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Abstract

Compilers are complex software containing001
millions of lines of code, taking years to de-002
velop. This paper investigates to what extent003
Large Language Models (LLMs) can replace004
hand-crafted compilers in translating high-level005
programming languages to machine instruc-006
tions, using C to x86 assembly as a case study.007
We identify two challenges of using LLMs for008
code translation and introduce two novel data009
pre-processing techniques to address the chal-010
lenges: numerical value conversion and train-011
ing data resampling. While only using a 13B012
model, our approach achieves a behavioral ac-013
curacy of over 91%, outperforming the much014
larger GPT-4 Turbo model by over 50%. Our015
results are encouraging, showing that LLMs016
have the potential to transform how compila-017
tion tools are constructed.018

1 Introduction019

There is growing interest in using Large Lan-020

guage Models (LLMs) for software engineering021

tasks (Zhang et al., 2023b) like code retrieval (Li022

et al., 2022b,a), completion (Svyatkovskiy et al.,023

2020; Guo et al., 2023) and translation (Armengol-024

Estapé and O’Boyle, 2021; Armengol-Estapé et al.,025

2023). The training data of many LLMs, including026

CodeLlama (Rozière et al., 2022), Codex (Chen027

et al., 2021), and GPT4 (OpenAI et al., 2023) con-028

tains code examples. However, these models are029

not explicitly trained for code translation. Con-030

sequently, they are prone to errors during code031

translation (Armengol-Estapé et al., 2023). On the032

other hand, LLMs trained in natural language cor-033

pus have demonstrated impressive results in natural034

language understanding (Brown et al., 2020; Pruk-035

sachatkun et al., 2020). As such, it is interesting to036

know if LLMs can learn to compile code.037

This paper investigates the feasibility of us-038

ing LLMs to translate a high-level program-039

ming language to machine instructions, a problem040

known as neural compilation (Armengol-Estapé 041

and O’Boyle, 2021). Traditionally, this is per- 042

formed by a manually crafted compiler that usu- 043

ally takes many person-years of compiler engi- 044

neers’ time to build. Recent developments in LLMs 045

have shown promising results in leveraging pre- 046

trained transformer models for tasks like decom- 047

pilation (e.g., translating assembly code to C pro- 048

grams) (Armengol-Estapé et al., 2023) and pro- 049

gram synthesis (Szafraniec et al., 2023). However, 050

few works use LLMs as a compilation tool to trans- 051

late a high-level programming language into low- 052

level assembly instructions. Our work seeks to 053

bridge this gap by taking C to x86 assembly as a 054

case study. 055

A key challenge we face is managing the seman- 056

tic gap between high-level languages optimized 057

for human usability and low-level languages de- 058

signed for hardware executions. This gap often 059

manifests in a lack of direct correspondence be- 060

tween elements of the source and target languages. 061

For instance, some commonly used data structures 062

and programming constructs in C, such as struct 063

and complex for-loop, do not have single equiv- 064

alent x86 instructions. Similarly, C uses identi- 065

fiers for variables, while assembly instructions use 066

stack and memory addresses or registers. As a 067

single line of C code can be translated into a vary- 068

ing number of assembly instructions, learning the 069

translation from C to assembly would require dif- 070

ferent amounts of training samples depending on 071

the complexity of the mapping, making it difficult 072

to construct a balanced training corpus. 073

To overcome the aforementioned challenges, we 074

leverage Low-Rank Adaptation (LoRA) (Hu et al., 075

2021) to fine-tune a pre-trained 13B CodeLlama 076

model (Rozière et al., 2022). However, using the 077

standard natural language training pipeline, our ini- 078

tial attempt yields a model with poor performance 079

for C-to-assembly translations. After a close exam- 080

ination of the failure cases, we propose to introduce 081
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compiler semantics as two key data pre-processing082

techniques to enhance the trained model: symbolic083

interpretation for numerical value conversion and084

switch-case normalization for switch-case inconsis-085

tency. Furthermore, we propose an automatic com-086

piler semantics guided refinement learning frame-087

work to improve the fine-tuned model iteratively.088

Our framework automatically resamples the distri-089

bution of semantic mapping samples and synthe-090

sizes the failure test cases in the validation set to091

improve the quality of the model training data.092

We perform a large-scale evaluation on over 57k093

executable C programs and compare them against094

the state-of-the-art large language model GPT-4095

Turbo. We verify the correctness of the generated096

x86 assembly code by executing them against unit097

test cases. Experimental results show that our neu-098

ral compiler generates code that is more accurate099

than all competing baselines. Compared to GPT-4100

Turbo, our approach improves the translation accu-101

racy by over 50%, from 40.85% to 91.88%.102

Our main contributions are:103

• We propose an approach to introduce compiler104

semantics into the LLM as two new data pre-105

processing methods: symbolic interpretation106

and switch-case normalization. Experimen-107

tal results demonstrate that the two proposed108

methods allow the LLM to increase the num-109

ber of correct translations by over 30%.110

• We implement an automatic refinement aug-111

mentation framework targeting the biased112

samples of different semantics in the corpora,113

where the long-tails under-fit. The framework114

resamples the semantics distribution by syn-115

thesizing incorrect cases, to obtain improved116

accuracy on the long tails.117

• We can achieve 91.88% IO accuracy when118

translating C to x86 assembly and we believe119

it’s the highest accuracy when comparing with120

SOTA works.121

2 Problem Statement122

We target the problem of machine translating high-123

level programs(specifically, in the C language) into124

semantically equivalent low-level programs(in x86125

assembly) with limited bilingual parallel corpora.126

One approach is to use compilers, like GCC, as127

the oracle to generate semantic aligned assembly128

from C language corpora. We model the problem129

as follows:130

Definition 1 There is a high level programming 131

language Lhigh and a low level programming lan- 132

guage Llow, each is an infinite set of valid pro- 133

gram strings. There exists a unary relation ⇀ from 134

Lhigh to Llow. Given two monolingual corpora 135

Lhigh ⊂ Lhigh and Llow ⊂ Llow, the problem is to 136

learn a translator F such that ∀x ∈ Lhigh, (∃u ∈ 137

Llow, x ⇀ u) → (x ⇀ F (x)). 138

The main challenge of this problem is that al- 139

though the semantic alignment between corpora 140

Lhigh and Llow can be provided by oracle com- 141

piler GCC, the semantic gap between them is 142

huge, where many attributes of Lhigh cannot be 143

directly expressed in Llow. For example, like for- 144

loop and if-else semantics, the translation must 145

learn a posteriori to generate jump instructions 146

and corresponding labels to express the original 147

control flows. According to Rice’s Theorem of 148

computability theory(Rice, 1953), there is no set 149

of rules that can accurately model the relation ⇀, 150

because it is undecidable whether two programs 151

are semantically-equivalent. Instead, we will use 152

behavioral-equivalent to approximate. 153

3 Methodology 154

In order to translate from a high-level code to 155

low-level code well, where we choose C and 156

x86 respectively for illustration, we face many 157

challenges since the semantic gap is enormously 158

large, comparing to translation between high level 159

codes, like C-to-CUDA(Wen et al., 2022), Java-to- 160

Python(Rozière et al., 2020), etc. Our approach 161

for translating high-level C code to low-level x86 162

assembly code focuses on generating semantic- 163

equivalent code in best effort, where we focus on 164

non-optimized generation, and the x86 code fol- 165

lows the oracle GCC to learn the translation pro- 166

cess. 167

This section gives a brief overview of what are 168

the challenges in our scenario, and our practice to 169

overcome these challenges. 170

3.1 Dataset Preprocssing 171

First we need to generate a C-x86 aligned bilingual 172

corpora. We majorly choose AnghaBench(Da Silva 173

et al., 2021), ExeBench(Armengol-Estapé et al., 174

2022) to obtain a large C corpora codebase. Then, 175

we perform standard data preprocessing on the 176

codebase: we filtered all C code with larger than 177

2048 token size, with multiple function definitions, 178

and with non-standard library dependencies, then 179
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Numeric Conversion

LLM difficult

= 0x3e2000000.15625f =

x86 numericC numeric

float func(float x) {

    float temp;

    temp = x + 0.15625f;

    return temp;
}

.globl func

.type func, @function
func:
.LFB0:
  .cfi_startproc
  addss .LC0(%rip), %xmm0
  ret
  .cfi_endproc
.LC0:
  .long 1042284544 # 0x3e200000

Figure 1: Numerical Conversion Feature Between C
And x86

we use GCC-9.4.0 to compile each code with uni-180

fied compiler options to obtain the corresponding181

x86 assembly corpora, which is naturally aligned182

with its C corpora.183

After the initial preprocessing, we obtain a se-184

mantically aligned C-x86 bilingual corpora, which185

is already enough for the training process. How-186

ever, after our first try on the training on this cor-187

pora, our model didn’t learn well. After manually188

inspecting on the generation errors, we find the189

following challenges.190

Numerical Value Conversion. A significant191

challenge in the translation between C and x86192

assembly languages lies in the conversion of nu-193

merical values, which underscores the semantic dif-194

ferences between these languages. As depicted in195

Figure 1, In C, floating-point and double-precision196

values can be represented as literals, such as 1.0 or197

3e-5. However, in assembly language, these numer-198

ical literals are not directly represented. Instead,199

they need to be converted to an internal represen-200

tation following the IEEE-754 standard(iee, 1985)201

in most compiler implementations. This conver-202

sion process is rule-based and straightforward to203

implement. Yet, Large Language Models (LLMs)204

exhibit a notable weakness in this task, achieving205

a mere 3.8% accuracy on NumericBench, a large206

scale mathematical solving dataset derived from207

Math23K(Wang et al., 2017). This result under-208

scores a critical limitation of LLMs in handling209

numerical computations.210

To mitigate this limitation, we implement an ef-211

fective data pre-processing method called symbolic212

interpretation, where we guide the LLM to gener-213

ate symbolic expressions of the float/double values,214

which are subsequently processed by a rule-based215

interpreter. By delegating the actual numerical con-216
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Figure 2: Long-tail Keyword Distribution of ExeBench

version to the interpreter, this method effectively 217

circumvents the LLM’s inherent weakness in nu- 218

merical value conversions, thereby improving the 219

overall accuracy of the translation process. 220

1 int x;
2 int main() {
3 switch(x) {
4 case 0: ...
5 case 1: ...
6 ...
7 case N: ...
8 default: ...
9 }

10 return 0;
11 }

Listing 1: C Switch1

1int x;
2int main() {
3{
4if(x == 0) ...
5else if(x==1) ...
6...
7else if(x==N) ...
8else ...
9}
10return 0;
11}

Listing 2: C Switch2

221

1 main:
2 movl x(%rip), %eax
3 cmpl $N, %eax
4 ja .Ldefault
5 leaq .LJT0(%rip), %rdx
6 movslq (%rdx,%rax,4), %rax
7 addq %rdx, %rax
8 notrack jmp *%rax
9 .LJT0:

10 .long .L0-.LJT0
11 ...
12 .long .LN-.LJT0
13
14 .L0:
15 ...
16 ...
17 .Ldefault:
18 ...

Listing 3: x86 Switch1

1main:
2movl x(%rip), %eax
3cmpl $N, %eax
4ja .Ldefault
5cmpl $0, %eax
6je .L0
7cmpl $1, %eax
8je .L1
9...
10je .LN
11jmp .Ldefault
12.L0:
13...
14.L1:
15...
16...
17.Ldefault:
18...

Listing 4: x86 Switch2

222

Switch-case Statement Inconsistency. Another 223

kind of significant translation error lays on "switch- 224

case" statement, where we observe that our base- 225

line model generates inconsistently in two styles, 226

where the original corpora messed them up. List- 227

ing 1 depicts the standard switch-case statement 228

in C, and Listing 3 is its corresponding x86 as- 229

sembly generated by GCC, where the cases are 230

stored into a jump table, and using indirect jump 231

instruction to control the jump target. However, 232

switch-case statement can also be implemented by 233

if-else logic, where Listing 2 depicts its semantic 234

equivalent code in C, and Listing 4 is its x86 assem- 235
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bly, where multiple comparison instructions and236

conditional jump instructions are used. By default,237

GCC generates the first type when cases are larger238

than threshold 4, and the second type otherwise,239

other compilers like Clang and MSVC also sharing240

this behavior with different thresholds. As depicted241

in Figure 2, we observe 7078 samples belong to242

the first and 17381 samples belong to the second243

in our initial training corpora, and their ratio on the244

whole corpora is also small, with 1.0% and 2.6%245

respectively. Comparing to other control keyword246

in C, which is clearly long-tailed.247

To tackle the switch-case semantic inconsistency,248

we normalize the semantic of the switch-case state-249

ment to the if-else style in Listing 4, where we250

re-generate the x86 assembly from GCC compiler251

using compiler flag "-fno-jump-tables".252

3.2 Dataset Augmentation253

As already emphasized in the switch-case handling,254

the biased distribution of each semantic translation255

in the training corpora is a big challenge. Consider-256

ing there are other long-tails besides switch-cases257

that also performs poorly, we need an automatic258

data augmentation method to improve the model’s259

accuracy on these long-tails. This is crucial and260

necessary because the LLM is only trained on lim-261

ited corpora. If the input is few or even none in262

the corpora, it will translate poorly without any263

surprise.264

Inspired by (Madaan et al., 2023), we construct265

an automatic refinement data augmentation frame-266

work as depicted in Figure 3, where the model is267

first trained on corpora from the previous method,268

and evaluated through multiple metrics, where we269

collect on the low-metric samples where we as-270

sume the model under-fits to learn them. Then we271

synthesize more samples from the incorrect sam-272

ples to improve the distribution. we choose to use273

mistral-7B(Jiang et al., 2023) as the synthesizing274

LLM in our implementation, where we instruct the275

LLM to analyze, categorize, and generate ten times276

more similar samples.277

With more long-tail samples been synthesized,278

we re-sample the corpora by adding synthesized279

samples to it, creating a re-sampled corpora that280

better represents the long-tail problems. Finally,281

we re-train the model on this re-sampled dataset.282

The whole above process can be iteratively exe-283

cuted, where more under-fitting long-tails can be284

discovered, re-sampled, and improved.285

This refinement framework allows the model to286

better learn how to handle these long-tailed sam- 287

ples, leading to improved accuracy in the generated 288

low-level code. We provide examples illustrating 289

its validity in the case studies. 290

3.3 Fine-Tuning 291

Machine translation has evolved significantly with 292

the advent of neural machine translation (NMT), 293

where models are trained on large corpora of text to 294

learn the nuances of language translation. The gen- 295

eral principle of machine translation, as pioneered 296

by (Rozière et al., 2020), involves two key stages: 297

pretraining and fine-tuning. Initially, models are 298

pretrained on monolingual corpora to learn lan- 299

guage features. Subsequently, they are fine-tuned 300

on paired corpora to guide the translation between 301

two languages. 302

We employ Low Rank Adaptation(Hu et al., 303

2021), one of the most popular Parameter-Efficient 304

Fine-Tuning methods, to adapt LLMs to our trans- 305

lation task. LoRA modifies a small subset of 306

the model’s weights by decomposing the weight 307

changes into two smaller matrices, which are then 308

fine-tuned. This approach allows us to bypass 309

the initial pre-training phase typical in machine 310

translation, as LLMs are already pretrained on ex- 311

tensive monolingual corpora. We use codellama- 312

13b(Rozière et al., 2022) as our foundation model. 313

Similar to the construction of the training cor- 314

pora, we construct the evaluation corpora solely 315

on C, where we choose from the IO evaluation 316

part of ExeBench(Armengol-Estapé et al., 2022) 317

and Math23K(Wang et al., 2017), to evaluate the 318

model’s translation accuracy, where the former rep- 319

resents general purpose code and the latter repre- 320

sents numerical computations. More detailed cor- 321

pora components can be found in the following 322

Evaluation Section. 323

4 Evaluation 324

To evaluate our proposed code translation methods, 325

we perform a series of experiments on function- 326

level C programs. We use the directly finetuned 327

codellama-13b model as the baseline. 328

First, we perform end-to-end translation on a 329

large evaluation dataset depicted in Table 1, which 330

consists of 57,552 C functions, where we compare 331

with the baseline model, the numerical conversion 332

augmented model, the switch normalization aug- 333

mented model, both applied model, and GPT-4- 334

turbo. Then, as an ablation study, we compare 335
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Figure 3: Data Augmentation Framework Overview

Datasets Size Tok (C) Tok (x86)

Train 679665 107 391
Train-Num 40000 168 594

Eval 57552 110
ExeBench 35704 108
Numeric 21104 111
Switch 744 237

Table 1: Dataset Details

models accuracy within the numerical-specified336

subset, and the switch-specified subset.337

4.1 Dataset338

Table 1 shows the details of the dataset we used339

in training and evaluation. We first finetune the340

codellama-13b foundation model to perform C-to-341

x86 code translation task, where we use dataset342

derived from ExeBench(Armengol-Estapé et al.,343

2022) and AnghaBench(Da Silva et al., 2021), two344

large scale dataset of compilable C functions, we345

first apply data cleaning, where we filtered over-346

sized functions(we limit the size to 2048 tokens in347

our settings), and other features we are not going to348

cover like inline assembly. Finally we get a 680K349

size training dataset for baseline training. In the350

numerical value conversion preprocessing part, we351

establish a 40k numerical adjusted corpora to fine-352

tune the model. For evaluation part, we construct353

a 57K size dataset with I/O behavioral checks. As354

for the numerical conversion and switch-case gen-355

eration challenges we found in our methods, we356

also categorize specified subsets for the evaluation,357

where a 21K numeric-specific subset and a 744358

switch-specific subset are evaluated individually.359

4.2 Setup and Metrics 360

We set up the experiment on a Ubuntu 22.04 server 361

with Intel Xeon Platinum 8358 CPU and 4 x A800 362

80GB GPUs. We begin with the codellama-13b- 363

instruct checkpoint from huggingface hub as our 364

foundation model. We then directly apply LoRA 365

finetuning with the 680K training corpora to learn 366

the C-to-x86 translation task, which we considered 367

as the Baseline model. Later we apply the two data 368

pre-processing methods, switch-case normalization 369

or/and numerical value conversion, to adjust the 370

training corpora, and re-train on the foundation 371

model to get the Switch enhanced model, Numeric 372

enhanced model and ALL enhanced model. We 373

also use GPT-4-Turbo, the most advanced LLM, 374

as the second baseline to compare with. 375

During the training process, we use lora_r = 376

128, lora_alpha=32, lora_dropout=0.05 in the 377

LoRA modules, where we attach all Q, K, V, O in 378

the model for training. We use the sum of token- 379

level cross-entropy loss with teacher-forcing as the 380

loss function, which is on par with (Rozière et al., 381

2020). We use AdamW(Kingma and Ba, 2014) 382

as the optimizer and apply a cosine learning rate 383

that top at 1e-4 in training. The training process is 384

performed fully in float16 precision, where we train 385

the model for 1 epoch in 70 hours using 4xA800 386

80GB GPUs. 387

We evaluate the above models on the 57,552 388

functions evaluation dataset. We also construct 389

the 21,104 size numeric-specified and the 744 size 390

switch-specified subsets from the full dataset. Then 391

we perform end-to-end evaluation on these datasets, 392

which also serves as an ablation study. We examine 393

each generated function in x86 assembly by linking 394

it with the driver code that called the function to 395
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obtain an executable, then performing Input/Out-396

put(IO) correctness checks. We use greedy genera-397

tion in the generation process, so the IO accuracy398

can also be viewed as CA@1 in other machine399

translation tasks.400

4.3 End-to-End Evaluation401

Figure 4 summarizes the empirical end-to-end re-402

sults ablating different methods and comparing403

with GPT-4-Turbo. The baseline model, shows404

a fair overall result, which can reach 60% IO Ac-405

curacy. More detailed breakdowns of its wrong406

translations show it majorly falls into the following407

types:408

Generating wrong numerical values. We cap-409

ture all the functions within the evaluation dataset,410

where there exists numerical value initialization,411

and categorize them into a numerical dataset, Nu-412

mericBench for breakdown. We find out that the413

baseline model can only generate 3.8% of Numer-414

icBench correctly, and most of these happen-to-be-415

correct values are values with high frequency in416

the dataset, like 1.0 and 0.0. This breakdown in-417

deed reveals a crucial drawback of the LLM-based418

machine translation method. We then apply the419

symbolic interpretation method on the dataset pre-420

processing stage, which significantly improved the421

generation accuracy, rising from 3.8% to over 90%.422

Generating wrong labels and jump tables. We423

evaluate the evaluation dataset and collect those424

with incorrect execution behaviors, where we find425

many in switch-case generations. After analyzing426

the generated assembly, we find out their transla-427

tion is very likely in an underfitting manner. We428

also find out the training dataset is inconsistent with429

the semantic of switch-case code generation, when430

cases numbers are above the threshold, they use431

indirect jump on the jump table in the generated432

assembly, while kept the if-else style in the others.433

This inconsistent behaviour is by default open for434

our oracle compiler gcc even in O0 optimization435

level, where dataset makers can hardly notice.436

We further perform categorization of control-437

flow statements on the training dataset, which is438

clearly summarized in Figure 2, where the two439

types of switch-case generation are both rare in440

corpora, counting for 2.6% and 1.0% respectively.441

This categorization result depicts a long-tail dis-442

tribution in the training dataset, where the model443

under-fits the switch-case statement generation,444

and the inconsistency on switch-case statement gen-445

erations may further confuse the model.446

To tackle this problem, we perform switch- 447

case normalization, where we enable the GCC op- 448

tion "-fno-jump-tables" to unify the generation be- 449

haviours on switch-case, and re-train the model. As 450

illustrated in Figure 4, the normalization of switch- 451

case semantic improves the switch-case translation 452

accuracy from 50.86% to 66.57%, which shows the 453

effectiveness of the augmentation method. 454

Other types of wrong generations, which in- 455

clude wrong generation of very long function log- 456

ics, wrong generation of stack operation, wrong 457

C-struct offset calculation, and wrong generation 458

on rare samples, like AVX intrinsics, etc. 459

In the end-to-end evaluation, we tackle the first 460

two kinds of errors. By augmenting with both nu- 461

merical conversion and switch-case normalization, 462

we successfully improves the overall I/O Accuracy 463

to 91.88%, which improves drastically from the 464

baseline model. To compare with, GPT-4-Turbo 465

can only achieve 40.85% I/O Accuracy even with 466

careful promptings applied. 467

5 Case Study 468

We conduct case studies to demonstrate how to 469

overcome the challenges using data augmentation 470

methods to learn C-to-x86 translation. 471

The first case study demonstrated a function 472

that need float/double numerical value conversion. 473

In x86 language, float/double immediate numbers 474

can not be encoded in instructions directly, and 475

modern compilers like GCC save them in binary 476

format following the IEEE-754 standard. So as 477

long as the program exists numerical initialization, 478

there are numerical conversions during the trans- 479

lation process, where LLMs perform poorly. As 480

depicted in Figure 5, direct value conversion us- 481

ing implicit IEEE-754 rule makes LLMs hard to 482

predict, where the baseline models are very likely 483

to generate wrong numbers. By delegating the 484

numerical conversions from LLMs to rule-based 485

interpreters, where we augment the model to gener- 486

ate symbolic expressions instead of direct guessing, 487

LLMs delegate the numerical conversion to rule- 488

based interpreters, which can handle their conver- 489

sions well, so that the numerical handling drawback 490

of LLMs is efficiently mitigated. 491

The second case study depicted in Figure 6 492

shows the challenge of switch-case generation, 493

where the jump-table style generation are hard to 494

learn for LLMs. The baseline model fails in the 495

generation of jump table items, causing repeated 496
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Figure 4: IO Accuracy Results

1 float func()
2 {
3 float costA = 6.0;
4 float costB = 0.125;
5 float cash = 50.0;
6 float numA = 4.0;
7 float numB;
8 float temp;
9 temp = costA * numA;

10 temp = cash - temp;
11 numB = temp / costB;
12 return numB;
13 }

1func:
2...
3movss .LC0(%rip), %xmm0
4movss %xmm0, -20(%rbp)
5...
6.LC0:
7.long 1086324736 ; 6.0
8.LC1:
9.long 1040187392 ; 0.125
10.LC2:
11.long 1112014848 ; 50.0
12.LC3:
13.long 1082130432 ; 4.0

Figure 5: Case Study 1: Numerical Conversion

1 int color_char_to_attr(char c)
2 {
3 switch (c)
4 {
5 ...
6 case 'R':
7 return (4);
8 case 'G':
9 return (5);

10 case 'B':
11 return (6);
12 ...
13 }
14 return (-1);
15 }

1color_char_to_attr:
2...
3subl $66, %eax ; 'B'
4cmpl $16, %eax ; 'R' - 'B'
5ja .L2
6leaq .L4(%rip), %rdx
7movslq (%rdx,%rdi,4), %rax
8addq %rdx, %rax
9notrack jmp *%rax
10.section .rodata
11.L4:
12.long .L2-.L4
13.long .L2-.L4
14.long .L2-.L4
15; ... repeated pattern

Figure 6: Case Study 2: Switch Generation

patterns until the maximum generation length. By497

leveraging the if-else style data augmentation, the498

model has learned to treat switch-case statements499

as if-else style, where if-else corpus are on the head500

of keyword distribution with hundreds of thousand501

samples comparing to the rare long-tails, the de-502

ficient learning of switch-case generation is also503

mitigated.504

The last case study shows how our refinement505

framework improving the long-tails performance. 506

As depicted in Figure 7, AVX instructions are the 507

SIMD extension in x86 assembly language, and 508

is encapsulated as AVX intrinsics to be used in C 509

language. 510

Recalling Figure 3, we introduce the refinement 511

framework to augment the incorrect generations, 512

which is inspired by (Madaan et al., 2023). Initially, 513

there are no AVX-related samples in the training 514

corpora at all, where the model without any sur- 515

prise translate incorrectly without apriori. Then the 516

incorrect AVX sample is captured by the evaluator 517

together with other incorrect samples. we then use 518

LLM to analyze the C code, and synthesize more 519

based on several rules as prompts to generate more 520

C samples closely related to the incorrect cases. 521

We use mistral-7B(Jiang et al., 2023) as the syn- 522

thesizer LLM in our implementation. Finally, the 523

sythesized augmented C corpora of incorrect sam- 524

ples is added back to the training dataset, where 525

retraining/finetuning can be performed depending 526

on the need. 527

Back to the case itself, a 10x synthesizing is suf- 528

ficient enough to learn a new feature with simple 529

semantic pattern, like the _mm256_add_ps intrin- 530

sic in the case, which simply generates a vaddps 531

instruction. Such learning ability of aligning C and 532

x86 semantics is very impressive, which shows the 533

few-shot learning potential in the language trans- 534

lation task. Although more complex patterns need 535

more cases to learn well, luckily, the refinement 536

framework can be executed iteratively, which can 537
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1 void foo(float *x, *y, *o) {
2 xx = _mm256_load_ps(x);
3 yy = _mm256_load_ps(y);
4 zz = _mm256_add_ps(xx, yy);
5 _mm256_store_ps(o, zz);
6 }

1foo:
2vmovaps (%rdi), %ymm0
3vmovaps (%rsi), %ymm1
4vaddps %ymm1, %ymm0
5vmovaps %ymm0, (%rdx)
6ret

Figure 7: Case Study 3: AVX Intrinsics Learning

resample the corpora based on the generation ac-538

curacy, so that more complex cases can get more539

samples to be learned.540

6 Related Work541

Code Translation aims to translate a piece of code542

(usually a function or method) into another pro-543

gramming language. Early studies like (Nguyen544

et al., 2015) uses traditional statistical machine545

translation method. Neural-based method like546

(Chen et al., 2018) starts to be dominant, and cap-547

ture the tree structure of programming languages.548

The emergence of pre-trained language models of549

code, such as CodeBERT(Feng et al., 2020) and550

CodeT5(Wang et al., 2021), has further improved551

the state of code translation. Large Language Mod-552

els(LLMs)(OpenAI et al., 2023; Rozière et al.,553

2022) have continued this trend, showing promise554

in code translation task. However, the above ap-555

proaches usually require fine-tuning on parallel556

corpora, which is often scarce.557

Data augmentation techniques have been exten-558

sively used and found effective in machine trans-559

lation tasks, which served as a solution to the560

scarcity of parallel corpora. Transcoder(Rozière561

et al., 2020) first propose back translation ap-562

proach to learn unsupervised code translation,563

where the back-translation process also gener-564

ates an automatic parallel corpora augmentation565

method. Transcoder-ST(Roziere et al., 2021),566

CodeXGlue(Lu et al., 2021), BabelTower(Wen567

et al., 2022) and CMTrans(Xie et al., 2023) also568

follow this approach, to obtain parallel corpora569

during the learning process. Besides direct genera-570

tion, (Szafraniec et al., 2023) explores an IR-in-the-571

middle approach, while (Tang et al., 2023; Ahmad572

et al., 2023) both introduce an intermediate code573

summary stage, to improve the code translation574

accuracy.575

To construct a balanced corpora in limited size576

in monolingual language is also challenging, it is577

naturally in a long-tailed distribution for different578

aspects of code semantics. where neural models579

tend to perform low accuracy on the tails due to580

lack of samples. (Zhout et al., 2023) reveals that 581

LLMs can perform between 30% to 254% worse 582

in long-tailed cases, where the model under-fits 583

them. Inspired by the survey of long-tailed learn- 584

ing(Zhang et al., 2023a), we establish a refinement 585

augmentation method, where long-tailed C samples 586

are recognized in the evaluation process via met- 587

rics, then analyzed, synthesized by another pow- 588

erful LLM, compiled by GCC to obtain parallel 589

samples, finally augmented the corpora with more 590

long-tailed knowledge. 591

Cross Level Code Translation. On high- 592

level code to low-level code translation researches, 593

(Armengol-Estapé and O’Boyle, 2021) first gives 594

a try of using neural machine translation on this 595

scenario. (Guo and Moses, 2022) further studies 596

on C-to-LLVM IR translation. However, they only 597

perform limited investigations on the methods, and 598

their results are still on the preliminary stage. There 599

are more related works on the reverse process, to re- 600

cover high-level code from low-level code(Fu et al., 601

2019; Cao et al., 2022; Armengol-Estapé et al., 602

2023).Unlike the difficulty on semantic mapping to 603

low level code in our challenges, their challenges 604

mainly are on optimization recovery and type in- 605

ference, while the semantic recovery is relatively 606

simpler. 607

7 Conclusion 608

Machine translation from high-level language to 609

low-level machine instructions is difficult. Even 610

using advanced LLMs can not reach high accu- 611

racy. By implementing symbolic interpretation 612

and switch-case normalization, two novel data pre- 613

processing methods, we overcome numerical value 614

conversion and switch-case semantic inconsistency, 615

two significant challenges in C-to-x86 language 616

translation. 617

To improve the accuracy on long-tailed samples 618

where the model under-fits to learn, we propose 619

an automatic refinement augmentation framework 620

to obtain improved accuracy on the long-tails by 621

using synthesizing method on incorrect cases. 622

Finally we achieve state-of-the-art IO accuracy, 623

over 91%, when translating C-to-x86 on a large- 624

scale evaluation dataset. Comparing to LLM-only 625

method(GPT-4-Turbo, 40.85%), and finetuning- 626

only baseline method(59.87%), the methods show 627

great efficiency. 628
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A Appendix 950

A.1 Limitations 951

We currently use LoRA finetuning on open- 952

weighted LLMs as our learning method instead 953

of full-training due to resource constraints. We cur- 954

rently only research on C-to-x86, one of the most 955

representative machine translation tasks across se- 956

mantic levels. But the ideas of automatically aug- 957

menting the dataset with more balanced distribu- 958

tion, offloading numerical conversions from LLMs 959

and unifying necessary semantics in the corpora 960

are also applicable to other similar translation tasks, 961

where we regard experiments of translating other 962

high-level languages to low-level languages as fu- 963

ture work. 964

Introducing code optimization is another level 965

of code translation, where the model not only trans- 966

lates the source code to target code, but also per- 967

forms optimizations. We don’t target optimizations 968

because the translation problem is not studied well 969

yet. Like the numerical conversion problem in our 970

unoptimized translation settings, there will be more 971
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similar problems that LLMs need to adjust to. We972

also consider this as future work.973
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