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ABSTRACT

Quantifying the impact of training data points is crucial for understanding the
outputs of machine learning models and for improving the transparency of the
AI pipeline. The influence function is a principled and popular data attribution
method, but its computational cost often makes it challenging to use. This issue
becomes more pronounced in the setting of large language models and text-to-image
models. In this work, we propose DataInf, an efficient influence approximation
method that is practical for large-scale generative AI models. Leveraging an
easy-to-compute closed-form expression, DataInf outperforms existing influence
computation algorithms in terms of computational and memory efficiency. Our
theoretical analysis shows that DataInf is particularly well-suited for parameter-
efficient fine-tuning techniques such as LoRA. Through systematic empirical
evaluations, we show that DataInf accurately approximates influence scores and
is orders of magnitude faster than existing methods. In applications to RoBERTa-
large, Llama-2-13B-chat, and stable-diffusion-v1.5 models, DataInf effectively
identifies the most influential fine-tuning examples better than other approximate
influence scores. Moreover, it can help to identify which data points are mislabeled.

1 INTRODUCTION

Modern large language models (LLMs) and text-to-image models have demonstrated remarkable
abilities in generating human-like texts and photorealistic images, leading to diverse real-world
applications such as translation, dialogue systems, and image editing (Brown et al., 2020; Rombach
et al., 2022; Jiao et al., 2023). Nevertheless, even state-of-the-art models generate factually incorrect
predictions or even biased outputs (Abid et al., 2021; Ouyang et al., 2022; Ferrara, 2023), often as a
result of issues in the training data. This highlights the need for principled and systematic methods
to quantify the impact of specific training data points. The influence function provides a rigorous
framework for evaluating the impact of each training data point on model predictions (Hampel, 1974;
Cook & Weisberg, 1980). Its efficacy has been demonstrated across various downstream machine
learning tasks: mislabeled data detection (Koh & Liang, 2017), best subset selection (Feldman &
Zhang, 2020; Guo et al., 2021), model interpretation (Han et al., 2020; Aamir et al., 2023; Grosse
et al., 2023), and investigation of model biases (Wang et al., 2019; Kong et al., 2022).

While the influence function has shown promising results, its application in real-world scenarios
poses practical challenges because of its expensive computational costs. Calculating the influence
function requires the computation of the inverse Hessian matrix, which involves intensive computation.
Previous studies have attempted to reduce this burden; however, most existing methods still require
an iterative algorithm (Martens, 2010; Agarwal et al., 2017), multiple eigenvalue decompositions
(George et al., 2018) or the training of numerous models (Feldman & Zhang, 2020) to obtain accurate
influence estimates. It has therefore been very challenging to compute the influence function for
large models such as LLMs (Devlin et al., 2018; Liu et al., 2019; Touvron et al., 2023) and diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Rombach et al., 2022).

Our contributions We propose DataInf, a computationally efficient influence approximation
method that can be easily applied to large-scale machine learning models. DataInf is based on an
easy-to-compute closed-form expression, leading to better computational and memory complexities
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than existing state-of-the-art influence computation algorithms. Our approximation error analysis
suggests that DataInf is especially effective when it is applied to parameter-efficient fine-tuned models.
We evaluate the practical efficacy of DataInf through three sets of experiments: approximation
error analysis, mislabeled data detection, and influential data identification. Our empirical results
demonstrate that DataInf is faster and more effective in retrieving the most (or the least) influential
training data points than existing algorithms. We apply DataInf to the RoBERTa, Llama-2-13B-chat,
and stable-diffusion-v1.5 models, demonstrating that it is easily applicable to LLMs and large-scale
diffusion models. Python-based implementation codes are available at https://github.com/
ykwon0407/DataInf.

2 PRELIMINARIES

We denote an input space and a label space by X and Y , respectively. We denote a training dataset by
D = {(xi, yi)}ni=1 where xi ∈ X and yi ∈ Y are an input and a label of the i-th datum. We consider
the empirical risk minimization framework: For a loss function ℓ : Y × Y → R and a parameter
space Θ, the empirical risk minimizer is defined as follows: θ∗ := argminθ∈Θ

1
n

∑n
i=1 ℓ(yi, fθ(xi))

where fθ : X → Y is a model parametrized with θ ∈ Θ. We set [m] := {1, . . . ,m} for m ∈ N.
For i ∈ [n] and a vector η, we denote a gradient of the i-th data point’s loss with respect to η by
∇ηℓi := ∇ηℓ(yi, fθ(xi)).

2.1 INFLUENCE FUNCTION

The influence function assesses the impact of individual training data points on parameter es-
timation (Hampel, 1974; Cook & Weisberg, 1980; Martin & Yohai, 1986). It captures how
fast parameter estimates change when a particular data point is up-weighted. To be more spe-
cific, for k ∈ [n] and ε ∈ R, we consider the following ε-weighted risk minimization problem:
θ(k)(ε) := argminθ∈Θ

1
n

∑n
i=1 ℓ(yi, fθ(xi)) + εℓ(yk, fθ(xk)). When a loss function ℓ(y, fθ(x)) is

twice-differentiable and strongly convex in θ for all (x, y) ∈ X × Y , the empirical risk minimizer θ∗
is well-defined, and the influence of the k-th data point (xk, yk) ∈ D on the empirical risk minimizer
θ∗ is defined as the derivative of θ(k)(ε) at ε = 0:

Iθ∗(xk, yk) :=
dθ(k)

dε

∣∣∣
ε=0

= −H(θ∗)−1∇θℓk,

where H(θ) := ∇2
θ

(
n−1

∑n
i=1 ℓ(yi, fθ(xi))

)
is the Hessian of the empirical loss (Hampel, 1974;

Van der Vaart, 2000).

In machine learning problems, the influence function Iθ∗(xk, yk) on the empirical risk minimizer
θ∗ is extended to the influence function on a prediction loss (Koh & Liang, 2017). For a validation
dataset D(val) := {(x(val)

i , y
(val)
i )}mi=1, the influence of (xk, yk) on the validation loss is defined as:

I(xk, yk) :=

 1

m

m∑
i=1

∇θℓ(y
(val)
i , fθ(x

(val)
i ))|θ=θ∗

T

Iθ∗(xk, yk).

The influence function I(xk, yk) provides an intuitive interpretation of how one data point affects the
validation loss. When I(xk, yk) is a large positive (resp. negative) value, the validation loss would
increase (resp. decrease) as the data point (xk, yk) is up-weighted because I(xk, yk) is defined as a
gradient of the validation loss. In other words, the influence function intuitively represents whether
(xk, yk) is beneficial or detrimental to the prediction loss.

While the influence function is established on a rigorous statistical framework, its computation often
poses practical challenges due to the second-order gradients in H(θ∗). Calculating the second-order
gradient is computationally intensive in general, but it can be achieved with the first-order gradient
when the loss function is a negative log-likelihood function (Bartlett, 1953). To elaborate, suppose
ℓ(y, fθ(x)) = − log p(y | fθ(x)) for all (x, y) ∈ X × Y and θ ∈ Θ where p(y | fθ(x)) is a
probability density function of (x, y) at θ. Bartlett’s second identity implies that

E
[
∇2

θℓ(Y, fθ(X))
]
= E

[
∇θℓ(Y, fθ(X))

(
∇θℓ(Y, fθ(X))

)T ]
,
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where the expectation is over the distribution p(Y | fθ(X)). That is, the Hessian H(θ∗) can be
replaced with the second moment of the first-order gradients G(θ∗) := n−1

∑n
i=1∇θℓi∇θℓ

T
i . This

yields the following formula for the influence function:

−

 1

m

m∑
i=1

∇θℓ(y
(val)
i , fθ(x

(val)
i ))|θ=θ∗

T

G(θ∗)−1∇θℓk. (1)

In this paper, we restrict our focus to a negative log-likelihood function to leverage a simplified form
of the Hessian function. A negative log-likelihood function is one of the most commonly used loss
functions and many LLMs are pre-trained with the cross-entropy loss function, which is equivalent to
a negative log-likelihood in classification problems (Touvron et al., 2023).

2.2 INFLUENCE FUNCTION FOR DEEP NEURAL NETWORK MODELS

The influence function in equation 1 can be computed with only the first-order gradients; however,
there are practical challenges when fθ is a deep neural network model (Basu et al., 2020; Bae et al.,
2022). First, when the dimension of θ exceeds the sample size n, which is common in many modern
machine learning problems, G(θ) is not invertible because the rank of G(θ) is at most n. Second, the
size of G(θ) is too large to compute, making its computation infeasible.

To address the first issue, the “damping Hessian” approach is used in which a small positive number is
added to diagonal elements of G(θ) and make it positive definite (Martens, 2010). As for the second
issue, G(θ) is replaced with its block diagonal matrix, where each block corresponds to a layer of
a deep neural network model. To be more specific, suppose fθ can be expressed as a composition
function fθ(x) = fθL ◦ · · · ◦fθ1(x) where for l ∈ [L], we denote a vectorized notation of weights and
biases in the l-th layer by θl ∈ Rdl for some dl ∈ N. Then, the l-th diagonal block of G(θ) can be
expressed as Gl(θ) := n−1

∑n
i=1∇θlℓi∇θlℓ

T
i , and G(θ) is replaced with diag(G1(θ), . . . , GL(θ))

(Grosse et al., 2023). Combining these approaches gives the following influence function:

−
L∑

l=1

vTl
(
Gl(θ

∗) + λlIdl

)−1∇θlℓk (2)

where vl := m−1
∑m

i=1∇θlℓ(y
(val)
i , fθ(x

(val)
i ))|θ=θ∗ , λl is some positive constant, and Idl

∈ Rdl×dl

is the identity matrix of size dl. The influence function in equation 2 not only stabilizes but also
simplifies the computation of the Hessian matrix, becoming the standard estimand in the literature.

Shifting the focus of the influence function from equation 1 to equation 2 makes the calculation more
feasible, yet it is often costly, especially when dl is large. We next review one of the most widely
used approximate methods called LiSSA.

LiSSA Agarwal et al. (2017) proposed an iterative approach to compute the inverse Hessian
vector product

(
Gl(θ

∗) + λlIdl

)−1
vl. For rl,0 = vl, LiSSA recursively computes the following

equation: rl,j = vl + (I − (Gl(θ
∗) + λlIdl

))rl,j−1. Agarwal et al. (2017) showed that when
(Gl(θ

∗) + λlIdl
) ⪯ Idl

in the Löwner order, the rl,j converges to (Gl(θ
∗) + λlIdl

)−1vl as j

increases. The influence function based on LiSSA is obtained by computing −
∑L

l=1 r
T
l,j∇θlℓk. In

essence, it uses the following approximation:

rl,j ≈ (Gl(θ
∗) + λlIdl

)−1vl. (3)

In practice, it is often assumed that LiSSA converges to the inverse Hessian vector product(
Gl(θ

∗) + λlIdl

)−1
vl in a reasonable number of iterations. When the number of iterations is finite,

the computational complexity for LiSSA becomes O(
∑L

l=1 nd
2
l ) operations with O(maxl∈[L] d

2
l )

memory complexity.1

1The computational complexity can be further accelerated to O(
∑L

l=1 ndl) with improved memory com-
plexity O(maxl∈[L] dl) by leveraging the first-order gradients. These big O complexities are equal to those
of the proposed method, but ours still has advantages over LiSSA as it does not require an expensive iterative
algorithm. In our experiments, we compare ours with this accelerated LiSSA algorithm.
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Several approaches, including LiSSA, have been studied to efficiently compute the influence function
for deep neural network models. However, most of the existing methods require expensive iterative
algorithms (Koh & Liang, 2017; Schioppa et al., 2022), multiple eigenvalue decomposition operations
(Grosse et al., 2023), or the training of a numerous number of models (Feldman & Zhang, 2020).
Consequently, when attempting to apply these methods to LLMs or diffusion models, their feasibility
becomes severely constrained. In response to this significant challenge, we introduce a new closed-
form expression that approximates the influence function.

3 DATAINF: EFFICIENT INFLUENCE COMPUTATION

We propose DataInf, an efficient influence computation algorithm characterized by an easy-to-
compute closed-form expression. DataInf has better efficiency in both computational and memory
complexities than existing state-of-the-art methods. The key approximation of DataInf is to swap the
order of the matrix inversion and the average calculations in

(
Gl(θ

∗) + λlIdl

)−1
as follows: 1

n

n∑
i=1

∇θlℓi∇θlℓ
T
i + λlIdl

−1

≈ 1

n

n∑
i=1

(
∇θlℓi∇θlℓ

T
i + λlIdl

)−1

. (4)

Here, the term
(
∇θlℓi∇θlℓ

T
i + λlIdl

)−1
has a closed-form expression because it is an inverse of

the sum of a rank-one matrix and a diagonal matrix. To be more specific, leveraging the Sherman-
Morrison formula, the right-hand side of equation 4 can be simplified as follows:

1

n

n∑
i=1

(
∇θlℓi∇θlℓ

T
i + λlIdl

)−1

=
1

nλl

n∑
i=1

(
Idl
− ∇θlℓi∇θlℓ

T
i

λl +∇θlℓ
T
i ∇θlℓi

)
.

In short, the inverse Hessian part, the left-hand side of equation 4, can be approximated with a
closed-form expression. Based on this finding, we propose DataInf that efficiently approximates the
influence function as follows.

IDataInf(xk, yk) =

L∑
l=1

1

λl

 1

n

n∑
i=1

Ll,i

λl + Ll,ii
Ll,ik − Ll,k

 , (5)

where Ll,ij := ∇θlℓ
T
i ∇θlℓj ∈ R for all l ∈ [L] and i, j ∈ [n] and Ll,i := vTl ∇θlℓi ∈ R for all

l ∈ [L] and i ∈ [n]. The equation 5 provides easy-to-compute expression of IDataInf(xk, yk). We
provide a pseudo algorithm in Appendix A.

DataInf can be computed in O(
∑L

l=1 ndl) operations with O(maxl∈[L] dl) memory. In terms of
computational complexity, DataInf is much faster than LiSSA, and it does not require iterative
operations. Moreover, DataInf has a better memory complexity than LiSSA because it does not
require storing Hessian matrices. Table 1 compares DataInf with the exact computation of the
influence function (equation 2, denoted by Exact) and LiSSA when a model is a multilayer perceptron.

Approximation error analysis While the approximation in equation 4 provides an efficient com-
putation method, it may exhibit significant errors because the two terms are not equal in gen-
eral. To this end, we theoretically investigate approximation error incurred by equation 4. To
elaborate, we set Sli := ∇θlℓi∇θlℓ

T
i + λlIdl

. The l-th part of the influence function in equa-
tion 2 can be expressed as −vTl

(
n−1

∑n
i=1 Sli

)−1∇θlℓk, and that of the proposed method is

−vTl
(
n−1

∑n
i=1 S

−1
li

)
∇θlℓk. Then, the difference between these two terms is bounded by

∥vl∥2
∥∥∥( 1n ∑n

i=1 Sli

)−1 − 1
n

∑n
i=1 S

−1
li

∥∥∥
2

∥∥∇θlℓk
∥∥
2
. Here, we denote the spectral norm of a ma-

trix A by∥A∥2 and denote the L2 norm of a vector v by∥v∥2. In summary, the approximation error

mainly depends on the spectral norm of the difference
((

n−1
∑n

i=1 Sli

)−1 − n−1
∑n

i=1 S
−1
li

)
. In

the following theorem, we show that the spectral norm scales to O(d2l ) when the first-order gradients
and λl are bounded.
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Table 1: Comparison between Exact, LiSSA, and DataInf. Computational and memory complexities
are obtained for a multilayer perceptron model with L layers, each with an equal number of neurons.
In this case, the number of parameters in each layer is the same across different layers, and we denote
it by D ∈ N, i.e., dl is equal to D for all l ∈ [L]. DataInf has better efficiency than both Exact and
LiSSA in terms of computational and memory complexities. Compared to LiSSA, DataInf leverages
the closed-from expression presented in equation 5, and thus it does not require an expensive iterative
algorithm.

Method Hessian Underlying Computational Memory
Inversion Approximation Complexity Complexity

Exact (equation 2) Matrix inversion O(nD2L+D3L) O(D2)
LiSSA Iterative update equation 3 O(nD2L) O(D2)

DataInf (Ours) Closed-form expression equation 4 O(nDL) O(D)

Theorem 1 (Approximation error analysis). Suppose maxi∈[n]

∥∥∇θlℓi
∥∥
∞ and λl are bounded. Then,

the spectral norm of the difference
∥∥∥( 1n ∑n

i=1 Sli

)−1 − 1
n

∑n
i=1 S

−1
li

∥∥∥
2

is bounded by O(d2l ).

A proof is provided in Appendix B. Theorem 1 shows that the spectral norm is bounded by O(d2l )
when maxi∈[n]

∥∥∇θlℓi
∥∥
∞ and λl are bounded. This assumption is generally satisfied in practice

as gradients are typically bounded and we can control λl. One direct implication of Theorem 1 is
that the total approximation error is bounded by O(

∑L
l=1 d

2
l ). This bound may be pessimistic, but

the approximation error becomes more tolerable as dl is small. This is why DataInf is particularly
well-suited for estimating the influence of data used for LoRA fine-tuning.

4 EXPERIMENTS

We investigate the empirical effectiveness of DataInf through three experiments: (i) approximation
error analysis, (ii) mislabeled data detection, and (iii) influential data identification. These tasks are
designed to quantitatively assess the practical efficacy of DataInf, and we also present qualitative
examples in Figure 3.

Experimental settings For all experiments, we consider publicly available and widely used large-
scale LLMs and diffusion models. We use the RoBERTa model (Liu et al., 2019) for the approximation
error analysis2 and mislabeled data detection tasks, and the Llama-2-13B-chat (Touvron et al., 2023)
and the stable-diffusion-v1.5 (Rombach et al., 2022) models for the influential data identification task.
During training, we use Low-Rank Adaptation (LoRA), a technique that significantly reduces the
memory and computation required for fine-tuning large models (Hu et al., 2021). We fine-tune models
by minimizing a negative log-likelihood function. As for the baseline influence computation methods,
we consider LiSSA with 10 iterations (Martens, 2010; Koh & Liang, 2017), Hessian-free which
computes a dot product of the first-order gradients, i.e., −

∑L
l=1 v

T
l ∇θlℓk (Charpiat et al., 2019;

Pruthi et al., 2020), and the proposed method DataInf. For all methods, we use the same damping
parameter λl = 0.1× (ndl)

−1
∑n

i=1∇θlℓ
T
i ∇θlℓi following the literature (Grosse et al., 2023). We

provide implementation details on datasets and hyperparameters in Appendix D.

4.1 APPROXIMATION ERROR ANALYSIS

Theorem 1 shows that the approximation error increases as the parameter size increases. In this
experiment, we empirically study how different ranks of the LoRA matrix affect the approximation
error, where we anticipate the approximation error increases as the rank increases. In addition,
we compare the approximation ability between the three influence calculation methods DataInf,
Hessian-free, and LiSSA. For each influence method, we evaluate the Pearson correlation

2Computing exact influence functions of the Llama-2-13B-chat and stable-diffusion-v1.5 models is highly
expensive. Hence, we used a relatively small model, RoBERTa-large, to obtain the exact influence function
value presented in equation 2. This allows us to systemically perform the approximation error analysis.
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Figure 1: Correlation coefficient comparison of the three influence computation methods. The
correlation coefficient captures the similarity to the exact computation of the influence function
(equation 2), and thus the higher the correlation coefficient, the better. The error bar indicates a 95%
confidence interval based on 20 independent runs. DataInf is significantly more correlated with the
exact influence values than other methods for all ranks r ∈ {1, 2, 4}, showing better approximation
ability. Also, the correlation coefficient of DataInf generally decreases as the rank increases,
consistent with our theoretical analysis.

coefficient with the exact influence function presented in equation 2. The higher the correlation is,
the better. We use the four binary classification GLUE datasets (Wang et al., 2018). To simulate the
situation where a fraction of data points are noisy, we consider noisy GLUE datasets by synthetically
generating mislabeled training data points. We flip a binary label for 20% of randomly selected
training data points. The low rank is denoted by r and is selected from {1, 2, 4}.

Results Figure 1 shows that DataInf is significantly more correlated with the exact influence
method than Hessian-free and LiSSA for all ranks r ∈ {1, 2, 4}. For instance, when the dataset
is GLUE-MRPC and r = 1, the correlation coefficient of DataInf is 0.64 while Hessian-free
and LiSSA achieve 0.50 and 0.45, respectively. We observe LiSSA is highly unstable, leading to a
worse correlation than Hessian-free. This instability is potentially due to the LiSSA’s iterative
updates which often make the inverse Hessian vector product fail to converge. In addition, the
correlation generally decreases as the rank increases, which aligns with our finding in Theorem 1; Its
approximation error increases as the parameter size increases. Overall, DataInf better approximates
the exact influence function values than other methods in terms of correlation coefficients. This
result suggests that DataInf is well-suited for fine-tuning techniques, where the number of learnable
parameters is smaller.

4.2 MISLABELED DATA DETECTION

Given that mislabeled data points often negatively affect the model performance, it is anticipated
that their influence value should be larger than that of clean data points—when they are included,
then the loss is likely to increase. In this experiment, we empirically investigate the mislabeled data
detection ability of the three influence computation methods as well as the exact influence function
(equation 2), which we denote by Exact. We consider the same noisy GLUE datasets used in the
approximation error analysis. Like the previous experiment, ground-truth annotations for mislabeled
data (e.g., one for mislabeled data and zero for clean data) are used only to evaluate the quality of the
influence function, not for fine-tuning and influence calculations.

As for the evaluation metric, we use the area under the curve (AUC) score between influence values
and the binary annotations for mislabeled data to capture the quality of the influence function values.
This AUC measures the probability that a score randomly selected from a class of mislabeled data is
greater than that of a class of clean data. That is, an influence function likely to assign large values
to mislabeled data points will have high AUC values. We measure the runtime for computing the
influence function for every training data point when one NVIDIA A40 GPU processor is used. The
rank r of the LoRA matrix is set to be 4, but we provide additional experimental results for r = 1,
r = 2, and r = 8 in Appendix E, where we find a consistent pattern.

Results Figure 2 shows that DataInf achieves significantly better detection ability than
Hessian-free and LiSSA on all four datasets. Compared to Exact, DataInf presents overall
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Figure 2: Mislabeled data detection ability comparison of the four influence computation methods
when the rank of LoRA matrix r is 4. The detection ability is evaluated with AUC, and the error
bar indicates a 95% confidence interval based on 20 independent runs. DataInf shows better than
or comparable detection ability to Exact, and it significantly outperforms Hessian-free and
LiSSA on all four datasets. As for the runtime, DataInf is much faster than Exact, demonstrating
the practical effectiveness of our method.

comparable results. Interestingly, we find that DataInf is sometimes better than Exact. This is
potentially because Exact is not designed for detecting mislabeled data. Even correctly labeled data
can have a large influence, especially when it is close to a classifier boundary, i.e., highly ambiguous
data. Another potential reason is that the damping parameter λl can cause the degradation of Exact,
but we leave a rigorous analysis of this as a future research topic. In terms of runtime, DataInf
shows superior computational efficiency. For instance, on the GLUE-QQP dataset, DataInf takes
13 seconds while LiSSA and Exact take 70 and 11279 seconds, respectively, for computing 4500
influence function values. Across the four datasets, ours is 5.5 and 1149.6 times faster than LiSSA
and Exact, respectively, on average. While Hessian-free is shown to be the fastest method as
it does not require to compute the Hessian, its performance is strictly worse than DataInf.

4.3 INFLUENTIAL DATA IDENTIFICATION

To further illustrate the usefulness of DataInf, we assess how accurately it can identify influential
data points in text generation and text-to-image generation tasks. We use the Llama-2-13B-chat model
(Touvron et al., 2023) for the text generation task, and the stable-diffusion-v1.5 model (Rombach
et al., 2022) for the text-to-image generation task. Both models are publicly available and widely
used in literature.

We construct three demonstrative datasets for the text generation task: (i) Sentence transformations,
(ii) Math word problems (without reasoning), and (iii) Math word problems (with reasoning). The
detailed description for each task and dataset is given in Table 3 in Appendix D. Each dataset contains
10 distinct classes, with 100 total data points in each class. We partition the 100 examples into
90 training data (used for LoRA) points and 10 test data points. For text-to-image generation, we
consider two tasks: (i) style generation and (ii) subject generation. For the style generation task, we
combine three publicly available image-text pair datasets where each dataset represents different
style: cartoons (Norod78, 2023), pixel-art (Jainr3, 2023), and line sketches (Zoheb, 2023). For each
style, we use 200 training image-text pairs and 50 test image-text pairs for a total of 600 training
data points and 150 test data points. For the subject generation task, we use the DreamBooth dataset
(Ruiz et al., 2023). There are 31 different subjects and for each subject, 3 data points are used for the
training dataset and 1 to 3 data points are used for the validation dataset. The detailed prompts are
provided in Appendix D.

If some training data points help minimize a test data point’s loss, then their influence function value
should be negative—a validation loss should decrease when the same class data point is added. Based
on this intuition, we utilize two evaluation metrics. First, for each test data point, we make a pseudo
label for every training data point. This pseudo label is one if its label is the same as the test data
point’s label, and zero otherwise. We then compute the AUC between the negative influence function
values and the pseudo labels. Ideally, a large AUC is expected because the same class will have a
negative influence value. We report the average AUC across test data points. We denote this by class
detection AUC. Second, for each test data point, we compute the percentage of training points with
the same class as the test example among the s smallest influential training points. Here, s is set to
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Table 2: AUC and recall comparison of Hessian-free and DataInf on influential data identifi-
cation tasks. LiSSA is excluded in this experiment as it often fails to converge due to its instability.
The average and standard deviation of the AUC and recall across test data points are denoted by
“average±standard deviation”, and the higher, the better for both metrics. DataInf significantly
outperforms Hessian-free in both metrics across 5 different tasks.

Task & Model Method Class detection (AUC) ↑ Class detection (Recall) ↑
Sentence transformations Hessian-free 0.999± 0.002 0.985± 0.033
Llama-2-13B-chat DataInf 1.000± 0.000 0.997± 0.010

Math problems (no reasoning) Hessian-free 0.770± 0.174 0.258± 0.388
Llama-2-13B-chat DataInf 1.000± 0.000 0.999± 0.006

Math problems (with reasoning) Hessian-free 0.772± 0.173 0.258± 0.388
Llama-2-13B-chat DataInf 1.000± 0.001 0.996± 0.025

Text-to-image style generation Hessian-free 0.692± 0.007 0.533± 0.008
stable-diffusion-v1.5 DataInf 0.820± 0.005 0.687± 0.006

Text-to-image subject generation Hessian-free 0.820± 0.000 0.210± 0.003
stable-diffusion-v1.5 DataInf 0.865± 0.000 0.315± 0.003

be the number of training examples per class. We report the average percentage across the test data
points and denote this by recall. These metrics are intended to assess how effectively each method
can identify training data points that belong to the same class as a test example as more helpful than
one that belongs to a different class.

Results Evaluation metrics for each task and model are reported in Table 2. DataInf significantly
outperforms Hessian-free on all tasks and across all metrics in identifying influential data. Of
note, LiSSA demonstrated significant numerical instability across all four tasks and models, which
produced invalid influence values in some runs. Even after gradient rescaling, we observed that
LiSSA collapses to Hessian-free across all tasks. We hypothesize that this instability can be
attributed to the iterative nature of LiSSA and the high-dimensional nature of large-scale models.
Qualitative examples with test examples and the corresponding most and least influential training
data points based on their absolute values are shown in Figure 3.

5 RELATED WORKS

Assessing the impact of individual training data points on model accuracy or predictions has been
widely studied in data valuation literature. One of the most widely adopted classes of data valuation
methods is based on the marginal contribution, which measures the average change in a model’s
performance when a specific data point is removed from a set of data points. Many standard methods
belong to this category including leave-one-out and various Shapley-based methods (Ghorbani &
Zou, 2019; Jia et al., 2019; Kwon & Zou, 2022; Wang & Jia, 2023; Wang et al., 2023). In addition
to these methods, several alternative approaches have been proposed using reinforcement learning
(Yoon et al., 2020) or out-of-bag accuracy (Kwon & Zou, 2023). Unlike all aforementioned data
valuation methods, the influence function is based on gradients, conveying the rigorous and intuitive
notion of data values. For an extensive review of these methods, we refer the reader to Jiang et al.
(2023).

When it comes to the empirical performance on downstream machine learning tasks, other non-
influence-based data contribution methods often outperform the influence function (Park et al., 2023;
Jiang et al., 2023). However, the majority of previous studies have focused on relatively small models
and datasets. This limitation arises from the computational infeasibility of existing algorithms, which
typically require the training of numerous models to obtain reliable data values (Sim et al., 2022;
Feldman & Zhang, 2020). When LLMs or diffusion models are deployed, data valuation methods that
require model training are not practically applicable. While several methods capture the value of data
at model initialization and do not require a training process (Nohyun et al., 2022; Wu et al., 2022),
their performance is mostly examined on relatively small neural network models. The development
of an efficient computational method for LLMs or diffusion models is of critical significance, and it
is the main contribution of this paper.
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Figure 3: Illustrative examples of most and least influential training data points discovered using
DataInf across the text generation and text-to-image generation tasks performed with the Llama-2-
13B-chat and stable-diffusion-v1.5 models. The most (resp. least) influential data point has the largest
(resp. smallest) absolute influence on the test example among training data points. DataInf has
successfully identified the most influential data points, which exhibit a high degree of relevance to test
example prompts. Conversely, the least influential data points identified by DataInf demonstrate
lower relevance. In essence, DataInf is effective at detecting influential data points.

As a concurrent and independent work, Grosse et al. (2023) proposed the Eigenvalue-Kronecker-
factored approximate curvature (EK-FAC)-based algorithm that efficiently computes the influence
function. While it was applied to LLMs (though not diffusions), the EK-FAC method highly depends
on the network architecture, and thus its application to LoRA-tuned models is not straightforward.
The implementation of EK-FAC is also not public. We provide a more detailed explanation in
Appendix C.

6 CONCLUSION

We propose DataInf, an efficient influence computation algorithm that is well-suited for parameter-
efficient fine-tuning and can be deployed to LLMs and large diffusion models. DataInf is effective in
identifying mislabeled data points and retrieving the most and least influential training data points on
model generations. DataInf is orders of magnitude faster than state-of-the-art influence computation
methods and is memory efficient, and thus it can be practically useful for enabling data-centric
analysis of large models such as LLMs.

In the literature, there are not many quantitative evaluation metrics for the utility of influence scores.
This also presents limitations for evaluating DataInf. We tried to address it by using proxies such as
data points in the same class should have greater influence than data points in a different class, and
mislabeled points should increase test loss. Additional downstream of the utility of influence scores
for generative AI is an important direction of future work.
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A PROPOSED ALGORITHM

We provide a pseudo algorithm in Algorithm 1.

Algorithm 1 DataInf: Efficient influence computation

Input: A training dataset D = {(x1, y1), . . . , (xn, yn)}, a validation dataset D(val) =

{(x(val)
1 , y

(val)
1 ), . . . , (x

(val)
m , y

(val)
m )}, an objective function ℓ : Y ×Y → R, a deep neural network

model fθ = fθL ◦ · · · ◦ fθ1 where θ = {θ1, . . . , θL} and θl ∈ Rdl for l ∈ [L].
Output: Influence functions

{
IDataInf(x1, y1), . . . , IDataInf(xn, yn)

}
.

# Step 1: Compute the first-order gradients
for l in [L] do

for i in [n] do
Compute∇θlℓ(yi, fθ(xi)) ▷ Training data points

end for
Compute 1

m

∑m
j=1∇θlℓ(y

(val)
j , fθ(x

(val)
j )) =: vl. ▷ Validation data points

end for

# Step 2: Compute the inverse Hessian-vector product
for l in [L] do

Compute λl := 0.1× (ndl)
−1
∑n

i=1∇θlℓ(yi, fθ(xi))
T∇θlℓ(yi, fθ(xi))

vl ← 0.
for i in [n] do

cli ← vTl ∇θlℓ(yi, fθ(xi))/
(
λl +

∥∥∇θlℓ(yi, fθ(xi))
∥∥2
2

)
▷ A normalizing constant

rl ← rl + (nλl)
−1
(
vl − cli∇θlℓ(yi, fθ(xi))

)
.

end for
end for

# Step 3: Compute the influence function
for i in [n] do
IDataInf(xk, yk)← −

∑
l∈[L] r

T
l ∇θlℓ(yk, fθ(xk)).

end for

B PROOF OF THEOREM 1

We provide a proof of Theorem 1 below.

Proof. We set Sli := ∇θlℓi∇θlℓ
T
i +λlIdl

and S̄l := n−1
∑n

i=1 Sli. Then, a Taylor expansion3 gives

1

n

n∑
i=1

S−1
li −

 1

n

n∑
i=1

Sli

−1

=
1

n

n∑
i=1

(
Sli − S̄l

)T (∫ 1

0

(tSli + (1− t)S̄l)
−32(1− t)dt

)(
Sli − S̄l

)
⪯ 2

λ3
l

1

n

n∑
i=1

(
Sli − S̄l

) (
Sli − S̄l

)T
.

The inequality is due to the maximum eigenvalue of (tSli + (1− t)S̄l)
−3 is upper bounded by λ−3

l
for 0 < t < 1. Then, the spectral norm of this matrix is upper bounded as follows:∥∥∥∥∥∥ 1

λ3
l

1

n

n∑
i=1

(
Sli − S̄l

) (
Sli − S̄l

)T∥∥∥∥∥∥
2

≤ 2

λ3
l

1

n

n∑
i=1

∥∥Sli − S̄l

∥∥2
2

3This Taylor expansion is presented in (Bach, 2022).
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≤ 2

λ3
l

1

n

n∑
i=1

(
∥Sli∥2 +

∥∥S̄l

∥∥
2

)2
.

The first inequality is due to the triangle inequality and the second inequality is from λmax(A−B) ≤
λmax(A) + λmax(B) for real symmetric matrices A and B. Here, λmax(A) denotes the largest
eigenvalue of a matrix A.

For all l ∈ [L] and i ∈ [n], since Sli is a semi-positive definite matrix, we have∥Sli∥2 = λmax(Sli) ≤
tr(Sli) and

∥∥S̄l

∥∥
2
= λmax(S̄l) ≤ tr(S̄l). Hence,

2

λ3
l

1

n

n∑
i=1

(
∥Sli∥2 +

∥∥S̄l

∥∥
2

)2
≤ 2

λ3
l

1

n

n∑
i=1

(
tr (Sli) + tr

(
S̄l

))2
.

Since
∥∥∇θlℓi

∥∥
∞ is upper bounded by a constant, there exists a constant M > 0 such that tr (Sli) +

tr
(
S̄l

)
≤Mdl. This implies that:

2

λ3
l

1

n

n∑
i=1

(
∥Sli∥2 +

∥∥S̄l

∥∥
2

)2
≤ 2M2d2l

λ3
l

= O(d2l ).

C EXISTING METHODS

In this section, we provide three existing influence computation methods: EK-FAC and retraining-
based methods.

EK-FAC To this end, we suppose fθ is a multilayer perceptron model. For l ∈ [L], we denote the
l-th layer output by hl := fθl ◦ · · · ◦ fθ1 and the associated pre-activated output by gl. Then, for all
k ∈ [n], we have ∇θlℓk = hl−1(xk)⊗∇glℓk where ⊗ denotes the Kronecker product. Moreover,
the Hessian for θl is given as follows:

Gl(θ
∗) =

1

n

n∑
i=1

(
hl−1(xi)⊗∇glℓi

) (
hl−1(xi)⊗∇glℓi

)T
=

1

n

n∑
i=1

(
hl−1(xi)hl−1(xi)

T
)
⊗
(
∇glℓi∇glℓ

T
i

)
The second equality is due to the mixed-product property of the Kronecker product. George et al.
(2018) proposed to approximate Gl(θ

∗) with the following equation:

Gl(θ
∗) ≈ 1

n

n∑
i=1

hl−1(xi)hl−1(xi)
T ⊗ 1

n

n∑
i=1

∇glℓi∇glℓ
T
i =: Al−1 ⊗Bl

This approximation is accurate when one of the following approximations holds:

∇glℓi∇glℓ
T
i ≈

1

n

n∑
j=1

∇glℓj∇glℓ
T
j ∀i ∈ [n], (6)

or

hl−1(xi)hl−1(xi)
T ≈ 1

n

n∑
j=1

hl−1(xj)hl−1(xj)
T ∀i ∈ [n]. (7)

The assumptions in equation 6 and equation 7 essentially assume that hl−1 and ∇glℓ are constant
across different training data points. While there is no clear intuition, the approximation leads to a
computationally efficient form. Specifically, we let Al−1 = QAl−1

ΛAl−1
QT

Al−1
where QAl−1

is an
orthonormal matrix and ΛAl−1

is a diagonal matrix obtained by eigenvalue decomposition. Similarly,
we factorize Bl = QBl

ΛBl
QT

Bl
. Then, we have:

(Gl(θ
∗) + λlIdl

)−1 = (QAl−1
⊗QBl

)(ΛAl−1
⊗ ΛBl

+ λlIdl
)−1(QAl−1

⊗QBl
)T
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That is, (Gl(θ
∗) + λlIdl

)−1 can be obtained by applying eigenvalue decomposition of Al−1 and Bl.
Compared to naive matrix inversion (Gl(θ

∗) + λlIdl
)−1, this approximation method has computa-

tional efficiency as the size of Al−1 and Bl is much smaller than dl. This method is called Kronecker
Factorization, also known as KFAC. George et al. (2018) showed that that using ΛAl−1

⊗ ΛBl
can

be suboptimal in approximating with a diagonal matrix Λ where the i-th diagonal element is set to
be Λii = n−1

∑n
j=1((QAl−1

⊗ QBl
)∇θlℓj)

2
i . A naive computation of the left-hand side requires

O(d3l ) operations, but both KFAC and EK-FAC can be done in O(d
3/2
l ) operations when the size of

both Al−1 and Bl is
√
dl. Hence, the total computational complexity is O(

∑L
l=1(ndl + d

3/2
l )) with

O(maxl∈[L] d
2
l ) memory complexity.

EK-FAC has a computational advantage over a naive version of LiSSA, but it might not be applicable
to general deep neural network models as it highly depends on the model architecture—the gradient
should be expressed as ∇θlℓk = hl−1(xk)⊗∇glℓk, which it might not be true for LoRA fine-tuned
models or transformer-based models. This method has been used in an independent and concurrent
work (Grosse et al., 2023).

Retraining-based method For M ∈ [n], we denote a set of subsets with the same cardinality by
S(M) := {S : S ⊆ D, |S| = M}. For i ∈ [n], we set S(M)

i,in := {S ∈ S(M) : (xi, yi) ∈ S} and

S(M)
i,out := {S ∈ S(M) : (xi, yi) /∈ S}. Note that S(M)

i,in ∪ S
(M)
i,out = S and S(M)

i,in ∩ S
(M)
i,out = {} for all

i ∈ [n]. Feldman & Zhang (2020) proposed to compute the influence of a data point (xi, yi) ∈ D on
a loss value ℓ(y∗, fθ∗(x∗)) as a difference of model outputs.

1

|S(M)
i,in |

∑
S∈S(M)

i,in

ℓ(y∗, fθS (x
∗))− 1

|S(M)
i,out|

∑
S∈S(M)

i,out

ℓ(y∗, fθS (x
∗)),

where

θS := argminθ∈Θ

1

|S|
∑
i∈S

ℓ(yi, fθ(xi)).

This retraining-based method is flexible in that any deep neural network model can be used for fθ,
however, it is extremely challenging to compute because it necessitates the training of numerous
models.

D IMPLEMENTATION DETAILS

In this section, we provide implementation details on datasets, models, and loss functions we
used in Section 4. Python-based implementation codes are available at https://github.com/
ykwon0407/DataInf.

D.1 APPROXIMATION ERROR ANALYSIS AND MISLABELED DATA DETECTION

Datasets We consider the four binary classification GLUE benchmarking datasets (Wang et al.,
2018). Namely, the four datasets are GLUE-MARPC (Dolan & Brockett, 2005, paraphrase detec-
tion), GLUE-SST2 (Socher et al., 2013, sentiment analysis), GLUE-WNLI (Levesque et al., 2012,
inference), and GLUE-QQP (question-answering)4. We used the training and validation splits of the
dataset available at HuggingFace Datasets library (Lhoest et al., 2021). Only the training dataset is
used to fine-tune the model, and we compute the influence of individual training data points on the
validation loss. For GLUE-SST2 and GLUE-QQP, we randomly sample 4500 (resp. 500) samples
from the original training (resp. validation) dataset.

Model We use LoRA to fine-tune the RoBERTa-large model, a 355M parameter LLM trained on
the large-scale publicly available natural language datasets (Liu et al., 2019). We apply LoRA to every
value matrix of the attention layers of the RoBERTa-large model. We downloaded the pre-trained
model from the HuggingFace Transformers library (Wolf et al., 2020). Across all fine-tuning runs,

4https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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we use a learning rate of 3× 10−4 with a batch size of 32 across 10 training epochs. As for the LoRA
hyperparameters, the dropout rate is set to be 0.05. We choose the rank of the LoRA matrix r from
{1, 2, 4, 8} and α is always set to be r. The training was performed on a single machine with one
NVIDIA A40 GPU using the HuggingFace Peft library (Mangrulkar et al., 2022).

For the Exact method, we exclude the case r = 8 to compute it in a reasonable time. Specifically,
with one NVIDIA A40 GPU processor and the GLUE-MRPC dataset, it takes more than 18 hours
when r = 8. Also, we find that the LoRA with a smaller r can yield a similar model performance to
the LoRA with r = 8. See Figure 6.

Loss All GLUE benchmarking datasets we used are binary classification datasets, so we used a
negative log-likelihood function as a loss function. For a sequence of input tokens x = (x1, . . . , xT )
and its label y, we consider ℓ(y, fθ(x)) = − log p(y | fθ(x)) where fθ is a composition model
consists of the RoBERTa-large model to convert text data into numerical embeddings, and a logistic
model to perform classification on the embedding space. We set T = 128.

D.2 INFLUENTIAL DATA IDENTIFICATION

D.2.1 TEXT GENERATION

Datasets Full dataset prompts are described in Tables 5 and 6.

Model We use LoRA to fine-tune Llama-2-13B-chat, an LLM that has 13 billion parameters, is
pre-trained on 2 trillion tokens, and is optimized for dialogue use cases (Touvron et al., 2023). We
apply LoRA to every query and value matrix of the attention layer in the Llama-2-13B-chat model.
Across all fine-tuning runs, we use a learning rate of 3× 10−4, LoRA hyperparameters r = 8 and
α = 32, in 8-bit quantization, with a batch size of 64 across 25 training epochs. The training was
performed on a single machine with 4 NVIDIA V100 GPUs using the HuggingFace Peft library
(Mangrulkar et al., 2022).

Loss We used a negative log-likelihood of a generated response as a loss function. For a sequence of
input tokens x = (x1, . . . , xT1

) and the corresponding sequence of target tokens y = (y1, . . . , yT2
),

suppose the Llama-2-13B generates a sequence of output tokens fθ(x) = (fθ(x)1, . . . , fθ(x)T2
).

fθ(x) has the same size of T2 and is generated in an auto-regressive manner. We set T1 = T2 = 512.
Then, the loss function is ℓ(y, fθ(x)) = −

∑T2

t=1 log p(yt | fθ(x)1, . . . , fθ(x)t−1).

Experiments The test accuracy for the base (non-fine-tuned) and fine-tuned models is shown in
Table 4. We observe substantial improvements across the three tasks, with additional improvements
from introducing an intermediate reasoning step to the math word problems.

D.2.2 TEXT-TO-IMAGE GENERATION - STYLE GENERATION

Datasets Figure 4 illustrates examples of images used in the text-to-image generation task. When
we fine-tuned a model, a style description is added to a text sequence to instruct a style. For instance,
“Generate an image in a specific {custom} style. {text-data}”, where {custom} is substituted with
either “cartoon”, “pixelart”, or “black and white line sketch”, and {text-data} is substituted with a
text sequence in the training dataset. We provide a detailed description in Table 7.

Model We also use LoRA to fine-tune stable-diffusion-v1.5 (Rombach et al., 2022). We apply
LoRA to every attention layer in the stable-diffusion-v1.5 model. Across all fine-tuning runs, we
use a learning rate of 10−4, LoRA hyperparameters r = 1 and α = 1. We fine-tune a model with a
batch size of 4 across 10000 training steps. The training was performed on a single machine with 4
NVIDIA V100 GPUs using the HuggingFace Peft library (Mangrulkar et al., 2022).

Loss Similar to other experiments, we used a negative log-likelihood of a generated image as a loss
function. For a sequence of input tokens x = (x1, . . . , xT ) and the corresponding target image y, we
can compute a negative log-likelihood ℓ(y, fθ(x)) = − log p(y | fθ(x)). We set T = 77.
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Experiment We compare generated images before and after the LoRA fine-tuning. For quantitative
comparison, the baseline and fine-tuned models are evaluated by comparing the Fréchet inception
distance (FID) between images in the test set with images generated using the paired texts from the
test set. FID for the before and after fine-tuning models is shown in Table 4.

D.2.3 TEXT-TO-IMAGE GENERATION - SUBJECT GENERATION

We used the same setting with the text-to-image generation style generation task, but the rank of
LoRA matrices is set to 4. We here explain the datasets.

Datasets Figure 4 illustrates examples of images used in the text-to-image generation task. Our
models use Google’s Dreambooth dataset Ruiz et al. (2023), which contains 31 unique subjects in
categories like backpack, dog, bowl, and sneaker. Each subject has four to six total examples, and
we take three from each subject as the training set, with the remaining as the validation. We add a
unique random string to each subject to prompt the model to produce each subject. For example, to
differentiate two different dogs, we use prompts ”a 5a2PZ dog” and ”a POVRB dog” in the training
and test set.

Table 3: Description of each task and dataset used in Section 4.3. For the text generation task, we
describe the full dataset prompts in Table 5.

Task Description
Sentence transformations The model is asked to perform a specific transformation on a sentence.

Ten different types of sentence transformations are used. To aid the model
in learning distinct transformations, “chatbot” name identifiers that are
uniquely associated with each transformation are added to the prompts.

Math problems (without
reasoning)

The model is asked to provide a direct answer to a simple arithmetic word
problem. Ten different types of math word problems are constructed, and
random positive integers are used to construct unique data points.

Math problems (with rea-
soning)

Using the same questions with as above (Math problems without reason-
ing), the prompt includes an intermediate reasoning step before arriving
at the final answer.

Text-to-image style genera-
tion

The model is asked to generate an image in a given style. Three different
styles of images are used in our dataset. We illustrate examples of styles
in Figure 4.

Text-to-image subject gen-
eration

The model is asked to generate a specific subject (e.g. a dog or a candle).
We illustrate examples of styles in Figure 4.

Table 4: Performance improvements from model fine-tuning. For the text generation tasks, we
evaluate the classification accuracy. For the text-to-image generation task, we evaluate FID.

Task Method Accuracy ↑ FID ↓

Sentence transformations Base model 0.01 -
Fine-tuned model 0.35 -

Math problems (no reasoning) Base model 0.07 -
Fine-tuned model 0.20 -

Math problems (with reasoning) Base model 0.08 -
Fine-tuned model 0.31 -

Text-to-image style generation Base model - 243.5
Fine-tuned model - 189.6

Text-to-image subject generation Base model - 269.7
Fine-tuned model - 247.5

E ADDITIONAL EXPERIMENTAL RESULTS

Approximation error analysis. We provide an additional approximation error analysis result when
data are clean. Figure 5 shows that DataInf is more correlated with the exact influence function than
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Figure 4: Examples of images used in the text-to-image generation task, along with before and after
images from the LoRA fine-tuning of the stable-diffusion-v1.5 model.

Table 5: Description of the sentence transformations task templates. We consider 10 different types
of sentence transformations. For each sentence transformation, unique identifying “chatbot” names
were additionally prepended to the task prompt to assist the model in training.

Sentence transformations Example transformation of “Sunrises herald hopeful tomor-
rows”:

Reverse Order of Words tomorrows. hopeful herald Sunrises
Capitalize Every Other Letter sUnRiSeS hErAlD hOpEfUl tOmOrRoWs.
Insert Number 1 Between Every
Word

Sunrises 1herald 1hopeful 1tomorrows.

Replace Vowels with * S*nr*s*s h*r*ld h*p*f*l t*m*rr*ws.
Double Every Consonant SSunrriisseess hheralld hhopeffull ttomorrows.
Capitalize Every Word Sunrises Herald Hopeful Tomorrows.
Remove All Vowels Snrss hrld hpfl tmrrws.
Add ’ly’ To End of Each Word Sunrisesly heraldly hopefully tomorrows.ly
Remove All Consonants uie ea oeu ooo.
Repeat Each Word Twice Sunrises Sunrises herald herald hopeful hopeful tomorrows. to-

morrows.

Hessian-free and LiSSA methods throughout different datasets and ranks. It shows that our finding is
consistent regardless of the presence of noisy data.

Mislabeled data detection task. We provide additional mislabeled data detection task results when
the rank r is selected from {1, 2, 8}. We exclude Exact when r = 8 because it exceeds the 12-hour
computation limit for all datasets. In this case, DataInf takes less than 25 seconds. Similar to
the case r = 4, DataInf shows competitive mislabeled detection performance over other methods
while achieving a short runtime.
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Table 6: Description of the math problem task templates. We consider 10 different types of math
word problems.

Math Word Problems Template prompt question
Remaining pizza slices Lisa ate A slices of pizza and her brother ate B slices from a pizza

that originally had C slices. How many slices of the pizza are left?
Reason: Combined slices eaten = A + B. Left = C - (A + B).

Chaperones needed for trip For every A students going on a field trip, there are B adults
needed as chaperones. If C students are attending, how many
adults are needed?
Reason: Adults needed = (B * C) // A.

Total number after purchase In an aquarium, there are A sharks and B dolphins. If they bought
C more sharks, how many sharks would be there in total?
Reason: Total sharks = A + C.

Total game points Michael scored A points in the first game, B points in the second,
C in the third, and D in the fourth game. What is his total points?
Reason: Total points = A + B + C + D.

Total reading hours Emily reads for A hours each day. How many hours does she read
in total in B days?
Reason: Total hours read = A * B.

Shirt cost after discount A shirt costs A. There’s a B-dollar off sale. How much does the
shirt cost after the discount?
Reason: Cost after discount = A - B.

Area of a garden A rectangular garden has a length of A meters and a width of B
meters. What is its area?
Reason: Area = A * B.

Total savings If Jake saves A each week, how much will he save after B weeks?
Reason: Total savings = A * B.

Number of cupcake boxes A bakery sells cupcakes in boxes of A. If they have B cupcakes,
how many boxes can they fill?
Reason: Boxes filled = B // A.

Interest earned John invests A at an annual interest rate of B%. How much interest
will he earn after C years?
Reason: Interest = (A * B * C) // 100.

Table 7: Description of the text-to-image generation task templates. Each style has 200 training
image-text pairs and 150 validation image-text pairs.

Image style Text prompt
Cartoon Generate an image in a specific cartoon style. {A text sequence of the original dataset

which describes an image}.
Pixel Art Generate an image in a specific pixelart style. {A text sequence of the original dataset

which describes an image}.
Sketch Generate an image in a specific black and white line sketch style. {A text sequence of

the original dataset which describes an image}.
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Figure 5: Correlation coefficient comparison of the three influence computation methods when data
are clean. The experimental settings are exactly the same as the one in Figure 1 except for the
presence of noisy data.
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Figure 6: Mislabeled data detection task ability comparison of the four influence computation methods
when the rank of LoRA matrix r is (top) 1, (middle) 2, and (bottom) 8. The error bar indicates a 95%
confidence interval based on 20 independent runs. Similar to Figure 2, DataInf shows superior
detection ability while achieving competitive computational efficiency.
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F DATA SELECTION TASK

One desired property of data contribution methods is to find a representative subset that can yield a
high model performance when a model is trained on that subset. To assess this ability of DataInf, we
conduct data selection experiments. The experimental setting is exactly the same as the one used
in Figure 2. Once the influence function is computed, we select the top 70% most beneficial data
points, retrain a model from scratch with the selected subset, and evaluate the model accuracy on
the holdout test dataset. We compare DataInf with Hessian-free and LiSSA methods. In
addition, we consider two additional baseline methods: the random selection (denoted by Random)
and the entire dataset (denoted by Full). We anticipate Full should be better than Random as it
uses more samples.

Figure 7 shows the accuracy trajectories in the first 10 epochs. First, DataInf uniformly performs
better than existing methods for most of the datasets across all training epochs. Also, it better performs
than Full on most of the datasets, and we believe this is because 20% of the original datasets are
mislabeled. DataInf detects these low-quality data points, leading to a better performance than
Full. Furthermore, another interesting observation is that DataInf usually achieves the best
performance in the first one to three epochs, meaning that it selectively finds a good subset that is
representative of the training dataset and helps accelerate the model training.
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Figure 7: Data selection ability comparison of the different influence computation methods. The
experimental setting is exactly the same as the one used in Figure 2. The detection ability is evaluated
with classification accuracy, and the error bar indicates a 95% confidence interval based on 20
independent runs. DataInf significantly outperforms Hessian-free and LiSSA on all four
datasets, and it is even better than Full except the mrpc dataset. Furthermore, DataInf achieves
the best accuracy in the first few epochs, demonstrating that a selected subset is easy to learn and
representative, which helps accelerate the model training. It shows the practical effectiveness of
DataInf in data selection tasks, especially when a fraction of the training dataset is low-quality.
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