
RL on Incorrect Synthetic Data Scales
the Efficiency of LLM Math Reasoning by Eight-Fold

Amrith Setlur∗,1 Saurabh Garg1 Xinyang (Young) Geng2 Naman Garg3

Virginia Smith1 Aviral Kumar1,2
1Carnegie Mellon University 2Google DeepMind 3MultiOn

Abstract

Training on model-generated synthetic data is a promising approach for finetuning
LLMs, but it remains unclear when it helps or hurts. In this paper, we investigate
this question for math reasoning via an empirical study, followed by building a
conceptual understanding of our observations. First, we find that while the typical
approach of finetuning a model on synthetic correct or positive problem-solution
pairs generated by capable models offers modest performance gains, sampling
more correct solutions from the finetuned learner itself followed by subsequent
fine-tuning on this self-generated data doubles the efficiency of the same synthetic
problems. At the same time, training on model-generated positives can amplify
various spurious correlations, resulting in flat or even inverse scaling trends as the
amount of data increases. Surprisingly, we find that several of these issues can be
addressed if we also utilize negative responses, i.e., model-generated responses that
are deemed incorrect by a final answer verifier. Crucially, these negatives must be
constructed such that the training can appropriately recover the utility or advantage
of each intermediate step in the negative response. With this per-step scheme, we
are able to attain consistent gains over only positive data, attaining performance
similar to amplifying the amount of synthetic data by 8×. We show that training
on per-step negatives can help to unlearn spurious correlations in the positive data,
and is equivalent to advantage-weighted reinforcement learning (RL), implying
that it inherits robustness benefits of RL over imitating positive data alone.

1 Introduction
Training large language models (LLMs) relies on the ability to train on large amounts of high-quality
data. It is predicted that we will run out of high-quality internet data by 2026 [32, 58], necessitating
training on model-generated data, or what is commonly referred to as synthetic data. Recent trends
illustrate that scaling up synthetic data can lead to improvements [8, 29] on hard reasoning problems,
while other results illustrate that training on synthetic data can steer the performance of the model into
a downward spiral [3, 17, 51]—amplying biases, misinformation, and undesired stylistic properties.
Thus while in principle, synthetic data could potentially address data scarcity, it must be designed in
an appropriate manner to be effective. However, this has been hard due to a lack of an understanding
of how synthetic data contributes to LLM behavior.

To provide clarity on how synthetic data contributes to performance, we aim to understand its impact
on LLM capabilities via a study on math reasoning, a prevalent scenario where synthetic data is used.
Typically, in this setting, synthetic data corresponds to correct or positive model-generated responses
for a novel set of initial problems synthesized by prompting capable models [29, 31]. The resulting
model is then evaluated on a held-out set of problems drawn from a test set. Perhaps as expected,
we find that performance improves when finetuning models on positive synthetic responses, though
the scaling rates for performance improvement are often substantially slower than those observed
during pretraining. Concretely, we find that under the scaling law of Zhang et al. [71], the error rate
scales as ≈D−0.05 to D

−0.15 in the size D of synthetic dataset. Second, we observe that not all types
∗Corresponding author. Please send correspondences to asetlur@andrew.cmu.edu.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

of positive synthetic data are equally effective: often positive responses self-generated by the learner
itself are as effective as 2× synthetic data from bigger models in improving performance. This is
because responses from a similar model are “easier-to-fit” than those from a more capable model,
resulting in reduced memorization [26, 56] during finetuning. We also observe that if the positive
response contains incorrect/irrelevant intermediate steps, training on such data often incentivizes the
model to overfit on spurious correlations, leading to a flat or even inverse scaling with more data.

SFT
Model

Sample answers for same
questions as in synthetic
data and filter based on

synthetic answers
Reasoning QnA
pairs sampled
from capable

model, e.g., GPT-4

Synthetic Data

Positive Data

Sampled data with
correct answers

Filter negative by
calculating per-

step credit*

Negative Data

Sampled data with
incorrect answers

Finetune
base model

(e.g., Llama-2)

RFT Model

Per-step
DPO Model

Finetune
SFT model

Finetune
base model

(e.g., Llama-2)

Figure 1: Positive and negative synthetic data: Pictorial repre-
sentation of positive/negative synthetic data definitions we use and
how they are fed to SFT, RFT and DPO.

Perhaps surprisingly, we find that the
aforementioned pathologies of training
on positive data only can be addressed
if we also utilize synthetic negative re-
sponses: responses generated by the
model that do not result in obtaining
a correct final answer. One way to
utilize negative responses is via meth-
ods such as direct preference optimiza-
tion (DPO) [41]. While performance
of standard DPO [41] largely flatlines
as the number of synthetic problems
are scaled up (Figure 5), we are able
to attain consistent improvements if the negative data is generated appropriately. A solution trace
for a math problem typically comprises of multiple reasoning steps corresponding to intermediate
results. Our insight is that instead of contrasting arbitrary correct and incorrect responses, we should
contrast those positive and negative responses that depict good and bad choices for the more “critical”
intermediate steps: steps that the model must carefully produce so as to succeed at the problem. In
other words, critical steps are those which the model is unable to recover from, and hence, must
be emphasized. With this scheme, we are able to attain consistent gains over only positive data,
attaining performance similar to scaling up positive synthetic data by 8×. We show that training
on this sort of negative data evades spurious steps amplified by training on positive data alone.

To theoretically understand our findings, we build a conceptual model of how training on this data
benefits performance. Formally, we show that this construction of negative data, which emphasizes
“critical” tokens (Figure 6) enables us to perform credit assignment, and is equivalent to training the
model with per-step advantage-weighted reinforcement learning (RL) [40] on a mixture of positive
and negative synthetic data. Specifically, these advantage values are computed under an optimal
value function induced by sampling multiple responses under the SFT policy obtained by training
on only the positive data. This reduction of using negative data to advantage-weighted RL enables
us to conceptually compare it to training on positive data, which corresponds to imitation learning
(i.e., behavioral cloning) on positive data. First, we are able to argue for the generalization gains
of advantage-weighted RL through the lens of distribution robust objectives. Second, building on
theoretical results in RL [27], we are also able to show that when advantages can be estimated reliably,
advantage-weighted RL will be significantly more sample-efficient compared to imitation. Overall,
this model explains the utility of negative data over only positive data.

Our contribution is a study of the role of synthetic data in improving math reasoning capabilities of
LLMs. We derive scaling laws for positive and negative data on common reasoning benchmarks and
observe that: (a) training on positive synthetic data from capable models results in scaling rates that
are significantly slower than standard empirical risk minimization; (b) training on model-generated
positive synthetic data can improve sample efficiency by 2× but also amplifies spurious correlations;
(c) appropriate ways of constructing learner-specific negative data with emphasis on critical steps,
results in a performance boost equivalent to scaling up positive data 8×; (d) training with negative
data provides a mechanism to unlearn spurious correlations; and (e) we present a conceptual model
inspired from RL to explain our observations on synthetic data and the generalization benefits we see.

2 Related Work
A standard procedure to finetune a pretrained LLM is teacher-forcing on expert data, i.e., maximizing
the likelihood of the next token given all previous tokens [7, 61]. In Appendix G we discuss some
failure modes of this procedure for math reasoning that positive or negative synthetic data can address.

Positive synthetic data. Learning theory dictates that the SFT policy trained on more SFT data
(e.g., 1.5M for DeepSeek-Math [5]) would have improved math reasoning capbabilities. Thus, a

2

common goal for generating synthetic data as close as possible to the SFT data [29, 31, 32]. That
said, generating high quality math data can be challenging, since verification can often be hard. When
synthetic data is verified by larger models [50, 59], recent works [33, 66] observe scaling similar
to finetuning LLMs on expert data [69, 71], while another work [14] notes the compositional gains
from SFT data for code generation. Common sources of “good” synthetic data include responses
from stronger teachers [29, 30], or data generated by the SFT policy itself, in the framework of
reinforced self-training (ReST) and STaR [8, 52, 69, 70]. In our work, we study and compare
the performance scaling with positive synthetic data from bigger models like GPT-4 and Gemini
1.5 Pro with self-generated positive data. We connect our findings to evidence showing “ease of
learning” generalizable features on self-generated completions [26] which often prevents undesirable
memorization [56]. Finally, our work also sheds light on several concerns about training on synthetic
positive data amplifying biases [48, 63], and leading to model collapse [13, 17], especially due to
overfitting on“spurious” intermediate steps. We conceptually explain this phenomenon and also
discuss how negative model-generated responses can help identify and unlearn those spurious steps.

Benefits and nuances of negative synthetic data. While most works on synthetic data [29, 32,
66, 69] train only on correct answers, our work also studies complementary gains from incorrect
completions generated by the SFT policy [23, 38, 39, 68]. To leverage sub-optimal negative data,
we adopt the framework of offline preference optimization [16, 41, 73], where a preference pair is
constructed using correct and incorrect responses for the same problem [38]. Despite numerous
studies on preference data composition [8–10, 37, 54, 55, 60], its unclear how to pose a reasoning
problem as a preference optimization problem. Randomly pairing correct and incorrect completions
in a preference pair can lead to poor performance [21, 38, 39, 64] due to objective mismatch [55, 72]
and requires auxilliary losses to perform well. Another option is to use negative data for training
verifiers [22, 65] but this line of work still only trains the policy using positive data. We introduce
a conceptual model of negative data, where we understand how certain choices of negative data
can assign per-step credits, which we use to establish the equivalence of preference optimization
to advantage weighted RL. Self-explore method in Hwang et al. [23] can be viewed as an special
instance of our general framework. Other works [34, 59] exploit per-step credit assignment through
tree-based sampling. They identify the reasoning subsequence that led to the most incorrect answers
under the SFT policy for training a reward model. While this is related, our conceptual model and
analysis also understands why assigning per-step credits can generalize better by unlearning spurious
correlations, e.g., when the credits are given by the Q-function of the “best-of-K” SFT policy.

3 Problem Setup and Synthetic Data Generation Pipeline

Building on the recipe of Li et al. [29], Liu et al. [31], we use GSM8K [11] and MATH [19] to collect
synthetic data consisting of both novel problems designed by capable models such as GPT4 [1] and
Gemini 1.5 Pro [44], and responses to these problems, obtained from the same models.

Synthetic data pipeline. First, given a dataset Dreal = {(xr
i ,y

r
i)} of problems xr

i ∼ preal(x) and
solution traces yr

i ∼ preal(y ∣ xi), we prompt one of the highly-capable models with a uniformly
random sample (xr

i ,y
r
i) ∈ Dreal and ask the model to generate a new problem xi such that it is

similar to the real problem x
r
i , in a way that a feasible solution exists. Second, we ask the model to

provide a solution trace answer yi with step-by-step reasoning (exact prompts for xi,yi are borrowed
from Li et al. [29], shown in Appendix H). We assume that the answers generated via this process are
accurate, and perform lightweight filtering step to remove duplicates, badly-formatted answer traces,
and model failures. Based on the above, for any synthetic problem and solution pair (x,y), we can
define a binary reward function r(y, ŷ) ↦ {0, 1}, which verifies if a new solution trace ŷ is correct
or not. This is implemented with a set of answer extraction and string matching tools borrowed
from [29, 66]. We say that a new trace ŷ is a positive trace if it produces the correct final answer i.e.,
r(ŷ,y) = 1, and negative if it produces an incorrect final answer, i.e., r(ŷ,y) = 0. By definition,
r(y,y) = 1, and the original trace y is always positive.

Positive and negative datasets. The above process induces a joint distribution psyn(x,y), iid samples
from which yields positive synthetic dataset Dsyn. We note that the sampling process for Dsyn is
designed to ensure that the induced marginal distribution over synthetic problems psyn(x) is close to
preal(x). We will use D+

π to denote the positive dataset of (x,+ŷ) where +ŷ is a positive solution
trace generated from some policy π(⋅ ∣ x). For a positive +ŷ and negative −ŷ trace, sampled from
the same policy π(⋅ ∣ x), we denote a dataset over problems and solution pairs: (x,+ŷ,−ŷ) as D±

π .

3

Reasoning steps. The trace yi consists of several intermediate steps, yi = [yi,1, . . . ,yi,L]. We
assume each trace has at most L steps, and use y1∶t to denote the subsequence of first t steps. Since
mathematical reasoning problems require step-by-step computation, simply arriving at an incorrect
final answer does not mean that all steps in a negative ŷ are incorrect. Similarly, a positive ŷ may
also have incorrect reasoning steps. In fact, even the original answers generated by more capable
models in Dsyn may also contain incorrect reasoning steps, and training on such traces may actually
lead to unintended consequences (Section 5).

4 Learning from Synthetic Data
In this section, we discuss various algorithms for learning from the synthetic dataset Dsyn discussed
in the previous section, as well as positive and negative solution traces generated using a model.

Supervised and rejection finetuning (SFT and RFT). Given positive synthetic Dsyn, perhaps the
most straightforward approach (and the most prevalent) is to learn πsft on this data via supervised
next-token prediction: πsft(⋅∣x) ∶= argmaxπ Ex,y∼Dsyn

[log π(y∣x)]. Another option is to train
via supervised next-token prediction on problems in Dsyn, but when using a positive solution trace
ŷ sampled from πsft(⋅∣x), instead of positive synthetic responses from the capable models in Dsyn.
Akin to rejection finetuning (RFT [69] or STaR [70]), sampling from πsft(⋅ ∣ x) once is not guaranteed
to give a positive response, and we instead sample M times for each x and construct the dataset D+

πsft

of SFT policy generated positive responses. Then, we apply the next-token prediction loss on D+
πsft

.

Preference optimization. Beyond positive data, we can also learn from negative synthetic data
generated from the SFT policy, especially when contrasted with positive responses. However, learning
from negative data presents multiple open design questions pertaining to the construction of negative
traces, and the choice of the loss function, and simple supervised fine-tuning will not be a good
choice since it will incentivize the model to produce more errors. Therefore, we use a contrastive
training approach, direct preference optimization (DPO [41]) for incorporating negative data from
πsft. In a nutshell, DPO trains a policy using the following preference optimization objective:

min
π

LDPO(π) ∶= E(x,+y,−y)∼D±
πsft

[σ (β log
π(+y ∣ x)
πsft(+y ∣ x) − β log

π(−y ∣ x)
πsft(−y ∣ x))] . (1)

We consider two objectives that construct negative data and subsequently optimize Equation 1. The
first variant is standard DPO [41], which samples negative data −ŷ from the πsft (with rejection
sampling) and adds (x,y,−ŷ) to D±

πsft
. The second variant is per-step DPO [23], which first samples

a complete solution trace ŷ1∶L from πsft and then determines the “first pit” ŷc. The first pit ŷc is the
step where any completion following the step: ŷc+1∶L ∼ πsft(⋅ ∣ x, ŷ1∶c) leads to incorrect answers
in expectation under πsft. The triplet (x,y, ŷ1∶c) is added to the preference dataset D±

πsft
.

5 Positive Data Improves Coverage, But Amplifies Spurious Correlations
We first analyze the influence of scaling up positive synthetic data on GSM8K and MATH. In this
experiment, we fine-tune DeepSeek-Math-7B [5] and LLama2-7B [57] models (details in Appendix J)
on varying sizes of Dsyn, constructed out of a 5:1 mixture of GPT-4-turbo [1] and Gemini-1.5 Pro [44].
We obtain a series of SFT policies on this data scaling ladder. We then train a series of models by
running one iteration of RFT on data obtained from the SFT policies at each step.

Scaling results with positive synthetic data GPT-4 and Gemini 1.5 Pro. Since we assume that the
more capable models generate correct solutions for new problems, by scaling Dsyn we are increasing
coverage under preal, i.e., adding new x,y with non-zero probability under preal. In Figures 2(a,b),
we plot the test error rate of the SFT policy as Dsyn is scaled. As expected, we observe that the
test error rate on both GSM8K and MATH improves with more positive data. Further, by simply
fitting the parametric scaling law from [71], for D ∶= ∣Dsyn∣, we find that the scaling trends decay
as ≈D

−0.15 on GSM8K and ≈D
−0.05 on the harder MATH dataset, with similar trends for the

corresponding pass@5 error rates. Since these scaling trends are much more underwhelming than
those for pre-training [20], this perhaps implies that samples in Dsyn are indeed improving coverage
over samples in preal(x,y), but maybe not as efficiently as sampling iid samples directly from it.

Scaling results with positive synthetic data from 7B SFT policy. Previously, we scaled problems
in Dsyn by querying GPT-4 and Gemini-1.5. Now, for existing problems in Dsyn we generate new
responses by sampling from the πsft trained on problems+solutions in Dsyn. For any (x,y) ∈ Dsyn

4

0.35
0.43
0.51
0.59

GSM8K

SFT Llama2

0.18

0.21

0.24

0.27
T

es
t

er
ro

r

2×

SFT DeepSeek

RFT DeepSeek

8k16k 32k 64k 128k

Synthetic dataset size (|Dsyn|)
0.05

0.10 SFT DeepSeek Pass@5

(a)

0.80
0.85
0.90

MATH

SFT Llama2

0.54

0.57

0.60

T
es

t
er

ro
r

2×

SFT DeepSeek

RFT DeepSeek

8k16k 32k 64k 128k

Synthetic dataset size (|Dsyn|)

0.35
0.39
0.43

SFT DeepSeek Pass@5

(b)

0.58

0.60

0.62

RFT Scaling (fixed questions/prompts)

MATH 8k prompts 16k prompts

10k 20k 30k 40k 50k 60k 128k

RFT dataset size (|D+
πsft
|)

0.22

0.24

0.26

0.28
GSM8K 8k prompts 16k prompts

T
es

t
er

ro
r

(c)
Figure 2: Positive data scaling laws: On GSM8K (a) and MATH (b), we evaluate SFT trained on Dsyn and
RFT that uses SFT policy generated positives (D+

πsft
), as we scale Dsyn, observing D+

πsft
to be 2× as effective

as Dsyn. In (c), we plot performance of RFT the number of correct solutions in D+
πsft

are scaled, for a fixed set
of 8k/16k problems from Dsyn, observing that scaling model positives can amplify spurious correlations.

we generate verified positive solution traces ŷ ∼ πsft s.t. r(ŷ,y) = 1. Following Yuan et al. [67],
to ensure we sample enough correct responses, we sample 100 times from πsft and generate RFT
datasets D+

πsft
, where each problem has atmost 4 correct and diverse solutions. Next, we finetune the

pretrained DeepSeek-Math-7B model on these new series of RFT datasets and plot the performance on
GSM8K and MATH (Figure 2(a,b)). First, we observe that for any size of Dsyn, the performance of
the RFT model is better than the corresponding SFT model, and the difference remains consistent
as we scale Dsyn. Surprisingly, this indicates that training on positive answer traces from the 7B
πsft(y ∣ x) can lead to better performing policies than capable models.

What is the value of positives from πsft(y ∣ x)? If sampling from πsft also improves coverage
and performance, then should we scale problems and solutions in Dsyn, or just solutions in D+

πsft
?

To answer this, we need to assign a value to the RFT dataset D+
πsft

in terms of ∣Dsyn∣. We do this
by training SFT policies on Dsyn of sizes 8k and 16k, and then generating RFT datasets from the
corresponding SFT policies where we only add more correct solution traces (for the same problems)
and scale RFT data from 10k to 128k (unlike RFT data in Figure 2(a,b) where both questions
and answers scale). In Figure 2(c) we plot the error rate of DeepSeek-Math-7B finetuned on the
different sizes of D+

πsft
. Comparing the lowest values of the curves in Figure 2(c) with Dsyn scaling

in Figure 2(a,b), we note that performance from D+
πsft

is 2× the size of Dsyn used to train πsft. We
also note that performance can plateau (or worsen in the case of GSM8K) as we scale up D+

πsft
by a

lot. This is because r(⋅,y) is unable to verify the correctness of each step in the positive solution
traces in D+

πsft
. Later, we see how incorrect steps induce spurious correlations that get amplified as

we scale positive data, explaining this drop. See Appendix C for more discussion.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Negative Log Likelihood

0.00

0.02

0.04

0.06

0.08

F
ra

ct
io

n

SFT data

RFT data

Figure 3: Under base LLM, D+
πsft

has
higher likelihood than Dsyn.

Why is self-generated positive data more sample-efficient?
From our result above, we find that solutions sampled from πsft

(trained on Dsyn) yield better models, as good as those trained
on 2× ∣Dsyn∣. This finding is surprising since one might expect
more capable GPT-4/Gemini models to present better solutions,
training on which should lead to good performance, akin to
distillation [50], but this is not the case. Our results are consistent
with the study of memorization in LLMs [18, 26, 56], which
shows that pretrained (base) LLMs tend to memorize “hard-
to-fit” and “out-of-pretraining-distribution” responses during
finetuning, resulting in imperfect generalization. In contrast,
correct response traces produced by πsft on problems from Dsyn

are not as hard-to-fit or as out-of-distribution, since they are obtained from a model that is “close”
to the base LLM. We confirm this hypothesis with a histogram of negative log-likelihood values of
the SFT and RFT data under the base LLM (Figure 3). Hence, we expect STaR/RFT to alleviate
the memorization problem on a large chunk of examples. This finding also corroborates Yuan et al.
[69]’s result that lower the perplexity of SFT data under the base model, the smaller the gap between
SFT and RFT performance. Note that one may also attribute better performance of RFT to improved
coverage from multiple answers in D+

πsft
for each question in Dsyn. But, we find that even when RFT

data is restricted to one solution per question, LLM trained on it outperforms SFT consistently by
> 1%. Since verification is cheap, we can sample more solutions and also benefit from coverage.

5

GSM8K MATH

0.3

0.4

0.5

0.6

0.7

0.8

T
es

t
ac

cu
ra

cy

SFT on Dsyn original

RFT on D+
πsft

spurious

per-step DPO on D±πsft
spurious

Figure 4: Spurious correlations in
RFT data hurt performance.

SFT/RFT policy suffers from spurious correlations in posi-
tive synthetic data. While RFT data maybe “easier-to-fit”, in
Figure 2(c) we also note that continuing to scale RFT data leads
to test error saturation, or even worse test error. This is unlike
scaling of problems and solutions in SFT data (in Figure 2(a,b)).
This failure can be attributed to the presence of incorrect/irrel-
evant steps that are not detected by our verifier, since it only
verifies the final answer (see Appendix J, K for examples). For a
problem x, when the LLM is trained with supervised next-token
prediction on some positive sub-optimal y in the RFT data, with
incorrect step yk, it is likely to overfit on spurious correlations
between the sub-optimal subsequence y1∶k, and the following valid step yk+1, when trying to maxi-
mize π(yk+1∣y1∶k,x). To verify this hypothesis, we amplify the presence of these spurious steps.
Specifically, for each question in Dsyn we sample “spurious steps” from πsft trained on it, i.e., steps
which lead to the incorrect answer with high probability under πsft (we sample multiple completions
conditioned on the same spurious step to check how likely it leads to the correct final answer). Then,
we interleave the solution traces in the RFT data with these spurious steps. Note, that all traces in the
RFT data are still positive since, they all lead to the correct answer eventually. We find that the LLM
trained on this sub-optimal spurious RFT data performs worse than the πsft policy itself.

Takeaways for scaling positive synthetic data

• While positive data from GPT-4/Gemini-1.5 improves coverage over new problems and
solutions, positive data from SFT policy trained on it is 2× more sample efficient.

• Scaling positive data (∼ πsft) that contains spurious steps, leads to worse test errors.

6 Negative Synthetic Data Enables Per-Step Credit Assignment
The spurious correlations from Section 5 correspond to intermediate irrelevant or incorrect steps that
are able to still steer the model towards the correct response on some training problems, but derail it
otherwise. In this section, we present a conceptual model for constructing negatives that enables us
to perform per-step credit assignment, and show that this approach can help us address these failure
modes of positive data. We show that per-step DPO from Section 3 is a variant of this more general
approach. We will then analyze scaling laws with negative data and empirically demonstrate that
carefully constructed negative data can address issues with memorization. Finally, we theoretically
prove that negative data improves sample-efficiency of Dsyn.
6.1 Conceptual Model: Constructing Negatives to Enable Per-Step Credit Assignment
While naïvely contrasing an entire positive response +y against an entire negative response −y will
increase the likelihood of each step that appears in +y (even when incorrect or irrelevant) and reduce
likelihood on each step appearing in −y (even when accurate and relevant), it does not account for the
importance of each step. Formally, given a negative solution trace −y, we would want to identify the
first critical step where the model introduces a flaw −y, and emphasize alternate correct completions
from this step that the model could have still produced. Likewise, given a positive solution trace,
+y, we would like to identify if a given step +yi does not make progress towards the solution by
identifying if there exist alternatives from its predecessor step, +y1∶i−1, which now presents a key
decision-making point. What are these critical steps and how can we identify them procedurally?

Value functions. We can formalize this notion of a critical step under the notion of value functions
from reinforcement learning (RL). Recall that both +y and −y are sampled from πsft. For problem
x, with correct solution y, a response ŷ with a sequence of steps ŷ1∶i−1, and a candidate step ŷi, we
define the value function for step yi, and previous steps under some policy π̃ as:

Qπ̃(x, ŷ1∶i−1Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
state

, ŷiÍÑÏ
action

) = Eynew
i+1∶L∼π̃(⋅∣x,ŷ1∶i)[r ([ŷ1∶i,y

new
i+1∶L],y)]

ÍÒÒÑÒÒ Ï
expected future reward under new actions sampled by policy π̃

(2)

Intuitively, for any partial solution upto i steps, this Q-function evaluates the probability of succeeding
at solving the problem given the remaining budget of L− i more steps, in expectation over all possible
futures sampled from some policy π̃. Our conceptual model treats the policy π̃ as an algorithmic
design choice that can differ for algorithms using negative data. As we see later, choosing π̃ as the
Best-of-K distribution around πsft (denoted as BoK(πsft)) enables a particularly interesting tradeoff
between Q-value estimation and policy improvement. Another common choice is πsft itself. Now,

6

0.35
0.43
0.51
0.59

GSM8K
SFT Llama2 per-step DPO

0.13

0.17

0.21

0.25

0.29

T
es

t
er

ro
r

8×

SFT DeepSeek per-step DPO

8k16k 32k 64k 128k

Synthetic dataset size (|Dsyn|)
0.04

0.08 per-step DPO DeepSeek Pass@5

(a)

0.72
0.79
0.86

MATH
SFT Llama2 per-step DPO

0.52

0.55

0.58

0.61

T
es

t
er

ro
r

8×

SFT DeepSeek per-step DPO

8k16k 32k 64k 128k

Synthetic dataset size (|Dsyn|)
0.32
0.36
0.40
0.44

per-step DPO Pass@5

(b)

8k16k 32k 64k 128k

Synthetic dataset size (|Dsyn|)

0.53

0.56

0.59

0.62

0.65

T
es

t
er

ro
r

Choice of Negative Data on MATH

SFT

DPO (Rafailov et al. (2023))

DPO (Pal et al. (2024))

per-step DPO

(c)
Figure 5: Negative data scaling laws: We evaluate algorithms that consume negative data as we scale Dsyn,
and compare them with only positive training (SFT) on Dsyn. On GSM8K (a) and MATH (b), we observe an 8×
gain from per-step DPO (Section 4) which aligns with our model of negative data that enables per-step credit
assignment. In (c) we compare different negative data construction algorithms, and particularly note that naïvely
pairing positives and negatives [41] leads to worse performance as we scale Dsyn.

for any given step ŷi, we can define its advantage as the relative change in Qπ̃ when adding step ŷi
in comparison with other possible candidates for step i as follows:

Aπ̃(x, ŷ1∶i−1; ŷi) = Qπ̃(x, ŷ1∶i−1, ŷi) −Qπ̃(x, ŷ1∶i−2, ŷi−1). (3)
Equation 3 is identical to the definition of advantage of an action (i.e., ŷi) at a state (x, ŷ1∶i−1) from

RL [53], in that it is the gap between the Q-value of a state-action pair and the value function of the
state (which itself is equal to the Q-value of the previous step due to deterministic dynamics).

C1: Let cost of 1 apple be x
and 1 pear be y.

C2: 4x+3y=25 (Eq 1) and
7x+6y=49 (Eq 2).

C3: To remove y, multiple Eq1
by 2 and subtract Eq 2 from it.

C4: (8x+6y)-
(7x+6y)=50-49.

C5: x=1.

C6 : Answer: 1
apple costs $1.

Correct solution

StartQuestion: 4 apples and 3 pears cost $25, but 7 apples
and 6 pears cost $49. What is the cost of 1 apple?

S1: Thus, 11x+9y=74.

S2: S2: y=(74-11x)/9.

W4: y=5.

W1

W2

W3

. . .
Advantage function estimates

!!"(##, ## → &$) is low (often leads to a wrong solution)

!!" ##, ## → #% is midrange (leads to correct and wrong solution)

!!"(#%, #% → (%) is low (leads to a wrong solution)

!!"(#%, #% → #&) is high (leads to the correct solution)

Wrong
solution

Wrong
solution

Correct, but distracting step
that may derail the model

Correct step

Incorrect
step

Figure 6: Illustration of advantage estimation from negative data
on a didactic example in synthetic model generations. Critical
steps are those with high advantage values.

Critical steps, per-step DPO, and
advantage-weighted RL. We can use
advantages (Equation 3) to characterize
critical steps. Steps that attain a higher
advantage value than others are critical
since they need to be generated more pre-
cisely to solve the problem. In contrast,
steps that with very low advantage values
are likely worse and must be unlearned.
Our definition of the advantage function
implies that one can calculate advantages
for each step in a response via additional
Monte Carlo rollouts starting from pre-
fixes defined by partial solutions. One
could then use these advantage estimates
(Equation 3) for training the model, for example, by running advantage-weighted reinforcement
learning [40]. An alternate option would be to skip the computation of advantage estimates but instead
rely on implicit approaches that optimize the advantage-weighted objective without computing their
values. Theorem 6.1 shows that DPO performed over a precise pair distribution contrasting positive
and negative traces obtained via additional rollouts from π̃, on prefixes of a response sampled from
πsft is equivalent to advantage-weighted RL. A proof of Theorem 6.1 is in Appendix E. Note that
unlike the standard reduction of DPO to the RL objective under some reward function [41, 42],
Theorem 6.1 is stronger in that it identifies the value function induced by per-step DPO.
Theorem 6.1 (Equivalence of advantage-weighted RL and DPO with per-step pairs). The optimal
policy from Equation 1 with D±

πsft
given by (x, [y1∶i,+yi+1], [y1∶i,−yi+1]) where the positive and

negative traces share prefix y1∶i ∼ πsft, and −yi+1 ∼ πsft(⋅∣x,y1∶i), +yi+1 ∼ σ(Aπ̃(x,y1∶i; ⋅) −
Aπ̃(x,y1∶i;−yi+1)), is identical to the optima of the advantage-weighted RL objective:

max
π

Ex∼psyn(x),y∼πsft(⋅∣x) [
L

∑
i=1

log π(yi∣x,y0∶i−1) ⋅ exp (Aπ̃(x,y0∶i−1;yi)/β)] . (4)

Practical instantation of DPO with per-step pairs. In most of our experiments, we instantiate a
practical version of the above framework, following the scheme in Hwang et al. [23]. This is a special
case (Part 1) of the complete algorithm shown in Algorithm 1 (see Appendix B). Unless otherwise
mentioned, we use “per-step DPO” to refer to this version (Part 1 only) in practice. We will also
experiment with the complete version (parts 1 and 2) later in Section 6.3.3. Instead of computing

7

advantage estimates for each step, and then sampling preference pairs, as described in Theorem 6.1,
we approximate this by only Q-value estimates on 8 negative responses for each question in the
synthetic dataset, with π̃ chosen to be the best-of-K policy, BoK(πsft) where K = 5. There are two
benefits associated with this choice of π̃, especially a higher value of K: (i) estimating the advantage
in Equation 3 with Monte Carlo rollouts exhibits lower variance when K is large, since a larger
budget K would lead most steps to have higher Q-values and the variance of Bernoulli reduces as
Q-value → 1; and (ii) QBoK(πsft) is a non-decreasing function in K for any state-action, which implies
that the solution of advantage-weighted RL objective, in principle, can now improve over a better
policy BoK(πsft), compared to πsft. Next, we discuss scaling results for negative data, and then in
Section 6.3 show how per-step credit assignment improves generalization and suppresses irrelevant
and incorrect steps appearing in a response, extracting more gains from the same synthetic data.

6.2 Scaling Results for Negative Data
Observe in Figure 5(a,b), that for both DeepSeek-Math-7B and LLama2-7B models, per-step DPO
improves performance beyond the SFT policy and the performance continues to scale favorably as
data size increases. In fact, for any given size of Dsyn, per-step DPO also substantially improves
over RFT (Figure 2) on both datasets, and overall, while RFT improved effective data size of Dsyn

by 2×, additionally training on negative data extends the performance improvement to 8× the
size of Dsyn. Additionally, since per-step DPO estimates advantage of each step under the Best-of-5
policy, one might expect a saturation in the pass@5 performance of the per-step DPO solution. On
the contrary, we find that pass@5 performance also improves consistently. In Appendix D we present
results for a filtered version of RFT. Here, steps with high advantages from positive/negative data are
cloned. This resolves the scaling issue seen when naively scaling positive data in Figure 2(c).

Choice of negative data matters. In Figure 5(c) we plot negative data scaling laws where the choice
of negative data (thereby pairs for DPO in Equation 1) differs. Observe that standard pairing of
positive and negative responses in D±

πsft
for DPO [41] does not improve over the SFT policy. As such,

we tuned β in Equation 1 for DPO but could not fully avoid performance degradation. Our conceptual
model explains this result: contrasting arbitrary positives and negatives would result in an incorrect
induced advantage function, training with DPO will exacerbate spurious correlations that maximize
this induced advantage function [39, 46, 64]. In fact, Pal et al. [38] also find similar concerns with
random pairing and instead pair positives and negatives with highest edit distance, which leads to
some improvement , but still performs poorer than per-step DPO that accounts for credit.

Takeaways for scaling negative synthetic data

• Negative data can identify high-advantage (critical) steps in model-generated responses.
• We can construct negative data distribution that equates DPO to advantage-weighted RL.

Negative data used in this way improves the sample efficiency of synthetic data by 8×.

6.3 Why Does Credit Assignment from Negative Data Improve Model Generalization?
Our conceptual model illustrates that per-step DPO can perform credit assignment, and identify critical
steps over irrelevant ones via advantage estimates. We saw that this improves test performance and
scaling. Now, we attempt to understand why per-step credit assignment should improve generalization
by understanding the generalization properties of advantage-weighted RL. We present two empirical
studies below, and a formal theoretical guarantee combining these insights is shown in Appendix F.

6.3.1 Advantage-Weighted RL De-Emphasizes Spurious Steps and Emphasizes Critical Steps

1 2 3 4 5 6 7 8
Step

0.30

0.35

0.40

0.45

0.50

A
ve

ra
ge

Q
-v

al
u

e
at

st
ep

SFT

DPO (Rafailov et al. (2023))

DPO (Pal et al. (2024))

per-step DPO

Figure 7: Per-step DPO improves
Q-values at each step, standard DPO
only improves at irrelevant steps.

Our key insight is that spurious correlations emerge in monolithic
SFT or RFT due to the well-known issue of causal confusion [12]
in imitation learning: by memorizing incorrect or irrelevant steps
and associating them with the correctness of the final answer, the
model fails to generalize on novel problems, as we saw in Figure 4.
We now explain how online model-specific interventions and
advantage estimation would address this issue. Consider π̃ = πsft.
As we show later, in under-trained models memorized steps are
imperfectly cloned under πsft, implying that while teacher-forcing
loss is low for some spurious, memorized step ys, sampling paths
from πsft, conditioned on y1∶s is likely to generate incorrect
responses. This means ys attains a low advantage. On the other

8

hand, for a correct step, whp estimated advantage is higher. Thus, training the model with advantage
weighted RL would de-emphasize spurious steps and emphasize critical steps. Running per-step DPO
on data generated by the RFT model that has overfit on spurious correlations improves accuracy by
>6% (Figure 4). We visualize advantages in Appendix K. In Figure 7, we plot the average Q-value of
a step for different negative data schemes, and note that only per-step DPO improves over SFT at
each step, as expected based on the connection to advantage-weighted RL (Theorem 6.1). Standard
DPO fails to improve performance since it has poor success rate at earlier (critical) steps.

6.3.2 Why Does Generalization Improve?: Connecting Advantage-Weighted RL to DRO
In the previous section, we discussed how advantage-weighted RL preferentially weighs the next-
token prediction loss at each step. Now, we attempt to conceptually understand why this could
improve generalization. For this, we present an intuitive explanation by drawing a connection
between advantage-weighted RL and a distributionally robust optimization (DRO) algorithm, named
Group DRO, commonly used to improve worst-group robustness in supervised learning [43].

Intuitive explanation. During inference, the SFT policy can fail even on training problems, especially
in scenarios where the SFT policy has failed to perfectly clone the next step at each intermediate step
in the SFT data. As previously discussed, these steps also present with low advantage values. One
way to reduce the chance of compounding inference time errors [45] is to preferentially minimize the
negative log-likelihood loss more for the critical step, i.e., those steps from where the model is more
likely to arrive at a wrong answer. If we iteratively update the policy with gradient steps computed over
a re-weighted next-step prediction objective where each step is weighted by its advantage estimate,
then the resulting algorithm intuitively exhibits this characteristic similarly to distributionally robust
optimizers (DRO) [28]. Similar to how DRO solutions guarantee that all subpopulations – both
majority and minority subpopulations – in the training data achieve low loss values, the solution for
the advantage-weighted RL objective guarantees that the negative log-likelihood of the critical steps
with high advantage estimates under π̃ (which of per-step DPO is BoK(πsft)) is also low, to a similar
extent as the other more prevalent non-critical steps.

In other words, our insight is that weighting steps using advantages in Equation 4 upweights the
likelihood of the underrepresented critical states while down-weighting it for the spurious ones.
The guarantees on the training data (Dsyn) also translate to the population level objective when the
weights for on-policy samples (advantage estimates) are accurate [49] and the policy is sufficiently
regularized [47]. Since correct behavior at critical steps determine the correctness of the overall
solution, an elevated degree of correctness at executing critical steps at the population level implies a
higher test accuracy on the reasoning task.

6.3.3 But, Attaining Low Generalization Error Requires Low Advantage Estimation Error
The practical efficacy of algorithms that use negative data for credit assignment requires the advantage
estimation error to be low with fewer rollouts from π̃. For discussion, consider π̃ = πsft. When the
initial advantage of a spurious step is incorrectly over-estimated, negative data algorithms up-weight
the likelihood further. This only leads to further memorization. Hence, most Monte-Carlo rollouts
from πsft would rely upon the memorized feature. Since the model generates the correct answer from
the memorized feature, it would estimate higher Aπsft

, and this downward spiral of training with
increasing weights on the spurious step leads to test-time model collapse. On the other hand, when
π̃ = BoK(πsft) for a higher value of K, the Monte-Carlo advantage estimator has a lower variance
(and error). This discussion also justifies the choice of K=5, an intermediate value, in per-step DPO.

6.3.4 Validating Claims About Generalization: Controlled Analysis on a Didactic Problem
With the above insights, we now study the influence of πsft on the generalization effects of per-step
DPO. For our analysis, we consider a didactic star graph problem (Appendix I) from Bachmann and
Nagarajan [4], where given a graph in the shape of a star and a query (center/end node), the model is
asked to output the full path between the start/end nodes. This task highlights the failure of SFT at
planning problems (akin to math reasoning). They show that πsft minimizes SFT loss by memorizing
the “hard-to-predict” node adjacent to the center, and copying the rest from the input graph. It is
clear that the failure stems from not being able to identify the critical adjacent token. We will show
how credit assignment with negative data accurately upweights the critical token and unlearns the
memorized token. To vary the choice of πsft, we choose several intermediate checkpoints obtained
during supervised finetuning for synthetic negative data generation. We consider three initializations:
(1) an under-trained SFT model with a large training and test loss, and (2) an SFT model obtained by

9

0 100 200 300 400 500
Training iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
ex

t-
to

ke
n

p
re

d
ic

ti
on

lo
ss

SFT loss

per-step DPO (iter 60) loss

0.2

0.4

0.6

0.8

Q
-v

al
u

e

SFT critical token Q-value

(a)

0 100 200 300 400 500
Training iterations

0.0

0.2

0.4

0.6

0.8

T
es

t
er

ro
r

SFT

per-step DPO (iter 60)

per-step DPO (iter 200)

(b)

0 200 400 600 800
Training iterations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
es

t
er

ro
r

SFT test error

per-step DPO (iter 580)

(c)
Figure 8: Didactic analysis on star graph: In (a) we plot the SFT loss and Q-value of the critical token (adjacent
node) for SFT and per-step DPO (starting from iter 60). Indicative of memorization SFT loss decreases at a
slow rate, matching the slow rate of increase in the Q-value. In contrast per-step DPO loss sharply decreases
during training. In (b) we notice a corresponding phase transition in the test error of per-step DPO starting from
different under-trained SFT checkpoints, which does not happen for an over-trained SFT checkpoint in (c).

early-stopping based on a held-out validation set, where the validation loss is the lowest, and (3) an
over-trained SFT checkpoint, with a low training but high validation loss.

(1) & (2): Training on negative data from an under-trained or early-stopped πsft improves both
training loss and test performance. As shown in Figure 8(a,b), we find that when training with
negative data from iteration 60 (under-trained πsft) and iteration 200 (early-stopped πsft), utilizing
per-step DPO reduces the training loss very aggresively. These benefits translate to test losses and
performance as well (Figure 8(b), orange and green). In contrast, supervised finetuning exhibits a
nearly-flat test loss landscape, although the train loss reduces slowly. Upon a closer inspection, we
find that training on positive data via SFT only tends to memorize the critical token in the training
data using non-generalizable features, and hence, the resulting model does not generalize to novel
problems. More training with SFT is unable to “unlearn” this spurious correlation and does not
reduce the loss function. On the other hand, per-step DPO with negative data is able to unlearn this
spurious feature and drives improvement, as evident by the drastic improvement on train and test.

(3) Training on negative data from an over-trained SFT initialization leads to model collapse.
When training with negative data on an over-trained πsft (iteration 580) in Figure 8(c), we observe
that both SFT and per-step DPO exhibit identical test errors since training with more negative data
simply exacerbates the model’s dependence on memorizing the critical token, which manifests in the
form of lower test losses. This is also an example where Monte-Carlo samples from the over-trained
checkpoint estimates a high advantage since Q-value is already high at iteration 500 (in (a)). This
means that when the SFT policy has sufficiently memorized the training data using a spurious feature,
training further is unable to unlearn this dependence. Hence, we find that in this regime, negative data
leads to no improvement, capping performance at what was attained by fine-tuning on positive data.

Takeaways for generalization and spurious correlations with negative data

Advantage-weighted RL unlearns spurious steps and improves generalization when: (i)
advantage estimation error is low; and (ii) the model is under-trained enough that imperfectly
cloned spurious steps have low advantage, which can then be estimated with negative data.

7 Discussion and Conclusion

Our work studies the role of synthetic data for improving math reasoning capabilities of LLMs. We
find that while the typical approach of collecting new questions and corresponding positive (correct)
solutions from capable models like GPT-4/Gemini-1.5 presents underwhelming data scaling. The
sample efficiency of the same data can be improved up to 2× by sampling more positive traces
from the 7B sized models SFT-ed on the original data. However, training on positive self-generated
synthetic data alone often amplifies the model’s dependence on spurious steps, that erroneously
appear to lead to a good solution but do not generalize to novel problems and hurt test performance.
That said, surprisingly, we show that negative (incorrect) traces sampled from the same SFT model
can be used to address the failure modes of training on only positive data. In particular, negative
data can be used to estimate advantage values for every step, and using these advantage estimates
via RL enables us to address this problem. We show how the advantages can be used implicitly by
preference optimization objectives. We show how training on an instance of this objective leads to
8× improvements in sample efficiency of the synthetic data used.

10

Acknowledgements
This work was done at CMU. We thank Vaishnavh Nagarajan, Yi Su, Aleksandra Faust, Hyeonbin
Hwang, Christina Baek, Charlie Snell, Seohong Park, Gaurav Ghosal, Aditi Raghunathan, Katie
Kang, Don Dennis, Dhruv Malik, and Pratiksha Thaker for informative discussions and feedback
on an earlier version of this paper. This work was supported by compute donations from Google
Cloud (TRC) and MultiOn. AS thanks OpenAI and Google respectively for providing GPT4-Turbo
and Gemini-1.5 Pro credits for academic use. AK and YG thank Tianhe Yu for feedback on the
paper. This work was supported in part by the National Science Foundation grants IIS2145670 and
CCF2107024, and funding from Amazon, Apple, Google, Intel, Meta, and the CyLab Security and
Privacy Institute. Any opinions, findings and conclusions expressed in this material are those of the
author(s) and do not necessarily reflect the views of any of these funding agencies.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory
and algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 2019.

[3] Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein
Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G Baraniuk. Self-consuming generative
models go mad. arXiv preprint arXiv:2307.01850, 2023.

[4] Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction, 2024.

[5] Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui
Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models
with longtermism. arXiv preprint arXiv:2401.02954, 2024.

[6] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[8] Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

[9] Pengyu Cheng, Yifan Yang, Jian Li, Yong Dai, and Nan Du. Adversarial preference optimization.
arXiv preprint arXiv:2311.08045, 2023.

[10] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL
https://lmsys.org/blog/2023-03-30-vicuna/.

[11] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

[12] Pim De Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in imitation learning.
Advances in neural information processing systems, 32, 2019.

[13] Elvis Dohmatob, Yunzhen Feng, and Julia Kempe. Model collapse demystified: The case of
regression, 2024.

11

https://lmsys.org/blog/2023-03-30-vicuna/

[14] Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei
Wang, Zheng Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language models are
affected by supervised fine-tuning data composition. arXiv preprint arXiv:2310.05492, 2023.

[15] Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36,
2024.

[16] Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto:
Model alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

[17] Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Henry Sleight, John
Hughes, Tomasz Korbak, Rajashree Agrawal, Dhruv Pai, Andrey Gromov, Daniel A. Roberts,
Diyi Yang, David L. Donoho, and Sanmi Koyejo. Is model collapse inevitable? breaking the
curse of recursion by accumulating real and synthetic data, 2024.

[18] Valentin Hartmann, Anshuman Suri, Vincent Bindschaedler, David Evans, Shruti Tople, and
Robert West. Sok: Memorization in general-purpose large language models, 2023.

[19] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
NeurIPS, 2021.

[20] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[21] Jiwoo Hong, Noah Lee, and James Thorne. Reference-free monolithic preference optimization
with odds ratio. arXiv preprint arXiv:2403.07691, 2024.

[22] Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and
Rishabh Agarwal. V-star: Training verifiers for self-taught reasoners. arXiv preprint
arXiv:2402.06457, 2024.

[23] Hyeonbin Hwang, Doyoung Kim, Seungone Kim, Seonghyeon Ye, and Minjoon Seo. Self-
explore to avoid the pit: Improving the reasoning capabilities of language models with fine-
grained rewards. arXiv preprint arXiv:2404.10346, 2024.

[24] Matti Kääriäinen. Lower bounds for reductions. In Atomic Learning Workshop, 2006.

[25] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In International Conference on Machine Learning (ICML), volume 2, 2002.

[26] Katie Kang, Eric Wallace, Claire Tomlin, Aviral Kumar, and Sergey Levine. Unfamiliar
finetuning examples control how language models hallucinate, 2024.

[27] Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. When Should We Prefer Offline
Reinforcement Learning over Behavioral Cloning? ICLR, 2022.

[28] Daniel Levy, Yair Carmon, John C Duchi, and Aaron Sidford. Large-scale methods for
distributionally robust optimization. Advances in Neural Information Processing Systems, 33:
8847–8860, 2020.

[29] Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities. arXiv
preprint arXiv:2403.04706, 2024.

[30] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023.

[31] Hao Liu, Matei Zaharia, and Pieter Abbeel. Exploration with principles for diverse ai supervision.
arXiv preprint arXiv:2310.08899, 2023.

12

[32] Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng,
Daiyi Peng, Diyi Yang, Denny Zhou, and Andrew M. Dai. Best practices and lessons learned
on synthetic data for language models, 2024.

[33] Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct, 2023.

[34] Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu,
Yun Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by
automated process supervision. arXiv preprint arXiv:2406.06592, 2024.

[35] R Thomas McCoy, Shunyu Yao, Dan Friedman, Matthew Hardy, and Thomas L Griffiths.
Embers of autoregression: Understanding large language models through the problem they are
trained to solve. arXiv preprint arXiv:2309.13638, 2023.

[36] Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Nebojsa Jojic,
Hamid Palangi, Robert Ness, and Jonathan Larson. Evaluating cognitive maps and planning in
large language models with cogeval. Advances in Neural Information Processing Systems, 36,
2024.

[37] Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al.
Nash learning from human feedback. arXiv preprint arXiv:2312.00886, 2023.

[38] Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White.
Smaug: Fixing failure modes of preference optimisation with dpo-positive. arXiv preprint
arXiv:2402.13228, 2024.

[39] Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and
Jason Weston. Iterative reasoning preference optimization. arXiv preprint arXiv:2404.19733,
2024.

[40] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

[41] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
arXiv preprint arXiv:2305.18290, 2023.

[42] Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to q
∗: Your language model

is secretly a q-function, 2024.

[43] Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: A review. arXiv
preprint arXiv:1908.05659, 2019.

[44] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv
preprint arXiv:2403.05530, 2024.

[45] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In International
Conference on Artificial Intelligence and Statistics (AISTATS), pages 661–668, 2010.

[46] Amir Saeidi, Shivanshu Verma, and Chitta Baral. Insights into alignment: Evaluating dpo and
its variants across multiple tasks. arXiv preprint arXiv:2404.14723, 2024.

[47] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks. In International Conference on Learning Representations, 2019.

[48] Mohamed El Amine Seddik, Suei-Wen Chen, Soufiane Hayou, Pierre Youssef, and Merouane
Debbah. How bad is training on synthetic data? a statistical analysis of language model collapse,
2024.

13

[49] Amrith Setlur, Don Dennis, Benjamin Eysenbach, Aditi Raghunathan, Chelsea Finn, Virginia
Smith, and Sergey Levine. Bitrate-constrained dro: Beyond worst case robustness to unknown
group shifts. arXiv preprint arXiv:2302.02931, 2023.

[50] Archit Sharma, Sedrick Keh, Eric Mitchell, Chelsea Finn, Kushal Arora, and Thomas Kollar. A
critical evaluation of ai feedback for aligning large language models, 2024.

[51] Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross Ander-
son. The curse of recursion: Training on generated data makes models forget. arXiv preprint
arXiv:2305.17493, 2023.

[52] Avi Singh, John D. Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia,
Peter J. Liu, James Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, Abhishek Kumar, Alex
Alemi, Alex Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet, Gamaleldin Elsayed, Hanie
Sedghi, Igor Mordatch, Isabelle Simpson, Izzeddin Gur, Jasper Snoek, Jeffrey Pennington,
Jiri Hron, Kathleen Kenealy, Kevin Swersky, Kshiteej Mahajan, Laura Culp, Lechao Xiao,
Maxwell L. Bileschi, Noah Constant, Roman Novak, Rosanne Liu, Tris Warkentin, Yundi
Qian, Yamini Bansal, Ethan Dyer, Behnam Neyshabur, Jascha Sohl-Dickstein, and Noah Fiedel.
Beyond human data: Scaling self-training for problem-solving with language models, 2024.

[53] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. The MIT
Press, second edition, 2018.

[54] Gokul Swamy, Christoph Dann, Rahul Kidambi, Zhiwei Steven Wu, and Alekh Agarwal. A
minimaximalist approach to reinforcement learning from human feedback. arXiv preprint
arXiv:2401.04056, 2024.

[55] Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie,
Stefano Ermon, Chelsea Finn, and Aviral Kumar. Preference Fine-Tuning of LLMs Should
Leverage Suboptimal, On-Policy Data, ICML 2024.

[56] Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization
without overfitting: Analyzing the training dynamics of large language models. Advances in
Neural Information Processing Systems, 35:38274–38290, 2022.

[57] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[58] Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbhahn, and Anson
Ho. Will we run out of data? an analysis of the limits of scaling datasets in machine learning.
arXiv preprint arXiv:2211.04325, 2022.

[59] Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and
Zhifang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations,
2024.

[60] Yuanhao Wang, Qinghua Liu, and Chi Jin. Is rlhf more difficult than standard rl? arXiv preprint
arXiv:2306.14111, 2023.

[61] Ronald J Williams and David Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural computation, 1(2):270–280, 1989.

[62] Tianhao Wu, Banghua Zhu, Ruoyu Zhang, Zhaojin Wen, Kannan Ramchandran, and Jiantao
Jiao. Pairwise proximal policy optimization: Harnessing relative feedback for llm alignment.
arXiv preprint arXiv:2310.00212, 2023.

[63] Sierra Wyllie, Ilia Shumailov, and Nicolas Papernot. Fairness feedback loops: Training on
synthetic data amplifies bias, 2024.

[64] Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Ken-
ton Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries
of llm performance in machine translation. arXiv preprint arXiv:2401.08417, 2024.

14

[65] Fei Yu, Anningzhe Gao, and Benyou Wang. Outcome-supervised verifiers for planning in
mathematical reasoning. arXiv preprint arXiv:2311.09724, 2023.

[66] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models, 2024.

[67] Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin
Chen, Ruobing Xie, Yankai Lin, et al. Advancing llm reasoning generalists with preference
trees. arXiv preprint arXiv:2404.02078, 2024.

[68] Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and
Jason Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

[69] Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuanqi Tan, and Chang Zhou.
Scaling relationship on learning mathematical reasoning with large language models. arXiv
preprint arXiv:2308.01825, 2023.

[70] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

[71] Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning:
The effect of data, model and finetuning method, 2024.

[72] Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From
catastrophic collapse to effective unlearning. arXiv preprint arXiv:2404.05868, 2024.

[73] Yao Zhao, Mikhail Khalman, Rishabh Joshi, Shashi Narayan, Mohammad Saleh, and Peter J
Liu. Calibrating sequence likelihood improves conditional language generation. In The Eleventh
International Conference on Learning Representations, 2022.

15

Appendices
A Limitations of our Work

While our work provides some results and conceptual models to understand the role of synthetic
data for reasoning, there are still many open questions that need to be answered to fully understand
its utility. While synthetic data from LLMs like Gemini and GPT-4 holds great potential, for more
complex reasoning problems (more complicated than the datasets evaluated in our work), synthetic
data generated from more capable models can contain errors. Generating negative/positive data
by referencing synthetic data answers can reinforce unwanted spurious correlations highlighted in
our work. This means that novel recipes for generating synthetic problems may be utilized in the
future, and our analysis might need to be re-done. That said, we believe that our insights about
algorithmic behavior with synthetic data are still quite general and should transfer to these novel
settings as well. Ultimately, we would want that training on synthetic data improves transfer and
generalization abilities of the model in general reasoning scenarios, and to this end, an evaluation of
transfer capabilities is an important avenue that future work should focus on.

B Per-step DPO Algorithm

Algorithm 1 Per-step DPO (Part 1: Practical version for most experiments; Parts 1 + 2: Complete
version)

Require: Synthetic dataset: Dsyn, SFT policy finetuned on Dsyn: πsft, sampling policy π̃.
1: Initialize per-step DPO dataset D±

πsft
← {}.

2: for (x,y) ∈ Dsyn ∪D+
πsft

do
3: # Part 1: Identify critical steps in incorrect responses
4: Sample multiple incorrect answers −ŷ ∼ πsft(⋅ ∣ x), and collect them in set C(x).
5: for −ŷ ∶= [−ŷ1, . . . ,−ŷL] ∈ C(x) do
6: Compute the Monte Carlo estimate for Qπ̃(x,−ŷ1∶i−1;−ŷi) for each step −ŷi.
7: If −ŷc is the first step with least Qπ̃(x,−ŷ1∶i−1;−ŷi), then D±

πsft
← D±

πsft
∪

{(x,y,−ŷ1∶c)}.
8: end for
9: # Part 2: Identify spurious steps in correct responses

10: Sample multiple correct answers +ŷ ∼ πsft(⋅ ∣ x), and collect them in set C ′(x).
11: for +ŷ ∶= [+ŷ1, . . . ,+ŷL] ∈ C ′(x) do
12: Compute the Monte Carlo estimate for Qπ̃(x,+ŷ1∶i−1;+ŷi) for each step +ŷi.
13: If +ŷc is the first step with least Qπ̃(x,+ŷ1∶i−1;+ŷi), then D±

πsft
← D±

πsft
∪

{(x,y,+ŷ1∶c)}.
14: end for
15: end for
16: Optimize DPO loss in Equation (1) on D±

πsft
with πsft as the reference policy.

C Additional Experiments using Positive Synthetic Data (Section 5)

Recall from Section 5 we observed a 2× boost in sample efficiency (over πsft) of the question/answer
pairs in the synthetic data when we cloned positive solutions sampled from πsft. Note that one
may also attribute better performance of RFT to improved coverage from multiple responses in
D+

πsft
for each question in Dsyn. We find that even when RFT data is restricted to one solution per

question, base LLMs finetuned on it outperform SFT consistently by > 1%. In Figure 9, we plot the
performance of DeepSeek-Math-7B finetuned on SFT data Dsyn and RFT data D+

πsft
where D+

πsft
has

the same questions as Dsyn, and only one positive solution per question, sampled from πsft finetuned
on Dsyn. Thus, both SFT and RFT datasets are of the same size. This means that a significant portion
of the 2× sample efficiency gains we observe for RFT in Figure 2(a,b) can be attributed to RFT data

16

SFT RFT
0.78

0.79

0.80

0.81

0.82

T
es

t
ac

cu
ra

cy

GSM8K

SFT RFT
0.42

0.43

0.44

0.45

0.46
MATH

Figure 9: RFT data with a single (self-generated) correct solution per problem outperforms SFT data (from
highly-capable models) of the same size.

from πsft being easier-to-fit, and not purely because RFT data improves coverage by finetuning on
multiple solution traces per question.

D Additional Experiments using Negative Synthetic Data (Section 6)

8k16k 32k 64k 128k

Synthetic dataset size (|Dsyn|)
0.50

0.53

0.56

0.59

T
es

t
er

ro
r

per-step DPO (pairs from −ve only)

per-step DPO (pairs from both +ve & −ve)

Figure 10: On MATH, improving advantage estimates by computing advantages over both positive and negative
traces sampled from πsft improves estimation error and final performance for per-step DPO.

Improving per-step DPO [23] with a closer approximation of advantage-weighted RL (Parts
1 + 2 in Algorithm 1). Now, we discuss an experiment that improves the performance of per-step
DPO [23] by running the full version of Algorithm 1. In particular, we add new preference pairs to
the dataset of per-step DPO algorithm starting from positive samples. Recall from Section 4 and
Algorithm 1, that for a problem x, with correct answer y given by SFT or RFT data, Part 1 of per-step
DPO estimates the expected accuracy (Q-value) of each step in a negative rollout −ŷ ∼ πsft(⋅ ∣ x)
sampled from the SFT policy. For each step −ŷc the Q-value is computed conditioned on x and
previous steps −ŷ1∶c−1. It then adds the triplet (x,y,−ŷ1∶c) to the DPO dataset. We improve
the coverage and accuracy of advantage estimates via Part 2, i.e., repeating this process for steps
appearing on a positive trace +ŷ ∼ πsft(⋅ ∣ x) as well. Specifically, we add (x,y,+ŷ1∶c) to the DPO
dataset, where the step +ŷc is the first step in the positive trace to have a low Q-value (as dicated by
a relative threshold on the Q-value), which indicates that +ŷc is likely a spurious step that the SFT
model generated. For individual steps that are more likely to occur in either positive or negative traces
we improve coverage of alternate possible steps, and for steps that occur in both positive and negative
traces, we lower the variance (and error) of the advantage estimate. In Figure 10, we compare the
performance of per-step DPO runs with the datasets constructed from only negative vs. both positive
and negative traces, and find that the latter has a lower test error for all sizes of Dsyn.

Advantage filtered per-step RFT. We ran an experiment with advantage filtering on all the steps
present in both positive and negative data from the SFT policy and cloned the filtered data. For this,
we cloned responses with high advantage steps from positive and negative responses sampled from
the SFT policy. We filter all steps where the minimum advantage across all steps is in the bottom
50% percentile. This “per-step RFT” outperforms standard RFT (Figure 11), indicating that training
on useful steps from negative data can improve beyond only training on positive data alone. While
per-step RFT is worse than per-step DPO, we believe that this only further hints at the point that even
using low advantage steps (that per-step RFT filters) for training, can further improve.

17

10k 20k 30k 40k 50k 60k
|D+

πsft
| (RFT data ∼ πsft for 8k questions in Dsyn)

0.255

0.260

0.265

0.270

0.275

0.280

Advantage filtered RFT (GMS8k)

RFT

per-step RFT

(a)

10k 20k 30k 40k 50k 60k
|D+

πsft
| (RFT data ∼ πsft for 8k questions in Dsyn)

0.590

0.595

0.600

0.605

0.610

0.615

0.620

Advantage filtered RFT (MATH)

RFT

per-step RFT

(b)

Figure 11: Advantage filtered RFT: We clone responses with high advantage steps from positive and negative
responses sampled from the SFT policy. We filter all responses where the minimum advantage across all steps is
in the bottom 50% percentile.

E Proof of Theorem 6.1

We first restate the theorem statement and then provide a proof for this below. Our main goal in this
theorem is to show that training with per-step DPO is equivalent to running advantage-weighted RL
shown in the theoretical result.
Theorem E.1 (Equivalence of advantage-weighted RL and DPO with per-step pairs). The optimal
policy from Equation 1 with D±

πsft
given by (x, [y1∶i,+yi+1], [y1∶i,−yi+1]) where the positive and

negative traces share prefix y1∶i ∼ πsft, and −yi+1 ∼ πsft(⋅∣x,y1∶i), +yi+1 ∼ σ(Aπ̃(x,y1∶i; ⋅) −
Aπ̃(x,y1∶i;−yi+1)), is identical to the optima of the advantage-weighted RL objective:

max
π

Ex∼psyn(x),y∼πsft(⋅∣x) [
L

∑
i=1

log π(yi∣x,y0∶i−1) ⋅ exp (Aπ̃(x,y0∶i−1,yi)/β)] . (5)

Proof. To prove this statement, we make the following observation: DPO [41] is equivalent to
optimizing a KL-divergence penalized expected reward objective in an induced Bradly-Terry model
of preferences defined by the reward function. That is, for any reward function r(x,y) over contexts
x ∼ µ and responses y, the optimal solution to the following RL objective:

max
π

Ex∼µ,y∼π(⋅∣x) [r(x,y)] − βDKL(π(⋅∣x)∣∣πsft(⋅∣x)), (6)

is given by the following advantage-weighted optimal policy, π∗(⋅∣⋅):

∀x,y, π
∗(y∣x) ∝ πsft(y∣x) ⋅ exp (

r(x,y)
β

) , (7)

and one can learn this optimal policy by running DPO on preference tuples (x,y1,y2) sampled by
the Bradly-Terry model [6] induced by the reward function r:

p (y1 ≽ y2∣x) =
exp(r(x,y1))

exp(r(x,y1)) + exp(r(x,y2))
. (8)

Given this background information, we know that the optimal advantage-weighted RL policy opti-
mizing Equation 5 is given by:

∀x,y0∶i, π(yi∣x,y0∶i−1) ∝ πsft(yi∣x,y0∶i−1) ⋅ exp (
Aπ̃(x,y0∶i−1,yi)

β
) . (9)

Combining Equation 9 with the equivalence between Equation 7 and the Bradly-Terry model (Equa-
tion 8), we obtain that, if preference pairs (x, [y1∶i,+yi+1], [y1∶i,−yi+1]) were sampled from
the SFT policy: +yi+1 ∼ πsft(⋅∣x,y0∶i) and −yi+1 ∼ πsft(⋅∣x,y0∶i), and labeled according to
Equation 8 applied on advantage estimates, then we obtain the desired equivalence result.

18

F Theory: Why Does Negative Data Improve Generalization?

We saw in Section 6.3 that collecting negative data from an appropriate SFT policy πsft and an
appropriate K, and training on this data improves generalization performance of the resulting model.
In this section, building on the equivalence to advantage-weighted RL (Theorem 6.1), we attempt to
formalize this observation into a performance guarantee. In particular, we show below that training
on negative data implies that we are able to improve over the SFT policy, especially via the detection
of critical steps, that attain high advantages, Aπ̃(x,y0∶i−1,yi), that are otherwise not prioritized by
training on positive data alone. Our theoretical result extends guarantees from the RL literature [27]
comparing RL with imitation learning to show that indeed the use of RL (and hence negative data)
improves over imitation alone.

Notation and setup. Define the policy obtained after advantage-weighted RL training as πneg.
Concretely, πneg(y∣x) is given as:

∀x,y0∶j+1, πneg(yj+1∣x,y0∶j) =
1

Ẑ(x,y0∶j)
πsft(yj+1∣x,y0∶j) ⋅ exp(

Âπ̃(x,y0∶j ,yj+1)
β

) , (10)

where the normalization factoris given by Z(x,y0∶j) for each of the per-step policy distributions.
This normalization factor is a critical factor that will drive the core of the theoretical result. We also
note that the normalization factor in Equation 10 is derived from empirical advantage estimates and
not from the expected estimates for the advantage value. Following Agarwal et al. [2], Kumar et al.
[27], we operate in a tabular setting with a discrete (but combinatorially-large and variable-length)
action space of responses, and our proof follows Theorem 4.4 in Kumar et al. [27].

Theorem F.1 (Utility of negative data over positive data.). Let πneg denote the policy obtained after
advantage-weighted RL (Equation 10) under an empirical distribution µ̂ over prompts x. Then the
difference between the expected reward (i.e., task success rate), J(⋅), attained by πneg and πsft is
lower-bounded as:

J(πneg) − J(πsft) ≳ β ⋅ Exi∼µ̂,yi,0∶L∼πneg(⋅∣xi) [
L

∑
j=1

logZ(xi,yi,0∶j)]

− (overestimation in Âπ̃(x,y0∶i−1,yi)) +
c0√

∣Dsyn∣
,

where Z(♣,◦) denotes the sum over exponentiated differences of the advantage and log likelihood
values under πsft for all possible candidate steps given a problem ♣ and a partial solution ◦. That is,

Z(♣,◦) ∶= ∑
♠∈ step candidates

exp (Aπ̃(♣,◦;♠)
β

+ log πsft(♠∣♣,◦)) ,

c0 is a constant depending upon the Rademacher complexity of the space of policies πneg close to the
SFT policy under the KL-divergence, ∣Dsyn∣ denotes the size of synthetic training prompts.

Proof. To begin the proof, we recall that we are operating in a discrete action space of steps yi,
although this space is exponentially large. Since we operate in discrete action spaces, we invoke
Lemma 5 from Agarwal et al. [2] for analyzing softmax policy gradient methods (this Lemma was
extended by Lemma B.11 from Kumar et al. [27] for comparing BC vs offline RL). Denote by Ĵ(π),
the reward attained by policy π in expectation over the empirical distribution µ̂:

Ĵ(πneg) − Ĵ(πsft) ∶= Ex∼µ̂ [V̂ πneg(x)] − Ex∼µ̂ [V̂ πsft(x)] ≥ βEx∼µ̂ [log Ẑ(x)] . (11)

19

We utilize the performance difference lemma [25] on the MDP induced by the set of initial problems
in the training distribution µ̂, and the model induced deterministic dynamics distribution:

Ĵ(πneg) − Ĵ(πsft) =
L

∑
j=1

Ex∼µ̂,y0∶j−1∼πneg(⋅∣x)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑
yj

πneg(yj∣x,y0∶j−1)Âπ̃(x,y0∶i−1,yi)
⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

L

∑
j=1

Ex∼µ̂,y0∶j−1∼πneg(⋅∣x)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑
yj

πneg(yj∣x,y0∶j−1) log
πneg(yj∣x,y0∶j−1) ⋅ Ẑ(x,y0∶j)

πsft(yj∣x,y0∶j−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= β ⋅
L

∑
j=1

Ex∼µ̂,y0∶j−1∼πneg(⋅∣x) [DKL (πneg(⋅∣x,y0∶j−1), πsft(⋅∣x,y0∶j−1)) + log Ẑ(x,y0∶j)]

≥ β ⋅
L

∑
j=1

Ex∼µ̂,y0∶j−1∼πneg(⋅∣x) [log Ẑ(x,y0∶j)] .

= β ⋅ Ex∼µ̂,yi,0∶L∼πneg(⋅∣x) [
L

∑
j=1

logZ(x,y0∶j)] .

Now, we can prove the desired result by accounting for the gap in the success rate between the actual
distribution over x ∼ µ and the empirical distribution induced by problems in the dataset µ̂:

J(πneg) − J(πsft) ≥ J(πneg) − Ĵ(πneg)ÍÒÒÒÑÒÒÒÏ
(a)

+ Ĵ(πneg) − Ĵ(πsft)ÍÒÒÑÒÒÏ
(b)

− J(πsft) − Ĵ(πsft)ÍÒÒÒÑÒÒÒÏ
(c)

≥ β ⋅ Ex∼µ̂,yi,0∶L∼πneg(⋅∣x) [
L

∑
j=1

log Ẑ(x,y0∶j)] −
c0√

∣Dsyn∣

≥ β ⋅ Ex∼µ̂,yi,0∶L∼πneg(⋅∣x) [
L

∑
j=1

logZ(x,y0∶j)] −
c0√

∣Dsyn∣
+∆,

where c0 is a constant that depends on the Rademacher complexity of the function class of policies
πneg (coming from a uniform bound that we invokve to bound term (a), since πneg depends on the
dataset samples), and this term arises since the empirical distribution over prompts is not the same
as the true population. This concentration term decays as the size of the synthetic data (number
of problems) are scaled up. The term ∆ denotes the overestimation error between the estimated
advantages Âπ̃(x,y0∶i−1,yi) and the true advantages Aπ̃(x,y0∶i−1,yi), in expectation under the
distribution of the learned policy. The estimation error ∆ depends on πsft and the value of K used if
the rollout policy π̃ corresponds to the BoK(πsft) policy. This proves the theorem.

Interpretation & perspectives. Also note that the improvement in performance between πneg and
πsft depends on the advantage estimate: if the advantage estimates are high, then this term is large,
meaning that the more the fraction of high-advantage critical states, the higher the improvement.
In addition, the bound also says that if the over-estimation ∆ in the advantage estimate is large,
the performance improvement is small. This is perhaps expected: consider the scenario when the
BoK(πsft) policy is used to collect data, for a large K. In this scenario, the divergence between the
empirical advantage estimate Âπ̃ and the expected estimate Aπ̃ is likely large. In the worst case, the
estimate Âπ̃ can arbitrarily overestimate Aπ̃, as it would take on a high value even if there is just
one sequence among the K rollouts that successfully solves the problem. For example, a spurious
step may be labeled incorrectly as critical in this case and training on negative data may not improve
(consistent with running per-step DPO on an over-trained SFT checkpoint in Figure 8). On the other
hand, if advantages are more accurate, training on negative data should improve performance.

G Additional Related Work

Failure modes for supervised finetuning (SFT). First, since SFT induces an open-loop [62] next-
token prediction loss, prediction errors on even a single token can snowball during inference, leading

20

to poor performance on the prompts appearing in the dataitself [24, 45]. Second, even when an LLM
has perfectly cloned the SFT data, it is prone to memorize “hard to learn” tokens [56], especially
in planning and lookahead tasks [35, 36], which is critical for math reasoning. This leads to poor
generalization [4, 15] and hallucination on new novel, test-tim prompts [26]. In this work, we study
how synthetic data methods can address these failures via: (i) maximizing likelihood on positive data
generated from both the SFT policy and a stronger teacher that enjoys improved coverage over new
states, and (ii) preference optimization using the negative data generated from the SFT policy.

H Synthetic Data Generation

Prompt used for GSM8K/MATH synthetic data [29]

Please act as a professional math teacher. Your goal is to create high quality math problems
to help students learn math. You will be given a math question. Please create a new question
based on the Given Question and following instructions.
To achieve the goal, you have one job.
Please generate a similar but new question according to the Given Question.
You have four principles to do this. # Ensure the new question only asks for one thing, be
reasonable, be based on the Given Question, and can be answered with only a number(float
or integer). For example, DO NOT ask, ‘what is the amount of A, B and C?’.
Ensure the new question is in line with common sense of life. For example, the amount
someone has or pays must be a positive number, and the number of people must be an integer.
Ensure your student can answer the new question without the given question. If you want
to use some numbers, conditions or background in the given question, please restate them to
ensure no information is omitted in your new question.
You only need to create the new question. Please DO NOT solve it.
Given Question: <insert question from original dataset here>
Your output should be in the following format:
CREATED QUESTION: <your created question>

For GSM8K, we replace the phrase “Your goal is to create high quality math problems to help
students learn math.” with “Your goal is to create high quality math word problems to help students
learn math.”, as we found this to produce problems that were closer to GSM-style problems.

To generate the synthetic data, we used OpenAI credits worth approximately 3000 US dollars.

I Details on Star Graph Problem

The star graph problem we study is borrowed from Bachmann and Nagarajan [4], where given a
graph in the shape of a star and a query (center/end node pair), the model is asked to output the full
path between the start/end nodes.

Goal. Bachmann and Nagarajan [4] show that πsft minimizes SFT loss by memorizing the “hard-to-
predict” node adjacent to the center, and copying the rest of the path from the input graph. This task
is highlights the failure of SFT at planning problems (akin to math reasoning). Thus, we use this as a
case study to understand:

• when accurate advantage estimation is possible with few negative samples from the πsft model.

• whether there are generalization benefits of advantage-weighted RL when advantage estimates
are accurate

• when advantage-weighted RL can unlearn the memorized feature that causes πsft to fail.

SFT dataset. The data we use for supervised fine-tuning consists of 30000 of random star graphs
(see examples below) where each graph has a centre node with out degree 2. Hence, there are two
paths that originate from the centre node. Each path from the center to one of the end nodes is of
length 4. Each node on the path is denoted with a randomly sampled number from 0 to 20. For
example, in the sample “8,3|3,10|14,13|10,1|17,14|8,17/8,13=8,17,14,13”. The graph is given by the

21

adjacency list “8,3|3,10|14,13|10,1|17,14|8,17/8,13”, the query is denoted by “8,13”, and the correct
path is given by “8,17,14,13”.

Test-time inference from the model. At test time, the input to the LLM is only thw graph and the
query: “8,3|3,10|14,13|10,1|17,14|8,17/8,13=” and the model is expected to generate the full path
from start node 8 to end node 13. When evaluating the test performance of an LLM, we calculate 0/1
accuracy averaged over 1000 test star graphs (that are different from train star graphs). The accuracy
on a sample is 1 when the LLM accurately predicts all nodes in the graph.

Failure models of the SFT model, πsft. A model with perfect accuracy (0 error) would be the one
that has accurately learned the correct feature of backtracking the path from the end node to the start
node, and then producing it in reverse. This computation is precisely what makes the adjacent token
“hard-to-fit”. On the other hand, if the LLM minimizes next-token prediction loss during SFT by
instead memorizing the hard-to-fit adjacent token by overfitting on the random input graph instance,
at test time the accuracy would be zero. An intermediate solution that SFT model instead learns is to
output a path that is adjacent to the node. At training time, it only needs to memorize which of the
two possible path to predict. Note that even this solution does not require the model to backtrack, and
is thus easier to quickly learn with a few samples. This would quickly minimize the loss on all but the
adjacent node, which the model memorizes as training progresses. On the test set, this model would
then have 50% test accuracy. Note, that as we increase the size of the graph or the node vocabulary
size it becomes easier for the model to overfit on the hard to predict adjacent token given random
combinations of the input graph. Thus, we choose the vocabulary size to be 20, which is higher than
what is needed to represent any input graph of this size.

Below we provide examples from degree two, path length 4, node 20 problem, where

Examples of 20 node path length 4 star graph problem

Example 1: 8,3|3,10|14,13|10,1|17,14|8,17/8,13=8,17,14,13
Example 2: 14,16|8,10|9,5|3,14|9,3|5,8/9,16=9,3,14,16
Example 3: 14,1|10,4|9,7|10,17|4,9|17,14/10,7=10,4,9,7
Example 4: 19,8|7,18|14,15|15,7|14,19|8,10/14,10=14,19,8,10
Example 5: 1,6|10,1|6,12|10,17|17,18|18,5/10,12=10,1,6,12

SFT Training details. We finetune a pretrained GPT-2 model with 125 million parameters. We train
with a batch size of 128, Adam without any weight decay, and a constant learning rate of 1e − 5 .

Advantage estimation and per-step DPO training equivalent to advantage-weighted RL. For
a sample from πsft, we estimate the advantage of each step by sampling 5 rollouts conditioned on
the subsequence uptill the step. We then pair subsequences with shared prefix, y1∶i differing in the
last step +yi+1 vs. −yi+1, where the former is the one with the highest estimated advantage and
the latter is the one with the lowest estimated advantage. Note that this preference pair construction,
closely approximates the preference pair distribution in Theorem 6.1, which would imply that the
DPO objective being optimized closely approximates advantage weighred RL in Equation 4.

Given these pairs for a batch of star graph problems in SFT data, we update the model with a single
gradient step on the DPO objective in Equation 1. In the next iteration, advantage is estimated and
pairs are constructed on a fresh batch of star graphs. We set β = 0.1 in the DPO objective and use the
same batch size (one preference pair per star graph). Starting from an SFT checkpoint we train in the
above manner for at least 200 iterations. The SFT model is trained for over 600 iterations.

J Implementation Details
Datasets and pretrained LLMs. We run all our experiments on GSM8K and MATH datasets.
Each dataset has about 7.5k training examples. The GSM8K has about 1.3k and MATH has 5k test
examples. We conduct experiments with DeepSeek-Math-7B pretrained LLM and LLama2-7B, both
of which have pretrained weights publicly available on Huggingface.

Details for SFT/RFT training. For our positive data scaling results, the SFT model is trained for 5
epochs with a learning rate of 1e − 5, and a batch size of 64 for all sizes of Dsyn. We use a holdout
validation set to choose the checkpoint and report the performance of the best performing checkpoint
across the five epochs. To generate RFT data we only train the SFT model for 2 epochs (under-trained
checkpoint). For each question we sample M = 100 times, with a temperature of 0.7 and following

22

Yuan et al. [67] we retain at most 4 most diverse (based on edit distance) and correct completions.
This is for our results in Figure 2(a,b). For Figure 2(c), we sample more than 4 correct solutions
and keep sampling responses until we have a dataset of size 10k, 20k, . . . , 50k, when questions
are given by the Dsyn of size 8k and 16k. For our experiment on the RFT dataset with purposely
inserted spurious steps, as we describe in the main paper, we obtain spurious steps by computing
which intermediate steps in a negative response lead to most incorrect solutions and randomly insert
this in between reasoning steps for a positive solution in RFT data. See examples below.

Details for per-step DPO training. Training data for DPO is generated in the procedure outlined
in [23]. The value of K is 5 for the BoK(πsft) policy used to estimate the advantage, and a single
rollout from the best-of-K policy is used to estimate the advantage of each step in “rejected” response,
where the “chosen” and “rejected” pairs for each question are generated from the RFT data, using the
method in [38]. We train per-step DPO with β = 0.3 for all Dsyn from GSM8K, and β = 0.1 for all
Dsyn from MATH. We train for three epochs, with a learning rate of 1e − 6 and a batch size of 64
prompts. We use the rmsprop optimizer and a cosine learning rate decay with a warmpup ratio of 0.1.

Overall, to replicate our experiments, we need approximately 1000 hours of compute on H100 clusters
with 8 GPUs.

RFT data with spurious steps highlighted

Prompt:
Karen’s work tote bag is twice the weight of her husband Kevin’s briefcase when the briefcase
is empty. When Kevin puts his laptop and work papers in his briefcase, it is twice the weight
of Karen’s tote. Kevin’s work papers are a sixth of the weight of the contents of his full
briefcase. If Karen’s tote weighs 8 pounds, how many more pounds does Kevin’s laptop
weigh than Karen’s tote?
Response:
If Karen’s tote weighs 8 pounds, and it is twice the weight of Kevin’s empty briefcase, then
Kevin’s empty briefcase weighs 8/2 = «8/2=4»4 pounds. In words, “Karen’s tote weighs 8
pounds” is “T = 8”, so thus Keven is 2 pounds. When Kevin puts his laptop and work papers
in his briefcase, it is twice the weight of Karen’s tote at 8 pounds, so the briefcase now weighs
8+4 = «8+4=12»12 pounds. Kevin’s work papers are a sixth of the weight of the contents
of his full briefcase, which weighs 12 pounds, so the work papers weigh 12/6 = «12/6=2»2
pounds. If Kevin’s laptop and work papers weigh 12 pounds in total, and the work papers
weigh 2 pounds, then the laptop weighs 12-2 = «12-2=10»10 pounds. Thus, Kevin’s laptop is
10-8 = «10-8=2»2 pounds heavier than Karen’s tote. The answer is 2.

RFT data with spurious steps highlighted

Prompt:
Carl has a jar full of marbles. He takes out 12 marbles to play a game with, but he accidentally
drops them and 1/2 the marbles get lost. So Carl takes out 10 more marbles. While he is
playing his game his mother comes home with another bag of marbles for him, which has 25
marbles in it. If Carl can’t find his lost marbles, then how many marbles is he going to put in
the jar after he plays his game, from both his original marbles and the new ones?
Response:
First find out how many marbles Carl loses: 12 marbles * 1/2 = «12*1/2=6»6 marbles Then
add that number to the number of marbles Carl takes out of the jar to play his game to find
out how many total marbles he takes out: 6 marbles + 10 marbles = «6+10=16»16 marble.
Now add that number to the number of marbles in the jar to find out how many marbles are
left: 16 marbles + 12 marbles = «16+12=28»28 marbles. Then add in the marbles Carl gets
from his mother to find out how many marbles he has in total: 16 marbles + 25 marbles =
«16+25=41»41 marbles. The answer is 41.

K Negative Data Identifies Spurious Steps with Advantage Estimates
In this section, we present several examples from the GSM8K and MATH synthetic datasets of
model-generated (from πsft) positive data with spurious steps. Then, we show how computing

23

advantage values accurately identify the spurious steps. We highlight the steps that were deemed to
be low or high advantage based on the estimated advantage value. The darker the intensity of the
color, the lower the advantage of that step. With this qualitative probe, we see that the steps that are
darkest are indeed either incorrect or correct but involve a reasoning step that is irrelevant for solving
the problem at hand.

Spurious step identified by negative data

Question: Ken created a care package to send to his brother, who was away at boarding
school. Ken placed a box on a scale, and then he poured into the box enough jelly beans to
bring the weight to 2 pounds. Then, he added enough brownies to cause the weight to triple.
Next, he added another 2 pounds of jelly beans. And finally, he added enough gummy worms
to double the weight once again. What was the final weight of the box of goodies, in pounds?

Positive response with identified spurious step:
When the weight was originally on the scale, the box weighed 0 pounds. After Ken added
the jelly beans to the box, its weight was 2 pounds - 0 pounds = «2-0=2»2 pounds. Then Ken
added the brownies to the box, which caused the box to weigh 2 pounds * 3 = «2*3=6»6
pounds. The next step was to add 2 pounds of jelly beans, which caused the box to weigh 6
pounds + 2 pounds = «6+2=8»8 pounds. First, we need to figure out what the weight of the
box was when Ken put the jelly beans in it. 2 pounds of jelly beans was enough to triple the
weight, so the box was at 2 pounds / 3 = «2/3=.6666666666666667».6666666666666667
pounds. Finally, Ken added the gummy worms, causing the box to weigh 8 pounds * 2 =
«8*2=16»16 pounds. The answer is 16

Spurious step identified by negative data

Question: Betty is saving money for a new wallet which costs $100. Betty has only half
of the money she needs. Her parents decided to give her $15 for that purpose, and her
grandparents twice as much as her parents. How much more money does Betty need to buy
the wallet?

Positive response with identified spurious step:
Betty’s parents gave her 15, so her grandparents gave her 2 * 15 = «15*2=30»30. In total,
Betty received 30 + 15 = «30+15=45»45. The total amount of money Betty needs is 100 * 2
= «100*2=200»200. Betty needs 100 / 2 = «100/2=50»50 in total. Betty still needs to save
50 - 45 = «50-45=5»5. The answer is 5

Spurious step identified by negative data

Question: To make pizza, together with other ingredients, Kimber needs 10 cups of water,
16 cups of flour, and 1/2 times as many teaspoons of salt as the number of cups of flour.
Calculate the combined total number of cups of water, flour, and teaspoons of salt that she
needs to make the pizza.

Positive response with identified spurious step:
Since 1 cup is equal to 16 teaspoons, then Kimber needs 128/16 = «128/16=8»8 cups of salt.
So in total, she needs 10+16+8 = «10+16+8=34»34 cups of water, flour, and salt. In cups,
the amount of salt is 128/6 = «128/6=21.33»21.33 cups The answer is 34

24

Spurious step identified by negative data

Question: Eight friends compete in a pie eating contest. The chart displays the number of
pies each person consumed. Emily ate the most pies, and Mike ate the least. How many more
pies did Emily eat compared to Mike?

[asy]\ndefaultpen(linewidth(1pt)+fontsize(10pt));
\npair[] yaxis = new pair[10];\nfor(int i = 0 ; i < 10 ; ++i)
{\n\nyaxis[i] = (0,i);\n\ndraw(yaxis[i]--yaxis[i]+(17,0));\n}
\ndraw((0,0)--(0,9));\ndraw((17,9)--(17,0));
\n\nfill((1,0)--(1,5)--(2,5)--(2,0)--cycle,grey);
\nfill((3,0)--(3,8)--(4,8)--(4,0)--cycle,grey);
\nfill((5,0)--(5,3)--(6,3)--(6,0)--cycle,grey);
\n\nlabel("0",yaxis[0],W);
\nlabel("1",yaxis[1],W);\nlabel("2",yaxis[2],W);
\nlabel("3",yaxis[3],W);\nlabel("4",yaxis[4],W);
\nlabel("5",yaxis[5],W);\nlabel("6",yaxis[6],W);
\nlabel("7",yaxis[7],W);\nlabel("8",yaxis[8],W);
\nlabel("Friends/Participants",(8.5,0),S);
\nlabel("Results of a Pie Eating Contest",(8.5,9),N);
\nlabel(rotate(90)*"$\\#$ of Pies Eaten",(-1,4.5),W);[/asy]

Positive response with identified spurious step:
To solve this problem, we need to identify the number of pies Emily and Mike consumed,
and then find the difference between their consumption. From the chart provided: - Emily:
Consumed 8 pies. - Mike: Consumed 1 pie. To determine how many more pies Emily ate
compared to Mike, we first identify how many pies each person ate. - Emily ate 5 pies. -
Mike ate 1 pie. Now, calculating the difference between Emily’s and Mike’s consumption: [
Difference = Emily’s consumption - Mike’s consumption = 8 - 1 = 7.] Therefore, Emily ate
7 more pies than Mike. The answer is 7

Spurious step identified by negative data

Question: When the base-16 number 1AB316 is written in base 2, how many base-2 digits
(bits) does it have?
Positive response with identified spurious step:
To solve this problem, we first need to convert the base-16 number 1AB3_{16} to base-2.
Step 1: Convert each digit of the number from base-16 to base-2. The number 1AB3_{16}
consists of the digits 1, A, B, and 3. Step 2: Convert each digit individually to base-2
representation. - 1_{16} = 0001_2 - A_{16} = 1010_2 - B_{16} = 1011_2 - 3_{16}
= 0011_2 Step 3: Combine the base-2 representations of each digit. Concatenating the
individual base-2 representations, we get: 1AB3_{16} = 0001101010110011_2 Step 4:
Count the total number of digits in the base-2 representation. The base-2 representation
of 1AB3_{16} is: 0001101010110011_2 The base-16 number (1AB3_{16}) can be written
in base 10 (decimal) as: [1 times 163̂ + A times 162̂ + B times 16 + 3] where (A) and (B)
are decimal digits. This sequence of digits has a total of 16 digits. The answer is boxed{16}

25

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Claims from the introduction and abstract are reflected in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Appendix A.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

26

Justification: Theorem statements are included in the main paper and detailed proofs are
included in Appendix F and Appendix E.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental details are included in the main paper and in Appendix H and
Appendix J

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

27

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: While the code and dataset generated are not yet ready for anonymous open
sourcing, we plan to open-source the code with appropriate licensing and the generated
synthetic data with the updated version of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details are included in the main paper and in Appendix H and
Appendix J

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: For experiments that were bottlenecked by computational resources, we were
unable to run multiple experiments. However, since we perform experiments on well-
established benchmarks, we could make comparisons with existing work to understand the
significance of our performance. And hence, whenever needed we make sure to discuss
observed performances and significance with existing work. Moreover, since we run
experiments at different scales and dataset sizes, the trends observed implicitly normalize
for error bars.

Guidelines:

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have added computational resources needed in the Appendix. Overall, to
replicate our experiments, we need approximately 1000 hours of compute on H100 clusters
with 8 GPUs. To generate our synthetic data, we need approximately 3000 USD worth of
credits with the current pricing of GPT-4 model.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work is to study reasoning in large language models and it doesn’t violate
any code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

29

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss limitations of our work in Appendix A. Since our work is about
empirical and theoretical study of reasoning in LLMs, we do not believe that there are any
direct negative implications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work is not focused towards releasing novel pretrained language models,
image generators or scraped datasets. For the synthetic dataset obtained for reasoning tasks
by prompting large models, we believe there are no risks of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

30

Justification: We make sure to cite relevant and related work. Our code base builds on top
of open-source code repositories that allow free access for research purposes. When we
open-source our code with the updated version, we will make sure that all the credits are
appropriately attributed.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release any new assets. For the dataset generated in our work, we
include prompts mentioned in Appendix H.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not do any crowdsourcing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

31

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not do any experiments with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

32

	Introduction
	Related Work
	Problem Setup and Synthetic Data Generation Pipeline
	Learning from Synthetic Data
	Positive Data Improves Coverage, But Amplifies Spurious Correlations
	Negative Synthetic Data Enables Per-Step Credit Assignment
	Conceptual Model: Constructing Negatives to Enable Per-Step Credit Assignment
	Scaling Results for Negative Data
	Why Does Credit Assignment from Negative Data Improve Model Generalization?
	Advantage-Weighted RL De-Emphasizes Spurious Steps and Emphasizes Critical Steps
	Why Does Generalization Improve?: Connecting Advantage-Weighted RL to DRO
	But, Attaining Low Generalization Error Requires Low Advantage Estimation Error
	Validating Claims About Generalization: Controlled Analysis on a Didactic Problem

	Discussion and Conclusion
	Limitations of our Work
	Per-step DPO Algorithm
	Additional Experiments using Positive Synthetic Data (Section 5)
	Additional Experiments using Negative Synthetic Data (Section 6)
	Proof of Theorem 6.1
	Theory: Why Does Negative Data Improve Generalization?
	Additional Related Work
	Synthetic Data Generation
	Details on Star Graph Problem
	Implementation Details
	Negative Data Identifies Spurious Steps with Advantage Estimates

