ignore the concept-shift and only leverage the context-shift with the
sampling distribution. As a result, p IS is most useful when the context-shift dominates. On the other hand,
adaptive sampling takes both the concept-shift and context-shift into consideration. When the major source
of gradient norm di�erences is the concept-shift, adaptive sampling can perform better than sampling from
p IS . This is illustrated in Section 4.3.

4 Synthetic data experiment

We use synthetic data to illustrate our theory and compare several di�erent stochastic optimization al-
gorithms. We denote L-SVRG + uniform sampling as L-SVRG, L-SVRG + oracle optimal sampling as
Optimal-LSVRG, and L-SVRG + sampling from p IS as IS-LSVRG. Similarly, we de�ne SGD, Optimal-SGD,
IS-SGD, L-Katyusha, Optimal-LKatyusha, and IS-LKatyusha. Additionally, AS-LSVRG and AS-LKatyusha
refer to Algorithm 1 and Algorithm 2 with the AdaOSMD sampler (Algorithm 4), respectively, except in
Section 4.4, where we use the OSMD Sampler (Algorithm 3).

9



Published in Transactions on Machine Learning Research (03/2023)

We set � = 1=n for all algorithms. The algorithm parameters for L-Katyusha with all sampling strategies
are set according to Theorem 3, whereL = �L for Optimal-LKatyusha and IS-LKatyusha, and L = L max

for L-SVRG. For AS-LKatyusha, we set L = 0 :4L max + 0 :6�L . As for the parameters of AdaOSMD, they
are con�gured as stated in Section 2; when choosing a mini-batch of samples in each iteration, we set them
according to Zhao et al. (2021).

Data generation: We generate data from a linear regression model:bi = h� ?; ai i + � i , where ai
i.i.d.�

N (0; si � �) with � = diag(25
0

d � 1 � 1; � � � ; 25
d � 1
d � 1 � 1) and si

i.i.d.� eN (0 ;� 2 ) , � i
i.i.d.� N (0; � 2), and the entries of � ?

are generated i.i.d. fromN (10:0; 3:02). We let f i (x) := l(x; ai ; bi ), where l(x; ai ; bi ) := (1 =2)(bi � h x; ai i )2 is
the square error loss. In this setting, the variance� 2 controls the optimization heterogeneity in (9), with
larger � 2 corresponding to larger optimization heterogeneity, while� controls the smoothness heterogeneity,
with larger � corresponding to larger smoothness heterogeneity. Under this model, the variability of the
gradient norms is primarily caused by the di�erences betweenbi 's, which corresponds to the context-shift.
As a result, we expect that sampling according top IS would perform similarly to oracle optimal sampling.
Note that in this setting, we have L i = kai k2, so we setpIS

i = kai k2=(
P n

j =1 kaj k2) for all i = 1 ; : : : ; n. We
set n = 100, d = 10, and report results averaged across 10 independent runs.

4.1 SGD v.s. L-SVRG

We compare SGD and Optimal-SGD with L-SVRG and Optimal-LSVRG. From the results in Figure 1, we
have three main observations. First, with large optimization heterogeneity (rightmost column), Optimal-
LSVRG converges faster and can achieve a smaller optimal value compared to Optimal-SGD. This observation
is consistent with our conclusion in Section 3.1 that the control variate is responsible for improving opti-
mization heterogeneity. Second, Optimal-LSVRG always improves the performance over L-SVRG, with the
largest improvement observed when the smoothness heterogeneity is large (bottom row). This observation
illustrates our conclusion that importance sampling can improve smoothness heterogeneity. Finally, we ob-
serve that L-SVRG is more vulnerable to the smoothness heterogeneity compared to SGD, which can also be
seen from the condition on the step size: we need� � 1=(6L max ) for L-SVRG (Theorem 5 of Kovalev et al.
(2020)) and we only need� � 1=Lmax for SGD (Theorem 2.1 of Needell et al. (2016)) to ensure convergence.

4.2 Non-uniform sampling for L-SVRG and L-Katyusha

We compare L-SVRG and L-Katyusha with di�erent sampling strategies. Figure 2 shows results for L-SVRG.
We observe that the performances of Optimal-LSVRG and IS-LSVRG are similar, since the context-shift
dominates the variability of the gradient norms. Furthermore, we see that adaptive sampling improves the
performance of L-SVRG compared to uniform sampling. The improvement is most signi�cant when the
smoothness heterogeneity is large (bottom row).

Figure 3 shows results for L-Katyusha. We set the step size according to Theorem 3. The oracle optimal
sampling distribution results in considerable improvement over sampling fromp IS after adding acceleration.
In addition, we note that adaptive sampling e�ciently improves over uniform sampling.

4.3 Importance sampling v.s. adaptive sampling

We provide an example where adaptive sampling can perform better than sampling fromp IS . We generate
data from a linear regression modelbi = h� ?; ai i + � i , where � i

i.i.d.� N (0; 0:52) and, for each ai 2 Rd, we
choose uniformly at random one dimension, denoted as supp(i ) 2 [d], and set it to a nonzero value, while
the remaining dimensions are set to zero. The nonzero valueai [supp(i )] is generated fromN (1:0; 0:12). The
entries of � ? are generated i.i.d. from eN (0 ;� 2 ) . Therefore, � controls the variance of entries of� ?. We let
n = 300 and d = 30.

In this setting, we have L i = kai k2 = jai [supp(i )]j2 � 1:0, and thus sampling from p IS will perform similarly
to uniform sampling. On the other hand, we have

kr f i (x)k = j(x � � ?) [supp(i )] � ai [supp(i )] + � i j :
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