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ABSTRACT

We study ObjectGoal Navigation – where a virtual robot situated in a new environment is asked to
navigate to an object. Prior work Ramrakhya et al. (2022) has shown that imitation learning (IL)
using behavior cloning (BC) on a dataset of human demonstrations achieves promising results.
However, this has limitations – 1) BC policies generalize poorly to new states, since the training
mimics actions not their consequences, and 2) collecting demonstrations is expensive. On the other
hand, reinforcement learning (RL) is trivially scalable, but requires careful reward engineering to
achieve desirable behavior. We present PIRLNav, a two-stage learning scheme for BC pretraining
on human demonstrations followed by RL-finetuning. This leads to a policy that achieves a success
rate of 65.0% on OBJECTNAV (+5.0% absolute over previous state-of-the-art).
Using this BC→RL training recipe, we present a rigorous empirical analysis of design choices.
First, we investigate whether human demonstrations can be replaced with ‘free’ (automatically
generated) sources of demonstrations, e.g. shortest paths (SP) or task-agnostic frontier exploration
(FE) trajectories. We find that BC→RL on human demonstrations outperforms BC→RL on SP
and FE trajectories, even when controlled for the same BC-pretraining success on TRAIN, and
even on a subset of VAL episodes where BC-pretraining success favors the SP or FE policies.
Next, we study how RL-finetuning performance scales with the size of the BC pretraining dataset.
We find that as we increase the size of the BC-pretraining dataset and get to high BC accuracies,
the improvements from RL-finetuning are smaller, and that 90% of the performance of our best
BC→RL policy can be achieved with less than half the number of BC demonstrations. Finally, we
analyze failure modes of our OBJECTNAV policies, and present guidelines for further improving
them. Project page: ram81.github.io/projects/pirlnav.

1 INTRODUCTION

Since the seminal work of Winograd Winograd (1972), designing embodied agents that have a rich
understanding of the environment they are situated in, can interact with humans (and other agents) via
language, and the environment via actions has been a long-term goal in AI Smith & Gasser (2005);
Hermann et al. (2017); Hill et al. (2017); Chaplot et al. (2018); Anderson et al. (2018b); Jain et al.
(2019); Das (2020); Abramson et al. (2020); Weihs et al. (2021b); Lynch et al. (2022). We focus
on ObjectGoal Navigation Anderson et al. (2018a); Batra et al. (2020), wherein an agent situated in
a new environment is asked to navigate to any instance of an object category (‘find a plant’, ‘find
a bed’, etc.); see figure 2. OBJECTNAV is simple to explain but difficult for today’s techniques to
accomplish. First, the agent needs to be able to ground the tokens in the language instruction to
physical objects in the environment (e.g. what does a ‘plant’ look like?). Second, the agent needs to
have rich semantic priors to guide its navigation to avoid wasteful exploration (e.g. the microwave is
likely to be found in the kitchen, not the washroom). Finally, it has to keep track of where it has been
in its internal memory to avoid redundant search.

Humans are adept at OBJECTNAV. Prior work Ramrakhya et al. (2022) collected a large-scale
dataset of 80k human demonstrations for OBJECTNAV, where human subjects on Mechanical Turk
teleoperated virtual robots and searched for objects in novel houses. This first provided a human
baseline on OBJECTNAV of 88.9% success rate on the Matterport3D (MP3D) dataset Chang et al.
(2017)1 compared to 35.4% success rate of the best performing method Ramrakhya et al. (2022).
This dataset was then used to train agents via imitation learning (specifically, behavior cloning).

1On VAL split, for 21 object categories, and a maximum of 500 steps.
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Figure 1. OBJECTNAV success rates of agents trained using behavior cloning (BC) vs. BC-pretraining followed
by reinforcement learning (RL) (in blue). RL from scratch (i.e. BC=0) fails to get off-the-ground. With more BC
demonstrations, BC success increases, and it transfers to even higher RL-finetuning success. But the difference
between RL-finetuning vs. BC-pretraining success (in orange) plateaus and starts to decrease beyond a certain
point, indicating diminishing returns with each additional BC demonstration.

Figure 2. OBJECTNAV trajectories for policies trained with BC→RL on 1) Human Demonstrations, 2) Shortest
Paths, and 3) Frontier Exploration Demonstrations.

While this approach achieved state-of-art results (35.4% success rate on MP3D VAL dataset), it has
two clear limitations. First, behavior cloning (BC) is known to suffer from poor generalization to
out-of-distribution states not seen during training, since the training emphasizes imitating actions
not accomplishing their goals. Second and more importantly, it is expensive and thus not scalable.
Specifically, Ramrakhya et al. Ramrakhya et al. (2022) collected 80k demonstrations on 56 scenes
in Matterport3D Dataset, which took ∼2894 hours of human teleoperation and $50k dollars. A
few months after Ramrakhya et al. (2022) was released, a new higher-quality dataset called HM3D-
Semantics v0.1 Yadav et al. (2022b) became available with 120 annotated 3D scenes, and a few
months after that HM3D-Semantics v0.2 added 96 additional scenes. Scaling Ramrakhya et al.’s
approach to continuously incorporate new scenes involves replicating that entire effort again and
again.

On the other hand, training with reinforcement learning (RL) is trivially scalable once annotated 3D
scans are available. However, as demonstrated in Maksymets et al. Maksymets et al. (2021), RL
requires careful reward engineering, the reward function typically used for OBJECTNAV actually
penalizes exploration (even though the task requires it), and the existing RL policies overfit to the
small number of available environments.

Our primary technical contribution is PIRLNav, an approach for pretraining with BC and finetuning
with RL for OBJECTNAV. BC pretrained policies provide a reasonable starting point for ‘bootstrap-
ping’ RL and make the optimization easier than learning from scratch. In fact, we show that BC
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pretraining even unlocks RL with sparse rewards. Sparse rewards are simple (do not involve any
reward engineering) and do not suffer from the unintended consequences described above. How-
ever, learning from scratch with sparse rewards is typically out of reach since most random action
trajectories result in no positive rewards.

While combining IL and RL has been studied in prior work Schaal (1996); Das et al. (2018);
Rajeswaran et al. (2018); Baker et al. (2022); Gupta et al. (2019), the main technical challenge
in the context of modern neural networks is that imitation pretraining results in weights for the
policy (or actor), but not a value function (or critic). Thus, naively initializing a new RL policy
with these BC-pretrained policy weights often leads to catastrophic failures due to destructive policy
updates early on during RL training, especially for actor-critic RL methods Uchendu et al. (2022). To
overcome this challenge, we present a two-stage learning scheme involving a critic-only learning
phase first that gradually transitions over to training both the actor and critic. We also identify a set of
practical recommendations for this recipe to be applied to OBJECTNAV. This leads to a PIRLNav
policy that advances the state-the-art on OBJECTNAV from 60.0% success rate (in Chaplot et al.
(2020)) to 65.0% (+5.0%, 8.3% relative improvement).

Next, using this BC→RL training recipe, we conduct an empirical analysis of design choices.
Specifically, an ingredient we investigate is whether human demonstrations can be replaced with
‘free’ (automatically generated) sources of demonstrations for OBJECTNAV, e.g. (1) shortest paths
(SP) between the agent’s start location and the closest object instance, or (2) task-agnostic frontier
exploration Yamauchi (1997) (FE) of the environment followed by shortest path to goal-object upon
observing it. We ask and answer the following:

1. ‘Do human demonstrations capture any unique OBJECTNAV-specific behaviors that shortest
paths and frontier exploration trajectories do not?’ Yes. We find that BC / BC→RL on human
demonstrations outperforms BC / BC→RL on shortest paths and frontier exploration trajectories
respectively. When we control the number of demonstrations from each source such that BC success
on TRAIN is the same, RL-finetuning when initialized from BC on human demonstrations still
outperforms the other two.

2. ‘How does performance after RL scale with BC dataset size?’ We observe diminishing returns
from RL-finetuning as we scale BC dataset size. This suggests, by effectively leveraging the
trade-off curve between size of pretraining dataset size vs. performance after RL-Finetuning, we can
achieve closer to state-of-the-art results without investing into a large dataset of BC demonstrations.

3. ‘Does BC on frontier exploration demonstrations present similar scaling behavior as BC on
human demonstrations?’ No. We find that as we scale frontier exploration demonstrations past 70k
trajectories, the performance plateaus.

Finally, we present an analysis of the failure modes of our OBJECTNAV policies and present a set of
guidelines for further improving them. Our policy’s primary failure modes are: a) Dataset issues:
comprising of missing goal annotations, and navigation meshes blocking the path, b) Navigation
errors: primarily failure to navigate between floors, c) Recognition failures: where the agent does not
identify the goal object during an episode, or confuses the specified goal with a semantically-similar
object.

2 RELATED WORK

ObjectGoal Navigation. Prior works on OBJECTNAV have used end-to-end RL Mousavian et al.
(2019); Ye et al. (2021); Maksymets et al. (2021), modular learning Chaplot et al. (2020); Liang et al.
(2021); Ramakrishnan et al. (2022), and imitation learning Ramrakhya et al. (2022); Yadav et al.
(2022a). Works that use end-to-end RL have proposed improved visual representations Mousavian
et al. (2019); Yang et al. (2019), auxiliary tasks Ye et al. (2021), and data augmentation techniques
Maksymets et al. (2021) to improve generalization to unseen environments. Improved visual repre-
sentations include object relation graphs Yang et al. (2019) and semantic segmentations Mousavian
et al. (2019). Ye et al. Ye et al. (2021) use auxiliary tasks like predicting environment dynamics,
action distributions, and map coverage in addition to OBJECTNAV and achieve promising results.
Maksymets et al. Maksymets et al. (2021) improve generalization of RL agents by training with
artificially inserted objects and proposing a reward to incentivize exploration.

Modular learning methods for OBJECTNAV have also emerged as a strong competitor Chaplot et al.
(2020); Liang et al. (2021); Ramakrishnan et al. (2020). These methods rely on separate modules
for semantic mapping that build explicit structured map representations, a high-level semantic
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exploration module that is learned through RL to solve the ‘where to look?’ subproblem, and a
low-level navigation policy that solves ‘how to navigate to (x, y)?’.

The current state-of-the-art methods on OBJECTNAV Ramrakhya et al. (2022); Yadav et al. (2022a)
make use of BC on a large dataset of 80k human demonstrations. with a simple CNN+RNN policy
architecture. In this work, we improve on them by developing an effective approach to finetune these
imitation-pretrained policies with RL.

Imitation Learning and RL Finetuning. Prior works have considered a special case of learning
from demonstration data. These approaches initialize policies trained using behavior cloning, and
then fine-tune using on-policy reinforcement learning Schaal (1996); Rajeswaran et al. (2018); Baker
et al. (2022); Gupta et al. (2019); Peters & Schaal (2008); Kober & Peters (2008), On classical
tasks like cart-pole swing-up Schaal (1996), balance, hitting a baseball Peters & Schaal (2008), and
underactuated swing-up Kober & Peters (2008), demonstrations have been used to speed up learning
by initializing policies pretrained on demonstrations for RL. Similar to these methods, we also use a
on-policy RL algorithm for finetuning the policy trained with behavior cloning. Rajeswaran et al.
Rajeswaran et al. (2018) (DAPG) pretrain a policy using behavior cloning and use an augmented
RL finetuning objective to stay close to the demonstrations which helps reduce sample complexity.
Unfortunately DAPG is not feasible in our setting as it requires solving a systems research problem
to efficiently incorporate replaying demonstrations and collecting experience online at our scale.
Rajeswaran et al. (2018) show results of the approach on a dexterous hand manipulation task with a
small number of demonstrations that can be loaded in system memory and therefore did not need to
solve this system challenge. This is not possible in our setting, just the 256×256 RGB observations
for the 77k demos we collect would occupy over 2 TB memory, which is out of reach for all but the
most exotic of today’s systems. There are many methods for incorporating demonstrations/imitation
learning with off-policy RL Nair et al. (2020); Lu et al. (2021); Kalashnikov et al. (2018); Peng et al.
(2019); Wang et al. (2018). Unfortunately these methods were not designed to work with recurrent
policies and adapting off-policy methods to work with recurrent policies is challenging Kapturowski
et al. (2019). See the Appendix A for more details. The RL finetuning approach that demonstrates
results with an actor-critic and high-dimensional visual observations, and is thus most closely related
to our setup is proposed in VPT Baker et al. (2022). Their approach uses Phasic Policy Gradients
(PPG) Cobbe et al. (2020) with a KL-divergence loss between the current policy and the frozen
pretrained policy, and decays the KL loss weight ρ over time to enable exploration during RL
finetuning. Our approach uses Proximal Policy Gradients (PPO) Schulman et al. (2017) instead of
PPG, and therefore does not require a KL constraint, which is compute-expensive, and performs
better on OBJECTNAV.

3 OBJECTNAV AND IMITATION LEARNING

3.1 OBJECTNAV

In OBJECTNAV an agent is tasked with searching for an instance of the specified object category (e.g.,
‘bed’) in an unseen environment. The agent must perform this task using only egocentric perceptions.
Specifically, a RGB camera, Depth sensor2, and a GPS+Compass sensor that provides location and
orientation relative to the start position of the episode. The action space is discrete and consists of
MOVE_FORWARD (0.25m), TURN_LEFT (30◦), TURN_RIGHT (30◦), LOOK_UP (30◦), LOOK_DOWN
(30◦), and STOP actions. An episode is considered successful if the agent stops within 1m Euclidean
distance of the goal object within 500 steps and is able to view the object by taking turn actions Batra
et al. (2020).

We use scenes from the HM3D-Semantics v0.1 dataset Yadav et al. (2022b). The dataset consists of
120 scenes and 6 unique goal object categories. We evaluate our agent using the train/val/test splits
from the 2022 Habitat Challenge3.

3.2 OBJECTNAV DEMONSTRATIONS

Ramrakhya et al. Ramrakhya et al. (2022) collected OBJECTNAV demonstrations for the Matterport3D
dataset Chang et al. (2017). We begin our study by replicating this effort and collect demonstrations

2We don’t use this sensor as we don’t find it helpful.
3https://aihabitat.org/challenge/2022/
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for the HM3D-Semantics v0.1 dataset Yadav et al. (2022b). We use Ramrakhya et al.’s Habitat-
WebGL infrastructure to collect 77k demonstrations, amounting to ∼2378 human annotation hours.

3.3 IMITATION LEARNING FROM DEMONSTRATIONS

We use behavior cloning to pretrain our OBJECTNAV policy on the human demonstrations we collect.
Let πBC

θ (at | ot) denote a policy parametrized by θ that maps observations ot to a distribution
over actions at. Let τ denote a trajectory consisting of state, observation, action tuples: τ =(
s0, o0, a0, . . . , sT , oT , aT

)
and T =

{
τ (i)

}N

i=1
denote a dataset of human demonstrations. The

optimal parameters are

θ∗ = arg minθ

N∑
i=1

∑
(ot,at)∈τ(i)

− log
(
πBC
θ (at | ot)

)
(1)

We use inflection weighting Wijmans et al. (2019) to adjust the loss function to upweight timesteps
where actions change (i.e. at−1 ̸= at).

Our ObjectNav policy architecture is a simple CNN+RNN model from Yadav et al. (2022a). To
encode RGB input (it = CNN(It)), we use a ResNet50 He et al. (2016). Following Yadav et al.
(2022a), the CNN is first pre-trained on the Omnidata starter dataset Eftekhar et al. (2021) using the
self-supervised pretraining method DINO Caron et al. (2021) and then finetuned during OBJECTNAV
training. The GPS+Compass inputs, Pt = (∆x,∆y,∆z), and Rt = (∆θ), are passed through
fully-connected layers pt = FC(Pt), rt = FC(Rt) to embed them to 32-d vectors. Finally, we convert
the object goal category to one-hot and pass it through a fully-connected layer gt = FC(Gt), resulting
in a 32-d vector. All of these input features are concatenated to form an observation embedding, and
fed into a 2-layer, 2048-d GRU at every timestep to predict a distribution over actions at - formally,
given current observations ot = [it, pt, rt, gt], (ht, at) = GRU(ot, ht−1). To reduce overfitting, we
apply color-jitter and random shifts Yarats et al. (2021) to the RGB inputs.

4 RL FINETUNING

Our motivation for RL-finetuning is two-fold. First, finetuning may allow for higher performance
as behavior cloning is known to suffer from a train/test mismatch – when training, the policy sees
the result of taking ground-truth actions, while at test-time, it must contend with the consequences
of its own actions. Second, collecting more human demonstrations on new scenes or simply to
improve performance is time-consuming and expensive. On the other hand, RL-finetuning is trivially
scalable (once annotated 3D scans are available) and has the potential to reduce the amount of human
demonstrations needed.

4.1 SETUP

The RL objective is to find a policy πθ(a|s) that maximizes expected sum of discounted future
rewards. Let τ be a sequence of object, action, reward tuples (ot, at, rt) where at ∼ πθ(· | ot) is the
action sampled from the agent’s policy, and rt is the reward. For a discount factor γ, the optimal
policy is

π∗ = argmax
π

Eτ∼π[RT ], where RT =

T∑
t=1

γt−1rt. (2)

To solve this maximization problem, actor-critic RL methods learn a state-value function V (s) (also
called a critic) in addition to the policy (also called an actor). The critic V (st) represents the expected
value of returns Rt when starting from state st and acting under the policy π, where returns are
defined as Rt =

∑T
i=t γ

i−tri. We use DD-PPO Wijmans et al. (2020), a distributed implementation
of PPO Schulman et al. (2017), an on-policy RL algorithm. Given a θ-parameterized policy πθ and a
set of rollouts, PPO updates the policy as follows. Let Ât = Rt − V (st), be the advantage estimate
and pt(θ) =

πθ(at|ot)
πθold (at|ot) be the ratio of the probability of action at under current policy and under the

policy used to collect rollouts. The parameters are updated by maximizing:

JPPO(θ) = Et

[
min

(
pt(θ)Ât, clip(pt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(3)
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We use a sparse success reward. Sparse success is simple (does not require hyperparameter opti-
mization) and has fewer unintended consequences (e.g. Maksymets et al. Maksymets et al. (2021)
showed that typical dense rewards used in OBJECTNAV actually penalize exploration, even though
exploration is necessary for OBJECTNAV in new environments). Sparse rewards are desirable but
typically difficult to use with RL (when initializing training from scratch) because they result in
nearly all trajectories achieving 0 reward, making it difficult to learn. However, since we pretrain
with BC, we do not observe any such pathologies.

4.2 FINETUNING METHODOLOGY

We use the behavior cloned policy πBC
θ weights to initialize the actor parameters. However, notice

that during behavior cloning we do not learn a critic nor is it easy to do so – a critic learned on
human demonstrations (during behavior cloning) would be overly optimistic since all it sees are
successes. Thus, we must learn the critic from scratch during RL. Naively finetuning the actor with a
randomly-initialized critic leads to a rapid drop in performance4 (see figure 5) since the critic provides
poor value estimates which influence the actor’s gradient updates (see Eq.equation 3). We address
this issue by using a two-phase training regime:

Phase 1: Critic Learning. In the first phase, we rollout trajectories using the frozen policy, pre-
trained using BC, and use them to learn a critic. To ensure consistency of rollouts collected for
critic learning with RL training, we sample actions (as opposed to using argmax actions) from the
pre-trained BC policy: at∼πθ(st). We train the critic until its loss plateaus. In our experiments, we
found 8M steps to be sufficient. In addition, we also initialize the weights of the critic’s final linear
layer close to zero to stabilize training.

Phase 2: Interactive Learning. In the second phase, we unfreeze the actor RNN5 and finetune
both actor and critic weights. We find that naively switching from phase 1 to phase 2 leads to small
improvements in policy performance at convergence. We gradually decay the critic learning rate from
2.5× 10−4 to 1.5× 10−5 while warming-up the policy learning rate from 0 to 1.5× 10−5 between
8M to 12M steps, and then keeping both at 1.5× 10−5 through the course of training. We find that
using this learning rate schedule helps improve policy performance. For parameters that are shared
between the actor and critic (i.e. the RNN), we use the lower of the two learning rates (i.e. always the
actor’s in our schedule). To summarize our finetuning methodology:

– First, we initialize the weights of the policy network with the IL-pretrained policy and initialize
critic weights close to zero. We freeze the actor and shared weights. The only learnable parameters
are in the critic.

– Next, we learn the critic weights on rollouts collected from the pretrained, frozen policy.
– After training the critic, we warmup the policy learning rate and decay the critic learning rate.
– Once both critic and policy learning rate reach a fixed learning rate, we train the policy to

convergence.

4.3 RESULTS

Comparing with the RL-finetuning approach in VPT Baker et al. (2022). We start by comparing
our proposed RL-finetuning approach with the approach used in VPT Baker et al. (2022). Specifically,
Baker et al. (2022) proposed initializing the critic weights to zero, replacing entropy term with a
KL-divergence loss between the frozen IL policy and the RL policy, and decay the KL divergence
loss coefficient, ρ, by a fixed factor after every iteration. Notice that this prevents the actor from
drifting too far too quickly from the IL policy, but does not solve uninitialized critic problem. To
ensure fair comparison, we implement this method within our DD-PPO framework to ensure that
any performance difference is due to the fine-tuning algorithm and not tangential implementation
differences. Complete training details are in the Appendix C.3. We keep hyperparameters constant
for our approach for all experiments. Table 1a reports results on HM3D VAL for the two approaches
using 20k human demonstrations. We find that PIRLNav achieves +2.2% Success compared to VPT
and comparable SPL.

4After the initial drop, the performance increases but the improvements on success are small.
5The CNN and non-visual observation embedding layers remain frozen. We find this to be more stable.
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Method Success (↑) SPL (↑)
1) BC 52.0 20.6
2) BC→RL-FT w/ VPT 59.7 ±0.70 28.6 ±0.89

3) PIRLNav (Ours) 61.9 ±0.47 27.9 ±0.56

(a) Comparison with VPT on HM3D VAL Ra-
makrishnan et al. (2020); Yadav et al. (2022b)

Method Success (↑) SPL (↑)
1) BC 52.0 20.6
2) BC→RL-FT 53.6 ±1.01 28.6 ±0.50

3) BC→RL-FT (+ Critic Learning) 56.7 ±0.93 27.7 ±0.82

4) BC→RL-FT (+ Critic Learning, Critic Decay) 59.4 ±0.42 26.9 ±0.38

5) BC→RL-FT (+ Critic Learning, Actor Warmup) 58.2 ±0.55 26.7 ±0.69

6) PIRLNav 61.9 ±0.47 27.9 ±0.56

(b) RL-finetuning ablations on HM3D VAL Ramakrishnan et al.
(2020); Yadav et al. (2022b)

Ablations. Next, we conduct ablation experiments to quantify the importance of each phase in our
RL-finetuning approach. Table 1b reports results on the HM3D VAL split for a policy BC-pretrained
on 20k human demonstrations and RL-finetuned for 300M steps, complete training details are
in Appendix C.4. First, without a gradual learning transition (row 2), i.e. without a critic learning
and LR decay phase, the policy improves by 1.6% on success and 8.0% on SPL. Next, with only
a critic learning phase (row 3), the policy improves by 4.7% on success and 7.1% on SPL. Using
an LR decay schedule only for the critic after the critic learning phase improves success by 7.4%
and SPL by 6.3%, and using an LR warmup schedule for the actor (but no critic LR decay) after the
critic learning phase improves success by 6.2% and SPL by 6.1%. Finally, combining everything
(critic-only learning, critic LR decay, actor LR warmup), our policy improves by 9.9% on success
and 7.3% on SPL.

TEST-STD TEST-CHALLENGE

Method Success (↑) SPL (↑) Success (↑) SPL (↑)

1) Stretch Chaplot et al. (2020) 60.0% 34.0% 56.0% 29.0%
2) ProcTHOR-Large Deitke et al. (2022) 54.0% 32.0% - -
3) Habitat-Web Ramrakhya et al. (2022) 55.0% 22.0% - -
4) DD-PPO Team (2020) 26.0% 12.0% - -
5) Populus A. 66.0% 32.0% 60.0% 30.0%
6) ByteBOT 68.0% 37.0% 64.0% 35.0%

7) PIRLNav6 65.0% 33.0% 65.0% 33.0%

Table 2. Results on HM3D TEST-STANDARD and TEST-CHALLENGE Team (2020); Yadav et al. (2022b).
Unpublished works submitted only to the OBJECTNAV leaderboard have been grayed out.

ObjectNav Challenge 2022 Results. Using our overall two-stage training approach of BC-pretraining
followed by RL-finetuning, we achieve state-of-the-art results on OBJECTNAV– 65.0% success and
33.0% SPL on both the TEST-STANDARD and TEST-CHALLENGE splits and 70.4% success and
34.1% SPL on VAL. Table 2 compares our results with the top-4 entries to the Habitat OBJECTNAV
Challenge 2022 Team (2020). Our approach outperforms Stretch Chaplot et al. (2020) on success
rate on both TEST-STANDARD and TEST-CHALLENGE and is comparable on SPL (1% worse on
TEST-STANDARD, 4% better on TEST-CHALLENGE). ProcTHOR Deitke et al. (2022), which uses
10k procedurally-generated environments for training, achieves 54% success and 32% SPL on TEST-
STANDARD split, which is 11% worse at success and 1% worse at SPL than ours. For sake of
completeness, we also report results of two unpublished entries uploaded to the leaderboard – Populus
A. and ByteBOT. Unfortunately, there is no associated report yet with these entries, so we are unable
to comment on the details of these approaches, or even whether the comparison is meaningful.

5 ROLE OF DEMONSTRATIONS IN BC→RL TRANSFER

Our decision to use human demonstrations for BC-pretraining before RL-finetuning was motivated
by results in prior work Ramrakhya et al. (2022). Next, we examine if other cheaper sources of
demonstrations lead to equally good BC→RL generalization. Specifically, we consider 3 sources of
demonstrations:

Shortest paths (SP). These demonstrations are generated by greedily sampling actions to fit the
geodesic shortest path to the nearest navigable goal object, computed using the ground-truth map of

6The approach is called “BadSeed” on the HM3D leaderboard:
eval.ai/web/challenges/challenge-page/1615/leaderboard/3899
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Training demonstrations Success (↑) SPL (↑)
Shortest paths (240k) 6.4% 5.0%
Frontier exploration (70k) 44.9% 21.5%
Human demonstrations (77k) 64.1% 27.1%

(a) Performance on HM3D VAL with imitation learn-
ing on SP, FE, and HD demonstrations. The size of
each demonstration dataset is picked such that total
steps of experience is ∼12M .

Training demonstrations BC Success (↑) RL-FT Success (↑)
1) SP 5.2% 34.8%
2) HD 0.0% 57.2%

3) FE 26.3% 43.0%
4) HD 0.0% 57.2%

(b) Results on SP-favoring and FE-Favoring splits.

the environment. These demonstrations do not capture any exploration, they only capture success at
the OBJECTNAV task via the most efficient path.
Task-Agnostic Frontier Exploration (FE) Chaplot et al. (2020). These are generated by using a
2-stage approach: 1) Exploration: where a task-agnostic strategy is used to maximize exploration
coverage and build a top-down semantic map of the environment, and 2) Goal navigation: once the
goal object is detected by the semantic predictor, the developed map is used to reach it by following
the shortest path. These demonstrations capture OBJECTNAV-agnostic exploration.

Human Demonstrations (HD) Ramrakhya et al. (2022). These are collected by asking humans on
Mechanical Turk to control an agent and navigate to the goal object. Humans are provided access to
the first-person RGB view of the agent and tasked to reach within 1m of the goal object category.
These demonstrations capture human-like OBJECTNAV-specific exploration.

5.1 RESULTS WITH BEHAVIOR CLONING

Using the BC setup described in Sec. 3.3, we train on SP, FE, and HD demonstrations. Since these
demonstrations vary in trajectory length (e.g. SP are significantly shorter than FE), we collect ∼12M
steps of experience with each method. That amounts to 240k SP, 70k FE, and 77k HD demonstrations
respectively. As shown in Table 3a, BC on 240k SP demonstrations leads to 6.4% success and 5.0%
SPL. We believe this poor performance is due to an imitation gap Weihs et al. (2021a), i.e. the shortest
path demonstrations are generated with access to privileged information (ground-truth map of the
environment) which is not available to the policy during training. Without a map, following the
shortest path in a new environment to find a goal object is not possible. BC on 70k FE demonstrations
achieves 44.9% success and 21.5% SPL, which is significantly better than BC on shortest paths
(+38.5% success, +16.5% SPL). Finally, BC on 77k HD obtains the best results – 64.1% success,
27.1% SPL. These trends suggest that task-specific exploration (captured in human demonstrations)
leads to much better generalization than task-agnostic exploration (FE) or shortest paths (SP).

5.2 RESULTS WITH RL FINETUNING

Using the BC-pretrained policies on SP, FE, and HD demonstrations as initialization, we RL-finetune
each using our approach described in Sec. 4. These results are summarized in figure 3a. Perhaps
intuitively, the trends after RL-finetuning follow the same ordering as BC-pretraining, i.e. RL-
finetuning from BC on HD > FE > SP. But there are two factors that could be leading to this ordering
after RL-finetuning – 1) inconsistency in performance at initialization (i.e. BC on HD is already
better than BC on FE), and 2) amenability of each of these initializations to RL-finetuning (i.e. is
RL-finetuning from HD init better than FE init?).

We are interested in answering (2), and so we control for (1) by selecting BC-pretrained policy
weights across SP, FE, and HD that have equal performance on a subset of TRAIN = ∼48.0% success.
This essentially amounts to selecting BC-pretraining checkpoints for FE and HD from earlier in
training as ∼48.0% success is the maximum for SP.

figure 3b shows the results after BC and RL-finetuning on a subset of the HM3D TRAIN and on
HM3D VAL. First, note that at BC-pretraining TRAIN success rates are equal (= ∼48.0%), while
on VAL FE is slightly better than HD followed by SP. We find that after RL-finetuning, the policy
trained on HD still leads to higher VAL success (66.1%) compared to FE (51.3%) and SP (43.6%).
Notice that RL-finetuning from SP leads to high TRAIN success, but low VAL success, indicating
significant overfitting. FE has smaller TRAIN-VAL gap after RL-finetuning but both are worse than
HD, indicating underfitting. These results show that learning to imitate human demonstrations equips
the agent with navigation strategies that enable better RL-finetuning generalization compared to
imitating other kinds of demonstrations, even when controlled for the same BC-pretraining accuracy.
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(a) OBJECTNAV performance on HM3D VAL with BC-
pretraining on shortest path (SP), frontier exploration
(FE), and human demonstrations (HD), followed by
RL-finetuning from each.

(b) BC and RL performance for shortest paths (SP),
frontier exploration (FE), and human demonstrations
(HD) with equal BC training success on HM3D
TRAIN (left) and VAL (right).

Results on SP-favoring and FE-favoring episodes. To further emphasize that imitating human
demonstrations is key to good generalization, we created two subsplits from the HM3D VAL split
that are adversarial to HD performance – SP-favoring and FE-favoring. The SP-favoring VAL split
consists of episodes where BC on SP achieved a higher performance compared to BC on HD, i.e. we
select episodes where BC on SP succeeded but BC on HD did not or both BC on SP and BC on HD
failed. Similarly, we also create an FE-favoring VAL split using the same sampling strategy biased
towards BC on FE. Next, we report the performance of RL-finetuned from BC on SP, FE, and HD on
these two evaluation splits in Table 3b. On both SP-favoring and FE-favoring, BC on HD is at 0%
success (by design), but after RL-finetuning, is able to significantly outperform RL-finetuning from
the respective BC on SP and FE policies.

5.3 SCALING LAWS OF BC AND RL

In this section, we investigate how BC-pretraining→ RL-finetuning success scales with no. of BC
demonstrations.

Human demonstrations. We create HD subsplits ranging in size from 2k to 77k episodes, and BC-
pretrain policies with the same set of hyperparameters on each split. Then, for each, we RL-finetune
from the best-performing checkpoint. The resulting BC and RL success on HM3D VAL vs. no. of HD
episodes is plotted in figure 1. Similar to Ramrakhya et al. (2022), we see promising scaling behavior
with more BC demonstrations.

Interestingly, as we increase the size of of the BC pretraining dataset and get to high BC accura-
cies, the improvements from RL-finetuning decrease. E.g. at 20k BC demonstrations, the BC→RL
improvement is 10.1% success, while at 77k BC demonstrations, the improvement is 6.3%. Further-
more, with 35k BC-pretraining demonstrations, the RL-finetuned success is only 4% worse than
RL-finetuning from 77k BC demonstrations (66.4% vs. 70.4%). Both suggest that by effectively
leveraging the trade-off between the size of the BC-pretraining dataset vs. performance gains after
RL-finetuning, it may be possible to achieve close to state-of-the-art results without large investments
in demonstrations.

How well does FE Scale? In Section 5.1, we showed that BC on human demonstrations outperforms
BC on both shortest paths and frontier exploration demonstrations, when controlled for the same
amount of training experience. In contrast to human demonstrations however, collecting shortest
paths and frontier exploration demonstrations is cheaper, which makes scaling these demonstration
datasets easier. Since BC performance on shortest paths is significantly worse even with 3x more
demonstrations compared to FE and HD (240k SP vs. 70k FE and 77k HD demos, Sec. 5.1), we
focus on scaling FE demonstrations. figure 4 (a) plots performance on HM3D VAL against FE dataset
size and a curve fitted using 75k demonstrations to predict performance on FE dataset-sizes ≥ 75k.
We created splits ranging in size from 10k to 150k. Increasing the dataset size doesn’t consistently
improve performance and saturates after 70k demonstrations, suggesting that generating more FE
demonstrations is unlikely to help. We hypothesize that the saturation is because these demonstrations
don’t capture task-specific exploration.

6 FAILURE MODES

To better understand the failure modes of our BC→RL OBJECTNAV policies, we manually annotate
592 failed HM3D VAL episodes from our best OBJECTNAV agent. See figure 4 (b). The most
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Figure 4. (a) Success on ObjectNav HM3D VAL split vs. no. of frontier exploration demonstrations for training.
(b) Failure modes of our best BC→RL OBJECTNAV policy

common failure modes are:
Missing Annotations (27%): Episodes where the agent navigates to the correct goal object category
but the episode is counted as a failure due to missing annotations in the data.
Inter-Floor Navigation (21%): The object is on a different floor and the agent fails to climb up/down
the stairs.
Recognition Failure (20%): The agent sees the object in its field of view but fails to navigate to it.
Last Mile Navigation Wasserman et al. (2022) (12%). Repeated collisions against objects or mesh
geometry close to the goal object preventing the agent from reaching close to it.
Navmesh Failure (9%). Hard-to-navigate meshes blocking the path of the agent. E.g. in one instance,
the agent fails to climb stairs because of a narrow nav mesh on the stairs.
Looping (4%). Repeatedly visiting the same location and not exploring the rest of the environment.
Semantic Confusion (5%). Confusing the goal object with a semantically-similar object. E.g.
‘armchair’ for ‘sofa’.
Exploration Failure (2%). Catch-all for failures in a complex navigation environment, early
termination, semantic failures (e.g. looking for a chair in a bathroom), etc.

As can be seen in figure 4 (b), most failures (∼36%) are due to issues in the OBJECTNAV dataset –
27% due to missing object annotations + 9% due to holes / issues in the navmesh. 21% failures are
due to the agent being unable to climb up/down stairs. We believe this happens because climbing
up / down stairs to explore another floor is a difficult behavior to learn and there are few episodes
that require this. Oversampling inter-floor navigation episodes during training can help with this.
Another failure mode is failing to recognize the goal object – 20% where the object is in the agent’s
field of view but it does not navigate to it, and 5% where the agent navigates to another semantically-
similar object. Advances in the visual backbone and object recognition can help address these. Prior
works Ramrakhya et al. (2022); Chaplot et al. (2020) have used explicit semantic segmentation
modules to recognize objects at each step of navigation. Incorporating this within the BC→RL
training pipeline could help. 11% failures are due to last mile navigation, suggesting that equipping
the agent with better goal-distance estimators could help. Finally, only ∼6% failures are due to
looping and lack of exploration, which is promising!

7 CONCLUSION

To conclude, we propose PIRLNav, an approach to combine imitation using behavior cloning (BC)
and reinforcement learning (RL) for OBJECTNAV, wherein we pretrain a policy with BC on 77k
human demonstrations and then finetune it with RL, leading to state-of-the-art results on OBJECTNAV
(65% success, 5% improvement over previous best). Next, using this BC→RL training recipe,
we present a thorough empirical study of the impact of different demonstration datasets used for
BC-pretraining on downstream RL-finetuning performance. We show that BC / BC→RL on human
demonstrations outperforms BC / BC→RL on shortest paths and frontier exploration trajectories,
even when we control for same BC success on TRAIN. We also show that as we scale the pretraining
dataset size for BC and get to higher BC success rates, the improvements from RL-finetuning start
to diminish. Finally, we characterize our agent’s failure modes, and find that the largest sources of
error are 1) dataset annotation noise, and inability of the agent to 2) navigate across floors, and 3)
recognize the correct goal object.

10



Reincarnating Reinforcement Learning Workshop at ICLR 2023

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
ICML, 2004. 17

Josh Abramson, Arun Ahuja, Iain Barr, Arthur Brussee, Federico Carnevale, Mary Cassin, Rachita
Chhaparia, Stephen Clark, Bogdan Damoc, Andrew Dudzik, et al. Imitating interactive intelligence.
arXiv preprint arXiv:2012.05672, 2020. 1

Peter Anderson, Angel X. Chang, Devendra Singh Chaplot, Alexey Dosovitskiy, Saurabh
Gupta, Vladlen Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,
and Amir Roshan Zamir. On evaluation of embodied navigation agents. arXiv preprint
arXiv:1807.06757, 2018a. 1

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton van den Hengel. Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments. In CVPR, 2018b. 1

Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Arian Hosseini, Pushmeet Kohli, and
Edward Grefenstette. Learning to understand goal specifications by modelling reward. In ICLR,
2019. 17

Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. arXiv preprint arXiv:2206.11795, 2022. URL https://arxiv.org/abs/
2206.11795. 3, 4, 6, 18

Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Oleksandr Maksymets, Roozbeh Mottaghi,
Manolis Savva, Alexander Toshev, and Erik Wijmans. ObjectNav revisited: On evaluation of
embodied agents navigating to objects. arXiv preprint arXiv:2006.13171, 2020. 1, 4

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021. 5

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva,
Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3D: Learning from RGB-D Data in
Indoor Environments. In 3DV, 2017. MatterPort3D dataset license: http://kaldir.vc.in.tum.de/
matterport/MP_TOS.pdf. 1, 4

Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi, Dheeraj
Rajagopal, and Ruslan Salakhutdinov. Gated-attention architectures for task-oriented language
grounding. In AAAI, 2018. 1

Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta, and Ruslan Salakhutdinov. Object goal
navigation using goal-oriented semantic exploration. In NeurIPS, 2020. 3, 7, 8, 10

Karl Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradient. arXiv preprint
arXiv:2009.04416, 2020. 4

Abhishek Das. Building agents that can see, talk, and act. PhD thesis, Georgia Institute of Technology,
2020. 1

Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Neural Modular Control
for Embodied Question Answering. In CoRL, 2018. 3

Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Jordi Salvador, Kiana Ehsani, Winson
Han, Eric Kolve, Ali Farhadi, Aniruddha Kembhavi, and Roozbeh Mottaghi. Procthor: Large-scale
embodied ai using procedural generation. In NeurIPS, 2022. 7

Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir Zamir. Omnidata: A scalable pipeline for
making multi-task mid-level vision datasets from 3d scans. In ICCV, 2021. 5

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse reinforce-
ment learning. In ICLR, 2018. 17

11

https://arxiv.org/abs/2206.11795
https://arxiv.org/abs/2206.11795
http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf
http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf


Reincarnating Reinforcement Learning Workshop at ICLR 2023

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long horizon tasks via imitation and reinforcement learning. In CoRL, 2019. 3, 4

Matthew Hausknecht and Peter Stone. Deep Recurrent Q-Learning for Partially Observable MDPs.
In AAAI, 2015. 16

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In CVPR, 2016. 5

Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer, David
Szepesvari, Wojtek Czarnecki, Max Jaderberg, Denis Teplyashin, et al. Grounded language
learning in a simulated 3D world. arXiv preprint arXiv:1706.06551, 2017. 1

Felix Hill, Karl Moritz Hermann, Phil Blunsom, and Stephen Clark. Understanding grounded
language learning agents. arXiv preprint arXiv:1710.09867, 2017. 1

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In NIPS, 2016. 17

Unnat Jain, Luca Weihs, Eric Kolve, Mohammad Rastegari, Svetlana Lazebnik, Ali Farhadi, Alexan-
der G Schwing, and Aniruddha Kembhavi. Two body problem: Collaborative visual task comple-
tion. In CVPR, 2019. 1

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforcement
learning for vision-based robotic manipulation. In CoRL, 2018. 4, 15

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent
experience replay in distributed reinforcement learning. In ICLR, 2019. 4, 16

Jens Kober and Jan Peters. Policy search for motor primitives in robotics. In NeurIPS, 2008. URL
https://proceedings.neurips.cc/paper/2008/file/7647966b7343c29048673252e490f736-Paper.
pdf. 4

Vikash Kumar and Emanuel Todorov. Mujoco haptix: A virtual reality system for hand manipulation.
In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), 2015. 15

Yiqing Liang, Boyuan Chen, and Shuran Song. SSCNav: Confidence-aware semantic scene comple-
tion for visual semantic navigation. In ICRA, 2021. 3

Yao Lu, Karol Hausman, Yevgen Chebotar, Mengyuan Yan, Eric Jang, Alexander Herzog, Ted Xiao,
Alex Irpan, Mohi Khansari, Dmitry Kalashnikov, and Sergey Levine. AW-Opt: Learning robotic
skills with imitation andreinforcement at scale. In CoRL, 2021. 4, 15

Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch, Travis
Armstrong, and Pete Florence. Interactive language: Talking to robots in real time. arXiv preprint
arXiv:2210.06407, 2022. 1

Oleksandr Maksymets, Vincent Cartillier, Aaron Gokaslan, Erik Wijmans, Wojciech Galuba, Stefan
Lee, and Dhruv Batra. THDA: Treasure Hunt Data Augmentation for Semantic Navigation. In
ICCV, 2021. 2, 3, 6

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013. 16

A. Mousavian, A.toshev, M. Fiser, J. Kosecka, A. Wahid, and J. Davidson. Visual representations for
semantic target driven navigation. In ICRA, 2019. 3

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020. 4, 15

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019. 4,
15

12

https://proceedings.neurips.cc/paper/2008/file/7647966b7343c29048673252e490f736-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/7647966b7343c29048673252e490f736-Paper.pdf


Reincarnating Reinforcement Learning Workshop at ICLR 2023

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural
Networks, 21(4):682–697, 2008. 4

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. In RSS, 2018. 3, 4, 15

Santhosh K. Ramakrishnan, Dinesh Jayaraman, and Kristen Grauman. An exploration of embodied
visual exploration. arXiv preprint arXiv:2001.02192, 2020. 3, 7, 18

Santhosh K. Ramakrishnan, Devendra Singh Chaplot, Ziad Al-Halah, Jitendra Malik, and Kristen
Grauman. PONI: Potential Functions for ObjectGoal Navigation with Interaction-free Learning.
In CVPR, 2022. 3

Ram Ramrakhya, Eric Undersander, Dhruv Batra, and Abhishek Das. Habitat-web: Learning
embodied object-search strategies from human demonstrations at scale. In CVPR, 2022. 1, 2, 3, 4,
7, 8, 9, 10, 17

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In AISTATS, 2011. 17

Stefan Schaal. Learning from demonstration. In NIPS, 1996. 3, 4

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. In ICLR, 2016. 18

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 4, 5, 18

Linda Smith and Michael Gasser. The development of embodied cognition: six lessons from babies.
Artificial life, 11(1-2), 2005. 1

Habitat Team. Habitat challenge, 2022. https://aihabitat.org/challenge/2022, 2020. 7

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, JosÃ©phine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, Sergey Levine, and Karol Hausman. Jump-start
reinforcement learning. arXiv preprint arXiv:2204.02372, 2022. 3

Qing Wang, Jiechao Xiong, Lei Han, peng sun, Han Liu, and Tong Zhang. Exponentially weighted
imitation learning for batched historical data. In NeurIPS, 2018. 4, 15

Justin Wasserman, Karmesh Yadav, Girish Chowdhary, Abhinav Gupta, and Unnat Jain. Last-
mile embodied visual navigation. In CoRL, 2022. URL https://openreview.net/forum?id=
RgJwDQwW82y. 10

Luca Weihs, Unnat Jain, Iou-Jen Liu, Jordi Salvador, Svetlana Lazebnik, Aniruddha Kembhavi, and
Alexander Schwing. Bridging the imitation gap by adaptive insubordination. In NeurIPS, 2021a.
the first two authors contributed equally. 8

Luca Weihs, Aniruddha Kembhavi, Kiana Ehsani, Sarah M Pratt, Winson Han, Alvaro Herrasti,
Eric Kolve, Dustin Schwenk, Roozbeh Mottaghi, and Ali Farhadi. Learning generalizable visual
representations via interactive gameplay. In ICLR, 2021b. 1

Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das, Georgia Gkioxari, Stefan
Lee, Irfan Essa, Devi Parikh, and Dhruv Batra. Embodied Question Answering in Photorealistic
Environments with Point Cloud Perception. In CVPR, 2019. 5

Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis Savva,
and Dhruv Batra. DD-PPO: Learning near-perfect pointgoal navigators from 2.5 billion frames. In
ICLR, 2020. 5

Terry Winograd. Understanding natural language. Cognitive Psychology, 1972. 1

13

https://aihabitat.org/challenge/2022
https://openreview.net/forum?id=RgJwDQwW82y
https://openreview.net/forum?id=RgJwDQwW82y


Reincarnating Reinforcement Learning Workshop at ICLR 2023

Karmesh Yadav, Ram Ramrakhya, Arjun Majumdar, Vincent-Pierre Berges, Sachit Kuhar, Dhruv
Batra, Alexei Baevski, and Oleksandr Maksymets. Offline visual representation learning for
embodied navigation. arXiv preprint arXiv:2204.13226, 2022a. URL https://arxiv.org/abs/
2204.13226. 3, 4, 5

Karmesh Yadav, Ram Ramrakhya, Santhosh Kumar Ramakrishnan, Theo Gervet, John Turner,
Aaron Gokaslan, Noah Maestre, Angel Xuan Chang, Dhruv Batra, Manolis Savva, et al. Habitat-
matterport 3d semantics dataset. arXiv preprint arXiv:2210.05633, 2022b. URL https://arxiv.
org/abs/2210.05633. 2, 4, 5, 7, 18

B. Yamauchi. A frontier-based approach for autonomous exploration. In Proceedings 1997 IEEE
International Symposium on Computational Intelligence in Robotics and Automation CIRA’97.
’Towards New Computational Principles for Robotics and Automation’, 1997. 3

Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and Roozbeh Mottaghi. Visual semantic
navigation using scene priors. In ICLR, 2019. URL http://arxiv.org/abs/1810.06543. 3

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021. 5

Joel Ye, Dhruv Batra, Abhishek Das, and Erik Wijmans. Auxiliary Tasks and Exploration Enable
ObjectNav. In ICCV, 2021. 3

Brian D. Ziebart, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse reinforcement
learning. In AAAI, 2008. 17

14

https://arxiv.org/abs/2204.13226
https://arxiv.org/abs/2204.13226
https://arxiv.org/abs/2210.05633
https://arxiv.org/abs/2210.05633
http://arxiv.org/abs/1810.06543


Reincarnating Reinforcement Learning Workshop at ICLR 2023

A PRIOR WORK IN RL FINETUNING

A.1 DAPG RAJESWARAN ET AL. (2018)

Preliminaries. Rajeswaran et al. Rajeswaran et al. (2018) proposed DAPG, a method which
incorporates demonstrations in RL, and thus quite relevant to our methodology. DAPG first pretrains
a policy using behavior cloning then finetunes the policy using an augmented RL objective (shown in
Eq. equation 4). DAPG proposes to use different parts of demonstrations dataset during different
stages of learning for tasks involving sequence of behaviors. To do so, they add an additional term to
the policy gradient objective:

gaug =
∑

(s,a)∈τ∼πθ

∇θ logπθ
(a|s)Aπ(s, a) +

∑
(s,a)∈τ∼T

∇θ logπθ
(a|s)w(s, a) (4)

Here τ ∼ πθ is a trajectory obtained by executing the current policy, τ ∼ T denotes a trajectory
obtained by replaying a demonstration, and w(s, a) is a weighting function to alternate between
imitation and reinforcement learning. DAPG uses a heuristic weighting scheme to set w(s, a) to
decay the auxiliary objective:

w(s, a) = λ0λ
k
1 max
(s′ ,a′ )∈τ∼πθ

Aπθ (s
′
, a

′
)∀(s, a) (5)

where λ0 and λ1 are hyperparameters and k is the update iteration counter. The decaying weighting
term λk

1 is used to avoid biasing the gradient towards the demonstrations data towards the end of
training.

Implementation Details. Rajeswaran et al. (2018) showed results of using DAPG on dexterous
hand manipulation tasks for object relocation, in-hand manipulation, tool use, etc. To train the policy
with behavior cloning, they use 25 demonstrations for each task gathered using the Mujoco HAPTIX
system Kumar & Todorov (2015). The small size of the demonstrations dataset and the observation
input allows DAPG to load the demonstrations dataset in system memory which makes it feasible to
compute the augmented RL objective shown above.

Challenges in adopting Rajeswaran et al. (2018)’s setup. Compared to Rajeswaran et al. (2018),
our setup uses high-dimensional visual input (256×256 RGB observations) and 77k OBJECTNAV
demonstrations for training. Following DAPG’s training implementation, storing the visual inputs for
77k demonstrations in system memory would require 2TB, which is significantly higher than what is
possible on today’s systems. An alternative is to leverage on-the-fly demonstration replay during RL
training. However, efficiently incorporating demonstration replay with experience collection online
requires solving a systems research problem. Naively switching between online experience collection
using the current policy and replay demonstrations would require 2x the current experience collection
time, overall hurting the training throughput.

A.2 FEASIBILITY OF OFF-POLICY RL FINETUNING

There are several methods for incorporating demonstrations with off-policy RL Nair et al. (2020); Lu
et al. (2021); Kalashnikov et al. (2018); Peng et al. (2019); Wang et al. (2018). Algorithm 1 shows
the general framework of off-policy RL (finetuning) methods.

Unfortunately, most of these methods use feedforward state encoders, which is ill-posed for partially
observable settings. In partially observable settings, the agent requires a state representation that
combines information about the state-action trajectory so far with information about the current
observation, which is typically achieved using a recurrent network.

To train a recurrent policy in an off-policy setting, the full state-action trajectories need to be stored
in a replay buffer to use for training, including the hidden state ht of the RNN. The policy update
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Algorithm 1 General framework of off-policy RL algorithm

Require: πθ : Policy, B: replay buffer, N : Rounds, I: Policy Update Iterations
for k = 1 to N do

Trajectory τ ← Rollout πθ(·|s) to collect trajectory {(s1, a1, r1, h1), ......, (sT , aT , rT , hT )}
B ← {B} ∪ {τ}
πθ ← TrainPolicy(πθ, B) for I iterations

end for

requires a sequence input for multiple time steps
[
(st, at, rt, ht), ......, (st+l, at+l, rt+l, ht+l)

]
∼ τ

where l is sampled sequence length. Additionally, it is not obvious how the hidden state should be
initialized for RNN updates when using a sampled sequence in the off-policy setting. Prior work
DRQNHausknecht & Stone (2015) compared two training strategies to train a recurrent network from
replayed experience:

1. Bootstrapped Random Updates. The episodes are sampled randomly from the replay buffer and
the policy updates begin at random steps in an episode and proceed only for the unrolled timesteps.
The RNN initial state is initialized to zero at the start of the update. Using randomly sampled
experience better adheres to DQN’s Mnih et al. (2013) random sampling strategy, but, as a result,
the RNN’s hidden state must be initialized to zero at the start of each policy update. Using zero start
state allows for independent decorrelated sampling of short sequences which is important for robust
optimization of neural networks. Although this can help RNN to learn to recover predictions from
an initial state that mismatches with the hidden state from the collected experience but it might limit
the ability of the network to rely on it’s recurrent state and exploit long term temporal correlations.

2. Bootstrapped Sequential Updates. The full episode replays are sampled randomly from the
replay buffer and the policy updates begin at the start of the episode. The RNN hidden state is
carried forward throughout the episode. Eventhough this approach avoids the problem of finding the
correct initial state it still has computational issues due to varying sequence length for each episode,
and algorithmic issues due to high variance of network updates due to highly correlated nature of
the states in the trajectory.

Even though using bootstrapped random updates with zero start states performed well in Atari which
is mostly fully observable, R2D2Kapturowski et al. (2019) found using this strategy prevents a
RNN from learning long-term dependencies in more memory critical environments like DMLab.
Kapturowski et al. (2019) proposed two strategies to train recurrent policies with randomly samples
sequences:

1. Stored State. In this strategy, the hidden state is stored at each step in the replay and use it to
initialize the network at the time of policy updates. Using stored state partially remedies the issues
with initial recurrent state mismatch in zero start state strategy but it suffers from ‘representational
drfit’ leading to ‘recurrent state staleness’, as the stored state generated by a sufficiently old network
could differ significantly from a state from the current policy.

2. Burn-in. In this strategy the initial part of the replay sequence is used to unroll the network
and produce a start state (‘burn-in period’) and update the network on the remaining part of the
sequence.

While R2D2 Kapturowski et al. (2019) found a combination of these strategies to be effective at
mitigating the representational drift and recurrent state staleness, this increases computation and
requires careful tuning of the replay sequence length m and burn-in period l.

Both Kapturowski et al. (2019); Hausknecht & Stone (2015) demonstrate the issues associated with
using a recurrent policy in an off-policy setting and present approaches that mitigate issues to some
extent. Applying these techniques for Embodied AI tasks and off-policy RL finetuning is an open
research problem and requires empirical evaluation of these strategies.

B PRIOR WORK IN IMITATION LEARNING

In Imitation Learning (IL), we use demonstrations of successful behavior to learn a policy that imitates
the expert (demonstrator) providing these trajectories. The simplest approach to IL is behavior cloning
(BC), which uses supervised learning to learn a policy to imitate the demonstrator. However, BC
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Parameter Value

Number of GPUs 64
Number of environments per GPU 8
Rollout length 64
Number of mini-batches per epoch 2
Optimizer Adam

Learning rate 1.0× 10−3

Weight decay 0.0
Epsilon 1.0× 10−5

DDPIL sync fraction 0.6

Table 4. Hyperparameters used for Imitation Learning.

suffers from poor generalization to unseen states, since the training mimics the actions and not their
consequences. DAgger Ross et al. (2011) mitigates this issue by iteratively aggregating the dataset
using the expert and trained policy ˆπi−1 to learn the policy π̂i. Specifically, at each step i, the new
dataset Di is generated by:

πi = βπexp + (1− β)π̂i−1 (6)

where, πexp is a queryable expert, and π̂i−1 is the trained policy at iteration i−1. Then, we aggregate
the dataset D ← D ∪Di and train a new policy π̂i on the dataset D. Using experience collected by
the current policy to update the policy for next iteration enables DAgger Ross et al. (2011) to mitigate
the poor generalization to unseen states caused by BC. However, using DAgger Ross et al. (2011) in
our setting is not feasible as we don’t have a queryable human expert for policies being trained with
human demonstrations.

Alternative approaches Ho & Ermon (2016); Bahdanau et al. (2019); Abbeel & Ng (2004); Ziebart
et al. (2008); Fu et al. (2018) for imitation learning are variants of inverse reinforcement learning
(IRL), which learn reward function from expert demonstrations in order to train a policy. IRL methods
learn a parameterizedRϕ(τ) reward function, which models the behavior of the expert and assigns a
scalar reward to a demonstration. Given the reward rt, a policy πθ(at|st) is learned to map states
st to distribution over actions at at each time step. The goal of IRL methods is to learn a reward
function such that a policy trained to maximize the discounted sum of the learned reward matches the
behavior of the demonstrator. Compared to prior works Ho & Ermon (2016); Bahdanau et al. (2019);
Abbeel & Ng (2004); Ziebart et al. (2008); Fu et al. (2018), our setup uses a partially-observable
setting and high-dimensional visual input for training. Following training implementation from
prior works, storing visual inputs of demonstrations for reward model training would require 2TB
system memory, which is significantly higher than what is possible on today’s systems. Alternatively,
efficiently replaying demonstrations during RL training with reward model learning in the loop
requires solving an open systems research problem. In addition, applying these methods for tasks in
a partially observable setting is an open research problem and requires empirical evaluation of these
approaches.

C TRAINING DETAILS

C.1 BEHAVIOR CLONING

We use a distributed implementation of behavior cloning by Ramrakhya et al. (2022) for our imitation
pretraining. Each worker collects 64 frames of experience from 8 environments parallely by replaying
actions from the demonstrations dataset. We then perform a policy update using supervised learning
on 2 mini batches. For all of our BC experiments, we train the policy for 500M steps on 64 GPUs
using Adam optimizer with a learning rate 1.0× 10−3 which is linearly decayed after each policy
update. Tab. 4 details the default hyperparameters used in all of our training runs.
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Parameter Value

Number of GPUs 16
Number of environments per GPU 8
Rollout length 64
PPO epochs 2
Number of mini-batches per epoch 2
Optimizer Adam

Weight decay 0.0
Epsilon 1.0× 10−5

PPO clip 0.2
Generalized advantage estimation True
γ 0.99
τ 0.95

Value loss coefficient 0.5
Max gradient norm 0.2
DDPPO sync fraction 0.6

Table 5. Hyperparameters used for RL finetuning.

C.2 REINFORCEMENT LEARNING

To train our policy using RL we use PPO with Generalized Advantage Estimation (GAE) Schulman
et al. (2016). We use a discount factor γ of 0.99 and set GAE parameter τ to 0.95. We do not use
normalized advantages. To parallelize training, we use DD-PPO with 16 workers on 16 GPUs. Each
worker collects 64 frames of experience from 8 environments parallely and then performs 2 epochs
of PPO update with 2 mini batches in each epoch. For all of our experiments, we RL finetune the
policy for 300M steps. Tab. 5 details the default hyperparameters used in all of our training runs.

C.3 RL FINETUNING USING VPT

To compare with RL finetuning approach proposed in VPT Baker et al. (2022) we implement the
method in DD-PPO framework. Specifically, we initialize the critic weights to zero, replace the
entropy term in PPO Schulman et al. (2017) with a KL-divergence loss between the frozen IL policy
and RL policy, and decay the KL divergence loss coefficient, ρ, by a fixed factor after every iteration.
This loss term is defined as:

Lkl_penalty = ρKL(πBC
θ , πθ) (7)

where πBC
θ is the frozen behavior cloned policy, πθ is the current policy, and ρ is the loss weighting

term. Following, VPT Baker et al. (2022) we set ρ to 0.2 at the start of training and decay it by 0.995
after each policy update. We use learning rate of 1.5× 10−5 without a learning rate decay for our
VPT Baker et al. (2022) finetuning experiments.

C.4 RL FINETUNING ABLATIONS

Method Success (↑) SPL (↑)
1) BC 52.0 20.6
2) BC→RL-FT 53.6 ±1.01 28.6 ±0.50

3) BC→RL-FT (+ Critic Learning) 56.7 ±0.93 27.7 ±0.82

4) BC→RL-FT (+ Critic Learning, Critic Decay) 59.4 ±0.42 26.9 ±0.38

5) BC→RL-FT (+ Critic Learning, Actor Warmup) 58.2 ±0.55 26.7 ±0.69

6) PIRLNav 61.9 ±0.47 27.9 ±0.56

Table 6. RL-finetuning ablations on HM3D VAL Ramakrishnan et al. (2020); Yadav et al. (2022b)
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Figure 5. A policy pretrained on the OBJECTNAV task is used as initialization for actor weights and critic
weights are initialized randomly for RL finetuning using DD-PPO. The policy performance immediately starts
dropping early on during training and then recovers leading to slightly higher performance with further training.

For ablations presented in Sec. 4.3 of the main paper (also shown in Tab. 6) we use a policy pretrained
on 20k human demonstrations using BC and finetuned for 300M steps using hyperparameters
from Tab. 5. We try 3 learning rates (1.5× 10−4, 2.5× 10−4, and 1.5× 10−5) for both BC→ RL
(row 2) and BC→ RL (+ Critic Learning) (row 3) and we report the results with the one that works
the best. For PIRLNav we use a starting learning rate of 2.5 × 10−4 and decay it to 1.5 × 10−5,
consistent with learning rate schedule of our best performing agent. For ablations we do not tune
learning rate parameters of PIRLNav, we hypothesize tuning the parameters would help improve
performance.

We find BC→ RL (row 2) works best with a smaller learning rate but the training performance drops
significantly early on, due to the critic providing poor value estimates, and recovers later as the critic
improves. See figure 5. In contrast when using proposed two phase learning setup with the learning
rate schedule we do not observe a significant drop in training performance.
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